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Abstract 

Since algebra is considered as a language, it has its syntax, semantics, and pragmatics. In the 

third linguistic level (pragmatics) stand the relations between the elements of language and 

the users. Since brackets are elements of algebra language they have their syntax, which 

involves some rules that lead transformations of algebraic expressions even with brackets; and 

brackets have their semantic aspect, which is related to tackling of algebraic expressions into 

brackets such as mathematical objects. On the other side, the consideration of the syntactic 

aspect of algebraic expressions leads to instrumental understanding of the use of brackets; and 

the consideration of semantic aspect of algebraic expressions leads towards relational 

understanding of the use of brackets. Based on relational understanding of the use of brackets, 

it is possible to identify cases of using brackets, to discriminate them, to generalize each of 

them, and finally to achieve the synthesis concerning the use of brackets in algebraic 

expressions.  

In terms of this theoretical framework I have designed my study and I tried to give answer to 

my two research questions:  

1. What kind of mistakes pupils in grade 10, involved in my study, do? 

In order to achieve an overview of mistakes concerning the use of brackets that Albanian 

pupils in tenth grade, involved in my study, do I conducted test for thirty pupils. After I 

checked all the tests, I selected four pupils to be interviewed about their test‟s answers and to 

present in depth analysis of the answers of two of them. I conducted interviews about the test 

(both, test and the interview are called pre-test) and some teaching lessons in order to affect 

pupils‟ performances during the task-based-interview (post-test).  

Form data analysis, it seems that some pupils show evidence of improvement in their 

performance during the post-test comparing to the pre-test. Thereby I want to address the 

following research question, which is composed by two parts:  

2. a) What kind of improvement is showed in performance during the post-test? 

2. b) What kind of causes can be identified concerning the improvement? 

In general, the pupils showed that they know how to operate with brackets in algebraic 

expressions. However, mostly of them had an instrumental learning concerning the use of 

brackets, and other pupils had done mistakes in their answers concerning the use of brackets 

and tackling of algebraic expressions. In terms of the two selected pupils‟ performance during 

all my data collection, it is noticed an improvement of their mathematical thinking concerning 

the use of brackets in algebraic expressions.  
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1 Introduction 
In this section I present the theme of my study and the rationale for it. Then I present my 

education and its finalization (until now) with master thesis. Also in this chapter, a description 

for “the environment” where data are collected is involved, also for the education system in 

Albania, and for chapters included in my dissertation.  

This study is a master thesis in mathematics education program. Its topic has an algebraic 

character and it is related to the usage of brackets especially in algebraic expressions. I chose 

this topic because algebra is a cornerstone for mathematics and an important basis for 

achieving success in other parts of the mathematics components. Mathematics is so wide, and 

algebra too. I had to focus only on one algebraic element and to organize my thoughts and to 

orientate them towards clarification of ideas. It has been so interesting and difficult to pass 

through some issues included one to another, that embody mathematics and its parts, such as: 

algebra, algebraic errors, errors with the usage of brackets, errors with brackets in algebraic 

expressions, misconceptions and misunderstanding of brackets and the process of bracketing 

in algebraic expressions. 

The topic of my study is the understanding of brackets and pupils‟ process of bracketing. It is 

needed to emphasize the terms that I use in my study, since while I was reading previous 

studies I encountered different names for the same signs, which depends by authors, or 

something else. In my study I refer with word “brackets” to signs „( )‟, “square brackets” to   

„[ ]‟, and “braces” to „{ }‟.  

In this part of mathematics in school, pupils have different misconceptions and 

incomprehension linked with brackets. I thought, understanding and usage in the right way of 

brackets will help pupils for completing their knowledge in different parts of mathematics, 

such as: trigonometry (sin(x+Π), cos(2Π-x)); calculus, for example: functions (f(x+a), 

f[g(x)]), limit, derivation, integration, etc.; geometry.  

Despite of all these and referring to mathematics Albanian textbooks, there is no lesson that is 

dedicated to fully understanding of brackets and to the basic use of them. I am mentioning 

only the basic use of brackets, which means the principle of the use of brackets considering as 

mathematics object what is involved into brackets, since the use of brackets is widespread and 

useful in different branches of mathematics.  

Throughout my education, I have had commitment from my parents: to help me with my 

homework and learning during elementary school and then to choose a high school, in which 

the pupils and their education were its epicenter. So, during my first years of education I had 

each mathematics lesson explained twice, once by my teacher and once by my father (this 

time more in details), until my mathematical bases were strongly built. After this, I was 

always looking for a “why and because”. And in higher classes, I have always been surprised 

why some pupils bore misconceptions from earlier classes, and I thought: “It‟s time for new 

things”. This was one of the standpoints of seeing pupils‟ difficulties.  

After I finished the upper secondary level, in a private school, I have chosen to study 

mathematics for three years, in the public university in my hometown. Also, I followed a 

master degree in mathematics and informatics education. I have had an experience as a 

student-teacher for five months during my practices for the master program in mathematics 

and informatics education in my hometown. It was a valuable experience for me because I 
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was confronted for the first time with a real class, where I had the teacher‟s role. There I saw 

from another standpoint, not as a pupil but as a teacher, all kinds of difficulties that pupils 

could have. 

Now, I am following the master program in math education in University of Agder, for two 

years. It has been a very interesting and valuable experience. It was a fortunate but also a 

challenge for me. During the first year of my studies for math education I have followed these 

courses: The Development of Mathematics (MA-414), Working Methods in Mathematics 

Education (MA-413), Modern Technology in Mathematics Education (MA-411), Research 

Methods in Mathematics Education (MA-410), Learning and Teaching Mathematics (MA-

404); and two pedagogical courses: Education in Norway and Comparative Education (PED-

216), and School practice and Report (PED-223). All these were very interesting, valuable 

and helpful for my research in the second year of my studies and for my professional future. 

And, the finalization of this stage of my education is this research study. 

During my data collection I had the opportunity for having another standpoint of seeing and 

understanding misconceptions of pupils. In this case I had the role of “researcher” and I 

wanted to go in depth of causes and consequences of misunderstandings. 

In my dissertation, I am going to have a resultant standpoint based on previous ones.  And, 

this should be based on the intention to understand and to help pupils as they face different 

challenges in algebra. In this study my aim is to analyze pupils‟ errors made on a set of 

brackets operations as: brackets expansion, factorization etc.; and to achieve a general 

description about the algebraic mistakes that Albanian pupils in 10
th

 grade ,involved in this 

study, do and to relate these with results from previous research studies. 

I want to find a way to classify the errors of pupils and to see the causes of those errors. From 

my experience as a student-teacher I can see that some of those errors are caused by the 

fragility of their mathematical background, some others are caused from unclear algebraic 

conceptions (especially about brackets) or other reasons (carelessness, negligence).  

In the end of my study, I would like to give answer to the following two research questions, 

the first research question address all pupils in the class I observed, and through the second 

research question I focus on only two selected participants:  

1. What kind of mistakes pupils in grade 10, involved in my study, do? 

Form data analysis, it seems that some pupils show evidence of improvement in their 

performance during the post-test comparing to the pre-test. Thereby I want to address the 

following research question, which is composed by two parts:  

2. a) What kind of improvement is showed in performance during the post-test? 

2. b) What kind of causes can be identified concerning the improvement? 

In order to answer these research questions I conducted my data collection in the following 

way. 

Firstly I observed in a class in upper secondary level for one week, and the next part of my 

data collection passed through these steps: 
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1. Pre-test  

a. Test for the whole class 

b. Interview with four pupils 

2. Teaching lessons 

3. Post-test (Task-based-interview for the four pupils) 

From the first research question I expect an answer that could give me a general view of 

misconceptions and errors that selected pupils in Albania do. For this, I have to make an 

analysis of all the tests collected in my class.  

The answer to the second research question would be a comparison between the pre-test and 

post-test for each of four pupils. Also, I would like to involve in this part the description of 

the process of understanding the concepts of brackets and bracketing, for two pupils. Among 

all pupils in my class I chose four to be interviewed and among these latest I chose two 

pupils‟ performances to be analyzed. And for this I have to study in depth the interviews of 

these two pupils. The second research question required 

an answer that is particularly conditioned. My intention 

is to know if there is something which caused in one way 

the difference in pupils‟ performance, since I noticed 

improvement in their performance during the post-test. 

My goal is to seek evidence to a link between my 

teaching activities and pupils‟ performances during the 

post-test.  

I see this research as a case study, whose purpose is to 

understand mathematical thinking of some Albanian 

pupils during they are working with brackets, and I 

collected data in only one class of one school in the 

northwest city of Albania. Albania is a country in 

Southeast Europe. It is bordered to the northwest by 

Montenegro, to the northeast by Kosovo, to the east by 

Republic of Macedonia and to the south and south east by Greece. It has a coast on 

the Adriatic Sea to the west and on the Ionian Sea to the southwest. Albania is a parliamentary 

democracy with transition economy, and the capital city is Tirana.  

To have a picture of the system of education in Albania, I am writing briefly some words 

about that, according to the official website of Ministry of Education and Science. 

Education in the Republic of Albania is public and private. Public education is secular. 

The New Structure of the Education System in Albania consists of: 

 Preschool education 

 Basic education (elementary, lower secondary  cycle, special education) 

 Secondary education (upper secondary cycle , vocational education, social - cultural 

education) 

 Higher education 

 Adult education 

Figure 1.1. The map of Albania 
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Pre-school education in the Republic of Albania is public and non-public. It consists of 

nursery schools (crèches) and kindergarten. Nursery schools are for children between the ages 

of zero (0) and three (3), and kindergartens are for children between the ages of three (3) and 

six (6). Compulsory basic education starts at the age of six (6) and lasts no less than nine (9) 

years. Basic education consists of two levels: the elementary level (grades I-V) and the lower 

secondary level (grades VI-IX). Secondary education in the Republic of Albania is not 

compulsory and consists of Secondary schools (full-time and part-time) and Secondary 

Vocational Schools. Secondary education has duration of 3 years and terminates with the 

State Matura Exams. 

The Albanian school system has changed in 1999 - 2000. The old system for many years had 

this structure: four years of Elementary level, four years of Lower Secondary level, and four 

years of Upper Secondary level. 

The new secondary school structure and the new teaching curricula were implemented for the 

first time during the academic year 2009-2010. There are nine key fields included in these 

curricula:  Arts; Physical education and sports; Foreign languages; Albanian language and 

literature; Career promotion and personal growth; Mathematics; Technology, IT & computers; 

Natural sciences; Social sciences. 

Secondary school curriculum consists of the core curriculum and the elective curriculum.  

Secondary schools with a reduced time-table (part-time) are also available to adults. 

Studies in part-time secondary schools last four (4) years and upon completion students take 

the State Matura exams (SM). Teaching and curricula programs are approved by the Minister 

of Education and Science. 

This thesis is separated in 10 chapters as the following: Introduction, Review of Literature, 

Theoretical Framework, Methodology and Data Collection, Analysis of Tests, Portrayal of 

Alba, Portrayal of Dea, Discussion and Conclusion, References, and Appendices.  

In my dissertation I have involved a chapter on review research studies (Review of Literature) 

concerning algebraic errors on bracketing process and the use of brackets. In this chapter, I 

have introduced the composition of algebraic language and the role of brackets in algebra. 

Also I have introduced some results from other authors that indicate the existence of pupils‟ 

mistakes and misconceptions concerning the brackets‟ use.  

Then, in the third chapter, I present my theoretical approach for compiling and adapting tasks 

of the test, teaching activities and task-based-interview, and for analyzing pupils‟ 

performances. Also in this chapter, I describe how this study is based on this framework.  

In the fourth chapter I describe methods that I have chosen for my study and how these are 

conducted during data collection. I have used observation, test, task-based-interview, and I 

have designed and adapted tasks for test, teaching activities, and task-based-interview. Also, I 

will describe in detail why and how the data collection took place in a tenth grade class in 

upper secondary level. This will be followed by the description of the way of analyzing data.  

The fifth chapter follows up with participants‟ mistakes extracted from tests‟ analysis. 

Considering these types of mistakes, I have achieved an overview concerning the way of 

brackets‟ tackling by pupils in tenth grade involved in my study.  
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Considering my theoretical approach, as in tests‟ analysis, I have analyzed performances of 

two pupils during the test and interview about the test, teaching activities, and task-based-

interview, by introducing two portrayals for these two pupils called Alba and Dea.  

Chapter 8, Discussion and Conclusions, contains a discussion between my study design, my 

main findings from tests and interviews conducted during data collection, my theoretical 

approach and conclusions from previous researchers. Also, I have looked back to my research 

questions, considering my expectations and my findings, in order to have answers for my two 

research questions. Following, limitations that are arise during my work, suggestions for 

improvement and further research, and my improvement as a researcher and teacher are 

involved in this chapter. 

There is also the chapter about all references involved in my study, and the last chapter 

contains appendixes, which is divided into 5 parts: Test, Evaluating algebraic expressions, 

Interpreting multiple representations, Post-test, and The fieldwork permission by the 

participants. 
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2 Review of Literature 
The use of brackets is important in mathematics and not only in algebra, in which I am 

focused on. In addition, pupils have different misconceptions, furthermore these latest are not 

few in pupils‟ mathematical background. I have seen this not only during my experience as a 

teacher but also I am informed by different authors, which have searched for and studied 

pupils‟ understanding of brackets and the brackets‟ usage. For this issue I mention authors, 

such as: Booth (1984), Ayres (1995, 2000), Kaur (1990), and Kieran (1979, 1989). 

In my study, I used the term signs since Ducrot and Todorov  (cited in Drouhard and Teppo, 

2004, p. 231) define “signs” as “entities that have, for a defined group of users, a particular 

form (the signifier) and a “meaning” (the signified)”. And based on this determination and on 

my understanding, brackets have this signifier: „( )‟; „[ ]‟; „{ }‟ and the entity involved into 

these signs should be considered as a whole object.  

This chapter involves two sections: Algebraic Language and Misconceptions.  

In the first section, Algebraic Language, I have involved different authors who define 

mathematics as language, and algebra too, as subset of mathematics language. Linguistic 

levels of algebra as a language are mentioned and explained in this section; also the 

importance and the use of brackets in algebra language are tackled here. While in the second 

section called „Misconceptions‟, some types of mistakes, misunderstandings and 

misconceptions are introduced, which I have noticed during my experience as a teacher and 

different authors have concluded about them in their studies. 

The topic of my dissertation is pupils‟ understanding and tackling of brackets, if pupils tackle 

brackets as punctuation mark in order to contain certain data, or as part of algebraic language. 

In other words, does pupils‟ work with brackets come just from practical rules that are served 

to them, or is pupils‟ work based on reasoning and arguing the presence and the use of 

brackets? In my study, I relate these two types of tackling brackets with two types of 

understanding the use of brackets, which in accordance to Skemp (1976) are called 

instrumental and relational understanding.  

As the beginning I would like to introduce two interesting examples from research literature 

related to the ways of tackling of brackets: 

 Example 1  

It is taken from Drouhard and Teppo (2004), in which is introduced a non-understanding 

of brackets. Mathematical understanding might be symbolized and in Drouhard and 

Teppo‟s study (Drouhard and Teppo, 2004, p. 228), the answer of a 12 years-old pupil 

about explaining why „3(x+2)‟ and „3x+6‟ are equivalent, was: “Yeah … because they‟re 

rules … they are there so that you can follow them, so that everybody‟ll do the same 

thing”, providing a rule-based interpretation. The pupil appears to be focused on the 

mastery of a set of manipulation rules. To him, symbols may be just carriers of practical 

rules, developed to obtain results. 

 Example 2 

It is taken from the 4th grade‟s Albanian textbook (Daka and Malaj, 2010, p. 96), in which 

is emphasized only the syntax of brackets.  
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Task: Look at the rectangle, and fill in the blanks: 

The perimeter = 210m 

The length = 75m 

The width = (210-(2*75m)):2 = (210-150m):2 

        =___m:2 

        =___m 

And pupils have just to make two calculations leaded by expressions that are written in the 

book. 

The aim of the second task, considering also the ability of fourth grade‟s pupils, is to get 

answer to the question by manipulating given numbers. In addition, it is different from 

making sense the expression written in the book and to understand why the length of the 

rectangle is calculated in that way, by emphasizing in the same time algebraic usage of 

brackets, which is related to separation and inclusion of mathematical objects.  

While in the first example is required an explanation about using distributive law, which is 

related to the use of brackets, and the pupil‟s answer has been referred to syntactic aspect of 

symbols‟ manipulation, using rules without necessary understanding these. In front of this 

aspect stands semantic aspect that refers to the meaning which the symbols endorse. Still 

continuing in accordance to Berg (2009), and Demby (1997) syntactic aspect, which refers to 

the organization and transformation of symbols using rules without necessarily grasping why 

these are valid, could be seen related to Skemp‟s instrumental understanding (Skemp, 1976); 

while relational understanding is related to semantic (level of meaning) that refers to the 

getting of meaning from what these symbols represent.  

2.1 Algebraic language 
Mathematics is a language, according with several authors, such as: Laborde (cited in 

Drouhard and Teppo, 2004, p.231) and Drouhard (2009) which refer to „mathematical 

language‟; Surakkai (2008) which defines mathematical as a special language; and Drijvers, 

Goddijn, and Kindt (2011) which determines the language aspect of algebra, since according 

to Drouhard and Teppo (2004) algebraic language is a subset of mathematical language. In 

addition, I agree that mathematics is a language, since it has its own vocabulary, and we use it 

to construct statements based on some rules that are accepted and understood by everyone, 

with purpose that statements to be understandable by all. 

According to Drouhard (2009, p. 3) „mathematical language‟ is a written one, since 

mathematical semio-lingustic units are written texts. It is needed a careful distinguish of 

mathematical objects (procepts of Gray and Tall (1991, 1992)), like the number „20‟, and 

semio-lingustic representation, like the string of characters „20‟ made of a „2‟ and a „0‟, that 

occur mathematical units in written texts.   

Following, “the uniqueness of mathematical objects, the way it deals with relations and the 

rules that constitute mathematics are very well exemplified in mathematical writing” 

(Sarukkai, 2008, p. 1) and “mathematical writing is not mere symbolic, it is an art of creating 

new symbols” (Sarukkai, 2008, p. 3). The mathematical alphabets correspond to larger 

linguistic expressions than the alphabet of natural languages, which correspond to some 

sounds.  

75 m 
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In addition, Sarukkai (2008, p. 3) indicates an example that, during reading f(x) as a natural 

language text I can say „fx‟, a combination of two alphabetic sounds. Strictly speaking, I 

should be reading it as „f, open bracket, x, close bracket‟ but the brackets are silent. While as 

a mathematics writing I will communicate it as, „function of x‟ or at least „f of x‟. According 

to Sarukkai this constitutes a source of ambiguity for pupils in the context of teaching 

mathematics. What is written is not what is read and “the reading has to be much more than 

the symbol one sees” (Sarukkai, 2008, p. 3). In mathematics language, mathematical concepts 

would be also visually coded. So, Sarukkai (2008, p. 3) gives the example of sets, as 

collection by stating that “sets are denoted usually by the use of brackets; and brackets (as 

visual marks) enclose, collect and bring together elements”. 

According to Guillerault and Laborde, cited in “The future of teaching and learning of 

algebra” (Drouhard and Teppo (2004)), “mathematical language” is composed of both, natural 

language and symbolic system; and symbolic system is broken down into symbolic writings 

and compound representations. Since algebraic language is a subset of mathematical 

language, according to Laborde (cited in Drouhard and Teppo, 2004, p. 231), algebraic 

language is characterized as a set composed of natural language, algebraic symbolic writings, 

and algebraic compound representation, which consist of symbolic writings, drawings, natural 

language for labels, graphs, etc. 

Drouhard and Teppo (2004) describe the language components of the algebraic language 

using linguistic levels of analysis, such as syntax (the organization and transformation of 

symbols), semantics (the level of meaning), and pragmatics (the relation between signs and 

their users). The natural language component of algebra is, clearly, a language. What is not as 

obvious is that the symbolic writings component is also a language. Since, as with the natural 

language component of algebra, symbolic writings can be described using linguistic levels of 

analysis and linguistics concepts. So, the system of compound representations is not a 

language, since they are indeed complex entities and they have meaning but it does not fit 

with a particular characterization of a language.  

By agreeing with Drouhard and Teppo‟s study (Drouhard and Teppo‟s, 2004) about linguistic 

levels of algebraic language, Shaban (2010, p. 3) categorizes elements of algebraic language 

under linguistic levels. 

• Numbers, symbols and operators (basic elements). 

These signs form the „vocabulary‟ of algebra and, the rules how to manipulate these 

signs constitute the syntax. Also, it is needed to know their meaning (semantics) in 

order to understand the substance of what they express. 

• Expressions, manipulations, rules and algorithms. 

These are formed by combining the basic elements of algebra. Syntax is a 

set of normative rules which ensure that everyone manipulates “mathematical” 

[algebraic] symbols in the same way. 

• Application in the form of calculations, charts, models, theorems. 

These forms are used to communicate and to apply mathematics [algebra] in different 

situations which could be realized through pragmatics. And essentially through these 

different application forms, the intern (who is practicing) will measure 

the effectiveness of mathematics [algebraic] language.  
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This classification shows that algebra is structured in the same way as other languages 

concerning three linguistic levels such as: syntax, semantics and pragmatics. Rowland (2002) 

says that pragmatic meaning is an important tool in fulfilling the interactional function of 

language. And I think that in this „chain‟, misconceptions and misunderstandings are 

established and developed since one can intervene.  

I will put in front of pragmatic meaning the metalinguistic awareness according to MacGregor 

and Price (1999, p. 451), concerning their operation in the level of abstraction: 

“Metalinguistic awareness enables the language user to reflect on the structural and 

functional features of text as an object, to make choices about how to communicate 

information, and to manipulate perceived units of language”.  

I consider that metalinguistic awareness in ordinary language has its equivalent components 

in algebraic language since analyzing structures, making choices about representations and 

manipulating expressions are intrinsic to algebra. So, in accordance to MacGregor and Price 

(1999, p. 452) and concerning the context of algebra, there are two components of 

metalinguistic awareness in algebra language: 

1. Symbol awareness includes knowing that numerals, letters, and other mathematical 

signs can be treated as symbols detached from real-world referents. It follows that 

symbols can be manipulated to rearrange or simplify an algebraic expression, 

regardless of their original referents. Another aspect of symbol awareness is to know 

that groups of symbols can be used as basic meaning-units. For example, (x + 2) can 

be considered as a single quantity for the purposes of algebraic manipulation. Also 

Gray and Tall (1991, 1992), is tackled „x+2‟ as a single quantity (object, product), 

which will be developed further in the next chapter. 

2. Syntax awareness includes recognition of well-formedness in algebraic expressions. 

For example, knowing that 2x = 10 implies x = 5 is well formed, whereas 2x = 10 = 5 

is not well formed) and ability to make judgments about how syntactic structure 

controls both meaning and making of inferences (e.g., knowing that if a – b = x is a 

true statement, then it is not generally true that b – a = x. 

Algebraic language is used to express algebraic ideas in a way that is detached from the 

initial, concrete problem. In this sense, abstraction takes place and “it incorporates essentially 

mathematical concepts” (Esty, 1992, p.32). In accordance to Drijvers, Goddijn, and Kindt 

(2011) it would be going too far to say that algebra is a language, but algebra does have a 

powerful language. He views algebra as a system of symbolic representations, where 

(algebra) uses its own standardized set of signs, symbols and rules about how you can write 

something; algebra seems to have its own grammar and syntax. This makes it possible to 

formulate algebraic ideas unequivocally and compactly. 

In this symbolic language, variables are simply signs or symbols that can be manipulated with 

well-established rules, and that do not refer to a specific context-bound meaning. In 

accordance to Drijvers, Goddijn, and Kindt‟s view (Drijvers et al., 2011), I could also mention 

Esty (1992, p. 31) that calls „Mathematics‟ the language with which are expressed 

mathematical results. This is because it has its own grammar, syntax, vocabulary, word order, 

synonyms, negations, conventions, abbreviations, sentence structure, and paragraph structure, 

like other languages. However, on the other hand, mathematics (as language) has certain 

features unparalleled in other languages, such as representations (for example, theorems 

expressed with „x‟ and also apply to „b‟ and to „2x-5‟). Since algebra has its own syntax and 

semantics, “x+5x is not equivalent to (x+5)x” (Esty, 1992, p. 35) and brackets “play an 

important role in algebra „sentences‟” (Drijvers et al., 2011, p. 17).  
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It has been a little difficult to find articles related to brackets‟ tackling by pupils not connected 

directly with order of operations. According to Welder (2012, p. 256) brackets should be 

tackled as essential element of mathematical notation in arithmetic and algebra, and he 

emphasizes Linchevski‟s (1995) results that, algebra requires pupils to have a much more 

flexible understanding of brackets. This is because Linchevski (1995) states that: “In 

arithmetic, the student views brackets as static, a „do-it-first‟ signal, which does not leave 

room for any further consideration” (p. 116). In this line of tackling brackets, I introduce 

also, Ocken (2007, p. 9), which says that “order of operations rules show where to insert 

parentheses in arithmetic expressions”. 

In addition, considering Ocken‟s (2007, p. 55) article, I will list some possibilities of using 

brackets in algebra:  

 Around the result of an algebra operation.  

 Around an expression that is substituted for  

o a variable in a larger expression;  

o a variable in an algebra law;  

o a function argument;  

o a function value.  

I would like to summarize all these cases of using brackets in one, since everything involved 

into brackets should be tackled as a mathematical object (product), and we should use 

brackets when we consider an algebraic expression as an mathematical object regardless of 

situations or conditions. I used the term „algebraic expression‟ since in accordance to Ocken 

(2007) “an expression involves numbers, variables, brackets, and algebra operations. Basic 

types of expressions are integers, variables, monomials, polynomials, and so forth” (p. 3). 

This is because perceiving a symbol (or group of symbols, or an expression) as a concept 

(object) and not only as a process since according to Crowley, Thomas, and Tall (1994, p. 2), 

the concept allows pupils to think about it and to manipulate it mentally, and not only to do 

mathematics that is enabled by the process.    

2.2 Misconceptions 
I have started this section mentioning some typical errors related to bad-use or non-use of 

brackets that are embedded in my mind during being a pupil and then a teacher. Considering 

these examples, I tried to learn from them when I was a pupil and to emphasize and to pay 

attention to them while I was a teacher, with purpose to clarify the importance of the brackets‟ 

use. Based on my experience as a teacher I see these examples as typical for pupils‟ mistakes.  

Now I will introduce some examples concerning non-correct use of brackets and lost-use of 

brackets associated by some comments. These are found at this site: 
http://tutorial.math.lamar.edu/Extras/CommonErrors/CommonMathErrors.aspx 

1. (3x)
2
=3x

2
 

In this case only the quantity immediately to the left of the exponent has gotten the exponent. 

So, it is squared only the „x‟ while the „3‟ is not squared. But the correct case should be 

(3x)
2
=(3)

2
(x)

2
=9x

2
, since the brackets is immediately to the left of exponent. And, this 

signifies that everything inside the brackets should be squared. Brackets are required in this 

case to make sure that is needed to be squared the whole “thing” (mathematics object, „4x‟) 

and not just „x‟. In this line, based on this reasoning, I will mention another example:  

2. (-5)
2
=-(5)(5)=-25. 

http://tutorial.math.lamar.edu/Extras/CommonErrors/CommonMathErrors.aspx
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In this case the whole object „-5‟ (the negative number) involved into brackets should be 

squared, as: (-5)
2
=(-5)(-5)=25. These errors come from decision that brackets are not needed 

and from non-understanding of brackets usage.  

Another example is demonstrated by this task:  

3. Subtract „2x+5‟ from „x
2
+3x-6‟. And the answer of some pupils is:  

x
2
+3x-6-2x+5=x

2
+x-1. 

This is a lose-case of use brackets and only „2x‟ is subtracted. Since it is subtracted a 

polynomial it is needed to make sure to subtract the whole polynomial, and the only way is to 

put brackets around it, x
2
+3x-6-(2x+5)=x

2
+3x-6-2x-5=x

2
+x-11. 

Another type of algebraic errors related to the use of brackets is from the use of distribution 

property: 

4. 2(x
2
-5)=2x

2
-5 

In this case the „2‟ is multiplied only with the first term ignoring the second term. And I think, 

this is most common when the second term is a number. If the second term contains variables 

pupils would remember to do the distribution correctly more than not. 

5. 5(2x+3)
2
=(10x+15)

2
 

The first operation related to „2x+3‟ is exponentiation and then distribution, since „2x+3‟ is 

included into brackets and this bracket is squared and multiplied by „5‟. „(10x+15)
2
‟ is the 

answer for [5(2x+5)]
2
, which means that even „5‟ and „2x+3‟ are squared, or (10x+15) is 

squared.  

I do not know the real reason of some following errors but I think that some pupils consider 

a(b+c)=ab+bc, and they think that everything work like this: 

6. (a+b)
2
=a

2
+b

2
 

I will mention another lost-use of brackets, and now in relation to geometrical part. 

7. Write the expression for the area of rectangle:  

 

Here is required to multiply two sides of rectangle (since that means to find the area of a 

rectangle) and one side is a number and the next one is a polynomial (algebraic expression). 

And the only way to make sure it is correct is to put polynomial into brackets. In this case the 

correct answer is: A=6(a+3). 

These types of mistakes and misunderstanding are encountered in pupils‟ performances in 

several grades while I have been present. Some of them are also mentioned by several authors 

that I have involved in this section of „Review of Literature‟. And I will relate the very last 

example with Kaur‟s results and evidences of the non-use of brackets in her study (Kaur, 

1990). In Figure 2.1, the proportion of pupils “who did the exercise were either ignorant of 

the use of brackets or chose to ignore the use of brackets mainly because they considered 

them unnecessary” (p. 35) is shown. 
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Figure 2.1. Non-correct answers and Proportions 

Also Booth (1984, p. 53-55) concludes that a large proportion of pupils appear to regard 

brackets as irrelevant in algebraic expressions and they consider these expressions with and 

without brackets to be equivalent. Also of interest is the fairly high proportion of pupils who 

exclude brackets statements from their answers. From Booth‟s research (Booth, 1984) it is 

interesting to see how pupils in the top ability mathematics group also appear to ignore the 

need of brackets, and not only pupils in lower ability mathematics groups. On the other hand, 

the results from teaching experiments in this study concluded that pupils in middle ability 

mathematics groups know about brackets but they do not use them since they do not consider 

their use necessary. And, after a series of thirteen interviews of pupils who have been selected 

by their teachers as being particularly able at mathematics, these pupils appear to be familiar 

with the bracket notation but consider their use to be largely optimal. 

Ayres (2000) identifies in his study, which is an analysis of errors made on a set of brackets 

expansions problems, that more errors were made during the expansions of the second bracket 

compare with the first bracket and more errors are made during the second operation compare 

with the first one within each bracket. In this study, 229 pupils take part and they are in grade 

eight (average age of 13.4 years) and grade nine (average age of 14.2 years). They are 

required to solve a set of eight problems presented in Table 2.2.  

Q1 5(3+4x)+3(-x-3) Q2 2(5x+2)+4(-3+4x) 

Q3 -3(1+3x)-7(-2+x) Q4 -4(4x-8)-3(2x+6) 

Q5 -7(-1-2x)+8(2x+3) Q6 -2(-2x+6)-3(9-x) 

Q7 2(-3x-5)+3(4-3x) Q8 5(-3+5x)-2(-4x-7) 
Table 2.2. The problem set used in the study 

Each task contains four operations that lead to the expansion of brackets, each of two pre-

multipliers should multiply both two terms included into respectively next bracket. From the 

analysis of pupils‟ answers, 25.7% of all errors are from forgetting to include the number 

before (the pre-multiplier) during calculation of one from four operations.  

Errors, made by pupils while they are expending linear algebraic brackets, are classified by 

Ayres (1995, p. 39) as slips and bugs. Slips are errors of a careless nature and they are caused 

by difficulties experienced within working memory. On the other hand, bugs are errors of a 

procedural nature involving an incorrect routine in an otherwise correct method. 
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Another type of mistakes related to the wrong meaning attached to brackets is appeared in 

Kaur‟s study (Kaur, 1990, p. 36), in which several pupils “have the misconception that 

brackets indicate multiplication”. In Figure 2.3, some pupils‟ possible error answers are given: 

 

Figure 2.3. Non-correct answers and proportions 

Another evidence of problems with the use of brackets in the rank of pupils, are results of 

Kieran‟s study (Kieran, 1979). This study is conducted in “junior high school level” (12-14 

years old) and six pupils are involved in solving problems related to the order of operations 

and the use of brackets. Kieran concludes that none of participants used brackets in 

constructing their arithmetic identities even though they all had worked in the past, even in 

elementary school, with bracketed expressions. For two pupils, bracketed operations in 

arithmetic identities were not only to be done first but also to appear first; and the opposite 

was another pupil which did not see the need of bracketing the first operation in numerical 

statements since there was the one he was calculating first in any case.  

Kieran (1979, p. 128) concludes that these errors would not be from forgetting the rules, 

mislearning them originally or remembering them incorrectly by pupils. According to Welder 

(2012, p. 257) “alarmingly, these junior high school students simply did not see a need for the 

rules presented within the order of operations”. 

Kieran (1979) suggests a more compelling approach to the topic of bracketing, emphasizing 

the creating in the pupil‟s mind a need for the notation of brackets firstly. And this is 

illustrated by an example: taking „2·5=10‟ and subsequently replacing „5‟ by „4+1‟ yields 

„2·4+1=10‟ and the left side must still have the value „10‟. So, if the pupil, whether he/she 

evaluates by his own left-to-right method or by the standard ordering conventions, will come 

to see that the only way to maintain this arithmetic identity is by bracketing, hence 

„2·(4+1)=10‟ (p. 133). So, Kieran (1979) suggests that pupils need to develop their intuition 

for using brackets before they can learn the rules related to the order of operations or the 

process of bracketing. And I will relate what she suggests to Welder (2012), who states:  

Kieran‟s work highlights a need for more analysis, in addition to the traditional 

computation, of numerical equations in the elementary and middle school curricula. 

Furthermore, Kieran‟s suggestion requires bracket introduction to occur in 

mathematics curricula long before formal algebra. This notion is supported by 

Linchevski (1995), who also believes that students‟ conceptions of brackets need to be 

expanded during their study of arithmetic prior to algebra. (p. 257) 

Since the use of brackets in algebra should be based on relational understanding (Skemp, 

1976) rooting the relation between mathematical objects and brackets, I agree with authors 

introduced in the previous quotation. I think that understanding of the concept of brackets in 

arithmetic would be helpful for pupils to understand the concept of brackets in algebra 
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because concretization (as arithmetic is for algebra) helps in understanding concepts. In 

addition, for if “relational understanding” means knowing which rule to use and why, and 

how it works (Skemp, 1976) firstly pupils must be aware of the necessity of the bracket‟s use 

rule.  

I think that, one way of addressing algebraic difficulties concerning tackling of algebraic 

expressions (polynomials) as mathematical objects is the non-use and bad-use of brackets. 

This is because pupils do not see an algebraic expression as a product without having certain 

values for variables or parameters involved in it. And the only way of considering an 

algebraic expression for several pupils is as a process, which is based on operations and items 

with whom they will operate. This ambiguity of algebraic expressions (mathematical 

symbols) is tackled by Gray and Tall (1991, 1992). On the other hand this is occurred by 

Kieran (1989, p.45) in her study since only one student (from all participants in her study) 

solved equation „4(2r+1)+7=35‟ for „2r+1‟ and all the others solved it for variable „r‟, and 

then they found „2r+1‟.  

Considering brackets as part of algebra, which is a symbolic language and has its “alphabet”, 

syntax and semantics, different types of mistakes, misunderstandings, and misconceptions that 

are indicated by my experience and previous studies of several authors, are expected to be 

encountered in pupils‟ performances concerning different types of tackling brackets. And 

these ways of tackling brackets would be related to algebraic expressions‟ non-tackling as 

objects, and to not being able to discriminate that way of tackling to the correct one. 

It is needed to mention the difficulty of finding adequate literature concerning the topic, 

which is pupils‟ tackling of brackets in algebra. In other words, I am focused on the ways how 

pupils tackle algebraic expressions involved into brackets, and on the use of brackets 

involving algebraic expressions if they should be tackled as mathematical objects (products). 

In my dissertation I do not emphasize the order of operations and it was difficult to find 

previous studies, which emphasize the meaning and the use of brackets as part of algebraic 

language and separately from the order of operations. 

In terms of looking back in previous literature as in this chapter, previous work of several 

authors is involved in the next chapter. In chapter 3, Theoretical Framework, theoretical basis 

of different authors are involved, in which I am based to establish my theoretical approach 

relevant for the topic and the aim of my study. 
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3 Theoretical Framework 
This chapter presents the theoretical framework on which my study is based on, and it is 

divided into two parts: in the first part, I introduce my theoretical approach and in the second 

part, I explain how these issues are related to my study. The first part contains an overview of 

the framework that I have used in my study concerning some theoretical basis of different 

authors. And, the appropriateness of theoretical basis in my study is described in the second 

part. The first part is called “Theoretical approach” and includes three sections: Mathematics, 

Learning, and Teaching; which have influence in the process of understanding the use of 

brackets. Section 3.1.2, Learning/ Learners, involves the subsection “Mathematical 

understandings”, in which I am concentrating on Skemp‟s instrumental and relational 

understanding (Skemp, 1976). 

3.1 Theoretical approach 
While engaging in reading relevant research literature for this study, I realized that different 

authors discussed issues related to the nature of subject matter (mathematics), to the learning 

of this subject matter and to the complexity of organizing teaching activity in order to obtain 

rich learning opportunities for pupils. These three aspects are present in the different authors‟ 

writings and therefore I choose to organize this chapter on theoretical perspective according to 

three strands: mathematics, learning of mathematics, and teaching of mathematics. This 

organization is in accordance with Swan‟s model (2005) in which the following two processes 

are involved, learning and teaching mathematics, and mathematics itself (Figure 3.1). This 

model emphasizes the interconnected nature of the subject matter, mathematics, and confronts 

pupils‟ difficulties through careful explanation of teacher rather to attempt to avoid them.  

                 

Figure 3.1. Swan's and Skemp’s model of doing mathematics 

I have designed two diagrams (Figure 3.1), with purpose to present my understanding about 

Swan‟s model and Skemp‟s theoretical basis. In these two diagrams I can find the same 

elements, such as: mathematics, and the processes of learning and teaching, but the structures 

of diagrams are different.  

My understanding on Skemp‟s model (Skemp, 1976) is that the elements are organized in a 

hierarchical structure, in which the four involved entities are distributed in three levels. It 

starts from understanding, which is the first level and the base of learning and teaching, 

considering both of them in the second level of the hierarchy. Pupils develop their 

mathematical knowledge based on their understanding and through the process of learning, 

also helped by teaching, which is based on teachers‟ understanding. So, mathematics is the 

third level that includes the previous ones. As I mentioned above, this hierarchical structure is 

Swan 

Mathematics

LearningTeaching

SKEMP

Mathematics

Learning  
Teaching

Understanding
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different, in the organization perspective, from Swan‟s model, which I consider as an 

interconnection between three elements: mathematics, learning, and teaching. 

I think that, not everything taught by teacher become knowledge for pupils, it is only a part of 

what is said from teacher that becomes owned by pupils. It depends from teacher, pupils, and 

the social environment. And the amount of knowledge transferable from teacher to pupils 

depends mostly from the work of the teacher. According to Swan (2005, p. 5) teachers should 

have a much more pro-active role than simply to present tasks to learners, and to expect 

learners to explore and discover ideas for themselves. 

3.1.1 Mathematics  
There are different definitions and different viewpoints concerning the nature of mathematical 

knowledge. Swan (2005) considers mathematics as “an interconnected body of ideas and 

reasoning processes” (p. 5). In my study I am focused on understanding the usage of brackets 

and on the use of brackets in a meaningful way. I agree with Swan (2005) since I consider the 

understanding of bracketing as a process based on reasoning and supported by other 

mathematics concepts that will be introduced and developed later in this chapter.  

While Skemp (1976) proposes two conceptions of mathematics account for sharp differences 

in classroom practices and emphases: „relational mathematics‟ and „instrumental 

mathematics‟. Referring to Skemp‟s (1976, p. 13) example, I can confront instrumental and 

relational mathematics with two activities presented in the example below: when somebody 

goes to stay in a new town, firstly he learns several particular routes. He learns how to get 

between his house and his university, between the university and his friend‟s house, between 

his house and downtown. So, he learns a number of fixed plans, based on particular starting 

locations and particular goal locations. But when he begins to explore the town with no 

particular starting location and goal location, the construction of a cognitive map of the town 

is his purpose. According to Skemp (1976, p. 14), instrumental knowledge of mathematics is 

knowledge of “a set of „fixed‟ plans” for performing mathematical tasks (step-by-step 

procedure), whereas relational knowledge of mathematics is characterized by the possession 

of “conceptual structures” that enable the teacher/pupil to construct “several plans” for 

performing a given task. It seems like two effectively different subjects being taught under the 

same name, „mathematics‟. 

I agree with Skemp on this point because from my experience as a teacher, I have seen 

evidence of both these two mathematics categories during several mathematics lessons. There 

are pupils, who want to catch just a set of rules (as fixed plans) to operate with and they do 

not care why they are using them. But other pupils want to operate in a meaningful way and 

using what they know to achieve a solution for new situations. Related to the topic of my 

study, this is in accordance with opening brackets considering several template rules and 

formulas, without knowing their origin or proof. For example, most of pupils are able to 

memorize the formula (a+b)
2
=a

2
+2ab+b

2
, and they do not know that its validation (proof) is 

linked with multiplication of the algebraic expression (a+b) with itself, which is the 

multiplication of two algebraic expressions included into brackets considering distributive 

law. And these pupils, in new situations where the task does not ask explicitly the formulae 

(a+b)
2
=a

2
+2ab+b

2
 or in similar situations but after a period of time, instead of that formulae 

they use (a+b)
2
=a

2
+b

2
 and they do not consider its validity. 

In mathematics categories, as Skemp (1976) calls them relational and instrumental 

mathematics, are involved „a set of fixed plans‟, „conceptual structures‟, and „several plans‟ 

that could compose the “interconnected body of ideas” of Swan (2005, p. 5). And, I think that 
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„reasoning processes‟ are involved into Skemp‟s relational mathematics, because reasoning 

processes are needed to make the construction of „several plans‟ starting from „conceptual 

structures‟. And in my study, I stress the meaningful use of brackets and reasoning for the 

process of bracketing.  

Mathematics has its own language, which involves the symbolic system. Drijvers et al. (2011) 

explains that algebra is considered as a system of symbolic representations and uses its own 

standardized set of signs, symbols and rules about how one can write something; algebra 

seems to have its own grammar and syntax and furthermore according to Berg (2009) algebra 

seems to have its syntax and semantic. In terms of syntactic and semantic aspect of algebra, 

Demby (2007, p. 66) states that semantic aspect of an algebraic expression refers to “its 

meaning (based on the meaning of a variable as symbol of a number)”. And syntactic aspect 

refers to “the way the expressions can be manipulated according to formal rules, regardless 

of the meaning of the symbols” (Demby, 1997, p. 66). 

So, regarding some rules, symbols are appropriated and internalized. In addition, in 

accordance to Berg (2009), Demby (1997), and Drijvers et al. (2011) and referring to the 

above example, pupils consider only the syntactic aspect of the formulae (algebraic identity), 

which is (a+b)
2
=a

2
+2ab+b

2
, and not the semantic one that means (a+b)

2
=(a+b)(a+b). If pupils 

will base on both semantic and syntactic aspect of symbols, and even though they will forget 

the formulae they could achieve a correct result. 

Gray and Tall (1992) emphasize the distinguishing between the meanings of symbols in 

mathematics. A symbol might be understood as a mathematical object (product), a thing that 

can be manipulated in mind. Another possible understanding of a symbol might be a 

procedure to be executed. The symbol which evokes either a process or a product (object) of 

that process is called „procept‟. Such a symbol stands dually for both a process and a concept.  

“We define a procept to be a combined mental object consisting of a process, a concept 

produced by that process, and a symbol which may be used to denote either or both.” (Gray 

& Tall, 1992, p. 2) 

So, it is not just the relation of two ideas, or the giving of a meaning to the process or concept. 

In accordance to Gray and Tall (1992, p. 7), “it is the ability to give meaning to a process in a 

flexible way that allows process and concept to be interchanged at will, often without any 

distinction being made between the two”.  

For example, an algebraic expression such as „2x+7‟ is a procept that stands dually for the 

process “add two times x to seven” and the algebraic expression which can be manipulated 

mentally as an object on its own. In addition, the idea of procept is relevant for my topic since 

„2x+7‟ should be considered as an object in algebraic expression „2(2x+7)-5‟ that means to 

look for a product of expression involved in brackets and then to continue with other 

operations. And, obtaining the product of „2x+7‟ is related to the process that means this 

algebraic expression.   

According to Gray and Tall (1991), this ambiguity between the process and the concept is at 

the root of pupils‟ difficulties concerning mathematical thinking. The proceptual known fact, 

that is the ability of knowing a fact as a procept, would be involved into relational 

mathematics by virtue of its rich inner structure which maybe decomposed and recomposed to 

produce derived facts; and should be distinguished from a rote learned fact, that is a synonym 

of knowledge of a set of fixed plans. For some pupils it is difficult to recognize the duality: 

process, concept and to understand an algebraic expression as a procept. 
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Each understanding act has “an object which the pupil has to notice and identify as an object 

of his or her understanding for any conscious thinking on it to start at all” (Sierpinska, 1994, 

p.41). All the objects in real life could be understanding objects, but these latest one involve 

much more. Even though the “whiteness” could not be considered as an object because it 

does not exist separated from things that are white, Sierpinska states that it can be regarded as 

an object of our thinking, our understanding. “In this sense mathematical abstract concepts 

could be objects for us” (Sierpinska, 1994, p. 31), and a concretization of mathematical 

abstract concept could be linked to the idea of procept according to Gray and Tall (1991, 

1992). So in this line, for some pupils, the abstractness and the difficulties stand in tackling of 

algebraic expression as a product, not as a process. Because they think that an algebraic 

expression presents just an order of operations that should be executed in relation to numbers, 

parameters or variables involved in that algebraic expression. They do not think about the 

product of that expression without having numerical values for parameters and variables. 

I will to mention some of the possible objects of understanding in mathematics: concepts, 

relations between concepts, problems, arguments, methods, mathematical formalism, 

mathematical symbolism, and mathematical representations such as diagrams, graphs etc., and 

texts. Also judgments (theorems, conjectures, etc.), reasonings (proofs, explanations) can be 

regarded as objects. However, according to Sierpinska (1994, p. 32), especially in 

mathematics, objects are being often only constructed in acts of understanding.  

Concerning the objects of understanding involved in my study, these could be: the concept of 

brackets and the symbol of brackets, the process of bracketing, and the process of factorizing; 

multiplication, division, subtraction and addition of two algebraic expressions; tackling 

algebraic expressions as products (objects).  

On the other side, it is difficult to capture the object of understanding, and Sierpinska (1994, 

p. 32) states that: 

“The person may not be able to say what it is that he or she intends to understand. He 

or she only understands that may lead to some clarification and identification of this 

object. But still it seems that without a feeling of there being „something‟ to 

understand it is difficult to speak about any act of understanding to have occurred at 

all.”  

Since the identification of the object of understanding is important for the process of 

understanding, also understanding itself supports subject of understanding to identify its 

object, in case when it is not clear. And the support mentioned above has its basis in 

meaningful learning. 

3.1.2 Learning / Learners  
Learners are the subject in the process of understanding a concept according to Sierpinska 

(1994). Related to my study the subject in the process of understanding are pupils in grade ten 

in an Albanian school. It is important to clarify the distinction between what we, as teachers, 

want the pupils to learn, and what exactly they learn; because according to Sierpinska (1994), 

it happens that in the transition between teacher to pupils the understanding object changes its 

identity, and everything taught by teacher is not becoming into knowledge for pupils.  

I want to introduce an example about this change of the object of the process of 

understanding. During one of my teaching activities in my data collection, I wanted to present 

and discuss about the validity of one algebraic statement: (2x)
2
=2x

2
. My aim was to stress the 

role of the brackets in one algebraic expression by having as an object of the process of 
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understanding the presence (role) of brackets. I and my pupils discussed about the algebraic 

expressions that are in the left and the right side, but on the other hand one pupil intervened in 

the discussion and said: “I transformed it in an equation and I solved it getting the solution 

x=0.” So, the pupil‟s aim was only to find an answer for this task. We did not have the same 

object of understanding. 

In addition, one of the components of the process of understanding concepts, the basis of 

understanding, depends on the background of learners. As Sierpinska (1994) states, there are 

four possible categories of basis of understanding, but here I present only those two which are 

relevant for my study: representations, and mental models. Representations include mental 

images and conceptual representations, and these are created on the basis of previous 

processes of understanding; and I could base on them to notice misconceptions about the use 

of brackets. 

So, from what is mentioned above, we may identify some components that are important for 

the process of understanding. The person who understands is the “understanding subject”. 

This person intends to understand the “object of understanding” and this person has some 

thoughts that we call them “the basis of understanding”. Of course, there are the operations of 

the mind that links the object of understanding with its basis, and according to Sierpinska 

(1994, pp. 56-60) there are four mental operations. It starts with identification of the object of 

understanding, and discriminating this object to another one; these two are followed by the 

identification of the object of understanding as a particular case of another object of 

understanding, which is called generalization; and finally is synthesis that connect 

generalizations to each-other. Mental models encompass our knowing, understanding and 

reasoning, which could be related to correcting misunderstandings. 

Below I will introduce an example related to the usage of brackets, which is adapted from 

Kind (2011), as a means to illustrate the explanation of four mental operations in Sierpinska‟s 

(1994) book. 

Task: Put brackets in the left side of following algebraic statement with the purpose to save 

the equal sign.  

a) x+x
2
+3·x+4= x

2
+4x+4  {answer: x+x

2
+(3·x)+4= x

2
+4x+4} 

b) x+x
2
+3·x+4= x

2
+4x+12  {answer: x+x

2
+3·(x+4)= x

2
+4x+12} 

  

Identification is the main mental operation in the act of understanding, in the level of 

“discovery or recognition” (Sierpinska, 1994, p. 56). To identify the object of my 

understanding means, to discover that it is isolated (hidden) in the background of my 

consciousness, and to recognize it as something that I intend to understand. It consists in a re-

organization of the field of consciousness so that some objects that were in the background 

are now in the foreground. 

If I will concretize this in the given task, I would mention the identification of the crucial 

place of brackets in saving mathematics identity in an algebraic statement.  

Discrimination between two objects “is an identification of two objects as different objects” 

(Sierpinska, 1994, p. 57). Discrimination is the identification of differences between objects.  

There are several degrees of discrimination: The first one is just the perception that the two 

objects are two and not one. The second degree of discrimination “is that when two objects 

are compared with one another with respect to certain sensible circumstances, contingent to 

the objects themselves” (Sierpinska, 1994, p. 58). The third degree of discrimination and 
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higher one is “when two general ideas are compared from the point of view of abstract 

relations” (Sierpinska, 1994, p. 58). 

Related to the example, the first object is „3x‟ involved into brackets as an addend in the left 

side of the first mathematical statement. Another object is „x+4‟ involved into brackets as a 

factor multiplied by „3‟. In these two previous sentences are introduced the first and the 

second degree of discrimination of two cases where are used brackets, because there are 

introduced two objects and their situations in which they are used in. The first brackets 

contain only one term but the second ones two terms. From opening the first brackets the 

algebraic expression in the left side of the first mathematical statement will, its product not 

change, also the product will be the same with that if there will not be brackets. On the other 

side, from opening the brackets in the left side of the second mathematical statement, the 

product will not be the same with that if there will be no brackets. In this way two objects are 

discriminated concerning the third degree of discrimination.  

Generalization is the third operation of the mind that can be defined as an identification of 

one situation (which is the object of understanding) as “a particular case of another 

situation” (Sierpinska, 1994, p. 58). It is, seeing an object as a particular case of a situation. 

So, generalization may be considered derived from the notion of identification that could be 

seemed more fundamental. “But, in understanding mathematics, generalization has a 

particular role to play” (Sierpinska, 1994, p. 59). In addition, it is important to note that the 

operation of generalization has its object. We generalize something, for example: a concept, a 

problem, a mathematical situation, and we have to identify this „something‟ as an object.  

We can consider the second possibility of putting the brackets (case b) as a particular case of 

operations with brackets, there is a number as one factor and the other factor is involved into 

brackets; the first factor should multiply both terms of the second factor, and this condition is 

derived from the presence of brackets. It is different from the first mathematical statement that 

mean, the term involved into brackets, which is preceded and followed by the sign of addition 

could be independent from brackets. 

Synthesis is the last mental operation and is considered as the search for a common link, a 

unifying principle, a similitude between several generalizations and their grasp as a whole (a 

certain system) on this basis. It is the search of a common link between generalizations. For 

example, synthesis happens during a mathematical proof when we capture the idea of this 

proof followed step by step. And so, “the proof becomes a whole; it is no more just a set of 

isolated logical moves from one statement to another” (Sierpinska, 1994, p. 60). 

Related to the above example, all terms involved into brackets should be tackled as a 

mathematical object and the whole one should undergo operations that are related to these 

brackets.  

To unify, reduce, generalize and synthesize, there must be something in one‟s mind that one 

can unify, reduce, generalize and synthesize. According to Sierpinska (1994, p. 32) people 

feel that have understood something when they have order and harmony in their thoughts, so 

it is like feeling that the essence of an idea has been captured. In other words, according to 

Swan (2005, p. 82), understanding could be referred to the French word “comprendre” that 

means to capture the meaning. 

Now I want to introduce Skemp and his theoretical basis about understanding, since I think 

that understanding stands in the roots of the process of learning. In Skemp‟s theoretical 

approach (Skemp, 1976) the term “schema” is essential and occurs many times, so I want to 

introduce briefly what it is and why Skemp (1976) uses the idea of “schema”. For Skemp 
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(1979, p. 219), a schema is “a conceptual structure existing in its own right, independently of 

action”.  And according to him (1979, p. 148), “to understand a concept, group of concepts, 

or symbols is to connect it with an appropriate schema” and “our conceptual structures are a 

major factor of our progress” (1979, p. 113). I have stopped here the further developing of 

the idea of “schema” since I am not focused on creating conceptual structures and on the way 

they effect on understanding the concept of brackets, and this idea is not close related to my 

topic.   

Skemp (1976) is focusing on understanding a concept or a symbol, and it means to assimilate 

a concept or a symbol into a suitable schema, in other words understanding is the creation of a 

connection between ideas, facts or procedures that are generally accepted. In the same line of 

reasoning about the process of understanding, as operation (it is relates to the verb, to 

assimilate), could be introduced Swan‟s definition about the process of understanding. In his 

book Swan (2005, p. 82) states that when someone understands something it becomes part of 

his/her, and then he/she owns it. 

3.1.2.1 Mathematical Understandings 

Skemp‟s categorization of understanding (Skemp, 1976) is fundamental for my study because 

it is based on different abilities for implementing and using knowledge that the subject of the 

process of understanding possesses. In my study I have tackled misconceptions and 

misunderstandings that particular pupils have related to the process of bracketing and the 

concept of brackets. From all activities that pupils have participated such as: test, teaching 

lessons, and task-based-interview, the meaningful knowledge is involved and the meaningful 

learning is required. Meaningful learning means that the learned knowledge (let us say a fact) 

is fully understood by the subject that owned it and he or she knows how that specific fact 

relates to other stored facts (stored in his/her brain). And, in the opposite there is the rote 

learning based not on full understanding. Considering types of mathematics understanding, I 

want to know also how much rote learning is involved and to make meaningful learning or 

learning with understanding more present for the participants of my study. I emphasize 

learning with meaning because it would lead pupils towards exploration and discovering ideas 

by themselves, which is important in Swan‟s model (Swan, 2005).  

 

Instrumental understanding 

Instrumental understanding is the ability to apply an appropriate remembered rule to the 

solution of a problem without knowing why the rule works. So, in this situation it is known 

“how” but not “why”. The rule or the procedure used can be applied only for a limited 

number of tasks and the mental structures (schemas) built through the instrumental 

understanding cannot be easily modified because the method or formulae is memorized as it is 

required for the first time. Skemp (1976, p. 14) quoted that instrumental learning “consists of 

an increasing number of fixed plans, by which pupils can find their way from particular 

starting points (the data) to required finishing points (the answer to the questions)”. This type 

of learning leads to instrumental mathematics.  

Since I consider concepts, algorithms (processes) and proofs as components of mathematics, 

there are two ways that one can understand these components, instrumental and relational. 

On the other hand, I consider task‟s solution by pupils as a proof that contains compiling 

algorithms based on concepts. If someone can recall an algorithm and is capable of executing 

it, I can say he/she has an instrumental understanding of algorithm; an individual “can state 

the definition of the concept, is aware of the important theorems associated with a concept, 

and can apply those theorems in specific instances since he/she has instrumental 

understanding of the concept” (Weber, 2002, p. 1). According to Weber (2002), someone 
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achieves an instrumental proof if he/she primarily uses definitions (concepts) and logical 

manipulations (algorithms) without referring to his/ her intuitive conceptual understanding 

(Figure 3.2).  
 

 

Figure 3.2. Instrumental proof 

I illustrate this type of proofing within the context of usage brackets, which is the topic of my 

study. It is required to notice and to justify if mathematical identity is saved passing through 

these two steps: 6(x+2)-20=22 

    [6(x+2)-20]:2=11 

An instrumental proof might be: the mathematical identity is saved because even the right 

side and the left one of the first algebraic statement are divided by „2‟, to divide the left side 

by „2‟ means to include it into square brackets. I emphasize here rote, formal and 

instrumental justification. 

 

Relational understanding 

Relational understanding is the ability to deduce specific rules or procedures from more 

general mathematical relationship. So, one knows “how” and “why” (Skemp, 1976, p. 38). 

The goal of relational understanding is the construction of relational schemas that means to 

make a connection between newly encountered concepts and the appropriate (relational) 

schemas. So, during this process the schema itself has undergone further development. Also, 

another goal may be the deduction (to deduce) of specific methods for particular problems, or 

specific rules for classes of tasks. In addition, another kind of goal is to improve existing 

schemas by reflecting on them in order to make existing schemas more cohesive and better 

organized, and also more effective for the first and second kind of goal. Relational 

understanding requires to pupils to choose, to change and to apply data, formulae and 

principles in new situations. In addition, in front of what is said above I could introduce 

definitions about learning according to Swan (2006). Learning could be the changing in 

fluency of performance (or behavior) and emphasizes the value of repetitive practice with 

feedback; but also it could be the development of conceptual understandings, also reflection, 

cognitive conflict and discussion. As Skemp (1976) quoted: “learning relational mathematics 

consists of building up a conceptual structure (schema) from which its possessor can (in 

principle) produce an unlimited number of plans for getting from any starting point within his 

schema to any finishing point” (pp. 14-15).  
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Since I consider pupils‟ solutions to mathematics tasks as evidence (proof) that contains 

compiling algorithms based on concepts, considering instrumental understanding, I introduce 

also relational understanding of a concept, algorithm, and proof. According to Skemp (1987) 

an individual has a relational understanding of an algorithm if he knows the purpose of the 

algorithm and why it works; and according to Weber (2002) an individual has relational 

understanding of a concept if he/ she understands “the informal notion this concept was 

created to exhibit, why the definition is a rigorous demonstration of this intuitive notion, and 

why the theorems associated with this concept are true” (p. 2). So, an individual achieves a 

relational proof if he/ she uses his/ her intuitive understanding of a concept as a basis for 

constructing a formal argument, as it is showed in Figure 3.3: 

 

Figure 3.3. Relational proof 

The relational proof of the example tackled in instrumental understanding section would be: 

algebraic expression of the first algebraic statement is included into square brackets in the 

second algebraic statement with purpose its product to be divided by „2‟. Also „22‟ is divided 

by „2‟ because the result is „11‟, and the mathematic identity is saved. 

3.1.3 Teaching 
It is obvious that pupils must attend to their object of understanding, and they must be 

motivated by some interesting and meaningful questions, states Sierpinska (1994); and it is 

less obvious for the teacher what to do, what activities to design, in order to draw the 

students‟ attention, to motivate them, and to engage them into the activity of understanding. 

The understanding that students develop will depend on the kind of „didactical contract‟ that 

will establish itself between the teacher and the pupils in the given classroom situation. 

According to Swan (2005, p. 5), teaching is exploring meanings and connections through non-

linear dialogue between teacher and learners, presenting problems before offering 

explanations, and making misunderstandings explicit and offering learning opportunities from 

them. And non-linear dialogue between teacher and pupils means to give opportunity to all 

pupils to present their ideas and thoughts, even the wrong ones, and not only when pupils are 

asked by the teacher and they have a linear dialogue. This would involve all the pupils in the 

activity that is happening during the lesson and they will exchange their thoughts correcting 

the wrong ideas and enforcing the right ones; and everyone is thinking in her/his own and 

showing thoughts and ideas to others. In other words, everyone is participating in discussion, 

and according to Swan (2005, p. 162), “discussion leads pupils toward learning”. 

As Swan (2006) states the main task for teacher is to help students interpret mathematical 

presentations and to develop meanings for the concepts and relations that they are intended to 
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relate, so a teacher should help pupils to create and to sharp a conceptual framework, and “all 

this involves the development of links and multiple perspectives” (Swan, 2006, p. 81).    

I consider Swan‟s ideas (Swan, 2005, 2006) concerning teaching of mathematics as related to 

Skemp‟s relational understanding, presented above; and according to Skemp (1976) one has 

relational mathematical understanding if he/she makes links between his/ her knowledge and 

any new situation, building up a conceptual structure (schema), or developing existing ones.  

According to Skemp (1976, p. 4) there are two kinds of mis-matches in the relation teacher-

pupil, which can occur:  

1. Pupils whose goal is to understand instrumentally, taught by a teacher who wants 

them to understand relationally. 

2. The other way about. 

The first case will cause fewer difficulties to the pupils, though it will be frustrating to the 

teacher. These pupils will not want to know detailed explanations, but some kinds of rules to 

get the answer. So, they catch these rules and ignore the rest; they will get wrong if teacher 

does not require just fitting a rule. 

In the other case, where pupils are trying to understand relationally but the teaching makes 

this impossible, can be a more damaging one for these pupils. According to Skemp (1976), for 

some teachers who teach according to instrumental understanding, it might have same 

advantages, as: 

1. Relational understanding would take too long to achieve, and to be able to use a 

particular technique is all pupils need. 

2. Some topics are much easier to understand instrumentally than relationally.  

3. The rewards are more immediate and apparent. It is sufficient for who want a page 

with right answers, quickly and easily. 

4. It would be more adaptive to new tasks. 

5. It is easier to remember. 

6. Relational knowledge can be effective as a goal in itself.  

However, a correct answer, formal knowing of a concept, an imitative algorithm do not lead 

toward learning with understanding. Teacher‟s role is more than presenting knowledge and to 

require it from pupils, as a reproduction in imitative way. Regardless referred advantages of 

teaching in accordance to instrumental understanding, it does not invite pupils to single a 

concept (or another object of understanding) out and bring it to the forefront of attention 

(identify); notice similarities and differences between this concept and other similar ones 

(discriminate); identify general properties of the concept in particular cases of it (generalize) 

and begins to perceive a unifying principle (synthesize) (Sierpinska, 1994). In my opinion, 

this is the way to lead towards relational understanding of a concept and that should be 

emphasized more during teaching mathematics. 

3.2 How are these issues related to my study? 
In this section I present the theoretical framework as the foundation of my dissertation, and I 

explained how it is built and why these theoretical perspectives are relevant for my 

dissertation. And to justify this relevance, I will take start from Swan‟s model (Swan, 2005) 

that is the collaborative organization of activities in class, which is different from what I saw 

during observation in my data collection.  
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While there are misconceptions and misunderstandings, I think “it is time for new things”, 

that would change the flow of thoughts of participants in this study, hoping for a better output.  

Inspired by Swan‟s model (Swan, 2005) and Skemp‟s model (Skemp, 1976) of making 

mathematics and in order to be as valid for my topic and goal, I have divided my theoretical 

approach in three sections: 

 Mathematics (subject matter) 

 Learning (learners) 

 Teaching (teachers) 

In understanding a mathematical concept, in my case the concept of brackets and the process 

of bracketing, I have aligned the impact of learning by pupils and teaching by teachers 

(educators). In my dissertation, I am not interested on the way how teachers organize their 

teaching, but I am interested on the way of understanding and learning of pupils. The aim of 

my study is to look for pupils‟ misconceptions and misunderstandings concerning the use of 

brackets. I do not exclude the possibility that misconceptions and misunderstandings may 

come from the way of teaching and teacher‟s aims (objectives) concerning the organization of 

their teaching. The pupils are the subject of my dissertation since I discuss about pupils‟ 

performances. 

Brackets are part of algebraic language, which is estimated as symbolic language. Being a 

language gives algebra the possibility to have its own rules (syntax) and meanings (semantics) 

(Berg, 2009; Demby, 1997; Drijvers et al., 2011) for its components (elements) such as 

brackets are. The syntax of algebra enables forming of monomials, polynomials, algebraic 

expressions and statements by using mathematical objects (numbers, variables, parameters, 

algebraic operations). The important elements of algebra are brackets, which enable grouping 

of elements. On the other side, there is semantics that enables the interpretation of strings and 

other elements of algebraic expressions.  

I think, in an algebraic expression, such as „2(x+5)‟, the syntax of brackets is that even the „x‟ 

and the „5‟ should be multiplied by the „2‟. On the other hand, the opposite, if I should 

multiply the „2‟ with the polynomial „x+5‟, I have to use brackets around the „x+5‟. I think 

this is all what syntactic aspect involves, concerning expanding brackets and the reason of 

using brackets. In addition, all this is based only on “mechanical processes” which are a set of 

fixed plans.  

Taking inspiration from Kieran‟s (2000) study, I will concretize more syntactic and semantics 

aspect of the use of brackets, introducing this example:  

Task: Find the value of „x+5‟ concerning the algebraic statement, 2(x+5)-4=10. 

Considering the syntactic aspect, one may find the value of „x‟ firstly, which means to solve 

the equation for x, and then to add five to the value of x. This solution has followed this way:  

  

 

 

So, this syntactic aspect‟s consideration is related to knowing a set of fixed plans for 

performing mathematical tasks as step-by-step procedure, which is based on particular 

starting points to particular goal points. This is called by Skemp (1976) as instrumental 

learning. During this type of learning and considering of syntactic aspect of algebraic 

2(x+5)-4=10 x x+5 
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expressions (Berg, 2009; Demby, 1997; Drijvers et al., 2011), it is not intended about tackling 

the „x+5‟ as an object (Gray and Tall, 1991, 1992), a product, which should be multiplied by 

the „2‟.  

Otherwise, the processes of multiplying the „2‟ with both the „x‟ and the „5‟ (as in syntactic 

aspect) become understandable, reasonable and meaningfully. This is the semantic aspect of 

considering an algebraic expression that is involved into brackets. Also, on the other hand, if 

it is necessary that an algebraic expression, such as „x+5‟, to be tackled as a mathematical 

object (which means I am interesting on its product, value) it should be involved into 

brackets. And then, I can put it in any algebraic statement in any situation. I think these are 

the semantic aspect that the use of brackets involves in. So, in this case is considered and 

involved the concept of procept (Gray and Tall, 1991, 1992).  

Considering again the algebraic statement, „2(x+5)-4=10‟, and the demand to find the value of 

„x+5‟ considering semantic aspect, the equation might be solved directly for „x+5‟. Based on 

the semantics of „(x+5)‟, this latest could be tackled as a new variable, with purpose to show 

that only its product has importance. So, this way of solving the equation for „x+5‟ has passed 

through one step: 

 

 

 

In this case, it is emphasized the construction of several plans using what is known, in 

accordance to new situations that could be raised. And this is what I think Skemp (1976) has 

called relational learning concerning the use of brackets.  

Faced with semantic aspect (Berg, 2009; Demby, 1997; Drijvers et al., 2011), tackling 

algebraic expressions as procept (Gray and Tall, 1991, 1992), and relational understanding of 

use of brackets in algebraic expressions, it is possible to identify different cases when the use 

of brackets is needed. And then, one can discriminate them emphasizing different and 

common properties for each brackets‟ use. Based on these it is possible to generalize the use 

of brackets for each particular case. In this way the synthesis (Sierpinska 1994) concerning 

the use of brackets in algebraic expressions could be achieved.  

I tried to introduce this way of tackling algebraic expressions and the use of brackets to my 

participants by developing some teaching lessons by my own. And I think the most relevant 

way of doing that is by developing Swan‟s activities (Swan, 2005, 2006), which are based on 

non-linear dialogues between pupils and between teacher and pupils. Since pupils discuss to 

each-other they can introduce their understandings and misunderstandings, their thoughts and 

ideas, exchanging them and maybe even correcting them. Another reason of choosing these 

activities is the involvement of multiple perspectives and representations considering tackling 

of algebraic expressions in these activities (for more detail see section 4.2.2) and this leads 

toward discriminating cases of tackling algebraic expressions. It is important to emphasize 

that during these activities I was not interesting on correct results, but on argumentation of 

pupils‟ answers since they were confronting to new situations, as these activities‟ tasks were.  

On this basis, I will describe in the next chapter the methods used during my data collection, 

in order to get answer for my research questions.  

 

 

2(x+5)-4=10 x+5 
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4 Methodology and Data Collection 
In this chapter I explain in detail how I engaged in data collection with the purpose of 

collecting relevant data for my study. This chapter contains the following five sections:  

 goal and methods,  

 design of tasks and teaching activities,  

 analysis of data collection,  

 ethical considerations,  

 implementation of methods.  

The very last section involves three following parts: context, participants and data collection. 

4.1 Goal and methods 
The goal of my master‟s thesis is to explore pupils‟ misconceptions and misunderstandings 

related to the usage of brackets, and I have generated two research questions: 

1. What kind of mistakes pupils in grade 10, involved in my study, do? 

Form data analysis, it seems that some pupils show evidence of improvement in their 

performance during the post-test comparing to the pre-test. Thereby I want to address the 

following research question, which is composed by two parts:  

2. a) What kind of improvement is showed in performance during the post-test? 

2. b) What kind of causes can be identified concerning the improvement? 

I would like to have a general view about the preparation of tenth grade pupils involved in my 

study, in relation to the usage of brackets and the process of bracketing, by emphasizing their 

misconceptions and misunderstandings. With purpose to achieve this general view of pupils‟ 

preparation, I thought to observe during several mathematics lessons and to test pupils‟ 

tackling of brackets and the process of bracketing by setting a written test for all pupils. But, 

only from these two methods I could not have access to notice and to discuss about 

misconceptions and misunderstandings of participants. Because it is related to capturing of 

notions and understanding of concepts and processes, and these cognitive levels could not be 

expressed just in several tasks solution. 

 So we, my supervisor and I, discussed the possibility to interview pupils with purpose to 

allow them to extend and clarify their answers that were presented in written test. On the other 

hand, by interviewing I can be provided with additional information that could be of relevance 

for my study. It would be impossible to interview thirty pupils that will participate in the test, 

because such an inquiry means too much work for one year master‟s work. So, I decide to 

select four pupils for interview, and for this selection I will focus only on written-test and the 

criteria for selection will be developed in subsection 4.5.2.  

Since I was looking for relevant literature for my study, I was impressed by Swan‟s book 

(Swan, 2006) “Collaborative Learning in Mathematics” that my supervisor recommended it to 

me. I would like to introduce Swan‟s methods to my participants and to implement them 

during mathematics lessons in Albanian school. I found Swan‟s methods really interesting 

because they help pupils to adopt more active approaches towards learning. I select the three 
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most relevant methods for my topic from Swan‟s methods to implement and to concretize 

them in my data collection. This will be developed in section 4.2.  

However, I am curious to know if there would be any change in pupils‟ understanding of 

brackets and tackling of brackets after several teaching lessons related to the usage of 

brackets. So, I want to check one more time pupils‟ preparation in the end of the chapter, by 

using task-based-interview. I choose this method because I need to interact directly with four 

selected pupils since the moment of introducing the tasks, then with their thoughts and 

solutions, and finally with the acceptance or not of my suggestions.  

My research method is ethnography, according to Bryman (2008, p. 402-403), since I am 

immersed in a tenth class setting in an Albanian school for two weeks. During this period of 

time I have made observations of participants‟ work during mathematics lessons‟ activities, I 

have listened to and I am engaged in conversations during my teaching lessons, I have 

interviewed four particular pupils, I have collected documents as: tests and group works of 

pupils (will be extended further in one of next sections), and I am writing about all aspects as 

mentioned above. As an ethnographer, I was a complete observer during the first week of my 

data collection because I did not interact with pupils (Bryman, 2008, p. 410). In addition I was 

a participant-as-observer since I organized and leaded three teaching lessons, which shows 

also the character of my research as a design study. In accordance to Wood and Berry (cited 

in Berg, 2009, p. 78) the design study consists of five steps: 

1. A physical or theoretical artifact or product is created.  

2. The product is tested implemented, reflected upon and revised through cycles of 

iterations.  

3. The multiple models and theories are called upon in the design and revision of 

products.  

4. Design research of this nature is situated soundly in the contextual setting of the 

mathematics teachers‟ day-to-day environment, but results should be shareable 

and generalizeable across a broader scope.  

5. The teacher educator/researcher is an interventionist rather than a participant 

observer in a collaborative, reflective relationship with the teacher(s) as the 

professional development model evolves and is tested and revised.  

So, I have adapted my teaching activities from Swan (2006), which are both created and 

tested by him, and I associated my theoretical approach to these activities and situated to the 

context of my study. But, on the other hand, even though I have compiled tasks and adapted 

activities for teaching activities, also for the test and the task-based-interview, the aim of my 

research is not designing and developing particular mathematical tasks and teaching activities. 

It is the highlighting of pupils‟ understanding about the use of brackets and to have different 

outcomes from task-based-interview compared to the pre-test outcomes. In this point I would 

like to mention Jaworski citation (taken from Berg, 2009, p. 94): 

However, design research talks particularly of a product emerging from the design 

research process, and sometimes it is hard, in a teaching development context, to identify 

what is the product of this developmental process. We might therefore talk rather of 

developmental research, where the tools of development form the basis of what is studied 

and the outcomes of the research process constitute a combination of development and of 

better understandings of the developmental process and its use of tools.  

In my study the “tools of development” are tasks involved in activities conducted during my 

teaching lessons, and the interview during the pre-test. I think so, since tasks are adapted from 
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other authors and the interview in pre-test has been organized on the basis of dialogue 

concerning tasks involved in. Concerning the “outcomes of the research process” I consider 

the conclusions from analysis of the post-test‟s performance of two participants.  

My master work is a case study because it is associated with a particular class in tenth grade 

in an Albanian school. According to Bryman (2008, p. 53), case study has relevant qualitative 

methods such as: participant observation and unstructured interviewing, because they are 

viewed as helpful to achieve a detailed examination for the case. However, I chose to 

implement semi-structured interview in my study because of the fact that it would allow me to 

lead the discussion about what I am interesting in, and during the interview I could have a 

schedule to guide the interview. I will interview four pupils, and according to Bryman (2008, 

p. 440) it gives me the possibility to compare the cases to a certain extend. I think it is an 

adequate method comparing to structured and unstructured interview, because structured 

interview will give me a strong comparison between cases (pupils‟ answers) and this 

interview will not be able to answer my second research question, which waits for the answer 

that will emerge by analyzing of interviews. And the unstructured interview may take 

different directions and the comparing of cases would be difficult.  

As I introduced in chapter 1, four pupils are interviewed twice: interview about their answers 

during the test, and during the post-test. The first interview is a semi-structured interview 

based on what they have written during the test. The second interview is a task-based-

interview, which would be a variant of semi-structured interview because I have compiled 

tasks and some questions by myself before doing the interview with the purpose to guide the 

interview and to extend it depending on pupil‟s answers. The task-based-interview would help 

me to notice (as much as I can) pupil‟ mathematical thinking while they are solving given 

tasks that contain the usage and tackling of brackets. Another advantage of the use of task-

based-interview is that it allows me to go deeper in pupil‟s reasoning and I can act in the 

moment.  

Based on Goldin‟s (2000) description about task-based-interview, the post-test involved the 

subject (the problem solver, which is one of four pupils selected) and me (interviewer) 

interacting in relation to some tasks introduced to the subject (pupil) by me in a replanted 

way, but also having possibility of branching sequences of questions taking into account my 

research purpose. In my case my second research question is composed by two parts, such as: 

a) What kind of improvement is showed in performance during the post-test?; and b) What 

kind of causes can be identified concerning the improvement? In other words my goal is to 

investigate how much participants have understood the usage of brackets and what is the 

nature of their mathematics understanding for brackets in comparison with their situation at 

the beginning of the chapter related to algebraic expressions in their mathematical textbook. 

All interviews are video recorded for later analysis. This is a paper-and-pencil task-based-

interview that gives me possibility to focus my attention more directly on the pupils‟ 

processes of addressing mathematical tasks. I have followed principles and techniques 

described by Goldin (Goldin, 2000, p. 539-544) to design and to implement (to execute) the 

task-based-interview. Now, I will bring ten points he mentioned, and briefly I will explain 

how I intended to achieve them.  

1. Design task-based-interviews two address advance research questions. I have a clear 

goal for my conducting interviews, and in the interview situation, I present tasks that 

are designed as a means to achieve this goal. 

2. Choose tasks that are accessible to the subjects. I have designed tasks before 

conducting observation and knowing the academic level of pupils, but I based the 
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design on mathematics school book and adequate previous literature related to the 

algebraic understanding of 14-16 years old pupils.  

3. Choose tasks that embody rich representational structures. I have designed three 

exercises considering the encountering of pupils to the challenge, this is because the 

first two of three exercises, have a different presentation (the way of organizing data) 

from the previous exercises viewed by pupils before, even though in these cases is 

required the same knowledge. The first type of exercise is adapted from Kindt (2011), 

„operation trees‟ since he states that it is a way “to visualize more composed 

computations and reverse questions” (p. 154). 

4. Develop explicitly described interviews and establish criteria for major contingencies. 

During the interview I do not want to provide much help for pupil to solve the tasks. I 

will try to give the feedback only when it is necessary, and to adopt his/ her answer 

just saying “ok”. My questions will be of the type: “How do you think to solve it?”, 

“Why do you do it in this way?”, “Can you be clearer?” etc. On the other hand, I will 

give help if the pupil will be stuck or will go in one direction that it is not important 

for my topic. I will tend to help the pupil through questions that are directly related to 

the answer I am expecting, or through examples that can introduce explicitly the idea I 

am looking for. On the second exercise, I expect pupils to have some difficulties 

because it is a new task for them even though it will be introduced before the 

interview, during one of my teaching lessons. And, in this part I will give some help to 

the pupil reminding firstly some basic concepts related to this task. The structure of 

the interview, the order of exercises, and their content are the same for each interview. 

5. Encourage free problem solving. This point will be applicable in my interviews 

because students will have time to think by themselves and to express it before my 

feedback, or suggestions. 

6. Maximize interaction with the external learning environment. During the interviews, 

pupils will have only: pencil, eraser, and paper. It might be a little different from 

external learning environment but they will have the basic and necessary tools.  

7. Decide what will be recorded and record as much of it as possible. I plan to film all 

the interviews and the camera will be focused on the paper where the pupil is writing. 

Also I will use an audio recorder except of the video recorder. 

8. Train the clinician and pilot-test the interview. I am conducting the interviews by 

myself, and I am based on Goldin‟s (2000, p. 539-544) criteria concerning compiling 

and conducting task-based-interview. And, the period of time that I was in Albania for 

data collection was limited, I had no possibilities to test the interview. 

9. Design to be alert to new or unforeseen possibilities. During the interview I will 

manage to focus on both, listening to what the pupil says and noticing what he/she 

writes on the sheet of paper (oral responses and written ones). During this time, I will 

be open to different new ideas that pupil could have.  

10. Compromise when appropriate. I should consider this point during the whole 

interview to evaluate situations to achieve the best for my data collection.  

To collect data I need for my analysis I will start by observing classroom to be known with 

the organization of lessons and participants, and based on pupils‟ test I will show their 

performance related to my topic. Among four pupils that are interviewed, I will focus on only 
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two pupils, which had improvement in their performances during the post-test, in order to 

analyze in detail their performance throughout the data collection including, test and interview 

about written test, participation in my teaching activities, and task-based interview. The way I 

designed and conducted these methods is introduced in respectively two next sections: Design 

of tasks and teaching activities, and Implementation of methods.  

4.2 Design of tasks and teaching activities 
When I was designing tasks for the pre-test and the post-test, and tasks for activities for three 

teaching lessons, I relied on four authors‟ theoretical basis as mentioned in the section related 

to my theoretical approach (Skemp (1976), Gray & Tall (1991, 1992), Swan (2005, 2006), 

Sierpinska (1994)), I take ideas from these researchers such as: relational and instrumental 

understanding, the procept, identification, discrimination, generalization and synthesis, and 

taking in consideration my research questions. In general, my goal is to create assignments 

that take into account the use of brackets with the purpose to notice pupils‟ misconceptions 

and their understandings related to brackets, and to develop their understanding.  

 I expect to answer the first research question referring to the written-tests, so I tend to 

compile tasks which, I assume would require instrumental and relational understanding for the 

use of brackets and tackling of algebraic expressions as objects. And, I will highlight mistakes 

of pupils in these points and the first interview will take place related to them. 

The design of my teaching activities is completely based on Swan‟s approaches. I think it 

would be completely different from ordinary activities during mathematics teaching and 

learning in Albanian classes. In these classes, transmission approaches are conducted during 

mathematics lessons. Learners adapt passive learning strategies, without creativity and 

teachers do not stimulate pupils to explore. Teachers only question learners in order to lead 

them in a particular direction or to check if they are following the taught procedure.  

My aim for implementing these activities is to engage pupils in discussion and to offer 

opportunities for explaining their ideas, also for learning in a different and meaningful way.  

Although perhaps there would be no change in pupils‟ performance (answers) during the post-

test, or it would be any change from teaching activities developed by me just because it will 

be something new introduced to the pupils, the purpose of conducting these activities 

evaluated before, is to offer pupils possibilities to make justifications, and argumentations 

based on reasoning.  

I expect to get answer for the second research question from task-based-interview, and for this 

reason I have compiled its tasks in accordance to Skemp (1976), Sierpinska (1994), Gray and 

Tall (1991, 1992), Swan (2006) and Kindt (2011), Booth (1984), Kaur (1990). The last three 

authors are mentioned because they have used in their studies the same tasks as I will do. 

Tackling of algebraic expressions as procept, which requires relational understanding of 

processes and products from these processes; the four mental operations in order to 

understand the significant of brackets‟ usage; and a new representation of algebraic 

expressions referring sides of geometrical shapes, are involved in these tasks. In Table 4.1 are 

introduced authors, on which I am based to compile and to adapt three tasks.  

Exercises Authors 

Nr. 1 Kindt, Gray and Tall, Sierpinska, Skemp 

Nr. 2 Swan, Sierpinska, Gray and Tall, Skemp 

Nr. 3 Swan, Booth, Kaur, Gray and Tall 
Table 4.1. Authors and exercises  
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I have compiled the test, the teaching activities and the task-based-interview before knowing 

pupils‟ level but I had information about mathematics text book that participants use and I 

based my design on chapter 3, Expressions with Variables (Babamusta and Lulja, 2009), by 

including in my tasks a medium difficulty for pupils in tenth grade. This chapter will be 

developed for one school week (five lessons) and it corresponds to one week of my data 

collection. 

4.2.1 Test  

While I was compiling the test and deciding for the tasks, I had in mind what I have read from 

previous studies, which are involved in chapter 2 and chapter 3, and my experience 

(especially as a teacher); also I took in considerate the Albanian mathematics textbook for the 

tenth grade. So, from reading of the research literature I got some initial ideas and I evaluated 

them bringing in my mind my experience, if it would be acceptable for the chosen 

environment (Albanian classroom). And finally, I completed and fit them in accordance to 

mathematics textbook that participants learn with. Review literature and my experience 

helped me to be faced to misconceptions and errors that pupils do and I tried to compile tasks 

that would be a challenge for several pupils.  

Test involves five types of exercises (see Appendix A).  

The first one has nine tasks, each of them have multiple correct answers (Multiple-

choice questions). I selected this type of exercise to challenge the assurance of pupils related 

to their concept of brackets and the process of bracketing, and in the same time I had in mind 

some possible mistakes and misconceptions. This exercise is meant to be solved by pupils 

using previous knowledge and it has similarities with tasks introduced in mathematics 

textbook, except involvement of alternatives. So these assignments are situations that the 

participants have seen before and, furthermore they require basic knowledge that pupils 

should have it from previous classes. Each of these tasks contains five alternatives as probable 

answers and only two or three of them are correct answers. Wrong answers might be achieved 

by using knowledge in an incorrect way. 

I will introduce only two from nine tasks and I will show where alternatives come from:  

Exercise 1, task 4: 

(x+4)(x-5)=…  

a) x
2
-20  b) x

2
+4x-5x-20 c) x

2
+20 d) x

2
-x-20 e) 2x-1 

Exercise 1, task 5: 

x
2
y-(xy)

2
=…  

a) 2x
2
y  b) x

2
y-x

2
y

2
  c) 0  d) x

2
y-xy

2
 e) x

2
y(1-y) 

There are two kinds of relations between the correct answers and the wrong ones: one is the 

between correct answers, which are different representations of each-other and it is related to 

a deeper thinking about the solution; the second relation is between the correct answers and 

the wrong ones, because these wrong answers are results of aware errors, considering the 

misconceptions and errors that pupils, in general, do. These two relations are interesting 

because the first one shows if pupils know different presentations of algebraic expressions, for 

example: in the second task as presented above, alternatives b) and e) are correct, and e) is the 

answer obtained from factorization of „x
2
y‟ in b). In this line, from choosing pupils‟ incorrect 

answers and taking in considerate the origin of these answers, in one way they can show if 

there are misconceptions in their learning. For example: referring to Kaur (1990) that for 

some pupils ignore the presence of brackets, they can choose alternative d) in the second task 
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above. Another misconception involved in the first task above is presented by alternative a), 

where everything in the first brackets should multiply each element in the second ones and not 

to multiply only the first two elements of two brackets with each-other and the second 

elements with each-other.  

This part of the test is related to the usage of some basic algebraic rules, especially concerning 

the process of bracketing as, distributive law and factorizing, and also it is related to Skemp‟s 

instrumental understanding (Skemp, 1976). The first exercise does not require pupils to use 

what they know in different situations or to generate new procedures based on previous 

knowledge, but just to use what pupils know, in type of tasks that they are confronted with 

even before. And from this exercise, I expect to achieve “a picture” of possible mistakes that 

test participants have, especially in relation to tackling of brackets. Since tasks do not present 

new situations and require instrumental understanding of bracketing process, I think pupils 

can achieve good results in this exercise selecting at least one correct answer because, 

according to mathematics textbook, multiple-choice is new for them. Saying that, I am 

making explicit my own expectations as a researcher with basis in my experiences as a 

teacher. 

I was thinking about an exercise to challenge pupils and to require an active use of brackets 

different from the passive use of brackets which is involved in the first exercise and 

furthermore the passive use of brackets is submitted more by Albanian mathematics textbook. 

The idea of active use of brackets was presented by Kindt (2011, p. 154) in one exercise, 

which I conducted as the second exercise of my test. It includes four tasks, and requires 

finding of the correct place of brackets, in the left side of algebraic statement, with condition 

to save the equal sign.  

Exercise 2: Place parentheses in these expressions to the left of the equal sign to create 

equality. 

a) x+x
2
+3·x+4= x

2
+4x+4   c) x+x

2
+3·x+4= x

3
+4x+4 

b) x+x
2
+3·x+4= x

2
+4x+12   d) x+x

2
+3·x+4= x

3
+5x

2
+7x+12 

Similarly this exercise requires knowing of distributive law, which is related to the process of 

bracketing during multiplication of one term with brackets, or multiplication of two brackets, 

but this is different from the first exercise because these rules are used in different and new 

conditions. From my experience, some pupils know and use in correct way the distributive 

law: a·(b+c)=a·b+a·c, but they do not know where to place brackets in the left side of the 

following algebraic statement: a·b+c=a·b+a·c, to make equal the both sides. All difficulties 

concerning this type of exercise might be from the rote they and mechanical learning, and are 

related to Skemp‟s relational understanding (Skemp, 1976). 

I think that, this is an interesting exercise because it requires the use of some basic knowledge 

in a new and challenging situation. Pupils who will solve this task might have relational 

understanding and know more about the use of brackets, but not just to expand them. And 

concerning my theoretical approach, pupils would achieve a relational proof solving this 

exercise; on the other hand this exercise gives the possibility to generate the four mental 

operations of understanding the importance of the use of brackets, as it is explained in section 

3.1. I think this type of exercise might seem to pupils as difficulty to understand and to solve 

it, and I do not expect to have correct solutions from mostly of them. This is because the rote 

learning dominates during mathematics activities (teaching and learning) and this test will be 

developed in the first lesson of the chapter related to algebraic expressions in the textbook. 
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Continuing in the light of both, the first and the second exercise, in which the passive and the 

active use of brackets respectively dominate, I compiled the third exercise that includes five 

tasks, as the following examples: 

Exercise 3, task a) and e): 

a) (-4x)(2x+8)= ? -32x  e) (x+?)(x+?)= x
2
+6x+8 

Brackets are located and expansions are finished but they contain missing terms that pupils 

should complete them with purpose to make equity between the left and the right side. The 

third exercise is meant to be solved by pupils, knowing two following rules of multiplication 

of brackets (distributive law): a(b+c)=ab+ac, and (a+b)(d+c)=ad+ac+bd+bc. 

This type of exercise emphasizes the consideration of algebraic expressions (polynomials) as 

objects and each element of them should be multiplied by each-other in order to achieve a 

multiplication of two expressions. Based on Skemp‟s theoretical framework, relational 

understanding requires the pupil to choose, to change and to apply the formulae in new 

situations; to pupils it is given the possibility to use their relational mathematics to solve these 

tasks. 

The forth exercise includes five algebraic expressions and it requires to expand brackets and 

to execute operations. I am interesting on expanding brackets step by step because in the 

previous exercises answers were given not allowing pupils to write whatever and however 

they know related to the task. And, from solutions of these tasks, I expect to have a wider 

view of pupils‟ mathematical thinking concerning tackling of brackets, mathematical objects, 

operations with brackets, types of brackets. Here are some examples from Exercise 4, task c), 

d), e): 

c) (12x
3
-x

2
)-3x(2x+1)(2x-1)= 

d) ( 2𝑥-2 𝑦)
2
+(x+x

2
+2)(5-x)= 

e) -{5x-(11y-3x)-[5y-(3x-6y):3]}= 

From the first fourth exercises I expect to achieve a consideration about tackling algebraic 

expressions as objects (procept) by participants since each task involves algebraic 

expressions.  

 Considerations 

Exercise 1 9 tasks Tackling algebraic expressions as a whole one based on their 

syntactic aspect 

Exercise 2 4 tasks Tackling algebraic expressions as objects (products) based on 

the active use of brackets 

Exercise 3 5 tasks Tackling algebraic expressions as objects (products) based on 

the passive use of brackets 

Exercise 4 5 tasks Considering algebraic expressions involved into brackets as a 

mathematical object and using brackets for algebraic 

expressions which should be tackled as a product (object) 

Exercise 5 5 tasks Considering algebraic expressions as objects even in new 

representations based on the active use of brackets 
Table 4.2. Considerations of five exercises 

During interviews I expect to have pupils‟ justifications, for exercises, concerning their 

manipulations, decisions and results. This is because being able to explain the solution by 
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basing it on mathematical foundations leads me somehow, to the type of pupil‟s 

understanding and learning.  

But my demand to enhance meaningful learning during mathematics activities leads me to 

link tackling of algebraic expressions not only in “algebraic environment” (as in the first four 

exercises) but also in relation to other topics. I am also interesting on this type of exercise to 

“explore” if tackling of mathematical objects depends from the way of presenting. I involved 

as the fifth exercise of the test writing of algebraic expressions for area and volume of 

particular diagrams. This exercise is meant to check pupils‟ creativity and their assurance 

referring to the way of considering mathematical objects. I encountered this type of exercise 

in several previous studies as: Kaur (1990), Swan (2006), and Booth (1984). The fifth 

exercise contains four area diagrams and one volume diagram.     

  Exercise 5, task 2 and 5: 

    

The purpose of the last task is to encourage pupils to write down algebraic expression of 

cuboid volume and to extend that by working with variables multiplication and the 

distributive property. 

As I described above (see Table 4.2) I designed all tasks on the basis of aware expectations 

and planed frames with purpose to help myself in analyzing pupils‟ performances and to 

know what I am looking for. 

4.2.2 My own teaching 1, 2, 3 
The reason why I decided before observing classroom to develop three (depending from the 

number of lessons involved in the chapter) lessons by myself, was to bring some new 

activities for pupils. From my experience as a teacher I know that the organization of 

mathematics lessons is similar almost every time, and I think it comes from the large number 

of pupils in the class, limited time of 45 minutes for a school hour, also from teaching 

orientation. I am based on Swan‟s „collaborative‟ orientation (Swan, 2005) to bring an 

effective teaching for participants concerning understanding of the use of brackets. During 

these activities the following six aspects (Swan, 2006) are emphasized: 

- Working in small groups with purpose to encourage critical, constructive discussion. 

- Reasoning rather than „answer getting‟ because is better to aim for depth than for 

superficial „coverage‟ since pupils are more concerned with what they have „done‟ 

than what they have „learned‟. 

- Exposing and discussing common misconceptions that allow pupils to confront their 

thoughts and ideas. 

- Using higher-order questions with purpose to promote explanation, application and 

syntheses; it is more effective than mere recall. 

- Using rich, collaborative tasks to encourage discussion, creativity, justifying, and to 

encourage „what if?‟ and „what if not?‟ questions. 

- Creating connections between topics with aim that teaching to be effective. And it is 

difficult for pupils to generalize and to transfer their learning to other topics and 

contexts.    
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Among several activities suggested by Swan (2006) I am focused on three of them, which I 

think, could be relevant for understanding the use of brackets. In accordance to Swan‟s 

theoretical basis (Swan, 2005, 2006), which emphasizes discussion that offers explanations, 

reasoning, and making misunderstandings and misconceptions explicit I divided pupils in 

small groups and developed these activities. Also I organized class discussion with purpose to 

take part all pupils and I introduced what pupils said in blackboard for all.     

Evaluating mathematical statements 

There are ten statements and generalizations, and pupils should justify their answers, evaluate 

if each of them is always, sometimes or never true. In this activity pupils are asked to decide 

whether the statements are always, sometimes or never true and to give explanations for their 

decisions introducing examples or counter-examples to support or to refute the statements. 

Also, students may be invited to add conditions or otherwise to revise the statements so that 

they become „always true‟. I chose it because this type of activity develops pupils‟ capacity to 

explain, convince and prove. On the other hand, it is the explanation that makes explicit the 

reasoning that drives the solution or the proof forward and, to achieve explanations it is 

needed the mathematical foundations achieved in accordance to relational understanding 

where the pupil is aware about knowledge he is using.  

I have compiled ten algebraic generalizations in relation to the use of brackets (see Appendix 

B), for example: 

1. (2x)2 =4x2   2. (2x)2 =2x2      3. 
4𝑥+6

2𝑥+3
 = 

1

2
 

The first one is always true since the product of „2x‟ is squared that means the algebraic 

expression „2x‟, involved into brackets, is tackled as an object. It will be acceptable and 

valuable representing two area diagrams which have areas respectively: (2x)
2 

and 4x
2
.  

 

The second mathematical statement is sometimes true and it is true only for value zero of x. In 

addition, even using geometric representations, area diagrams with respectively area (2x)
2 

and 

2x
2
 do not introduce the same surface: 

    

I consider this couple of examples valuable to show the importance of tackling algebraic 

expression included in brackets as object and it helps pupils to make discrimination between 

two cases of tackling mathematical objects. The confrontation of algebraic context and 

geometric context of mathematics statement is effective in building bridges between ideas and 

representations that help pupils for a deep understanding and in a meaningful way. 

While the third example is part of the group of statements that are never true. It requires 

factorization of „2x+3‟ and emphasizing condition that „2x+3‟ should be different from value 
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zero (x≠- 
3

2
) with purpose to simplify it in numerator and denominator. After these we get 

numerical statement that 2= 
1

2
  which is never true.  

In addition, participating in this activity “encourage pupils to focus on common convictions 

concerning mathematical concepts” (Swan, 2006, p. 146), and it emphasizes developing 

mathematical arguments and justifications or other ways of representing.  

 

Interpreting multiple representations 

During this activity pupils work together matching cards that show different representations 

of the same mathematical idea, in my case algebraic expressions are related to emphasizing 

the use of brackets. Pupils draw links between representations and develop new mental 

images, or develop existing ones concerning the concept of brackets and the process of 

bracketing. So, the concepts of bracketing and the concept of procept (Gray and Tall, 1991, 

1992), as other mathematical concepts, have many representations: words, diagrams, 

algebraic symbols, tables; and pupils should sort cards that show different representations of 

mathematical objects into sets and, each set has equivalent meaning. I will show some cards 

from four representing ways (Swan, 2006, p.146), and for more show Appendix C: 

 

Figure 4.1. Cards of four types of presentation 

Cards that are underlined would be interpreted in relation to each other. Matching the 

corresponding words and symbols cards focuses attention to the order of operation 

highlighting the use of brackets with purpose to construct an object since its product is needed 

primarily; following by matching words and symbols cards to area representation and tabular 

representation. Also there is the possibility to present differently one card in the same type of 

representation, 2(n+6) and 2n+12, which enables generalization (Sierpinska, 1994) of an 

event of brackets. On the other side, pupils are allowed and encouraged to revealed and to 

explicitly discusse common errors, as 2(n+6) = 2n+6, discriminating each set of cards, 

respectively for 2(n+6) and 2n+6, for each representation. Except written cards, there are 
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blank cards and pupils are asked to construct them but “the focus of the activity is on 

interpreting rather than the production of representations” (Swan, 2006, p. 145).  

This activity allows pupils to construct: meanings, links between the concepts, and links 

between different representations by discriminating carefully common conceptual obstacles 

(related to tackling of mathematical objects) and by explaining similarities and differences in 

meaning of the use of brackets and of tackling of mathematical objects. These cards sets are 

powerful ways of encouraging pupils to see mathematical ideas from a variety of perspectives 

and to link ideas together. These cards are adapted by Swan‟s ones and I have translated them 

in Albanian language.  

Creating problems 

I am focused on creating equations, in which pupils build up their own equations transforming 

both sides of an algebraic statement. I adapted this method from Swan (Swan, 2006) and I 

developed it further since I organize this activity for all pupils with purpose to involve 

everybody in listening, also in discussion, while according to Swan (2006) this activity is 

developed in pairs of pupils. We start to create equation (algebraic statement) from a 

particular value of the variable, for example „x=2‟; it is followed by determination of an 

operation (+, -, *. /) and the object that participates in this instruction, for example „add 3x‟, 

and the condition is to save mathematical identity which could be achieved by operating 

equally in both sides of the equal sign, x+3x=2+3x; and so on. 

From this activity pupils gain confidence with the notation used in equations, including the 

use of brackets with purpose to tackle an algebraic expression included in brackets as an 

object, and to involve into brackets an algebraic expression from which should be taken 

primarily the product (object). This activity develops pupils‟ abilities to create equivalent 

shifts, to explain their ideas, and to participate in discussion about common misconceptions 

related to understanding the importance of using brackets. 

So, the aim of conducting these three activities is to help pupils to adapt more active 

approaches towards learning, by engaging in discussion with their ideas and justifications, and 

by working collaboratively to share their methods and results. My intention is to bring 

“something new” and non-routine in mathematics lessons putting in the center pupils and their 

understanding. The interconnected nature of these activities confronts conceptual difficulties 

through discussion and develops the challenging connected to collaborative orientations 

towards teaching. On the other side, “learning is a collaborative activity in which learners 

are challenged and arrive at understanding through discussion” (Swan, p. 162).  

4.2.3 Post-test 
I have compiled three exercises for the post-test, which is a task-based-interview, in order to 

achieve an answer for the second research question, which is composed by two parts: “what 

kind of improvement is showed in performance during the post-test?” and “what kind of 

causes can be identified concerning the improvement?”   

I have compiled these tasks taking into account the purpose to notice pupils‟ understandings 

related to brackets and their misconceptions (since I expect to notice also in pre-test) and to 

make a comparison between participants‟ answers from the pre-test and the post-test. In 

addition, I have created assignments for interview based on theoretical approach of Skemp 

(1976), Swan (2005, 2006), Sierpinska (1994) and, Gray and Tall (1991, 1992). 

Task-based-interview is composed by three types of exercises: operation trees, creating 

equations, and area diagrams. The first type of exercise is called “operation trees”, it contains 
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two tasks and according to Kindt (2011, p. 153-154) this type of exercise enables 

visualization of more composed computations and reverse questions and pupils have to decide 

where to start the filling of the trees; and it is more challenging than monotonous tasks which 

primarily lead to imitative behavior. And the last advantage is the reason why I decide to 

involve “operation trees” in task-based-interview, and I used it as a new way to represent two 

algebraic expressions connected to each other through an operation as: multiplication, 

division, addition, and subtraction. I think it is an interesting type of task and it is related to 

my topic since it requires tackling algebraic expressions as objects, which is a very important 

aspect of algebra according to Gray and Tall (1991, 1992), and it is achieved by including 

them into brackets.  

Exercise 1, task 1: 

 
Tackling algebraic expressions as mathematical objects and involving them into brackets, 

such as (a+2)(a+7), with purpose to multiply the two given algebraic expressions and to create 

conditions to use the distributive law. The identification of polynomials as products is 

followed by identification of the multiplication of polynomials as one case of the brackets‟ 

use. Pupils can make discrimination between multiplication of polynomials and addition of 

polynomials in relation with the use of brackets with purpose to identify general properties 

(generalization) for each case and finally to perceive a unifying principle (synthesis) for the 

use of brackets (Sierpinska, 1994). Buy going through these steps the reason why the pupil is 

going to use brackets (Skemp, 1976) will dominate and he/she does not suffice only on 

distributing terms of polynomials according to distributive law. Based on the same principles 

is compiled another “operation tree”, see Appendix D.  

Even though “Creating equations” is one of my teaching activities, I decided to involve 

creating equations examples in task-based-interview, with aim to see if my teaching activities 

were clear and understandable for pupils. This exercise contains two equations constructed 

through several steps, and pupils have to justify if mathematics identity is saved or not and if 

algebraic statements are equivalent from one step to the next one. And, saving the 

mathematics identity could be achieved by tackling algebraic expression of the same side in 

the previous step, as a product (object) even though in one previous step it should be tackled 

as a process. And in mostly cases to achieve this, is helpful and necessary the use of brackets.  

Exercise 2, task 2 
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This example is one of two tasks of the second exercise and, there are three incorrect shifts 

(from the III step to the IV one; from VII to VIII; and from VIII to IX). It is necessary to 

mention that I have compiled this task considering mistakes and compiling the next step based 

on previous one even though it is not correct. This is because I did not give indications that 

there are mistakes through steps. 

 

 I got the idea for this type of exercise from Swan‟s activities (Swan, 2005, 2006) and I 

adapted it for task-based-interview. I expect to highlight tackling of mathematical objects and 

discriminating of operating with algebraic expressions in two cases: with and without 

brackets, correct and non-correct use of brackets. This will help pupils to capture the reason 

why the use of brackets is necessary. 

The third exercise is about writing algebraic expressions for geometrical magnitudes 

(perimeter, area, volume) of several diagrams, it is the same with the fifth exercise of the test 

(pre-test), so there is the same purpose of implementing this type of exercise in task-based-

interview as in the test. Another reason that I implemented it in task-based-interview is my 

attempt of having a concrete (explicit) comparison about pupils‟ performance in the first and 

in the last lesson of the chapter. There are five diagrams, for the first two is required algebraic 

expression for the perimeter and the area, for the third and the fourth diagram is required only 

the area and, the volume of the cuboid which is the last one. Here are two examples from 

Exercise 3: 

 

   

I have designed completely all these before confronting with pupils‟ level and the way in that 

class teaching of class. I have only mathematics textbook for tenth grade and teacher‟s 

permission to use her mathematics lessons for one week in one class (five school hours). I did 

not have possibility to test tasks and teaching activities in front of pupils before presenting 

them to participants. 

4.3 Analysis of data collection 
My data collection lasted two weeks and I collected a “data set” as the following one: 

- Notes during classroom observation of four school hours 

- Written tests of thirty pupils 

- Interviews of four pupils (selected by me) about their test 

- Written responses and posters developed by pupils during my teaching activities 

- Task-based-interview of the same four pupils 

- Pupils written responses during the interviews 

- Field notes. 

I was preparing to take notes in coherence to data collection but this proved to be difficult. 

During interviews I was focused on both written and orally pupils‟ responses, with attention 

to continue the interview with other questions, which were depend also from previous pupils‟ 

answers. And this prevented me from taking notes during interviews. And my field notes for 

this part consist mostly in some comments about what impressed me from pupil‟s answers, 

since I wrote them after our discussion with purpose to take them into account again during 
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transcription and analysis. I have been in the same conditions also during my teaching lessons 

when I should organize and lead activities, and it was impossible to take notes but I have 

filmed everything that happened. While the field notes, taken during the classroom 

observations describe mostly the environment, the organization of class, the organization of 

teaching lessons, etc. This helps me to compile section 4.5.2.  

My data analysis is organized in two plans: 

- The analysis of test 

- The analysis of interviews. 

The analysis of tests consists on investigation of answers‟ correctness since there were written 

answers without justifications, but the analysis of participants‟ justifications, argumentations 

and proofs are parts of the interviews‟ analysis. Based on these I have achieved, a general 

view of pupils‟ mistakes and misconceptions related to tackling of brackets, standing within 

the frame that allow written tests; and I have achieved a portrayal for two from the four pupils 

interviewed, starting from: 

1. His/her preparation (answers) in the pre-test (test and interview about the test) 

2. His/her preparation (activeness) during my teaching activities 

3. His/her preparation (answers) in the task-based-interview. 

To achieve an overview of pupils‟ misconceptions and mistakes I have been interested on 

wrong answers and their density, and on the tasks in which they are occurred. This is because 

for each task I have my expectations related to my theoretical approach. For example: 

 

Task 6 in the first exercise and task 1 in the second exercise are introduced in the first column, 

possible pupils‟ wrong answers taken from the tests and their density are introduced 

respectively in the second and third column. I have formulated three helping questions in 

answering the first research question: 

• How are mathematical objects tackled by the pupils? 

• Which is more present: instrumental or relational understanding? 

• Are there any Slips or Bugs? 

This is only to organize my analysis of tests and to lead me during analysis, because I cannot 

achieve definitive answers about them since written tests do not give me more access than 

this. It is necessary to emphasize that these answers remain open.  

Skemp‟s (relational and instrumental understanding (Skemp, 1976)), Sierpinska‟s (mental 

operations (Sierpinska, 1994)), Gray and Tall‟s (precept (Gray and Tall, 1991, 1992)) 

framework have been fundamental for analyzing of four interviews of two selected pupils 

among four pupils that were interviewed. I have listened and watched many times all 

interviews until I decided for several episodes (sequences) relevant for my topic and useful 

for answering my second research question. In addition, I have transcribed and translated in 
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English relevant parts from interviews with purpose to involve them into analysis; also I have 

associated these parts with photos from written responses of participants. I have not 

transcribed data collected during my teaching lessons because in these activities have 

participated the whole class. I am focused on some short dialogues between me and the two 

selected pupils with purpose to involve them in analysis. It is needed to mention that it was 

difficult to stop and to discuss with pupils that I really need to, in relation to my study (four 

selected pupils), because all pupils were involved in activities and they wanted help and 

instructions how to operate. 

I decided to compile portrayals of participants to get an overview of his/her preparation 

during all my data collection. In the first section of pupil‟s portrayal I introduced pupil‟s 

answers for several tasks in written test, followed by my comments that were based on my 

perception. I tend to make clearer the reason of pupil‟s answers in test, asking him/her about 

justifications during the first interview. And below to this part I involve pupil‟s answers and 

justifications followed by my analysis in accordance to my theoretical approach. In the second 

section of pupil‟s portrayal I describe his/her participation and activation during my teaching 

lessons. And finally, in the last section I involve pupil‟s answers, justifications and 

argumentations related to tasks presented in that moment, also followed by my analysis in 

accordance to my theoretical approach. In this part I try to make a comparison between 

answers and justifications given in the first interview and these given in the second interview 

with an emphasis on tackling mathematical objects, mathematics understandings and mental 

operations. Here is an example of analysis one dialogue from task-based-interview: 

Dialogue 11 

Names Dialogue Notes 

D 

A 

 

 

D 

 

A 

 

D 

A 

Why are you using brackets? 

Because I got the first one as a single 

number, also the second; and I should 

multiply these two.  

And what would happen if you don‟t use 

brackets? 

Only „2‟ will be multiplied with „a‟.  

... 

What does „a(a+7)+2(a+7)‟ mean? 

It means that each elements of the first 

bracket multiply the second bracket. 

Exercise 1/ Task 1 

 

 
 

“…  I can see a creative justification by Alba for the use of brackets while she aims to tackle 

two algebraic expressions as objects. I would like to categorize this as relational proof 

because to calculate the product of two algebraic expressions Alba considers her 

understandings for mathematical objects and distributive law, and passes to formal definitions 

as it is the process of multiplication. From the last dialogue, it seems that Alba could identify 

one case of using brackets while she is multiplying two algebraic expressions, and she 

discriminates it with the case of multiplying these two algebraic expressions using no 

brackets.  …” 

I can mention choosing episodes relevant for my aim, achieving results from written tests and 

making conclusions for improvement of participants as steps that I was stuck during data 

analysis.   
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4.4 Ethical considerations 
During conducting a research it is essential having in mind several ethical conditions and 

challenges in the same time. It is important to refrain to ethical conditions because, I try to 

focus on understanding of pupils extracting (looking for) their misconceptions and 

misunderstandings, and on the other hand the errors and non-achievement are private 

“settings” for everyone and I want to make public my research.  

Taking permission to conduct my inquiry passes through some steps: firstly I have 

communicated with the head-master of the upper secondary school in Albania where I 

supposed to conduct my data collection; also I have communicated with the teacher who I 

presumed will help me to conduct my research‟s activities in her class; then I took a positive 

response that, my research was approved by “Norsk Samfunnsvitenskapelig Datatjeneste” 

(NSD, Norwegian data protection service) in Norway; and the last approval was by pupils 

(participants) which signed fieldwork permission for participating in test and interviews (see 

Appendix E).  

According to Bryman (2008, p. 377-380) there are five criteria in establishing and assessing 

the quality of research: credibility, transferability, dependability, confirmability, and 

authenticity. In my research, I adhere to these criteria in this way: 

Credibility- According to my understanding and my background, I try to select methods that 

will give me an adequate output for analysis and answers for my research questions. And my 

data analysis is based on my theoretical approach as well as the design of tasks and the 

implementation of interviews, leading me to the center of the circle, which involves my topic 

(understanding and tackling of brackets), research questions, theoretical approach, methods, 

data analysis, and results of my research. 

Transferability- This is a case study and a qualitative research since I am studying several 

pupils‟ understanding, which means my results could not have a general validity. 

Furthermore, I can see possibilities for further research, maybe by considering new variables 

and by generalizing through social settings. And I believe that this research will be helpful for 

teachers even though the pupils are the subject of my research. 

Dependability- As it is impossible to “freeze” social settings and circumstances where the 

research is conducted and the researcher is, also the study would be replicable and results of 

my study can be reproducible under the similar methodology. In addition, I would like to 

emphasize that I consider the possibility of improving the preparation of participants in my 

study since I developed interviews in level of conversation (giving and getting thoughts and 

ideas) and I conducted several new activities related to the importance of tackling brackets in 

correct way. 

Confirmability- I made subjective decisions to determine my choices and how to implement 

them. In going in my research helps me to develop to be awareness of my personal values and 

preferences, and I tried not to be influenced even though it is difficult. So, I based myself on 

theoretical framework and previous studies during my data collection and, during writing my 

thesis I consider also my perceptions, understandings and interpretations; but I tend to be 

transparent in describing in details all my data collection and basing completely my data 

analysis on written tests and transcription of interviews.  

Authenticity- I have video recorded all moments during my data collection, but the analysis 

focus on a “limited” part of material filmed. I have selected some relevant and important parts 

for analysis and these are related to my topic since the selected data help me in answering my 
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research questions. On the other side I am aware that transcription of the interviews, even 

though I tried to be authentic, does not show the whole truth, and furthermore participants 

may be influenced by the circumstances, the situation of being the participant, and by the 

presence of camera.  

In addition, I want to emphasize the confidentiality that is involved in this inquiry since 

during my interviews conversations related to personal the beliefs and characteristics of other 

pupils or to the teacher are not appearing, everything was related to tasks and their solutions. 

Also participants‟ names are replaced by pseudonymous not found in that class, and I do not 

give detailed information about the city where the school is and discerning information about 

the participants. But I cannot exclude the possibility that someone can recognize the 

participants, the school or the city where my study is conducted.    

4.5 Implementation of methods  
This section consists on introducing the context where my research is conducted, the 

participants which are involved in this research, and my data collection.  

4.5.1 Context 
I conducted my research in a private school at upper secondary level. This school has five 

hundred and eighteen (518) pupils, 34% are from countryside and 66% from urban area. 

These pupils are organized in eighteen classes, six classes for each grade: tenth, eleventh and 

twelfth grade. The average of number of pupils per class is twenty-eight pupils. In the tenth 

grade, there are three classes that have chosen as the first preference the advanced 

mathematics. All the classes in the tenth and eleventh grade, except English, have to choose 

another obligatory foreign language among Italian, French and German.  

All Albanian teachers have a test (national exam) every five years, and they get some points. 

According to these points there are four categories of classification, the first one is the best 

and the forth category is the weakest. The Ministry of Education and Science organizes 

training seminars for teachers with aim the teachers‟ qualification. Except the state training, 

seminars about teacher‟s training are organized even in this school. Every year, two training 

seminars were organized with the support of foreign experts and some of this school‟s 

teachers. All teachers in this school (forty-six teachers) have the higher education (all levels), 

from who twenty have the first level of qualification, eight teachers have the second level of 

qualification, six have the third level of qualification, and twelve teachers have the fourth 

level of qualification. 

The school is leaded by the headmaster and two sub-headmasters, and the Leading Council of 

the school is composed of seven members, including the headmaster, teachers and parents.  

The school environment is new one and according to contemporary standards since it is built 

last year. The building contains eighteen classes, one special-class where tests are conducted, 

one audio-visual meeting room, physics laboratory, chemistry laboratory, ICT laboratory, one 

auditorium, and environments for physical education. 

The school days are from Monday to Friday and, during one school day six or seven school 

hours can be held; and pupils have two breaks, each from fifteen minutes, one after the second 

and one after the forth school hour. One school hour lasts forty-five minutes.  

I conducted my research in the same school where I followed my upper secondary level (four 

grades) because I thought I will be welcome in that school more than in others. My advantage 
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was that it is a context I know from before, and I know most of teachers who helped me 

allowing the four pupils to be all interviewed in the same day by leaving their other lessons.   

4.5.2 Participants  
In my study I am focusing only on one class in 10

th
 grade. After I consulted with mathematics 

textbooks for each grade of upper secondary level, I saw the chapter “Expressions with 

variables” (Babamusta and Lulja, 2009) from tenth grade as more relevant for my topic. This 

is because this chapter involves basic knowledge, related to manipulations and operations 

with algebraic expressions, even obtained from lower grades. One of the sub-headmasters 

(she has the first level of qualification) teaches mathematics in all tenth grade classes. It was 

impossible for me to follow some mathematics lessons in all tenth grade classes with purpose 

to know pupils and their mathematics level, and then to decide which class to follow. So, the 

teacher chose the class for me, which follows advanced mathematics. Another reason for 

choosing this class concerns its timetable of mathematics lessons distribution, because I and 

the teacher wanted to have one activity for each school day. The timetable of mathematics 

lessons of this class was more convenient even though I conducted interviews about written 

test and my first teaching lesson in one day. 

In this class there are thirty pupils, seventeen girls and thirteen boys, and they are around 

sixteen years old. Furthermore the pupils have five mathematics lessons per week, three times 

basic mathematics and two times advanced mathematics, they have two different books, one 

for basic and one for advanced mathematics.  

I will introduce a setting chart to show the environment in which participants of my study 

work every day and also during my class observations: 

 

Figure 4.2. The class setting chart 

The class had this seating during my data collection. This way of organizing desks is static 

because the way of teaching is almost the same. So the form of organizing teaching is: the 

teacher lectures new lesson and pupils listen and take notes (if they want), pupils work on 

assignments the teacher gives to them (individually or on the blackboard helping by teacher), 

and pupils explain homework (from the last lesson) mostly on blackboard while the teacher 

check them. Often explaining and checking homework takes part as the first activity. The 

teacher tries to include pupils when she was a lecturer by asking questions along the way, and 

pupils also initiates contact, when they ask about things they do not understand. The teacher 

mostly grades pupils based on the given tests (almost always in the end of each chapter), and 

sometimes based on the pupils‟ answers while they are on the blackboard. 

As I have mentioned above the test has been developed for all pupils of the class, while 

interviews have been conducted between me and the four pupils (individually) that I selected 
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after checking written tests. This selection of four pupils is an important decision for my study 

since they will be interviewed and I will analyze their performance with purpose to look for 

any misunderstanding or misconception and any improvement concerning brackets‟ use. 

Firstly I chose five pupils, and I consulted with the teacher, asking her to give me a hand to 

save only four. She asked me to exclude one of the five pupils because he/she had „family 

problems‟ in that period of time. I was totally agreed and, I had four seeking pupils. I checked 

thirty tests for a half-day and I was looking for pupils who: 

• Have misconceptions about brackets 

• Have misconceptions about mathematical objects 

• Are unsure about what they know 

• Use the rules in the simplest tasks 

• Have no creativity 

• Show no practice 

4.6 Data collection 
During my data collection I spent two weeks in this class, observing, doing test, interviewing 

and teaching, from 18
th

 of October to 28
th

 of October, 2011. Here is an overview of the way I 

organized my data collection: 

 

Date  18/10/11   19/10/11 20/10/11 21/10/11 

First 

week 

 Observation Observation Observation Observation 

Date 24/10/11 25/10/11 26/10/11 27/10/11 28/10/11 

Second 

week 

           Pre-test  Second 

lesson 

(participant 

observer) 

Third 

lesson 

(participant 

observer) 

Post-test 

(task-based-

interview) Test  Interviews 

and first 

lesson 

(participant 

observer) 

Table 4.3. Overview of the organization around data collection 

There were only a couple of weeks because the lessons which were relevant for my study in 

the chapter “Expressions with variables” in Albanian mathematics textbook (Babamusta and 

Lulja, 2009), that I was interested in, lasted one week. My impression was that if I would 

extend it, it would be boring for pupils. During the first week, for four lessons, I observed the 

class with intention of getting known with pupils and the way teaching is organized in this 

class. There is no change compared to the organization of classes when I was in this age. 

During forty-five minutes, pupils engaged with tasks from previews lesson (individually or in 

the blackboard for all the pupils) and in the second part of the lesson the teacher presented and 

explained the new lesson and the new tasks.  

During the first week I was a complete observer, but in the second one I was active as a 

teacher and a researcher, becoming participant-as-observer. During this second week, I did the 

pre-test, my own teaching, and the post-test, furthermore I have used video recorder in each 

activity. This was like a pack, in which is involved: evaluation of actual situation; the attempts 

for improvement; and the evaluation of efficiency of the previous step.  
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4.6.1 Observation  
Only the first day of the observation (18/10/11) was somewhat different from three next days, 

because I presented myself and pupils agreed to take part in test and interviews writing their 

names in fieldwork permission (see Appendix E). Pupils did not show any rejection to 

participate in my project. After that, for the whole rest of the week, I was a complete observer 

because I did not participate in any of the teaching lessons. The purpose of my observation 

was to get know the way of organizing teaching lessons and the pupils. I cannot get an 

overview of pupils‟ tackling brackets because the four lessons I observed were not related to 

the use of brackets. During this period of time I stayed passive and took notes. 

4.6.2 Pre-test (test + interview) 
In the first day of the second week of my data collection (24/10/2011), I conducted the test for 

all pupils of the selected class. After I had checked the tests and selected four pupils, I 

interviewed these pupils about their written tests. The purpose of this test was to classify the 

pupils‟ work and to pick four students for the interviews and the further activities. So, the first 

stage of my data collection was the test and the interviews about this test and both together I 

have called the pre-test.  

The test lasted 45 minutes, which involved 30 pupils and took place in the special-class 

(mostly used during exams). Pupils were not informed before about the topic and the content 

of the test because I wanted to check their background related to tackling brackets since it was 

the first day in the new chapter. In the beginning of the test I explained exercises and the 

distributive of points among exercises, and also I was disposable to provide any explanation 

for pupils through this activity. 

To be clear, “the distributive of points” means to associate an amount of points to each task in 

relation to its difficulty and importance for the test and the test‟s aim. So, I will introduce a 

table to show points for each exercise‟s correct answer. 

Order of exercises I II III IV V   a) V   b) 

Points for one task 2 4 3 6 4 5 

Total points for exercise 18 16 15 30 16 5 
Table 4.4. Test’s grading points 

I need grading points of the test because the teacher wanted the pupils‟ results about this test, 

but I did not use it for selecting pupils for interviews. 

The first interview is about written test and it involves only four pupils. I conducted it right 

after the test and before my first teaching activity. On 25/10/11 my participants had 

mathematics class, in accordance to the timetable, in the fifth school hour. So, I conducted the 

four interviews during the second and third school hour. The interview for each pupil lasted 

twenty minutes. I required pupils to leave other teaching lessons (during the second and third 

school hour) because I did not have other possibility since I had only five days available to 

conduct my data collection. On the other part I did not have objections by other teachers.  

I conduct interviews in a small meeting-room, which has three glass walls. It has its advantage 

and disadvantage since the interview was not private and, others that passed near these walls 

drew attention to my interviewer. During the interview in this room there were only me and 

one pupil. Firstly I made camera and everything else ready for interviews in the meeting-room 

and pupils came one after another because they knew the timetable of interviews, which I 

compiled before with the teacher. The camera has been fixed on the tripod and it was focused 

on the sheet of the test paper and not on the face of pupil. I was introduced before and also I 

knew pupils from classroom observation, so we got started immediately with discussions 
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about tasks. I asked the pupil about reasons, explanations and justifications of his/her answers 

given in test. And depending on his/her answers I developed further the interview. There was 

a standard question for the four pupils, about what they thought about the test and its level of 

difficulty. This was because I wanted to know if the test has been affordable for them.  

4.6.3 Teaching lessons 
My own teaching is composed by three teaching activities and it got started on 25/10/11. I 

developed my teaching activities in the same class that I observed and I fixed camera on the 

tripod most of the time because I had to organized and to lead the activities and teaching. 

And, I involved in these activities the thirty pupils of the class. I developed the following 

three teaching activities: “Evaluating mathematical statements”, “Interpreting multiple 

representations”, and “Creating problems”. 

The first lesson that contains “Evaluating mathematical statements” was conducted on 

26/10/11. I distributed a sheet of paper with algebraic statements, which pupils had to decide 

whether the statements are always, sometimes or never true. Also in this sheet of paper there 

is a table where pupils should put the number of the statement in the column that express 

statement‟s validity. During this activity pupils worked in pairs for twenty minutes and then 

all the pupils had a discussion in which I also participated. I leaded the discussion 

emphasizing evaluating of several statements, for which different pairs gave different 

evaluation. Throughout this process, I encouraged pupils to think more deeply, to try further 

examples and to provide more convincing reasoning and justifications through examples or 

counterexamples.  

During the next mathematics lesson, on 27/10/11, the activity “Interpreting multiple 

representations” was developed for forty-five minutes, and pupils worked in pairs. I 

distributed for each pair four sets of cards with representations, by: words, symbols, tables, 

and area diagrams. Also, each pair had a poster where they have to paste cards thus attempted 

to group cards which have an equivalent meaning. My role in this activity was to explain 

firstly what they have to do and the aim of this activity, suggesting not to rush through the 

tasks but to take time and evaluate each mathematic statement in those cards. I asked to 

explain their matching and reasoning, and to discuss with his/her mate about agreements and 

disagreements. I often challenged them discussing about cards that were not the same but for 

somebody it looks like, as for example, 3x
2
 and  (3x)

2
. 

The third activity “Creating problems” was developed by all pupils in the same time. I wrote 

on the blackboard what pupils suggested to me about the steps of creating equations. I picked 

up pupils to answer, sometimes pupils that were quite or those who answered me leading by 

their uncertainty. Pupils did not communicate only with me but also with each other 

consulting and justifying for their answers. Regardless of whether responses were correct or 

not I insisted on asking pupils for arguments and justifications. 

4.6.4 Task-based-interview 
Task-based-interviews were conducted on 28/10/11 for the four pupils, and each interview 

lasted for around twenty minutes. Except the tasks, everything else was similar with the first 

interviews. For more details see section 4.7.2.2. 

My data analysis is introduced in the three next chapters, such as: Analysis of tests, in which I 

am focused on analyzing pupils‟ tests; Portrayal of Alba, in which I have analyzed even her 

performance during interviews and my teaching lessons in order to introduce her development 

during my data collection; and Portrayal of Dea (the same organization as the previous one). 
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5 Analysis of Tests  
In this chapter I am focused on tests‟ analysis investigating for answers‟ correctness. This is 

because tests‟ answers are written answers without justifications and argumentations. I will 

give a general overview of mistakes that pupils did in their test performance concerning 

brackets‟ tackling. From tests‟ analysis I expect to get only some types of pupils‟ mistakes 

concerning the use of brackets and I cannot call them as misunderstandings or misconceptions 

that pupils have with brackets since these data are only written answers of several “ordinary” 

tasks.  

From tests‟ analysis, I attempt to have an answer for my first research question, which is: 

What kind of mistakes pupils in grade 10 (in the Albanian school) do?  

The answer of this question will be an overview of what do pupils involved in this study, 

related to the process of bracketing and to brackets itself. To achieve an overview of pupils‟ 

misconceptions and mistakes I have been interested on wrong answers and their density, and 

tasks in which these mistakes are occurred. This is because for each task I had my 

expectations related to my theoretical approach. 

Even based on theoretical approach and my expectations of designing tests, I have generated 

three questions that would help me to answer the first research question, categorizing the 

analysis of tests. 

• How are tackled mathematical objects by the pupils? 

• Which is more present: instrumental or relational understanding? 

• Are there any Slips or Bugs? 

This is only to organize my analysis of tests and to lead my tests‟ analysis, because I cannot 

achieve definitive answers about them since written tests do not give me more access than 

this. It is necessary to emphasize that these answers will remain open.  

This chapter contains two sections, such as: Types of Mistakes and Participants‟ Overview. In 

the first section I have involved charts, concerning correctness of participants, and types of 

mistakes for each exercise included in the test. While in the second section, I have involved 

some conclusions considering pupils‟ tackling of brackets and trying to have answers for three 

helping questions with purpose to achieve an overview of participants‟ written performance.  

5.1 Types of mistakes 
In this part, I am focused more on quantitative analysis introducing elements such as, charts 

concerning answers‟ correctness, and tables concerning density of different types of pupils‟ 

mistakes for each exercise.  

5.1.1 Exercise 1 
As it is described in Test section of Methodology chapter, the first exercise of test contains 

nine tasks and each of them has multiple correct answers. This property has been new for 

participants and it is reflected in their answers since no one has given all possible correct 

answers. On the other hand, since these assignments require basic knowledge to be solved and 

are situations previously countered by pupils, twenty-five (21+4) pupils have given at least 

one correct answer for each task and only four of them have solved all nine tasks and have 

given only one correct answer for each task. I think that these four pupils have not read 

carefully the demand of this exercise, which is: “Choose the right alternative (there are more 

than one for each task)”. Mistakes are countered in only four pupils‟ answers, and one pupil 



52 
 

has selected no alternative for one task even though he/she has written it near the respective 

task. All these results are presented in Chart 5.1. 

 

 

Chart 5.1. Results for Exercise 1 

Since I am interesting on pupils‟ mistakes I will present types of mistakes that participants of 

my study did in the first exercise of test concerning tackling of brackets. In the following 

tables, I use “density” to indicate the number of pupils that have given the particular wrong 

answer. 

CORDINATES 

OF TASK 

TASK ANSWERS DENSITY 

E. 1-T. 3 (2x-y)+y= 2xy-y
2
 2 

E. 1-T. 4 (x+4)(x-5)= x
2
-20 1 

E. 1-T. 6 x
2
y-xy

2
= x

2
(y-y

2
) 3 

Table 5.1. Wrong answers for the first exercise 

All these wrong answers are found in four pupils‟ performances. There are two pupils that 

have considered addition of one bracket with one monomial as multiplication. This is a wrong 

meaning attached to brackets that is mentioned even by Kaur (1990, p. 36), who classifies as 

misconception that “brackets indicate multiplication”.   

Concerning the fourth task, there is one pupil that has multiplied two brackets in a wrong 

way, since he/she has multiplied the two first terms of each bracket with each-other and the 

same with two second terms of brackets. I can consider this as an evidence of brackets‟ 

incorrect-tackles. This is because he/she has not considered the two polynomials „x+4‟ and 

„x+5‟ as mathematical objects and each monomial (element) of them should be multiplied 

with the rest.  

There are three pupils that have given wrong answers for the sixth task showing that they 

have not found the common factor of two monomials.  

5.1.2 Exercise 2 
I included the second exercise in test with purpose to require from pupils an active use of 

brackets. Concerning the results from pupils‟ answers I can say that, this type of exercise has 

been as an obstacle for them. Even though this exercise requires for solving basic knowledge 

such as distributive law, it has been the new presentations of tackling brackets that I think it 

has affected pupils‟ answers. So, there are sixteen pupils that have not solved or correctly 

solved any task of the second exercise. Among these pupils, there are seven pupils that have 

made no notes in the four tasks of the second exercise; there are six pupils that have given no 

correct answer to any of tasks (these are pupils that have incorrect answer for at least one and 

no answer for the rest of tasks); and there are three pupils that have not understood the 

demand of the exercise since they have made some notes that are not related to the demand, 

4

21

5

0

only one correct answer for each task

at least one correct answer for each task

no answer or wrong answer for at least one task

all correct answers

Exercise 1

Series1
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such as to tackle algebraic statements as equations and to look for their solutions. Less than 

the half of pupils have worked correctly with these tasks but only one has solved this exercise 

correctly and completely. There are thirteen pupils that have one, two or three correct answers 

among their answers, and the rest of these pupils‟ answers might be wrong or there is no 

answer. All these data are presented in Chart 5.2. 

 

Chart  5.2. Results for Exercise 2 

Among answers of nineteen (6+13) pupils, concerning the second exercise, there are eight 

types of mistakes introduced by nine pupils. These are organized in Table 5.2. 

CORDINATES 

OF TASK 

TASK ANSWERS DENSITY 

E. 2-T. a) x+x
2
+3·x+4= x

2
+4x+4 [x+x

2
+(3·x)+4]= x

2
+4x+4 1 

(x+x
2
+3·x)+4= x

2
+4x+4 1 

x+x
2
+(3·x+4)= x

2
+4x+4 1 

x+(x
2
+3·x+4)= x

2
+4x+4 1 

x+x
2
+3·(x+4)= x

2
+4x+4 2 

E. 2-T. b) x+x
2
+3·x+4= x

2
+4x+12 (x+x

2
)+3·(x+4)= x

2
+4x+12 1 

(x+x
2
)+(3·x+4)= x

2
+4x+12 1 

(x+x
2
+3·x)+4= x

2
+4x+12 1 

Table 5.2. Wrong answers for the second exercise 

The first, the second, the third, and the fourth placement of brackets are evidences of a non-

well tackling of brackets, even though algebraic expressions in two sides of algebraic 

statements are equivalent. In the first answer, introduced in Table 5.2, the square brackets are 

not necessary because they are not preceded or followed by another algebraic operation. Also, 

in the second, third and fourth answers, brackets are not necessary since they are followed or 

preceded by addition.  

In these four cases, I think that four pupils have not been able to identify and to discriminate 

(Sierpinska, 1994) these cases (in which are used brackets) and their analogues, in which are 

not used brackets. From the fifth answer, which is countered in two pupils‟ answers, I can say 

that these pupils have forgotten to multiply the „3‟ with the „4‟, showing a non-tackling of 

algebraic expressions as objects (products) (Gray and Tall, 1991, 1992).  

From the task b) I could show three answers, in which brackets are not necessary and not in 

the right place. In the first case, the first brackets are not necessary and the second ones are 

correctly placed. While in the second case, algebraic expressions in two sides of the algebraic 

statement are not equivalent and the two pairs of brackets are not necessary. It is the same 

7

3

1

13

6

no entry

incomprehensible

all correct answers

at least one correct answer

all incorrect answers

Exercise 2

Series1
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explanation also for the third case. I think that these pupils could not achieve a generalization 

for using brackets in addition and multiplication since they cannot discriminate (Sierpinska, 

1994) them. 

5.1.3 Exercise 3 
Findings from the third exercise have been entirely different from the previous exercise. 

There is no pupil that has done the all tasks (5 tasks) wrongly or has not tried to solve them. 

Ten pupils have solved this exercise correctly giving right answers for each task, and twenty 

pupils have solved one, two, three or four tasks and have given wrong answer or no answer 

for the rest of tasks. 

 

Chart  5.3. Results for Exercise 3 

The most of mistakes done in this exercise have been related to calculations and operations 

with signed numbers, for example: „-2x-5x = -8x‟. But, related to the use of brackets I have 

isolated two following mistakes, which could have been avoided by pupils if they would have 

a well-understanding of brackets placed there. This is because these two pupils could notice 

their own mistakes by substituting question marks with values they found and by operating 

with brackets. These mistakes are introduced in Table 5.3. 

I think that the mistake in task c) comes from non-considering the polynomial „x+3x‟as an 

object because he/she has obtained „9x‟ only by multiplying the „3‟ with „3x‟ and has not 

considered the monomial obtained by multiplications of the „2x‟ with „x‟, and others 

following. Otherwise this pupil could notice that he/she is not obtaining the same monomials 

in two sides of the equal sign. It seems that in the next mistake, task e), the pupil has a well 

tackled concerning brackets and operating with brackets but the error here is that he/she has 

considered the question mark as variable. This is because this pupil has looked for only one 

value. It is interesting how this pupil have accepted the value „3‟ while he/she has evaluated it 

in algebraic statement.  

TASK DENSITY 

 

1 

 

1 

Table 5.3. Wrong answers for the third exercise 

0

10

0

20

no entry

all correct answers

all incorrect answers

at least one correct answer

Exercise 3

Series1
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5.1.4 Exercise 4 
Findings for the fourth exercise are an evidence of rote learning and passive use of brackets. 

This is because all pupils have worked with tasks of this exercise, which consist in expanding 

brackets and making calculations. Twenty-five pupils have solved one, two, three or four 

tasks and have given wrong answer or no answer for the rest of tasks; only one pupil has 

given correct answers for all tasks; and four pupils have achieved wrong results for all tasks.  

 

 

Chart  5.4. Results for Exercise 4 

Even though this type of exercise was not new for participants, there are several mistakes in 

their solutions for each task, which are introduced in Table 5.4. 

CORDINATES 

OF TASK 

TASK ANSWERS DENSITY 

E. 4-T. a ... (6x+3x)
2
= ... 36x

2
+9x

2
 1 

... 6x
2
+2•6x•3x+3x

2
= ... 6x

2
+36x

2
+3x

2
 3 

E. 4-T. b (-4x+3)(-1+2x) + 

(-4x+3)-(-1+2x )= 

4x-6x-3+6x-4x+3+1-2x 1 

4x-8x
2
-3+6x+(-4x)(1-2x)+3(1-2x) 1 

E. 4-T. c ... -3x(2x+1)(2x-1)= -3x[(2x)
2
-(1)

2
]= -3x•4x

2
-1= -12x

3
-1 2 

E. 4-T. d ( 2𝑥 − 2 𝑦)
2
 ...= ( 2𝑥)2 − (2 𝑦)

2
 4 

( 2𝑥)2 − 2  2𝑥  2 𝑦 + (2 𝑦)
2
= 

2x-2 2𝑥·2 𝑦+4y
2
 

1 

2x
2
-2 2𝑥·2 𝑦+4y 2 

2x-2 2𝑥·2 𝑦+2y 2 

E. 4-T. e ... [5y-(3x-6y):3]= 5y-3x+6y:3=5y-1x+2y 1 

5y-3x+6y:3=11y-3x:3 1 

Table 5.4. Wrong answers for the fourth exercise 

I think that all these mistakes concerning tackling of brackets are related to non-considering 

algebraic expressions as objects.  

For task a) there are two types of mistakes (related to bracketing) that both are based on non-

considering of algebraic expressions as objects (products) (Gray and Tall, 1991, 1992). In the 

first case, it seems that, the pupil did not know the formulae ((a+b)
2 

= a
2
+2ab+b

2
) and he/she 

has operated as distributive law works. On the other hand, he/she has made correctly the 

square of „6x‟ and „3x‟ tackling them as objects. Three pupils have tried to use the formulae 

with purpose to expand brackets but they have not considered monomials as objects, and this 

0

1

4

25

no entry

all correct answers

all incorrect answers

at least one correct answer

Exercise 4

Series1
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is showed in the second case. In addition, it is interesting that no one has added firstly „6x‟ 

with „3x‟ since it is possible, and then to square the whole „9x‟.  And I would like to relate it 

with rote learning and rote applying of their knowledge without assessing the situation in 

advance.    

Concerning the second task (b), one pupil has added monomials instead of multiplying them 

during the brackets‟ multiplication. There are four multiplications that should be executed 

during multiplication of two brackets and concerning this case, the „-6x‟ is obtained by adding 

„4x‟ and „2x‟, and by attaching the minus sign of „-4x‟, while the three other monomials are 

obtained by multiplication.  I can mention here Ayres (2000), who concludes that pupils make 

more errors during the second operation while they are multiplying one monomial with one 

bracket. The next mistake concerns in replacing subtraction of two brackets with 

multiplication. So, not only addition indicates multiplication (Kaur, 1990) but also subtraction 

indicates multiplication. In addition, in this case, the good part is that multiplication of two 

brackets is executed well and it is followed by considering algebraic expressions as objects.  

In two pupils‟ answers of the third task are found mistakes during operating with brackets 

concerning algebraic expression in the third task. Even though pupils have used firstly two 

types of brackets even in correct way, they have “put all brackets off” in the same time 

followed by non-considering polynomials as objects. I think that this type of mistake could be 

classified as slip since in the first step of solution everything is correct. But, in the next step 

he/she has forgotten to put brackets and this pupil is leaded to wrong result. 

Even in task a) and in task d), it is repeated the same type of mistake since there are four 

pupils that agreed with (a-b)
2 

= a
2
-b

2
. In the second, the third and the fourth cases of mistakes 

in task d), the non-well tackling of monomials as objects is introduced by five pupils. 

It is interesting the way of task e) solution‟s writing of one pupil without using brackets while 

he/she has calculated considering brackets. I cannot classify this as a mistake with careless 

nature. This is because, in front of that I can put Kieran‟s conclusion (Kieran, 1979) 

concerning pupils that even though do not put brackets to refer the first operation that should 

be done, they execute that first. The second type of mistake concerning the last task e), is 

related firstly to the order of operations and then to non-tackling of „3x-6y‟ as a product 

(object) that firstly should be divided by „3‟.  

5.1.5 Exercise 5 
Also findings from the fifth exercise show a great number of pupils, twenty-nine (24+1+4) 

that have worked with this exercise. Twenty-four pupils have solved one, two, three or four 

tasks and have given wrong answer or no answer for the rest of tasks; four pupils have solved 

correctly all tasks; and only one pupil has mistaken in his/her solutions. 

 

Chart  5.5. Results for Exercise 5 

1

4

1

24

no entry

all correct answers

all incorrect answers

at least one correct answer
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Among twenty-eight pupils‟ answers I have isolated some types of mistakes concerning using 

of brackets and tackling of mathematical objects. These are introduced in Table 5.5: 

 
CORDINATES 

OF TASK 

TASK ANSWERS DENSITY 

E. 5- T. a). 1  

 

 

 

A=4x•6-2x 1 

E. 5- T. a). 2  

 
 

A=2x•5 2 

E. 5- T. b)  

 

V=(x•x)•2x•(3x-5) 1 

V= x
2
[2x•(3x-5)] 2 

V=(3x-5)(2x)(x+x)  

{with brackets} 

V=3x-5•2x•2x = 3x-5•4x
2
  

{without brackets} 

2 

 

V= (2x•2x)•3x-5= 4x
2
•3x-5        

=12x
3
-20x

2
 

{with brackets} 

V= 2x•2x•3x-5  

{without brackets} 

1 

Table 5.5. Wrong answers for the fifth exercise 

The first and the second mistake, respectively in task 1 and 2, which are countered in three 

pupils‟ answers, and are related to non-considering algebraic expressions as products (Gray 

and Tall, 1991, 1992) that is analogue with considering sides of rectangle as mathematical 

objects. Similar evidences are found in Kaur‟s study (Kaur, 1990), in which pupils did not use 

brackets for the sides of rectangle. 

The first two cases of task‟s b) mistakes involve mistakes such as, incorrect determination of 

the cuboid‟s side since these three pupils have written „x
2
‟ or „x·x‟ instead of „2x‟; and the 

unnecessary-use of brackets because they have involved factors such as „x·x‟ and „2x·(3x-5)‟ 

into brackets. And, this way of using brackets is showed even in two next cases.  

The second demand in this task has been to write the volume of cuboid without brackets, 

which means to expand brackets and achieve an algebraic expression with no brackets. And 

there are three pupils that have written the volume of cuboid as multiplication of three sides of 

cuboid but without using brackets. I think these pupils have considered the two algebraic 

expressions for the cuboid‟s volume, with and without brackets, as equivalent. And similar 

considerations take place also in Booth‟s study (Booth, 1984).  

In the fourth case it is written the volume of cuboid in a wrong way putting brackets not in the 

right place but he/she has gotten a correct result achieving an algebraic expression without 

brackets, which express the volume of cuboid. Once more, I have evidences of Kieran‟s 

(1979) results concerning the non-use of brackets and operating as if brackets are present. 

 

3x-5 

2x 

x x 

 

V= 

4x 

6-2x 

x 2 

5 
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5.2 Participants’ overview 
There are very few pupils that have not tried to work with any of the exercises involved in the 

test. And there is no participant that have not worked with all exercises getting zero points 

from the total of one-hundred points, but the lowest total amount of points taken by one of 

them is forty-five points.  

As it is showed in previous section „Types of Mistakes‟ there are several types of mistakes in 

pupils‟ answers for each exercise, as might be expected by me since these types of mistakes 

concerning the use of brackets are emphasized by other authors (included in „Review of 

Literature‟) and are encountered by me during my experience as a teacher. In addition, 

concerning the analysis of tests with written answers I can state that participants of my study 

make some mistakes related to tackling of brackets, such as: non-use of brackets, bad-use of 

brackets, and wrong-meaning of brackets (that means, wrong meaning attached to brackets).  

In the first and second class of mistakes, non-use and bad-use of brackets, I will classify 

mostly of mistakes done in exercises 2, 4, and 5, in which is presented also the active use of 

brackets. While mostly of mistakes done in exercise 1 and 3, I will classify in the third class 

of mistakes, wrong-meaning of brackets, since in these exercises is present only the passive 

use of brackets. But I cannot exclude the possibility of evidences of different types of tackling 

brackets in particular tasks, such as in tasks of the fourth exercise. I think that wrong results in 

this exercises come from a wrong-meaning of brackets and no-use of brackets concerning 

evidences in Table 5.4 in previous section.  

Regardless of exercise‟s type, algebraic or geometric, and in this latest diagrams are equipped, 

and regardless of exercises are known in advance or not, I have countered these types of 

mistakes: 

 Brackets indicate multiplication 

 Wrong-apply of distributive law 

 Use of brackets where it is not necessary 

 Use the distributive law‟s principle in situations where it is not involved 

 Non-use of brackets for mathematical objects, such as: 

o Algebraic expressions 

o Sides of diagrams 

 Non-use of brackets and in the same time operating as brackets are present 

 Consider algebraic expressions with and without brackets as equivalent 

 Factorization  

 Order of operations. 

Concerning these types of mistakes I could say that these participants (who have done these 

mistakes) have a wrong-tackle for algebraic expressions. They do not consider algebraic 

expressions also as objects (Gray and Tall, 1991, 1992), because otherwise would be avoided 

mostly of mistakes. Considering the number of pupils who have given all correct answers or 

at least one correct answer for each task, I could say that mostly of my study‟s participants 

tackle algebraic expressions as mathematical objects and they involve them in brackets with 

purpose to get their product firstly or to discern this product from others. On the other hand, 

algebraic expressions involved into brackets mean for them that, they should manipulate with 

that algebraic expressions as a whole object or product, which is obtained from the process 

presented by algebraic expressions. Regardless of the way of presenting mathematical objects, 

such as algebraic expressions or sides of diagrams, mostly of participants have tackled them 

as objects (Gray and Tall, 1991, 1992). 
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Since my tests‟ analysis is based on only written answers there are limitations concerning the 

absence of justifications, argumentations, and reasoning of pupils, I cannot have an answer for 

the second helping question. I have compiled a table to introduce how and how much 

relational and instrumental understanding (Skemp, 1976) is present in participants‟ 

mathematical understanding and learning. In order to have some “conclusions” for this issue, I 

referred to the exercises, which were not seen before by them and require an active use of 

brackets, since I have not concrete and convincing evidences. 

Relational  Instrumental & Relational Instrumental  

It seems that they know what 

particular knowledge and why 

to use it, even in new tasks, 

justifying and explaining each 

step; synthesizing the adequate 

algorithm.    

It seems that they have some 

knowledge and they use it also in new 

tasks getting the correct answers, but 

it is a superficial usage.  

So, relational understanding is not 

widely present.  

It seems that they have 

some basic knowledge 

(maybe the wrongly 

one) and they use it in 

the simplest way.  

3 pupils (10%)  19 pupils (63,3%)  8 pupils (26,7%)  

Table 5.6. Participants' mathematical understanding 

In terms of the third helping questions, I have noticed from pupils‟ answers some slips 

concerning operating with signed numbers (-2x-5x=-8x), with exponents (2·6x·3x=36x
2
), with 

numerical data (4·8=24). In addition, I have classified some mistakes concerning brackets‟ 

use as slips and I have introduced them in previous section. On the other hand, I have not 

classified any mistake as bugs since I have no access to do that while I am analyzing written 

answers.   

In this chapter I introduced the performance of participants (thirty pupils) concerning 

mistakes related to tackling the algebraic expressions and the use of brackets. As it is showed 

above different types of mistakes are not missing and some of them have similarities with 

what are introduced by previous researches. So, in this chapter I have compiled an overview 

concerning mistakes that Albanian pupils in tenth grade involved in my study did. Following 

in the next two chapters, I will introduce the portrayal of two pupils selected among four 

interviewed pupils in order to analyze in depth their performances. It was difficult to analyze 

and introduce in this dissertation the analysis of four completely performances (eight 

interviews) and this is a master thesis with sixty ECT, so I have selected the performances of 

two girls for deeper analysis. Concerning my second research question, in which is 

determined that there are improvements in pupils‟ performances during the post-test, I 

excluded one pupil‟s performances because his/her abilities in mathematics were in a low 

level and he/she could not have evidences for improvement during the post-test. I excluded 

another pupil because he/she was correct in his/her answers but his/her justifications were 

always the same. So, I have chosen Alba and Dea (pseudonyms) to analyze their 

performances since I noticed improvements in their answers during the post-test. 
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6 Portrayal of Alba 
I have named this pupil Alba; she was a very interesting girl and she voluntarily agreed to be 

part of my study. I am so glad for working with her, and I appreciate her cooperation because 

she surprised me with her answers and, from her work I have interesting data to analyze.   

I will describe all the activities she took part and her respective preparation, trying to 

highlight her difficulties, and improvements related to her conception for the process of 

bracketing and other conceptions closed to brackets. The portrayal of this pupil, Alba, will be 

divided in three sections, according to her preparation in: pre-test, teaching activities, and 

post-test.  

The first section „Results from the pre-test‟ is organized in different subsections in accordance 

to some criteria, such as: misconception that brackets indicate multiplication, superficial 

relational understanding, slips that are corrected and justified by her using instrumental 

understanding and followed by uncertainty, no-active use of brackets and relational 

understanding, instrumental proofs, difficulty to tackle algebraic expressions as mathematical 

objects and herself correction, no generalization concerning use of brackets related to 

mathematical objects.  

These criteria are generated from keywords (misconception, understanding, mathematical 

objects, generalization, and syntheses, semantic, syntactic) used in my theoretical approach 

and in analysis of pupil‟s answers during my data collection. For each criterion I have chosen 

exercises or tasks, of which pupil‟s answers are relevant for that criterion. Also, I have 

emphasized for each task introduced how interview helps me to understand test‟s answers.  

I agreed with this organization, which was discussed by me and my supervisor, because it is a 

way that makes explicit the link between my theoretical framework and data analysis. It is 

needed to emphasize that for each criterion I have chosen tasks in which dominates it but in 

the same time others criteria‟ properties might be involved. This is because elements in my 

theoretical approach are related to each other. On one side, relational understanding, tackling 

of algebraic expressions as product, discrimination, generalization and synthesis, semantic 

aspect, and correct-active use of brackets are related to each-other; and on the other side, 

instrumental understanding, tackling of algebraic expressions as one process, operation of 

identification,  syntactic aspect, passive use of brackets are also related to each-other. It is 

needed to emphasize that in this section, especially in figures with Alba‟s test‟s answers all 

writing in red is my own writing. 

While the second section, „Her Activity during Teaching Activities‟ involves Alba‟s activities 

during my teaching lessons and any dialogue between me and her, concerning difficulties or 

misunderstanding during teaching activities. 

Also the third section, „Results from the post-test‟, is organized as the first one is. In this 

section are involved some criteria, and Alba‟s answers in dialogue with me from the task-

based-interview that correspond to those criteria.  

6.1 Results from the pre-test 
This section is organized considering some criteria to classify Alba‟s answers to some tasks 

during the test and the interview about this test. In this section, the following criteria are 

involved: superficial relational understanding, misconception that brackets indicate 

multiplication, slips that are justified by instrumental understanding and followed by 

uncertainty, no-active use of brackets, difficulty to tackle algebraic expressions as 
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mathematical objects and herself correction, instrumental proofs, no generalization 

concerning use of brackets related to mathematical objects (algebraic and arithmetic 

expressions). All these criteria emerged as a combination of both, reading research literature 

and analyzing data, and they could be considered as properties of Alba‟s preparations. More 

details for these criteria are given below. 

6.1.1 Alba’s “superficial relational understanding” 
This criterion is composed by one element taken from my theoretical approach, such as 

relational understanding (Skemp, 1976), and by another element taken by data analysis, such 

as superficially arguing and justifying. This criterion consists in justifying and arguing the 

task‟s results but Alba‟s understanding is superficial since she might be strongly based on 

applying distributive law and, I and Alba were discussing about situations that she has 

countered before. This criterion includes Alba‟s answers for the second task of the first 

exercise. 

6.1.1.1 Exercise 1, Task 2 

Alba’s answer from the test 

Since she has selected as a correct answer alternative c), which does not involve the 

multiplication of the first term of brackets with the factor before the brackets, and even the 

correct alternative a), I cannot have a prove for my doubt that is, if she knows how to use 

distributive law, and furthermore if she knows to tackle algebraic expressions as objects. 

 

This is followed by non-marking alternatives d) and e) that are correct answers. My 

understanding is that, after she has marked a) and c) she thought that it is enough and she did 

not evaluate d) and e). In this task she did not achieve to decide about the equivalence of 

algebraic expressions that have the same product even though they introduce different 

processes. At this point, I can say that Alba has considered only the syntactic aspect (Berg, 

2009; Demby, 1997; Drijvers et al., 2011) of algebraic expressions introduced as alternatives 

for this task. With syntactic aspect of algebraic expressions I am referring to transforming 

them using several rules. It is explained in detail in section 3.2. 

According to these answers, I cannot even mention relational learning or instrumental 

learning (Skemp, 1976) of commutative property because I cannot see a correct way of how 

this property could be used. On the other hand, it seems like a slip (error of careless nature) 

because she has marked correct answers in the first task and one correct answer in the second 

task. 

Alba’s answer from the interview 

Only from the written test I cannot decide if she knows how to do a multiplication of a 

number with an algebraic expression involved into brackets. I do not notice if she considers 

„2x+y‟ as a mathematical object and that whole one should be multiplied by „-2‟.  
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During the interview I tried to clarify this issue, and I will present now this part from our 

dialogue:  

Dialogue 1 

Name Dialogue  Notes 

D 

 

A 

 

D 

 

A 

 

 

 

D 

A 

D 

A 

 

D 

 

 

A 

D 

 

A 

At the second task. Tell me what you 

did. 

I let „3x‟ as it is, and I multiply „-2‟ 

with „2x‟ and „+y‟. 

You have selected alternative a) and 

c), why have you? 

I let „3x‟ as it is, and multiply the 

factor „-2‟ with two other factors 

inside brackets, „2x‟ and „+y‟, and I 

got „3x-4x-2y‟. 

Why did you choose c)? 

No, it is not correct. 

Why? 

Because „-2‟ times „+2x‟ is equal to   

„-4x‟. 

What do you consider the whole 

group of terms „2x+y‟ related to the 

multiplication with „-2‟. 

As just a number. 

We can say as a mathematical object. 

Ok? 

Yes. 

Exercise 1/ Task 2 

 
 

 

 

From this dialogue I understand that Alba tends to tackle the algebraic expression included 

into brackets, „2x+y‟, as a factor, which has two terms and „-2‟ should multiply both of them; 

and with this reason she justifies her error done in test. It seems that she does not know to use 

the adequate words for that factor, which is a mathematical object (Gray and Tall, 1991, 

1992).    

She identifies the multiplication of a term with a bracket and discriminates (Siepinska. 1994) 

it from the wrong way of multiplying a term with a bracket. I think that this dialogue is an 

evidence of “a superficial relational understanding” (Skemp, 1976); it means that Alba has 

the idea why she is making two multiplications one after another, even though she is strongly 

based on distributive law. This is the reason why I classified these answers as “superficial 

relational understanding”. 

This dialogue helps me to give answer questions that emerged from her written answer and 

proves my doubts.  

 

6.1.2 Alba’s “misconception that brackets indicate multiplication” 
This criterion comes from analysis of Alba‟s answers and this type of misconception is 

mentioned also in chapter 2 (Review of Literature). It consists in operating with algebraic 

expressions as they were two factors (at least one of them is involved into brackets) that 

should be multiplied regardless the operation between them. I have involved in this criterion 

Alba‟s answers of two tasks, task 3 and task 5 of first exercise. 
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6.1.2.1 Exercise 1, Task 3 

Alba’s answer from the test 

According to Kaur (1990) there is a misconception that brackets means multiplication, but not 

always brackets should be tackled as multiplication, as Alba did in this example (task 3): 

 

If the operation between bracket and „y‟ would be multiplication, then alternative a) will be a 

correct choice by Alba showing also that algebraic expression involved into brackets should 

consider as one object (Gray and Tall, 1991, 1992). Since she has selected only the alternative 

a) it seems that Alba has considered addition operation as multiplication but from the 

interview I will show if this misconception stands for Alba or not. 

Alba’s answer from the interview 

Alba has shown in her test the tendency to make multiplication where brackets are involved 

even though there is the addition operation between the single term and brackets. Also, during 

the explanation of her solution for the third task in the first exercise, while she was being 

interviewed, Alba was convinced that she has to make multiplication. If there would be 

multiplication and not addition, the result will be correct because she did it very well; and 

showing that this time she noticed correctly the two factors. Only when I required showing 

me the operation she noticed that it was addition and, not multiplication. Furthermore Alba 

was precise during the process of bracketing for this task. 

Dialogue 2 

Name  Dialogue   Notes  

D 

 

A 

D 

A 

 

 

D 

 

A 

 

D 

 

A 

D 

A 

At the third task you have selected  

a) 2xy-y
2
. 

Yes, I have. 

What do you get from: (2x-y)+y? 

I have to multiply „y‟ with „2x‟ and „-y‟. 

So „2x-y‟ is multiplied with a factor that is 

„y‟. 

You have multiplied it, what do you see 

there? 

There is an expression in brackets and a 

factor. 

What is the operation between the 

expression in brackets and „y‟? 

Addition. 

Ok, what should you do? 

Just to put away brackets. And the result 

is „2x‟. 

Exercise 1/ Task 3 

 
 

 

 

As I understand the dialogue, Alba does not identify the addend included in brackets because 

her misconception is that brackets indicate multiplication but in the same dialogue she shows 

that she knows both the meaning and the use of distributive law in algebra. On one hand the 

statement: “ „2x+y‟ is multiplied with a factor that is „y‟ ” is evidence of her misconception, 



65 
 

on the other hand it is evidence for identification of distributive law (even though she never 

names it) because it means to multiply a term (monomial) with a sum (polynomial). 

This dialogue convinces me concerning my doubt for Alba‟s misconception that brackets 

indicate multiplication. 

6.1.2.2 Exercise 1, Task 5 

Alba’s answer from the test 

In the fifth task Alba shows a correct tackling of mathematical objects, as it is „xy‟.  

 

My understanding, for this part, is that relational understanding (Skemp, 1976) has no 

evidence in her work because I cannot see any answer for why she has used particular rules 

(as distribution of an exponent over a multiply). Since she has selected only one correct 

answer instead of two, I think that she was focused only on syntactic aspect (Berg, 2009; 

Demby, 1997; Drijvers et al., 2011) and she has not considered the possibility of containing 

the same factor by two monomials, such as „x
2
y‟ and „x

2
y

2
‟.  But, does Alba know what she is 

using and, how and why? 

Alba’s answer from the interview 

In the fifth task she has selected during the test one of the correct alternatives, and I asked also 

about correct solutions to show her mathematical understanding. During the interview she did 

not justify her choice because it seems that Alba memorized the rule for multiplication and 

she wants to use it everywhere, and obviously because her misconception is that brackets 

indicate multiplication.  

Dialogue 3 

Name  Dialogue   Notes  

D 

A 

 

D 

 

A 

D 

A 

D 

A 

D 

A 

D 

 

A 

 

D 

A 

D 

How did you operate in the fifth task? 

Here, I have multiplied eee, „y‟ with the 

whole expression „xy squared‟. 

Which is the first operation that you should 

do? Is it multiplication? 

No, I should expand brackets. 

Ok, then what? 

(She writes: = x
2
y-xy

2
.) 

What is squared? 

Even „x‟ and „y‟. 

But what did you write? 

Ah, „x
2
y

2
‟. 

Ok. How do you notice that both „x‟ and 

„y‟ should be squared? 

Because there are into brackets and the 

entire bracket is squared. 

 How do you consider „xy‟? 

As an only number. 

Ok, let say as a mathematical object. 

Exercise 1/ Task 5 
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I classified this dialogue as part of criterion that brackets indicate multiplication since 

regardless her written answer she started to multiply because there were brackets. I made this 

conversation with purpose to know more about how she has achieved that answer, alternative 

b), but firstly I got one more time another evidence of her misconception. After that, we 

clarified if she should multiply or subtract, she gave me some answers concerning tackling of 

mathematical objects. My interpretation about how Alba tackles mathematical objects is that 

she has understood that everything involved into brackets is a whole. From this dialogue I 

understand that she has also errors by careless nature because she gives me correct answers 

during the interview after I emphasize what is wrong. 

 

6.1.3 Alba’s “slips that are corrected and justified by her using 

instrumental understanding and followed by uncertainty”  
This criteria has emerged from data analysis referring to mistakes that Alba has done during 

the test and I considered them as mistakes of careless nature because she corrected and 

justified them based on arguing, but on another hand all this was followed by uncertainty 

since I intervened some times. This criterion is divided into two parts containing Alba‟s 

answers from first and third exercise.  

6.1.3.1 Exercise 1, Task 4 

Alba’s answer from the test 

Alba has selected three answers for this task, b) and d) that are correct answers, and a) which 

is not. 

 

Even though she marked two correct answers showing a correct use of distributive property, 

which is linked with tackling algebraic expressions into brackets as mathematical objects 

(Gray and Tall, 1991, 1992), Alba did her choice of alternatives b) and d) uncertain with 

marking alternative a). From this answer I can say that Alba has had two different thoughts 

concerning using of distributive law and furthermore, concerning tackling of algebraic 

expressions as objects.   

Alba’s answer from the interview 

My intention of this dialogue was to discuss with Alba about her double choice (wrong and 

right) and to justify each of them.  

Dialogue 4  

Name  Dialogue   Notes  

D 

A 

 

 

 

D 

What should you do in the fourth task? 

I have to multiply the first element of the first 

bracketwith the first one of the second brackets; 

And that first with the second element of the second 

bracket. And it is the same about „4‟.  

Ok, let‟s start from the beginning. You should 

Exercise 1/ Task 4 
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A 

D 

A 

D 

 

 

A 

D 

A 

D 

A 

multiply the first bracket with the second one. What 

is involved into the first bracket? 

The „x‟. 

Is anything else? 

Also „4‟. 

Ok. So you can consider „x+4‟ as a mathematical 

object. And, only „x‟, or only „4‟, or both of them 

should multiply the second bracket? 

Both of them (and she writes „= x
2
+4x-5x-20‟). 

Can you write it in a longer way? 

Yes (she writes „= x(x-5)+4(x-5)‟). 

Why did you select a)? 

Mmm, I have thought that „x‟ multiplies the first 

term of the second brackets, and „4‟ the second one. 

 

 

  

I think that Alba is entering into the logic of the multiplication procedure since she identifies 

multiplication of factors included into brackets, and she distributes firstly „x‟ and then „4‟ 

rejecting the alternative a). According to this part of our discussion, I think that Alba managed 

to identify two mathematical objects as factors, even though I interfere sometimes; and it is an 

evidence of instrumental understanding (Skemp, 1976) since she wants just to get the right 

result, without justifying steps that she passes to achieve that result. From this dialogue she 

might have achieved discrimination (Sierpinska, 1994) between multiplications of: one 

bracket with a term, and two brackets.  

6.1.3.2 Exercise 3, Task b) and e) 

Alba’s answer from the test 

I think that the third exercise is easier than the second one, which requires no-active use of 

brackets, because the structure of algebraic statements is given; also brackets are placed and 

are missing only some terms.  

For solving this exercise, the knowing of distributive property is sufficient, which could be 

presented as multiplication of one term with bracket or as multiplication of two brackets. In 

the first task Alba tackled very well mathematical objects „-4x‟ and „2x‟, multiplying 

numerical parts together and variables together. It is difficult to understand why the missing 

term in the second task would be „8‟ as Alba wrote, because „8‟ times „4‟ means „32‟ and not 

„24‟. Even it would be a slip, Alba would be able to assess the soundness of her solutions 

doing other operations as „4x-8x=-4x‟ that is different from term in the right side „2x‟.  

 



68 
 

Even in d) task is the same situation as in b). Whereas c) is solved relatively well, because she 

decided firstly for „3‟ and „9‟ (which is written under the „6‟) instead of question marks but 

during making calculations again I think she add „3‟ and „3‟ instead of multiply them. But 

Alba operated very well in the last task tackling correctly algebraic expressions into brackets 

as mathematical objects (Gray and Tall, 1991, 1992). And, only from the interview, I could 

know if these mistakes have really careless nature (slips). 

Alba’s answer from the interview 

As I supposed in the previous section, errors in the third exercise have careless nature (slips) 

because Alba corrects herself and was sure while she was giving below explanations: 

 

Dialogue 5 

Name Dialogue  Notes 

D 

A 

D 

A 

Why did you write 8? 

Eee, it is wrong. 

Why do you think so? 

Because from „x‟ times „x‟ I get „x
2
‟ and from 

„4‟ times „-6‟ I get „-24‟. Also, „4x‟ and „-6x‟ is 

equal to „-2x‟. 

Exercise 3/ Task b

 

 

I think that this is an instrumental proof (Weber, 2002) for algebraic statement         

„(x+4)(x-6)=x
2
-2x-24‟ because Alba uses only rote process of multiplication of two brackets 

(formal definition) without referring steps and their justifications (relational conceptual 

understanding) in which this multiplication passes through. According to this task‟s solution 

and to the next one, she did not achieve to have a synthesis (Sierpinska, 1994) for 

understanding of multiplying two brackets (distributive law). This consists on: since two 

polynomials, included into brackets, are multiplying to each other, each monomials of one 

polynomial should multiplied each monomials of other polynomial. And in this claim is 

involved understanding of non-routine and procedural multiplication of two brackets. 

 

Dialogue 6 

Name Dialogue  Notes 

D 

A 

 

D 

A 

D 

 

A 

D 

 

A 

D 

 

 

 

 

A 

Explain me, why did you get „2‟ and „4‟? 

Because „4‟ times „2‟ equals „8‟, and „x‟ 

times „x‟ equals „x
2
‟. 

And „6x‟, where does it come from? 

It is a formula. 

It comes from a formula or from random 

multiplication. 

Yes, multiplication. 

Ok, make the multiplication of these two 

brackets. 

(She writes, see photo.) 

Ok. We can multiply these brackets also 

using the table (and I explained it). 

Have you ever used this way? 

What do you think, which is more 

practicable? 

The one with table. 

Exercise 3/ Task e 
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In this dialogue, since Alba does not have identification (Siepinska, 1994) of a random 

multiplication of two brackets because she thinks it is “a formula”, she cannot have the 

synthesis (Siepinska, 1994) announced above, even though her written results are correct. 

And, one more time, as in task 4 in exercise 1, for Alba it is enough to multiply the first and 

the second monomial of the first bracket with respectively the first and the second monomial 

of the second bracket.   

By showing a method using the table, I introduce a structure in the process of multiplying two 

brackets. It seems that Alba recognizes this advantage since she agreed that using the table 

was more practicable. But even though I got this consideration by Alba she did not use it to 

multiply two brackets during the post-test.  

 

6.1.4 Alba’s “no-active use of brackets and relational understanding” 
I think that relational understanding (Skemp, 1976) and active use of brackets are related to 

each other since without relational understanding of the use of brackets one cannot have an 

active and correct use of them regardless if it is a new situation or not . This criterion is a mix 

of elements from theoretical approach and elements emerged from data analysis. Here are 

involved Alba‟s answers of second exercise. 

6.1.4.1 Exercise 2 

Alba’s answer from the test 

Alba seems to be unsure and not correct in putting brackets in their adequate place, with 

purpose to save the equal sign. Putting brackets in the same expression but in different places, 

and to get different results is the purpose of exercise 2, in which Alba grouped elements using 

brackets but with no difference in the result.  

In the first case a), even though algebraic expressions in both sides have the same product, as 

it is required from the task‟s demand, and I have put a tick sign. It seems like an accidentally 

placement of brackets, because I cannot find any reason of grouping elements as it is in the 

following example: 

 

Also in the second and third tasks Alba has put brackets not in a reasonable way (red brackets 

are put during the interview): 

              

Based on these examples, I do not have any evidence to discuss about relational 

understanding (Skemp, 1976) of the usage of brackets because Alba seems to be so strict in 

the way of using her knowledge, and she does not attempt to make links between new 

situations confronted, as this above exercise, and her knowledge. The second exercise of the 

test is a very interesting one because for its solution is required basic knowledge in algebra 

and a good ability for using them.  
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Precisely it is required to know the distributive property: „a(b+c)=ab+ac‟ and to emphasize (to 

have clear) the pass from right side to the left one. It means that „b‟ and „c‟ are both 

multiplied by „a‟ and in the left side they should be included into brackets composing an 

algebraic expression that is a factor in multiplication with „a‟.  

Alba has tried to consider this type of understanding of distributive property, in the following 

case but she did not achieve success:  

 

I think that the first bracket is not necessary since next to it is the addition operation, whereas 

the second bracket is place to get „12‟ but it is multiplied by „3‟, which is the wrong factor for 

this case; it should be „x+x
2
+3‟. 

She does not achieve to use in the right way the rules that she knows even in new situations. It 

seems that she is not able to create links between what she knows and situations not seen 

before, which would be evidence of relational understanding (Skemp, 1976). For example, 

she uses the rule of multiplication of two brackets: (a+b)(c+d)=ac+bc+ad+bd, but she did not 

know to pass from the right side to the left one as it looks in the second exercise. So, I can say 

that this is an evidence of having no flexibility in her knowledge.  

Alba’s answer from the interview 

Putting brackets in adequate place in algebraic statement was difficult for Alba. It seems that 

Alba does not have clear the intended use of brackets. From the analysis until now, I can see 

that she captures ideas from our discussions and memorizes them, such as the table for 

brackets‟ multiplication in the previous section. But since this memorization has no basis it 

could not be helpful in different and new situations. As I showed Alba‟s wrong answers about 

finding right place for brackets, in previously section, I will introduce some culminating 

points of our dialogue related to the second exercise, and I will try to determinate if it was a 

relational or instrumental proof (Weber, 2002). 

During the interview, Alba said that she has not understood the task, and firstly I solved by 

myself the first task, then I helped her to solve the second, and her solution for the third task is 

introduced in the next dialogue:  

Dialogue 7 

Name  Dialogue  Notes  

A 

 

D 

A 

D 

A 

 

D 

 

A 

D 

A 

There is „x
2
‟ in the left side and „x

3
‟ in the right 

one. 

How can you obtain „x
3
‟ considering „x

2
‟? 

I can multiply „x
2
‟ with „x‟. 

Ok, but which is that „x‟? 

(She puts brackets involving „x+x
2
‟, see photo.)  

One moment. Next to this bracket is the operation 

of addition. It means that with or without brackets it 

is the same. 

Ah yes, brackets should involve „x+4‟. 

But you will get „12‟, and you are looking for „x
3
‟. 

... (She does not give another answer.) 

Exercise 2/ Task c 
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I cannot pretend to have a proof for these statements by Alba, even less to look for 

instrumental or relational understanding (Skemp, 1976). Furthermore, this dialogue proves 

my assumptions concerning her answers in test that she has no flexibility in her knowledge.  

6.1.5 Alba’s “difficulty to tackle algebraic expressions as mathematical 

objects and herself correction” 
This criterion is related to difficulties caused by the concept of procept (Gray and Tall, 1991, 

1992) in Alba‟s understanding. This criterion contains Alba‟s answers concerning the eighth 

task of first exercise.  

6.1.5.1 Exercise 1, Task 8 

Alba’s answer from the test 

Difficulties with tackling of mathematical objects are occurred also in this task‟s solution, 

where „(2x)
2
‟ is considered as „2x

2
‟, and I think this is the reason why Alba marked 

alternative a) in the following task: 

 

This is the reason why I classified this task‟s answer as evidence of difficulty to tackle 

algebraic expressions as mathematical objects (Gray and Tall, 1991, 1992).  

Alba’s answer from the interview 

My interpretation about how Alba tackles mathematical objects is that she has understood that 

everything involved into brackets is a whole; also she identifies it in the next dialogue: 

Dialogue 8 

Name Dialogue Notes  

D 

 

A 

 

D 

A 

D 

A 

D 

A 

D 

A 

In the eighth task you have selected 

alternative a), why? 

Eee, I have multiplied „x squared, all 

squared‟, eee, this is „x in fourth‟. 

Ok. 

„2x squared‟ is ... (she writes, like in photo). 

Did you finish? 

Yes. 

Why „4x
2
‟? 

Because even „2‟ and „x‟ are squared. 

Ok. Keep going. 

I can simplify „4 with 4‟, and get „x
6
‟.  

Exercise 1/ Task 8 

 

 

 

This is evidence about tackling of algebraic expressions as products (objects) but answers 

during the interview are different from ones in test concerning this task. From this dialogue I 

can see Alba while she corrects her wrong answer; she has understood that everything 

involved into brackets is a whole. 
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6.1.6 Alba’s “instrumental proofs” 
This criterion is directly emerged from my theoretical approach and it involves proving a 

statement or solving of a task based on formal definitions. Alba‟s answers for task 1, 2 and 5 

of the fifth exercise are involved in this section. 

6.1.6.1 Exercise 5, Task 1, 2, and 5 

Alba’s answer from the test 

I cannot achieve an estimate for tackling of mathematical objects in area/volume diagrams, 

because she has made other calculations not related to the demand of the task. I will introduce 

only the first case: 

 

I think that Alba has equated two algebraic expressions that submit two sides of rectangle to 

find a value for „x‟ because she cannot accept the area of rectangle expressed by algebraic 

expression. I cannot see here the consideration of an algebraic expression as a product without 

having values for its variables (Gray and Tall, 1991, 1992) because Alba makes an attempt to 

evaluate the value of „x‟ by elaborating an equation „4x=6-2x‟ that is transforming the 

rectangle into a square. After solving the equation Alba was able to find a numerical value for 

the area of the figure; therefore it seems that Alba has not the concept of procept (Gray and 

Tall, 1991, 1992). 

In addition, even though she presented „6-2x‟ as one object including it into brackets she did 

not manipulated with it as well as to manipulate with an mathematical object because from 

multiplication of „4x‟ with „2x‟ she should get „8x
2
‟. So, for evaluating her answers for this 

exercise I should base only on analysis of the interview. 

Alba’s answer from the interview 

In this part of the interview I am introducing three dialogues concerning task 1, 2 and 5 of the 

last exercise, which are relevant for this criterion. 

 

Dialogue 9 

Name Dialogue Notes  

D 

 

 

A 

 

D 

A 

D 

A 

 

D 

Can you write the area of the rectangle, which has 

sides „6-2x‟ and „4x‟. We know that the area of a 

rectangle is the product of two of its sides. 

(She writes, „4x(6-2x)‟, and she hesitates to put 

brackets.) 

Why did you hesitate to put brackets? 

… (pause) 

Ok, why did you use brackets? 

In order to express this side (points „6-2x‟) as a 

whole object. 

From this expression („4x·(6-2x)‟) you show that 

Exercise 5/ Task 1 
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A 

D 

A 

 

D 

A 

D 

A 

 

D 

A 

 

 

D 

A 

D 

A 

D 

 

A 

D 

A 

the „4x‟ is …, what it is? 

One side of the rectangle. 

Ok, and the „6-2x‟ is, what? 

The other side. 

….  

Can you write the area of the next rectangle? 

Yes. (She writes „5∙(x+2)‟) 

Why it is „x+2‟ and not „2x‟ or „x-2‟? 

We should add these since they are next to each 

other. 

Why do you use brackets? 

Because it („x+2‟) shows only one side of the 

rectangle. 

…. 

Write down the volume. 

V=2x•2x•(3x-5). 

Why did you use brackets? 

Because „3x-5‟ is one side. 

If you will not use brackets, would you refer that 

side in the diagram? 

No. 

As what do you consider this side? 

As only one object. 

 

 

 

 

….   

Exercise 5, Task 2 

 

 
 

….  

Exercise 5/ Task 5 

 

 

 
 

For the first, the second, and the last diagram Alba has given three correct algebraic 

expressions that express diagrams‟ areas. Sometimes the result shows little in comparison 

with thoughts of task solver at the time of solving the task, so Alba hesitated to put brackets 

that should include algebraic expressions which correspond to sides of rectangles. I will 

justify this hesitation by mentioning the fact that it was the first answer concerning this type 

of exercise. She caught the idea and by rote usage achieved correct results. I am classifying 

these as instrumental proofs (Weber, 2002) since with appearance of new situations she 

would operate wrongly such as in examples of the next criterion. 

6.1.7 Alba has “no generalization concerning use of brackets related to 

mathematical objects (algebraic and arithmetic expressions)” 
Since generalization of the use of brackets is identification of one situation of the use of 

brackets as a particular case of another situation and Alba does not achieve it because she did 

not identify the involvement of arithmetic expressions into brackets as particular case of the 

involvement of algebraic expressions into brackets. This criterion is emerged from analysis 

and is based on my theoretical framework. And I have classified Alba‟s answers for the third 

task of last exercise as relevant to this criterion. 

6.1.7.1 Exercise 5, Task 3 

Alba’s answer from the test 

 As I emphasized in the previous section Alba‟s answers for the fifth exercise have been not 

understandable since she has equalized two sides of rectangle and is tried to find the variable 
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„x‟ or „y‟. So, I can analyze only her answers for this task during the interview, and these are 

introduced in the following dialogue. 

Alba’s answer from the interview 

 

Dialogue 10 

Name  Dialogue  Notes  

D 

A 

D 

A 

D 

A 

D 

 

 

A 

D 

 

 

A 

D 

A 

D 

A 

D 

A 

Write down the area of the big rectangle. 

(She writes)   A=(x+6)·6  

Ok, but can you write the side „6‟ as „4+2‟? 

(She writes)   A=(x+6)·4+2. 

Now subtract the area of the small rectangle. 

(She writes)   A=(x+6)•4+2-2y. 

Here you have multiplied brackets with „4‟. 

From the diagram you said that you should 

multiply this side with „6‟. 

Yes. 

What is happening? 

How can you express that you are 

multiplying brackets with „6‟? 

Eee. 

Ok, which is one side of the big rectangle? 

„x+6‟ (she points it in the expression). 

Ok. Which is the other side? 

„4+2‟ (she shows it in the diagram). 

What about expression? 

„4+2‟ (and she puts brackets). 

Exercise 5/ Task 3 

 
 

 

 

 

 

 

 

 

 

She does not have the same justification for sides that could be expressed by a numerical sum, 

as she had for sides that are expressed by algebraic expressions. She does not arrive to 

generalize the use of brackets (Sierpinska, 1994) in case when we refer to the side of one 

diagram although it is expressed by numerical expression. This would be considered as a 

reason for determining that the use of brackets for diagrams‟ sides that are expressed by 

algebraic expressions was based on instrumental understanding (Skemp, 1976), with which 

are linked and rote learning and imitative justification.  

First of all, it is needed to emphasize that participants of my study did not repeat their 

knowledge linked to the usage of brackets because it was the first lesson of the chapter.  

Therefore it is difficult to decide about the origin of errors, so I will comment only what is 

written in the paper-test. Even though the interview about the test is conducted only one day 

after the test and there was no mathematics lesson between them, I can see how Alba had a 

self-correction attitude during the interview of the written test, even though she was still 

followed by her insurance and my interventions were frequent.  

Even from the way of organizing the analysis of Alba‟s pre-test, using several criteria, I have 

introduced some properties of Alba‟s answers. I think that, Alba did not know to manage very 

well the challenge offered from having multi correct answers since the first exercise required 

not only to find the correct answer but also to find different types of presenting the same 

answer. For some tasks she has selected only one correct answer or one wrong answer, for 

some others she selected one wrong answer and one or two correct ones. On the other hand, 



75 
 

the answers are given and this gives the solver the possibility to operate firstly with answers 

and then to achieve the task‟s algebraic expression. According to the written tests, this feature 

is not exploited by her, she considered it only during the interview while we were discussing. 

In mostly of tasks (of the first exercise) she focused only on syntactic aspect (Berg, 2009; 

Demby, 1997; Drijvers et al., 2011) of given answers since she is not trying to capture the 

meaning of each algebraic expressions presented by alternatives, and to make links between 

them. This means to manipulate even with semantic aspect (Berg, 2009; Demby, 1997; 

Drijvers et al., 2011), which was not evident in Alba‟s answers.  

In terms of misconceptions concerning the use of brackets that Alba has during the pre-test, I 

can mention two of them: brackets indicate multiplication, and non-use of brackets for 

arithmetic expressions. Related to the second misconception, I think that Alba could not 

achieve a generalization (Sierpinska, 1994) of use of brackets related to algebraic expressions 

and arithmetic expressions, which are a particular case of the first ones. Related to this non-

achievement of active use of brackets I can introduce the difficulty that Alba has in tackling 

of algebraic expressions as mathematical objects (Gray and Tall, 1991, 1992).  

I think that Alba has no flexibility in her knowledge, which comes from instrumental 

understanding (Skemp, 1976) and rote learning. This is because she does not have a good 

performance in emerging with new tasks which are different from what she is used to solve 

before. I will relate this with the absence of relational understanding (Skemp, 1976) of the 

concept of brackets, and procept (Gray and Tall, 1991, 1992), and tackling algebraic 

expressions concerning their semantic aspect (Berg, 2009; Demby, 1997; Drijvers et al., 

2011). 

I have classified mostly of mistakes that Alba has done in test as slips, because during the 

interview she has corrected and justified them. This justification has been mostly based on 

instrumental understanding and superficial relational understanding (Skemp, 1976).  

This pupil seems to be characterized by fragility in her knowledge since the answers to some 

tasks are correct while other answers to the same type of task are wrong. In her test‟s tasks‟ 

solutions and their interpretation during the interview, there are some errors that are repeated 

many times, or there are some errors that appear in one task‟s solution but in the solution of 

another task similar to the above one there is no error; my interpretation is that she could not 

notice that some tasks are similar in principle and she has lack of self-confidence.  

6.2 Alba’s activity during my ’teaching lessons’ 
During my teaching activities Alba has been present, but she has not been very active. When I 

and all pupils have discussed about, for example: evaluating algebraic statement or creating 

equations, she was passive and rarely participated in discussion, but she was attentive and 

followed activities and discussion in her tranquility. I paid attention to Alba, more than others, 

as one of the four pupils I was following during the “Interpreting multiple representations” 

activity, but I have not had too much space to go and to discuss with pupils individually. 

During some minutes when I and Alba discussed together helping her to understand what she 

has to do and what she did, I noticed some difficulties that she had.  

During “Interpreting Multiple Representations” activity, pupils are asked to put in a set cards 

that have the same meaning but with different ways of representation. They have to put closer 

card(s) with words, card(s) with algebraic expression, card(s) with area diagram, and card(s) 

with table values, which express the same idea that means they have the same semantic aspect 

(Berg, 2009; Demby, 1997; Drijvers et al., 2011).  
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Returning to Alba‟s performance, after she selected one card with words, to pass from this 

card to the adequate one with algebraic expression was a little difficult, and I can mention 

later some of these confusions. In general, matching the area diagram card was difficult, also 

in interpreting it she belonged difficulties. In the end she looked for the tabular card. 

While she was reading the card: “Multiply n by 3 then square your answer”, she was not 

convinced which algebraic expression correspond to it: (3n)
2
 or 3n

2
.  We had this 

conversation: 

 

Name Dialogue 

D 

A 

D 

A 

D 

A 

What do you get from multiplication of „n‟ by „3‟?  

Three „n‟ (3n). 

Now, can you square it? 

Three „n‟ square (she pointes (3n)
2
). The whole „3n‟. 

And, at three n square (I point 3n
2
), what is squared? 

Only „n‟. 

 

She found by herself the area diagram, and she explained that the big square has the length 

side 3n, so its area should be (3n)
2
.  

I could notice this as evidence of developing relational understanding        

about the expression „(3n)
2
‟, while she is noticing the semantic aspect of 

this expression. This means that Alba has understood the “square” as the 

expression of area and not as multiplication of „3n‟ with itself.  

There was another card that had these words: “Square n then multiply your answer by 9”, and 

we agreed to put it in the same set with the previous one because they were different 

representations of the same idea. But Alba did not know how to explain why that area 

diagram could correspond with the new card. And one way of presenting that is the area 

diagram of „(3n)
2
‟, and we had this dialogue. 

 

Name Dialogue 

D 

A 

D 

A 

D 

A 

D 

A 

Can you write the area of this diagram? 

A=(3n)
2
=9n

2
. 

From the diagram, how many small squares there are? 

There are nine squares with side n. 

Which is the expression of the area of one of these squares? 

„n‟ square (n
2
). 

What about nine squares? 

9n
2
. 

 

I would link Alba‟s difficulties to her consideration for semantic aspect (Berg, 2009; Demby, 

1997; Drijvers et al., 2011), which is not too evident in her answers and it is strongly 

associated with relational understanding (Skemp, 1976). And from analysis of the pre-test the 

best evidence of this type of understanding is as superficial since her justifications and 

argumentations might be based on rote learning. 

Considering Alba‟s activity during my teaching lesson I want to emphasize the correctness in 

her answers while we discuss and these answers are followed by argumentations and not rote 

explanations. In addition, I emphasize Alba‟s relational understanding which seems to be a 

superficial one because even though she operates and decides about cards she has to explain 

the reason why and to refer to semantic aspect of representations. 
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6.3 Results from the post-test 
This section is organized in different subsections according to some criteria, which are linked 

to those presented in analysis of pre-test.  

6.3.1 Alba’s “active use of brackets and relational understanding 
This criterion is related to criterion in 6.1.4 section, which emphasized the link between active 

use of brackets and instrumental understanding (Skemp, 1976). I have involved in this 

criterion Alba‟s answers from the first and third exercise.  

6.3.1.1 Exercise 1, Task 1 

During the interview Alba should write tasks‟ solutions and to comment on them in the same 

time. After she wrote „(a+2)·(a+7)‟ for the first operation, and we had the following dialogue. 

Dialogue 11 

Names Dialogue Notes 

D 

A 

 

 

D 

 

A 

 

D 

A 

Why are you using brackets? 

Because I got the first one as a single 

number, also the second; and I should 

multiply these two.  

And what would happen if you don‟t use 

brackets? 

Only „2‟ will be multiplied with „a‟.  

... 

What does „a(a+7)+2(a+7)‟ mean? 

It means that each elements of the first 

bracket multiply the second bracket. 

Exercise 1/ Task 1 

 

 
 

In this first task of the post-test, Alba goes further, in comparison with her tackling of 

algebraic expressions, since she uses brackets to multiply two algebraic expressions. She 

seems to be convinced by what she said and she is tackling very well algebraic expressions, 

as: „a+2‟ and „a+7‟, as products, objects (Gray and Tall, 1991, 1992). 

In this dialogue I can see a creative justification by Alba for the use of brackets while she 

aims to tackle two algebraic expressions as objects (Gray and Tall, 1991, 1992). I would like 

to categorize this as relational proof (Weber, 2002) because, to calculate the product of two 

algebraic expressions Alba considers her understandings for mathematical objects and 

distributive law, and passes to formal definitions that is the process of multiplication.  

From the last dialogue, it seems that Alba could identify (Sierpinska, 1994) one case of using 

brackets while she is multiplying two algebraic expressions, and she discriminates 

(Sierpinska, 1994) it with the case of multiplying these two algebraic expressions using no 

brackets. She claims that only two terms adjacent to the sign of multiplication will be 

multiplied in the second case, and she shows also for differences that cause tackling and non-

tackling of polynomials as whole objects.   

Considering Alba‟s two answers, during the pre-test and post-test, concerning these two 

criteria, I can see differences in her way of tackling algebraic expressions, which is in the way 

she used brackets.    
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6.3.1.2 Exercise 3, Task 1 

The third exercise requires the pupils to be creative and to decide by themself where brackets 

are necessary in order to present geometrical elements (sides) distinct from each other.  

But how did Alba tackle mathematical objects presented in several diagrams? 

Alba starts being correct and convinced on her writing and on justifying that each side of the 

rectangle could be considered as a given product (object) (Gray and Tall, 1991, 1992).  

Dialogue 12 

Names Dialogue Notes  

D 

A 

 

D 

 

 

A 

Why did you use brackets? 

Because, ee, it is just the high, it is just a number.  

And, the perimeter is „2(3x+10-2x)‟. 

If I will ask to write this expression using two 

different types of brackets, how could you do 

that?  

Ok (see the second algebraic expression). 

 

Exercise 3/ Task 1 

 

 
 

Furthermore, she is right while she uses brackets and square brackets to write algebraic 

expression for perimeter of given rectangle. I think that she is introducing two different kind 

of brackets since she is considering ‟10-2x‟, „3x‟ and „3x+(10-2x)‟ as different mathematical 

objects (Gray and Tall, 1991, 1992). 

6.3.2 Alba’s uncertainty in discriminating cases of using brackets 
To achieve a synthesis of the use of brackets, according to Sierpinska (1994) it is necessary to 

discriminate cases of the use of brackets referring different conditions. Concerning this 

criterion I have selected three task‟s answers and they introduce non-use or bad-use of 

brackets from Alba during task-based-interview. I have involved in this criterion Alba‟s 

answers of three different tasks from task-based-interview. 

6.3.2.1 Exercise 1, Task 1 

Concerning the second level, Alba should add two polynomials „a
2
+9a+14‟ and „a

2
+15a+50‟. 

 

Dialogue 13 

Names Dialogue Notes  

D 

 

 

A 

D 

A 

 

D 

 

A 

In this step, we have to add „a
2
+9a+14‟ and 

„a
2
+15a+50‟, is it necessary (essential) to use 

brackets? Is it possible the non-usage of them? 

Eee, yes, eee, no. 

Which is your definitive answer? 

It is necessary because without brackets I will 

add only one „number‟ (term). 

Ok, without brackets you got „2a
2
+24a+64‟. 

Make this addition using brackets, as you said.  

Ok (and she wrote as in photo). Oh, it‟s the 

same.  

Exercise 1/ Task 1 

 

 
  



79 
 

During our dialogue I made a question with tendency related to the essentiality of brackets 

usage, getting started from two facts: during addition of two polynomials (algebraic 

expressions) we get the same result even using brackets even not; and Alba included into 

brackets only the second polynomial, „a
2
+15a+50‟, even though „a

2
+9a+14‟ is also a 

polynomial. And her answer is not completely correct since she does not determine that 

without brackets she will add „14‟ and „a
2
‟, and not „a

2
‟ with „a

2
+9a+14‟. Her proof is 

instrumental  (Weber, 2002) because she does not care about presenting two algebraic 

expressions as objects (Gray and Tall, 1991, 1992), using brackets for both (relational 

conceptual understanding), and then to go through formal procedure of clearing brackets, 

grouping similar monomials and adding them. Her ability to capture the reason why  brackets 

are used in particular cases, as the previous ones, which is related to relational understanding 

(Skemp, 1976), seems to be “unstable”, as I saw it in this dialogue.  

6.3.2.2 Exercise 1, Task 2 

At this point Alba has to find the second addend in the middle level, by subtracting 

„a
2
+9a+14‟ from „2a

2
+16a+14‟.  

Dialogue 14 

Name Dialogue Notes  

D 

 

A 

D 

A 

D 

 

 

A 

D 

A 

D 

A 

Here is the sum and one addend, how can 

you find another addend? 

I have to subtract. 

Which one? 

(She writes) „2a
2
+16a+14-a

2
+9a+14=‟ 

Wait. You said that you should subtract 

the whole „a
2
+9a+14‟. And in your 

writing, what is subtracted? 

Eee, I have subtracted only „a squared‟. 

So, what is missing here? 

Brackets. 

And where is their place? 

Here (see photo). 

Exercise 1/ Task 2 

 
 

 
 

I can categorize the first operation that Alba did as an instrumental proof (Weber, 2002), even 

though it is not correct, because I think she is confined only with putting the minus sign 

(formal definitions) between two polynomials without considering them as whole objects. So, 

she does not achieve to tackle polynomials as one whole object (Gray and Tall, 1991, 1992) 

considering the subtraction of two algebraic expressions. So, she does not identify (Sierpinska, 

1994) another case of using brackets with purpose to group monomials with the same 

“rights”. After my intervention she argues correctly what she did before and identifies another 

case of putting brackets with purpose to subtract the whole polynomial and not only one 

monomial. Also this was a case that Alba could make two discriminations (Sierpinska, 1994): 

one between two cases of subtraction, with and without brackets; and between two cases of 

using brackets, multiplication and subtraction of two algebraic expressions (polynomials).    
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6.3.2.3 Exercise 3, Task 5 

In this task Alba is asked to write the volume of the cuboid and we had this conversation: 

Dialogue 15 

Name Dialogue Notes  

D 

 

A 

D 

A 

D 

A 

D 

A 

D 

A 

D 

A 

D 

 

A 

D 

A 

 

D 

 

A 

D 

A 

D 

A 

D 

 

A 

D 

 

A 

D 

 

A 

D 

A 

D 

A 

D 

A 

D 

A 

D 

A 

Here, you have to write down the expression for the 

volume. The volume is the product of three sides. 

(She writes) V=[(2x+x)•2x•4x-6. 

Where do you close the square bracket? 

Ah, V=[(2x+x)•2x]•4x-6 

Did you finish? 

Yes. 

We know that, V=a•b•c. Which is „a‟? 

„2x+x‟. 

What about „b‟? 

„2x‟. 

And „c‟? 

„4x-6‟. 

You should multiply these three sides. What have you 

done in your written expression?  

I have multiplied just two sides: a and b. 

To multiply the three sides, what should you do? 

Eee, I put in square brackets everything. 

V=[(2x+x)•2x•4x-6] (see the above photo). 

Usually, when we use brackets, we have an operation 

related to them. 

Yes. 

Do you have any operation related to this square bracket? 

No. 

Does this fail? 

Yes. 

Ok, in this expression, V=(2x+x)•2x•4x-6, which is the 

third side? Where is the error? 

To put away the brackets. 

Ok, and we have, V=2x+x•2x•4x-6.  

Please, tell me one more time, three sides. 

„2x+x‟, „2x‟, „4x-6‟. 

Are you multiplying these three sides, referring to the last 

expression? 

No, I have to use brackets. 

Where? 

For „2x+x‟ and „4x-6‟. V=(2x+x)•2x•(4x-6). 

Ok. Now expand the brackets. 

V=2x+x•8x
2
-12x. 

Tell me what you did. 

I expand brackets for the first side. 

Did you execute operations related to the first brackets? 

No, it should be brackets „V=(2x+x)•8x
2
-12x‟. 

Is something else missing here? 

Mmm, I don‟t know. 

Exercise 3/ Task 5 
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During this dialogue Alba seems to be confused and she is showing bad-use and non-use of 

brackets while she writes down the volume of the cuboid. However she is able to identify all 

three sides and their expressions, but I think that this is out of my expectations considering the 

background of pupils in tenth grade. From the beginning of her answering she is not correct 

since she decides to use two types of brackets instead of using twice brackets. In addition, I 

would like to relate this to non-considering neither semantic aspect nor syntactic one (Berg, 

2009; Demby, 1997; Drijvers et al., 2011) of algebraic expressions „[(2x+x) 2x•4x-6‟ and 

„[(2x+x)•2x•4x-6]‟ since respectively she does not close the square bracket and involves the 

whole algebraic expression into brackets without any action that will be executed for the 

whole. 

She does not consider as similar the two sides which are expressed by algebraic expressions, 

such as „2x+x‟ and „4x-6‟, and as such they should be involved into brackets. So, she is not 

identifying the object for which she should use brackets. From Alba‟s answers I can see an 

uncertainty about tackling algebraic expressions as objects (Gray and Tall, 1991, 1992) even 

after some steps of our discussion when she wrote correctly the algebraic expression for 

cuboid‟s volume. She can interpret correctly what she stares, as for example the multiplication 

of the two first sides, but not to make the opposite action, putting brackets in correct place by 

herself. This is an evidence of Alba‟s no-active use of brackets.  

From these three presentations, it is evident that Alba has not achieved a synthesis for usage 

of brackets because she has not generalized the use of brackets in each case (Sierpinska, 

1994). 

6.3.3 Alba has “no generalization concerning use of brackets related to 

mathematical objects (algebraic and arithmetic expressions)” 
This criterion has its analogue in the analysis of the pre-test and it is evident in Alba‟s 

answers of the same task as in pre-test but with different data. In this criterion I have involved 

some of Alba‟s answers for task 3 of exercise 3. 

6.3.3.1 Exercise 3, Task 3 

This task requires the algebraic expression which shows the diagram‟s area (presented by the 

figure) as the difference of area of the big rectangle and that of the small one. 

Dialogue 16 

Name Dialogue Notes  

A 

D 

 

A 

D 

A 

D 

A 

D 

A 

D 

A 

D 

 

A 

Area of the big rectangle is, „A=(12+y)•8‟. 

But „8‟ is only one part of its side, and the other part is „4‟, 

so the length of this side is „8+4=12‟. 

Yes, „12‟ (and she writes „A=(12+y)•8+4‟). 

Which is the second side in this expression? 

„8+4‟. 

The whole „8+4‟? 

Yes. 

To calculate the area, you should multiply these two sides. 

Yes. 

Have you multiplied them in what you wrote? 

Ah (she puts brackets), A=(12+y)•(8+4). 

Now, you should subtract the area of the small rectangle, 

with sides: „x‟ and „4‟.  

Ok, now I have to subtract „4x‟ (see photo). 

Exercise 3/ Task 3 
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She falls back into the error, even though it is a case countered before in pre-test, but except 

of this I think the reason is that during the whole post-test, this is a new way of presenting the 

side of rectangle, as a numerical expression by the sum „8+4‟, and deviating from the usual 

and routine presentation. This is evidence that Alba cannot avoid her rote learning and cannot 

discriminate (Sierpinska, 1994) two ways of presenting the cuboid‟s side as an object by 

using algebraic and arithmetic expressions. And from this she does not generalize (Sierpinska, 

1994) the use of brackets related to mathematical objects. Comparing with the same task (but 

with different data) in pre-test Alba has the same answer but I can make a distinction regarded 

to how fast she corrects her mistake.  

6.3.4 Alba’s “instrumental proofs” 
This criterion is analogue to that in section 6.1.6. Referring to this criterion I have chosen 

Alba‟s answers for task 1 of exercise 2, because of her formal definitions and rote 

justifications concerning tackling of mathematical objects. 

6.3.4.1 Exercise 2, Task 1 

The dialogue below is extracted from task-based-interview related to the second exercise, 

which presents several steps of creating equations starting from a particular value of the 

variable. I am concentrating on saving mathematics identity that consists in conducting the 

same operation for left and right side of algebraic statement, and sometimes operating with 

the whole side means to include it into brackets. In other words, it is essential considering 

algebraic expressions of each side of algebraic statement, as a procept (Gray and Tall, 1991, 

1992). It seems that Alba has captured the idea of saving mathematics identity and determines 

if it is saved or not, by checking if the two sides are involved in the same operation.  

What has interest for me is that she argues the reason of the use of brackets since she notices 

that what is involved into brackets should be tackled as an object (Gray and Tall, 1991, 1992); 

even though in the previous step this algebraic expression has shown for her a process.  

Dialogue 17 

Name Dialogue Notes  

D 

A 

D 

A 

 

D 

A 

D 

A 

 

D 

A 

D 

A 

D 

A 

What is multiplied by 6? 

„x+2‟. 

How do you notice that? 

There are brackets for „x+2‟. 

… 

Which is the next operation? 

Divided by „2‟. 

Are both sides divided by „2‟ and how do you notice it? 

Yes, because „6(x+2)-20‟ is into square brackets.  

… 

What do you think, do braces „{}‟ are necessary? 

Yes, they do. 

Can I write without braces (see photo)? 

Yes. 

So, are they necessary? 

No, but eee, it depends from the way of writing. 

Exercise 2/ task 1 

 

 

 

 

It looks that Alba is doing a rote process for proving these statements since her justifications 

are imitation and so they cannot take place in each step. The last case is an evidence of 

another instrumental proof (Weber, 2002) based on formal ideas since braces „{}‟ are not 
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necessary because even without them „-1‟ will be subtracted from the product of algebraic 

expression „[6(x+2)-20]:2‟. 

From the very last Alba‟s sentence, I understand that according to her the use of brackets 

depends from the way of presenting division operation in algebraic statement, using (/) sign 

or (†) sign. On the other hand, the usage of braces for the first time during the post-test, 

makes her unsure, even though there is the same principle as for brackets or square brackets, 

but since she has no flexibility in her knowledge she cannot secede from her routine.  

6.3.5 Alba’s “difficulty to tackle algebraic expressions as mathematical 

objects” 
This criterion has its analog in section 6.1.5 and involves Alba‟s answers for the second task 

of the second exercise. 

6.3.5.1 Exercise 2, Task 2 

From the whole second task solution, I have involved in this criterion only Alba‟s answers 

concerning the last operation that is done in the process of creating this equation. 

Uncertainty continues to follow Alba because she reaches conclusions previously opposed by 

her and I think the cause of this might be instrumental way of using brackets and formal 

definition about considering an algebraic expression as procept (Gray and Tall, 1991, 1992). I 

think that she has not achieved to capture the idea tackled in this task through several steps. It 

seems that she does not care about considering shifting from step A to the next one, step B, as 

an isolation of a product (Gray and Tall, 1991, 1992) given by the algebraic expression in step 

A, and attaching a certain operation related to a particular object (product). And in most of 

cases is necessary the use of brackets to give the right to find the product firstly.  

Dialogue 18 

Name Dialogue Notes  

D 

A 

D 

A 

D 

A 

 

D 

A 

D 

A 

D 

A 

D 

A 

D 

 

A 

D 

A 

D 

A 

Ok, go to the next step. 

It is added „4‟. 

Is this shift equivalent? 

No. 

Why? 

It is not saved the algebraic identity neither in left 

side nor in the right side. 

Why? 

In the left side „4‟ is added only to „9x‟. 

Is the use of brackets necessary in addition? 

No. 

Is „4‟ added in other side? 

No. 

Why? 

Eee. 

Can you write the expression „3(1+3x)‟ from the 

previous step and then add „4‟? 

Ok. „3+3x+4‟. 

Why? 

No, „3+9x+4‟. 

And if you should not expand brackets. 

Ok, „3(1+3x+4)‟. 

Exercise 2/ task 2 
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D 

A 

D 

A 

D 

 

A 

D 

A 

D 

A 

Where does the last bracket end? 

After number „4‟. 

Ok, do the calculations. 

It is equal to „3+9x+12‟. 

See above: „3+9x+4‟ and „3+9x+12‟. Are these 

equal. 

No. 

Where is the error? 

Eee. 

Ok, where should you close the bracket? 

Eee, after „3x‟. 

 

 

 
 

 

 

Considering the first Alba‟s answers: “In the left side „4‟ is added only to „9x‟”, I can say that 

Alba is in repetition comparing with the same answer in dialogue13 (section 6.3.2.1). This 

means that this answer has not careless nature but it is rooted in her misunderstanding of the 

use of brackets.  

6.3.6 Alba’s “superficial relational understanding” 
In this criterion, which is analogue with section 6.1.1, I have involved two dialogues 

concerning two different tasks. 

6.3.6.1 Exercise 2, Task 1 

Even though there are some evidences that Alba has achieved to understand the consideration 

of an algebraic expression as mathematical object, but she does not explain it completely to 

the others. Taking encouragement from the dialogue 17 of the criterion in section 6.3.4, in 

which Alba answered correctly concerning tackling of mathematical objects, I attempted to 

know how Alba would tackle algebraic expressions in a new situation referring to the 

opposite way of creating equations.  So, I asked her to order operations, from the first to the 

last one, which are executed concerning the variable „x‟. 

Dialogue 19 

Names Dialogue Notes  

D 

 

A 

D 

A 

D 

A 

D 

A 

D 

A 

D 

A 

D 

A 

D 

A 

Which operations are executed starting from the 

„x‟, in this algebraic statement (see photo).  

Addition with „2‟. 

Why are you saying this? 

Because there is, „x‟ plus „2‟. Eee.  

Does the reason is the presence of brackets? 

Yes. 

Ok, what is next? 

After, „20‟ are subtracted. 

„20‟ are subtracted from (x+2). 

No. 

What? 

Firstly it is multiplied by „6‟. 

Ok. 

And then „20‟ are subtracted. 

What comes after? 

Division by „2‟, and then it is subtracted „1‟. 

Exercise 2/ Task 1 
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In this new way of tackling the creation of an algebraic expression I can see that Alba ordered 

correctly operations showing that she was looking for products that are manipulated step by 

step until the creation of the algebraic expression.  

6.3.6.2 Exercise 2, Task 2 

In the second task of the second exercise, several steps of creating one equation are 

introduced but some shifts do not save the algebraic identity since brackets are missing or are 

placing in a wrong way. And, it is important to mention that operations are executed 

considering algebraic expression in the previous step even though it was not an equivalent 

shift. One more time, tackling of algebraic expressions as products is emphasized, and it is 

connected with involving algebraic expressions into brackets with purpose that the expansion 

of brackets will be the first operation which should be performed. I think this is an example of 

the semantic aspect (Berg, 2009; Demby, 1997; Drijvers et al., 2011) of understanding the use 

of brackets in these cases and it would be discriminated (Sierpinska, 1994) with non-usage of 

brackets even though algebraic expressions are tackled correctly.  

Dialogue 20 

Names Dialogue Notes  

A 

D 

 

A 

D 

A 

D 

A 

D 

A 

D 

A 

D 

A 

The third operation is: multiplying by „2‟. 

Is this shift equivalent to the previous one?  

Is algebraic identity saved? 

Yes. 

Why? 

No, it is not. 

Why? 

Eee, brackets should be present. 

What does it mean? 

To multiply the whole, eee, ... 

What? 

Even „2x‟ and „-4‟. 

Is „2x-4‟the left side? 

Yes. 

Exercise 2/ Task 2 

 
 

 During this task Alba has achieved an instrumental proof (Weber, 2002) because she is based 

on formal definitions and rote justifications to explain what is going on through these steps. 

Furthermore, she can discriminate (Sierpinska, 1994) two ways of multiplying two algebraic 

expressions, with and without brackets, but for each case she cannot shift from multiplication 

with any brackets to the one with brackets in order to achieve a proper result.  

In the first part of this dialogue, Alba makes a discrimination of two ways of multiplying, 

like: multiplying the whole expression „2x-4‟ by „2‟, and multiplying only „4‟ by „2‟; 

furthermore she puts brackets in correct place including algebraic expression in the left side of 

previous step and she justifies her action saying: “To multiply … even „2x‟ and „-4‟”. 
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6.3.7 Alba’s “slips that are corrected and justified by her using 

instrumental understanding and followed by uncertainty” 
This criterion is mentioned also in section 6.1.3 and involves Alba‟s answers for task 2 of 

exercise 2. 

6.3.7.1 Exercise 2, Task 2 

In this part I have involved Alba‟s answers concerning the sixth operation in the second task. 

Dialogue 21 

Name Dialogue Notes  

A 

D 

A 

D 

 

A 

D 

A 

D 

 

A 

D 

M 

D 

M 

 

D 

M 

D 

M 

The next operation is multiplying with „3‟. 

Is this shift equivalent? 

No, because is multiplied only „3x‟. 

What should you do to multiply the whole left 

side? Is something that you have to use? 

Yes, brackets. 

And, what should be included into brackets? 

Eee, „4+3x‟. 

Ok, the left side should be into brackets, where 

does it start?  

From „2x-8‟. 

Where is the right place of brackets? 

Starting to „2x-8‟. 

Can we use square brackets? 

Yes, and „3x‟ is the last term included into these 

brackets. 

What about right side? Is it multiplied by „3‟? 

Yes. 

Why are you saying this? 

Because brackets are present. 

Exercise 2/ task 2 

 
 

 

 

 

So, she discriminates (Sierpinska, 1994) two “ways of multiplying with „3‟” the algebraic 

expression in the left side of the seventh step, and she explains what is presented in the eighth 

step, considering that as the wrong one. Following, I required putting brackets in order to save 

algebraic identity and, her argumentations and justifications look to be formal, imitation or 

routine. So, in this shift Alba does not have a relational understanding (Skemp, 1976) for the 

aim of using brackets. It seems that she is not thinking about square brackets, in which 

brackets that are already used will be involved. In addition, in this step she cannot achieve a 

generalization (Sierpinska, 1994) for the case of involving brackets into square brackets with 

purpose to order the consideration of the algebraic expression included into the latest as object 

(product) (Gray and Tall, 1991, 1992), such as the first operation that should happen before 

multiplying by „3‟. It might be a rote process of putting brackets as it was in the fourth step 

(in which „2x-4‟ is included into brackets) by taking in consideration only terms that are not 

involved into existing brackets. Furthermore, I think that on this instrumental understanding 

(Skemp, 1976) is based also her justification about multiplication of the right side by „3‟. 

Since I have organized my task-based-interview‟s analysis considering several criteria, which 

are analogue to those in pre-test‟s analysis, the comparison between two performances is 

more explicit. So, concerning Alba‟s performance during the post-test I can notice two 

evidences of her improvement. The first evidence is that in some tasks she is able to use 
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brackets by herself and to express a relational understanding (Skemp, 1976) while she argues 

the use and non-use of brackets. The second improvement is that there is no evidence of 

misconception that brackets indicate multiplication.  

Even during the post-test Alba is characterized by the fragility of her knowledge. This is 

because she has uncertainty in discriminating (Sierpinska, 1994) cases of using brackets for 

mathematical objects in different cases. So, she cannot achieve having generalization 

(Sierpinska, 1994) concerning the use of brackets related to mathematical objects. Parallel 

with this is also tackling of mathematical objects (Gray and Tall, 1991, 1992) that Alba 

expresses difficulties in some cases or she is leaded by instrumental learning or superficial 

relational learning (Skemp, 1976) since she uses formal definitions and rote justifications 

while she is arguing. Even if I will refer to criteria, almost all of them are the same as in the 

pre-test‟s analysis.  

I will emphasize more the comparison of Alba‟s answers for the last exercise of the post-test 

with her answers for the fifth exercise in the test since they are the same type. For the first 

task‟s answers (referring exercises with area diagrams) there is an improvement from 

„instrumental proof‟ criterion in pre-test to „active use of brackets and relational 

understanding‟ criterion in post-test. There is a similarity in her answers during the pre-test 

and post-test for the third task and they are involved in the same criterion „no generalization 

concerning use of brackets related to mathematical objects (algebraic and arithmetic 

expressions)‟. I do not have evidence for improvement in Alba‟s answers for the fifth task 

comparing the pre-test with the post-test, but it is the opposite. Her answers for this task pass 

from „instrumental proofs‟ criterion in the pre-test‟s analysis to „uncertainty in discriminating 

cases of using brackets‟ criterion in the post-test‟s analysis.  

It is difficult to emphasize the role or the effect of three teaching activities from Swan‟s 

collaborative orientation (Swan, 2005, 2006) of doing mathematics in second Alba‟s 

performance, since she still has confusions and uncertainties in her answers. On the other side 

I can consider the activity “Interpreting multiple representations” (because during this activity 

she was more active) and especially matching the relevant card with area diagram to other 

representations as an inspiration for Alba, since her answers in the post-test are more related 

to relational understanding (Skemp, 1976). 

6.4 Summary of Alba’s portrayal 
In Alba‟s performance during the test I have noticed a lot of mistakes concerning the use of 

brackets and tackling of algebraic expressions, by which I mean that I have not seen Alba 

considering neither the syntactic aspect of using brackets, nor the semantic one. Since these 

are written answers I could not classify them as slips or bugs. I tried to clarify her answers 

during the test and to justify them during the interview about the test, in which Alba had a 

better performance even though it was conducted one day after the test. During this interview, 

in Alba‟s answers I noticed her self-correction, even though it was followed by uncertainty, 

no flexibility in her knowledge and lack of self-confidence. Based even on her oral answers 

during the interview I thought to classify mostly of mistakes observed in the written test as 

slips, since during the interview she has corrected them and have justified her answers. 

Considering her performance during the pre-test I can mention two misconceptions that Alba 

had concerning the use of brackets, such as: brackets indicate multiplication, and non-use of 

brackets for arithmetic expressions.  
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About Alba‟s performance during my teaching lessons, even though my contacts with her 

have not been frequent, I concluded that she had difficulties to her consideration for semantic 

aspect of different representations, which were presented by cards of Swan (2006). 

Considering these difficulties related to semantic aspect (Berg, 2009; Demby, 1997; Drijvers 

et al., 2011) of the content of cards, even though Alba gave me correct answers and associated 

them by arguments, I think that she had a superficial relational understanding (Skemp, 1976) 

concerning algebraic expressions. 

Even during the post-test Alba is characterized by no-flexibility in her knowledge. She did not 

achieve generalization concerning the use of brackets related to mathematical objects. Also 

she had difficulties for tackling of mathematical objects, which is related to her instrumental 

understanding or sometimes to her superficial relational understanding (Skemp, 1976) 

concerning the concept of procept (Gray and Tall, 1991, 1992). Also, it is important to 

emphasize that Alba has no improvement concerning her misconception related to tackling of 

arithmetic expressions as mathematical objects. I have seen the same way of tackling of 

arithmetic expressions by Alba. 

Considering the criteria, based on which I have organized my analysis, there are mostly the 

same criteria involved in the analysis of pre-test and post-test. I have noticed in the post-test‟s 

analysis two evidences of improvement of Alba‟s mathematical thinking concerning the use 

of brackets. As the first, I have considered no evidences of her misconception that brackets 

indicate multiplication. The next one is concerning her ability to use brackets mostly then 

during the pre-test. Even related to the criteria, I have used “active use of brackets” in the 

post-test analysis, instead of “no-active use of brackets”, which is used in the pre-test 

analysis. 

Considering Alba‟s improvement and her performance during my teaching lessons, in which I 

tried to lead Alba to the meaning of algebraic expressions, area diagrams and representations 

by words, and the links between them. However, I am not convinced and I cannot have the 

responsibility of deciding for the cause of Alba‟s improvement concerning her mathematical 

thinking related to tackling of brackets. This is because, I could not see that Alba captured the 

idea and the aim of activities involved in my teaching lessons and then she used it to develop 

mathematical thinking related to the use of brackets and tackling of algebraic expressions. 

This could be shown by improving her performance during the post-test basing on 

understanding development during my teaching lessons. 
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7 Portrayal of Dea 
“Dea” is the pseudonym of the second pupil that I will involve in my analysis. She voluntary 

agreed to be part of my study and we had a very good cooperation. Dea passed two selections; 

the first one is related to being interviewed and the second is related to analyzing of her 

performances. I selected her to be interviewed because she did not have good performance 

related to tasks with multi correct answers and I did not notice any evidence of relational 

understanding among her test‟s answers. She has not done a lot of mistakes during the test but 

the blank answers that were numerous in her test made me curious and I decided to go further 

in her understanding concerning use of brackets. Through our discussions during interviews I 

convinced that Dea has more than instrumental understanding concerning use of brackets and 

tackling of algebraic expressions. Referring to what I am looking for my second research 

question and Dea‟s answers during interviews I decided to analyze her performances. In 

addition, her portrayal will be organized in three sections, in accordance to her preparation in: 

pre-test, teaching activities, and post-test.  

7.1 Results from the pre-test  
The analysis of the pre-test is organized in accordance to some criteria concerning the use of 

brackets and tackling of algebraic expressions involved into brackets. These criteria are the 

same as those used in analyzing the performance of Alba during the pre-test. It is important to 

mention that I did not organize analysis of Dea‟s performance in accordance to criteria used in 

Alba‟s portrayal. Firstly I analyzed Dea‟s answers and then I noticed that criteria emergimg 

from this analysis were the same as those used in analyzing the performance of Alba during 

the pre-test. This part of analysis is divided into several sections that are named from the 

criterion and they involve Dea‟s answers of different tasks during the test and during the 

interview about the test. The way how criteria are emerged is the same as in analysis of 

Alba‟s performance, referring to keywords from research of literature and my theoretical 

approach. Also, it is needed to emphasize that all writing in red is my own comments. 

7.1.1 Dea’s “slips that are corrected and justified using instrumental 

understanding” 
In this criterion are involved Dea‟s answers concerning task 6 of the first exercise and of task 

d) of the fourth exercise. 

7.1.1.1 Exercise 1, Task 6 

Dea’s answer from the test 

Since Dea has also written by herself the answer of this task, the same as alternative a), and it 

seems that she has thought more about it than just to mark an alternative. 

 

Considering only her notices I think that Dea is not referred to even syntactic aspect (Berg, 

2009; Demby, 1997; Drijvers et al., 2011) because these two algebraic expressions are not 

equivalent and this can be proved by using only distributive law. The mistake stands in the 

exponent of the term factorized „x
2
‟.   



90 
 

Dea’s answer from the interview 

Only from the written test I cannot decide if this mistake has its roots in Dea‟s understanding 

concerning factorizing and its opposite operation expanding brackets. During the interview 

we had this conversation. 

Dialogue 1 

Name Dialogue Notes  

D 

Dea 

 

D 

Dea 

 

D 

Dea 

Why have you selected the alternative a)? 

I have factorized „x
2
‟ but I see that it is not involved in 

the second element „xy
2
‟. It should be „x‟ instead of „x

2
‟. 

Is there any other change that you have to do? 

„x‟ times „y‟ gives „xy‟, yes I substitute the „y‟ with „xy‟ 

(she writes). 

Which alternative does comply with this expression?  

None, if I will factorize even the „y‟ it will be c).  

Exercise 1/ Task 6 

 
 

 

 

I think that Dea is considering syntactic aspect (Berg, 2009; Demby, 1997; Drijvers et al., 

2011) of using brackets while she is checking for relevant common factor. Since her 

justifications are based on the way of executing distributive law I will consider these answers 

as evidence of her instrumental learning (Skemp, 1976). But it is needed to emphasize that 

Dea identified two factorizations, one after another, showing that she can execute the opposite 

operation of expanding brackets and she can use correctly brackets while she is passing from 

the subtraction of two monomials to the multiplication of a monomial and a polynomial. This 

is a passing from one way of presenting a mathematical object (Gray and Tall, 1991, 1992), 

such as the value (product) of „x
2
y-xy

2
‟, to another one, in which are involved brackets; and I 

have classified it as evidence of instrumental learning (Skemp, 1976) since it is a situation 

seen before by Dea. This is because, factorizations are introduced and pupils have worked 

with, even in previous grades.   

7.1.1.2 Exercise 4, Task d 

Dea’s answer from the test 

In the fourth exercise‟s Dea‟s answers I notice a mistake among her calculations.  

 

Dea has squared only the „2‟ without considering the square root of „y‟ as part of brackets that 

are squared. This is evidence of non-well tackling of algebraic expressions but I think that this 

would be a slip since she has correctly squared other monomials in this task. 
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Dea’s answer from the interview 

I asked Dea why she has not manipulated with „2 𝑦)‟ considering it as on object, as it is in 

real. And during our discussion she just corrects the written answer without giving 

explanation for what she has written. 

Dialogue 2 

Name Dialogue Notes  

D 

Dea 

D 

Dea 

D 

Dea 

Why have you calculated „(2 𝑦)
2
‟ as „4 𝑦 ‟. 

It should be „4y‟. 

Why? 

Because „( 𝑦)2
‟ is equal to „y‟. 

Why the square root of „y‟ should be squared? 

Because there are brackets. 

Exercise 4/ Task d) 

 

 
 

 

During this dialogue Dea justify squaring of the square root of „y‟ and she identifies 

(Sierpinska, 1994) the use of brackets and the consequences of brackets‟ presence.  

7.1.2 Dea’s “instrumental proof” 
In this section are involved two subsections concerning Dea‟s answers for task 5 of the first 

exercise, and the second exercise. 

7.1.2.1 Exercise 1, Task 5 

Dea’s answer from the test 

In the fifth task Dea has written her answer tackling the monomial as one mathematical object 

(Gray and Tall, 1991, 1992) and then she has selected one correct answer b). I asked her 

during the interview why the alternative e) is correct with purpose to go further in her 

mathematical understanding for factorization process.   

 

Dea’s answer from the interview 

 

Dialogue 3 

Name Dialogue Notes  

D 

Dea 

 

Why is the alternative e) correct? 

Here, eee, the „x
2
y‟ is factorized and „x

2
y‟ times 

„1‟ is „x
2
y‟, and „x

2
y‟ times „y‟ is „x

2
y

2
‟. 

Exercise 1/ Task 5 

 
 

In this dialogue, I can see how Dea is based on manipulations powered by distributive law 

without referring to her intuitive conceptual understanding of factorization. I think she has 

captured the principle which stands in the roots of this process but she did not explain me why 

it is allowed to disjoint the „y‟. This is the reason why I consider this answer as an 

instrumental proof (Weber, 2002). Also, this is evidence of consideration of two equivalent 

algebraic expressions‟ syntactic aspect (Berg, 2009; Demby, 1997; Drijvers et al., 2011). 
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7.1.2.2 Exercise 2 

Dea’s answer from the test 

In Dea‟s test paper has no note concerning the second exercise. In the following photo, notes 

with pencil are Dea‟s ones and red notes are mine. During the test Dea has used a blue pen. 

 

Dea’s answer from the interview 

During the interview, Dea said that she has not understood this type of exercise. So, I 

explained its demand and I solved by myself the first task, then I asked her to solve the second 

one. She put brackets around the „x+4‟ and she argued it like in the following dialogue.   

Dialogue 4 

Name Dialogue Notes  

D 

Dea 

 

Why have you put brackets around „x+4‟? 

Because „3‟ times „x‟ is „3x‟ and „3‟ times „4‟ is 

„12‟, then „3x‟ plus „x‟ is equal to „4x‟. Also „x 

squared‟ is in two sides and algebraic expressions 

in two sides are equal. 

Exercise 2/ Task b) 

 
 

 

Dea puts brackets correctly, involving „x+4‟ and she justified it correctly since two algebraic 

expressions are equivalent. But since her justification is based on calculations using 

distributive law I have considered as an instrumental proof (Weber, 2002). Dea has stopped in 

syntactic aspect (Berg, 2009; Demby, 1997; Drijvers et al., 2011) of transforming algebraic 

expressions, and since she has executed two operations it seems that she has tackled „x+4‟ as 

an object (Gray and Tall, 1991, 1992).  

7.1.3 Dea’s “misconception of considering algebraic expressions with 

and without brackets as equivalent” 
In this criterion are involved Dea‟s answers for task b) in fifth exercice. 

7.1.3.1 Exercise 5, Task b 

Dea’s answer from the test 

The demand of this task is: “Write down the algebraic expression of the cuboid using brackets 

and them without brackets”. Considering her written answer, I think, Dea has started by 

writing the algebraic expression for the volume using brackets, but not using them in the right 

place. And she has put brackets away multiplying ‟2x‟ and „2x‟, then she has multiplied „4x
2
‟ 

with „3x-5‟ in the same way as brackets are present. And finally she has factorized the „4x
2
‟ 

achieving the algebraic expression for this cuboid‟s volume. It is interesting how she has 

started from an algebraic expression that is not adequate for this demand and has achieved the 

right one. This trend is introduced even in writing algebraic expression without brackets for 

cuboid‟s volume, which means to expand brackets starting from the algebraic expression with 

brackets. This time Dea has written the algebraic expression even without including into 

brackets „2x·2x‟, and she has multiplied three mathematical objects as if the brackets are 

present. 
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Also, I cannot have evidence of considering syntactic aspect (Berg, 2009; Demby, 1997; 

Drijvers et al., 2011) of multiplying a monomial with a polynomial included into brackets, 

which means that the monomial multiplies even the first and the second term involved into 

brackets. But in cases when there are not brackets the monomial should multiply the term next 

to the multiplication sign.  

This answer is evidence of the misconception of considering algebraic expressions with and 

without brackets as equivalent. This misconception is introduced also by Booth (1984, pp. 53-

55), which concludes that a large proportion of pupils appear to regard brackets as irrelevant 

in algebraic expressions and they consider these expressions with and without brackets to be 

equivalent. 

Dea’s answer from the interview 

During the interview I wanted to have an explanation for the strange calculations Dea had 

done during the test. 

Dialogue 5 

Name Dialogue Notes  

D 

Dea 

D 

Dea 

D 

Dea 

Explain me, what have you written for this task? 

Oh, it is a mess. 

Write down the volume of the cuboid. 

(She writes, see fig.) 

Why are you using brackets? 

Because I should refer to the whole side „3x-5‟. 

 

Exercise 5/ Task b) 

 

 
 

I will emphasize her answer: “Because I should refer to the whole side „3x-5‟”, which 

expresses a correct justification based on considering both the side of the cuboid as an object 

and the algebraic expression that present that side. Since Dea is interesting just on the length 

of this side, which is analogue with the value of „3x-5‟ (Gray and Tall, 1991, 1992), she is 

using brackets. 
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7.1.4 Dea’s “superficial relational understanding” 

7.1.4.1 Exercise 1, Task 2 

Dea’s answer from the test 

Mostly of test‟s tasks have are not solved by Dea, also in the first exercise there are only three 

tasks for which she is answered correctly and completely. The second task is one of tasks that 

have only one answer given by Dea.  

 

Dea’s answer from the interview 

I leaded our conversation toward evaluating algebraic expressions of other alternatives. 

Dialogue 6 

Name Dialogue Notes  

D 

Dea 

 

D 

Dea 

D 

 

Dea 

In the second task, why d) and e) are correct? 

Ok, (she writes, as it is in the picture) „3x-4x-2y‟, I can 

factorize the „x‟ and I have „-x-2y‟. 

What about alternative e)? 

I can write the „-x‟ as a fraction. And eee. 

You can start from the algebraic expression in alternative e) 

and you can make calculations. 

Ok (and she writes). 

Exercise 1/ Task 2 

 

 
 

I can see that Dea explains and justifies the correctness of these two alternatives of the second 

task. It is needed to emphasize the transformation of algebraic expression in alternative d), 

step by step, showing the reason why „3x-4x‟ is equal to „-x‟. The factorization of „x‟ is 

evidence of Dea‟s learning with meaning. In addition, “I can write the „-x‟ as a fraction” is a 

statement which express Dea‟s intuitive conceptual understanding concerning mathematical 

objects. This is because she is aware concerning the semantic aspect of algebraic expressions 

and this understanding is helped by syntactic aspect (Berg, 2009; Demby, 1997; Drijvers et 

al., 2011), which enables presenting of „x‟ as „2· 
𝑥

2
‟. This is the reason why I selected these 

answers for the criterion related to Dea‟s relational understanding (Skemp, 1976). But it is a 

brackets‟ absence for „-1‟ and this absence have not effect Dea‟s answer. She has considered 

both the „1‟ and the minus sign as one object. So, one more time is showed Dea‟s 

misconception of considering algebraic expressions with and without brackets as equivalent.  

7.1.5 Dea’s “no-active use of brackets and relational understanding” 

7.1.5.1Exercise 2, Task d 

Dea’s answer from the test 

There is no answer in Dea‟s test concerning this task. 
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Dea’s answer from the interview 

During the interview I asked Dea to solve task d) of the second exercise, which means to put 

brackets in correct place in the left algebraic expression with condition that this latest should 

be equal to algebraic expression in the right place. And, firstly she put brackets around the 

„x+4‟.  

Dialogue 7 

Name Dialogue Notes  

Dea 

 

D 

 

 

 

Dea 

 

D 

 

 

Dea 

D 

Dea 

 

D 

 

Dea 

D 

 

Dea 

D 

Dea 

D 

 

Dea 

D 

Dea 

(She puts brackets around „x+4‟)  

It is necessary to multiply „x
2
‟ with „x‟. 

Ok and how can you achieve this? Be careful, while 

you are multiplying two brackets, you should multiply 

each element of the first bracket with all elements of 

the second bracket (she says it in one voice with me). 

Ah yes, so only „x squared‟ should be involved into 

brackets. 

But this is not going to change the expression, you 

should involve into brackets more than one element, 

two or three. 

Ok. (She put brackets around „x
2
+3‟.) 

Ok, make the operations in the left side. 

„x
2
‟ times „x‟ is „x

3
‟, „x

2
‟ times „4‟ is „4x

2
‟, but, eee, 

we have „5x
2
‟ in the other side. 

So, we need another one „x squared‟. Is there any other 

element that you should involve it into brackets? 

Even the „x‟. (She put the bracket as in the fig.) 

Make operations in the left side using multiplying with 

table. (And I explained its principle.) 

(She writes as in fig.) 

And which is the result? 

„x
3
+3x

2
+7x+12‟. 

Have you ever seen before this way of multiplying 

polynomials? 

No. 

Is it understandable? 

Yes, it is, and it is more practicable than the usual one. 

Exercise 2/ Task d) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I tried to help her recognizing the multiplication of two brackets, even though she knew it. 

But I was surprised by her answer to involve into brackets only „x
2
‟; it is a case of 

unnecessary use of brackets. It seems that Dea has not achieved a generalization (Sierpinska, 

1994) of the use of brackets. It seems to be difficult for Dea the active use of brackets, which 

is followed by relational understanding (Skemp, 1976) of brackets‟ use.  

By showing a method using the table, I introduce a structure in the process of multiplying two 

brackets. It seems that Dea recognizes this advantage since she agreed that using the table was 

more practicable and she will use it for multiplying two brackets during the post-test (see 

Dialogue 8).  

From Dea‟s performance during the pre-test, I can see that Dea was under the pressure of 

being tested and under the time restriction during the test since in her test I found a few 

mistakes and some blank spaces in tasks‟ solution. Also, at the begging of the interview she 
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stated that: “when I became aware that I should select more than one answer for all tasks, it 

was too late”. But, during the interview Dea justified correctly the correctness of other 

alternatives since she argued the equality of algebraic expressions in alternatives, by syntactic 

aspect.  

In Dea‟s test are noticed not only blank spaces for tasks‟ solutions but also mistakes, which I 

have classified as slips. This is because she has corrected them by herself during the 

interview. Among these slips I would like to emphasize mistakes related to the process of 

factorizing, even though this process is introduced in earlier grades. But during the interview 

Dea corrected herself showing that she can execute the opposite operation of expanding 

brackets and she can use brackets correctly while she is passing from the subtraction of two 

monomials to the multiplication of a monomial and a polynomial.In terms of Dia‟s 

performance during the pre-test she has a misconception about considering algebraic 

expressions with and without brackets as equivalent. This is followed by uncertainty in active 

use of brackets.  

Summarizing what is said above, I think that Dea has mathematical understanding for the use 

of brackets and tackling algebraic expressions involved into brackets, more instrumental than 

relational (Skemp, 1976). This is because she is not correct in using brackets in active way 

and she is based on syntactic aspect (Berg, 2009; Demby, 1997; Drijvers et al., 2011) of using 

brackets and transforming algebraic expression.  

7.2 Dea’s activity during my teaching lessons 
Dea has been present during my three teaching lessons and also has been active during our 

discussions. I tried to pay attention to Dea as one of four selected pupils with intention to look 

closer her work and to discuss with her.  

During the “Evaluating algebraic statement” activity, I distributed each pair the sheet of paper 

with ten algebraic statements that should be evaluated. I required the four selected pupils to 

write down in that sheet of paper their name and their solutions and justifications. From Dia‟s 

notes, I notice that she has considered only the syntactic aspect of algebraic statements, which 

means she has tackled algebraic statements as equations and tried to solve them. If the 

equation has one or two solutions she has evaluated it as sometimes true. If the equation has 

no solution then she has evaluated it, as never true. And if algebraic expressions in two sides 

of equal sign are equal she considered it as always true.  

So, in Dea‟s answers dominates instrumental understanding of tackling algebraic expressions. 

I could have only one short discussion with Dea during this activity since I noticed her 

consideration for syntactic aspect of algebraic expressions. I focused on the second algebraic 

statement (2x)
2
=4x

2
. Dea wrote,  4x

2
=4x

2
, and this algebraic identity is always true for each 

value of „x‟. Following, we had this conversation: 

Name Dialogue  Notes  

D 

Dea 

D 

 

 

Dea 

D 

Dea 

Can you design a diagram that has the area „(2x)
2
‟? 

Yes, it is a square with sides „2x‟. 

Ok. And I am thinking to divide this square into four small squares 

with side „x‟ by dividing the side of big square in two equal parts. 

Do you understand? 

Yes, I do.  

Can you divide the square into four small ones? 

Ok. 
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D 

Dea 

D 

 

Dea 

 

D 

Now, can you design a diagram with area „4x
2
‟? 

It is the same one, since there are four squares with area „x
2
‟. 

I am thinking about expressing „4x
2
‟ as „4x‟ times „x‟, which is the 

area of a rectangle. 

Yes, but if I will divide its side in four parts, there are four squares 

with side „x‟. 

Ehe, but the difference is this diagram is a square and another one is 

a rectangle. 

 
 

 

 

In this part I tried to introduce another way of considering algebraic expressions referring to 

their meaning and other ways of representing them.  

A conversation similar to that previous we had during the “Interpreting multiple 

representations” activity, in which she had organized all cards in different sets (each set 

contains cards with different representation but with the same meaning) and tried to make 

links between sets. So, Dea was saying that 9n
2
 and (3n)

2
 has the same area diagram, but I 

showed one more time two different types of area diagrams (one rectangle with sides „9n‟ and 

„n‟, and one square with side „3n‟) introducing different meanings of two algebraic 

expressions that are equivalent in accordance to syntactic aspect (Berg, 2009; Demby, 1997; 

Drijvers et al., 2011).  

What I noticed during my teaching lessons concerning the performance of Dea is that she had 

correct answers basing on syntactic aspect of tackling algebraic expressions, and she knew the 

reason of using brackets. This latest is showed by Dea‟s writing, „(n+6)∙2‟, in a blank card 

which correspond to the same set with card: “Add „6‟ to „n‟ then multiply by „2‟”. So, she 

used brackets to insulate the product of the addition that should be multiplied by „2‟, and this 

is also evidence of active use of brackets. 

7.3 Results from the post-test 
This section is organized in different subsections in accordance to some criteria which are 

linked those used in pre-test‟s analysis, in order to introduce Dea‟s performance during the 

post-test and to compare it to her performance during the pre-test. 

7.3.1 Dea’s “superficial relational understanding” 
In this section I have involved Dea‟s answers concerning three tasks, such as: task 1 and 2 of 

the first exercise, and task 2 of the second exercise. 

7.3.1.1 Exercise 1, Task 1 

This task demands simple calculations but the “difficulty” stands in involving polynomials 

into brackets.  

Dialogue 8 

Name  Dialogue Notes 

D 

 

Dea 

D 

 

Dea 

D 

 

In this exercise you are asked to make 

calculations. 

Would I multiply? 

There is a multiplication, another one 

multiplication and then an addition. 

Ok, „a+2‟ times, eee. 

Sorry, if you remember, you can use the table for 

multiplication. 

Exercise 1/ Task 1 
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Dea 

D 

Dea 

 

 

 

 

D 

Dea 

D 

 

 

 

Dea 

Firstly, I am writing the multiplication (see photo). 

Why are you using brackets? 

I am using brackets because this is an addition 

[sum] (she points „a+2‟) and this is another one 

(she points „a+7‟). And if I do not use brackets I 

am going to multiply only the „2‟ with the „a‟, and 

the others will be as they are. 

Are you considering „a+2‟ as a single element? 

Yes, both of them, even „a+2‟ and „a+7‟. 

Ok, go on with this table. (see photo) 

(she makes both two multiplications) 

Ok, now you should add these two polynomials. 

Does the use of brackets is necessary in this case? 

No, I do not think so, since there is an addition. It 

would be necessary if there is subtraction. 

 
 

 

 

 
 

In this first task of the post-test Dea has an algebraic expressions‟ tackle as objects and she 

used brackets while she was multiplying two polynomials. Since, this task is a new situation 

for her, she has an active use of brackets, and she justified this use of brackets considering 

polynomials as single elements, I can classify this dialogue as evidence of relational learning 

(Skemp, 1976) of use of brackets. Since she discriminates (Sierpinska, 1994) two cases of 

multiplying two polynomials, with and without brackets, it seems that Dea has achieved a 

generalization (Sierpinska, 1994) concerning the use of brackets related to multiplying two 

polynomials. It is necessary to emphasize Dea‟s discrimination of necessity of the use of 

brackets in addition and subtraction of two polynomials. I have called this criterion 

“superficial relational understanding” since I notice an embarrassment of terms for „a+2‟ and 

„a+7‟. She called them „addition‟ and I think that she focused more on the processes of 

addition than on their product. The adequate term would be „sum‟, which I put it in square 

brackets, that is more close to considering polynomials as procept (Gray and Tall, 1991, 

1992). It is important that Dea used the table to make the multiplication of two polynomials 

since for her it was a new structure in the process of multiplying two brackets. It seems that 

Dea captures new ideas and assimilates them as hers.  

7.3.1.2 Exercise 1, task 2 

Dialogue 9 

Name Dialogue Notes 

D 

 

Dea 

 

D 

Dea 

Here is the sum and one addend, how can you find 

the other addend? 

I will subtract this given addend from the sum. And 

I have to use brackets. 

Why? 

There is subtraction and if I do not use brackets only 

„a squared‟ would be subtracted. 

Exercise 1/ Task 2 
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From this dialogue I can understand that Dea has a relational understanding (Skemp, 1976) 

for using brackets while she is subtracting two polynomials. This is because she discriminates 

(Sierpinska, 1994) two cases of subtracting these two polynomials, with and without brackets, 

associating to this tackling of algebraic expression as object (Gray and Tall, 1991, 1992) and 

involving it into brackets.  I can notice that Dea has captured the idea of grouping elements 

concerning to the use of brackets. I classify this answer “if I do not use brackets only the „a
2
‟ 

would be subtracted” as evidence that Dea considers syntactic aspect of using brackets. If Dea 

would consider both semantic and syntactic aspect (Berg, 2009; Demby, 1997; Drijvers et al., 

2011), she would give me another explanation, such as: “the minus sign before the bracket 

means change for the signs of monomials involved into brackets, and then I can add terms of 

the first polynomial with opposite terms of the second polynomial”.  

7.3.1.3 Exercise 2, Task 2 

Dialogue 10 

Name Dialogue Notes  

Dea 

 

 

D 

 

Dea 

D 

Dea 

D 

Dea 

D 

Dea 

D 

Dea 

D 

Dea 

Also in the third step is saved algebraic identity, since 

eee, there are no brackets so only the „4‟ is multiplied by 

„2‟; and the right side is multiplied by „2‟. 

Ok, we know that for saving identity it is necessary to 

operate with both sides. Is the left side multiplied by „2‟? 

No, only the „4‟ is multiplied. 

Is this shift equivalent? 

No. 

What is going wrong? 

It is needed to use brackets. 

Where? 

(She puts into brackets „2x-4‟.) 

And what does it mean? 

It means that the whole „2x-4‟ is multiplied by „2‟. 

Ok, go on. 

The next operation is divided by „4‟, it is saved the 

identity since both sides are divided by „4‟. I can notice 

this from brackets that involve the „2x-8‟. 

Exercise 2/ Task 2 

 

 

I can notice from this dialogue Dea‟s discrimination (Sierpinska, 1994) of two cases of using 

brackets in multiplication of „2x-4‟ by „2‟ while brackets are used involving „2x-4‟, or not. 

Considering this discrimination, I can say that Dea has considered two types of mathematical 

objects, the „4‟ and the „2x-4‟. And I like to emphasize that she has considered even „2x-4‟ as 

an object and she is interested on its product (Gray and Tall, 1991, 1992). So, she does not 

know only where the brackets are necessary but also she understands what the use of brackets 

means. This is expressed in the last part of our dialogue since she captures the idea of 

involving „2x-8‟ into brackets, and this is that its product is divided by „4‟. I think, Dea is 

considering both syntactic aspect and semantic aspect (Berg, 2009; Demby, 1997; Drijvers et 

al., 2011) of using brackets achieving a relational understanding (Skemp, 1976) of brackets‟ 

use. Considering that this dialogue is related to the second task of the second exercise and 

justifications and argumentations become routine, which means that they might be just 

repetition, I have classified this dialogue in criterion „superficial relational understanding‟. 
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7.3.2 Dea’s “uncertainty in discriminating cases of using brackets” 
In this criterion are involved Dea‟s answers for, task 2 of the second exercise and task 5 of the 

third exercise. 

7.3.2.1 Exercise 2, Task 2 

While Dea is going correctly with the task solution I was vigilant all the time looking for 

spaces and possibilities for interventions with purpose to provoke her mathematical thinking 

concerning the use of brackets. In the following dialogue is introduced one of my 

interventions related to the use of square brackets. 

Dialogue 11 

Name Dialogue Notes  

Dea 

D 

 

 

Dea 

D 

Dea 

The „3x‟ is added to both sides, so it is saved the identity. 

While you are adding (as in this case), is it necessary the 

use of brackets? And what about square brackets, are they 

necessary? 

It is necessary. 

Ok, you can put them and do calculations. 

So, first I have to put the square brackets away, and, eee 

ah, it is the same. They are not essential.  

Exercise 2 / Task 2 

 

 
 

Sometimes it is enough just to pick out mathematical object emphasizing operations involved 

in the whole algebraic expression even though it is not involved into bracket. So, in this case 

the „(2x-8):4‟ is a whole object, of which product is obtained by multiplying the value of „x‟ 

with „2‟, subtracting „8‟, and finally divided by „4‟. Dea does not tackle this algebraic 

expression, which is not involved into square brackets, as an object.  

In addition, in this part is dominating her tackling of algebraic expressions considering the 

syntactic aspect and not the semantic one (Breg, 2009; Demby, 1997; Drijvers et al., 2011). I 

think that her answer “it is necessary” is evidence of her uncertainty and she was stuck from 

my provocation. But I will emphasize that she ordered correctly which brackets should be 

cancelled, square brackets. 

7.3.2.2 Exercise 3, Task 5 

Dialogue12 

Name Dialogue Notes  

D 

 

Dea 

D 

Dea 

 

D 

 

 

Dea 

D 

 

Dea 

Write down the algebraic expression for the volume 

of the cuboid. 

(She writes, see photo.)  

Why are you using brackets? 

To show that „2x+x‟ is for the first side, and „4x-6‟ 

for the third one. 

You mean that you should multiply these three 

algebraic expressions to find the volume of the 

cuboid. But why are you using brackets? 

To multiply even the „4x‟ and the „-6‟. 

So, your brackets are related to one operation, the 

multiplication. 

Yes. 

Exercise 3/ Task 5 
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D 

 

Dea 

But what about square brackets? Why are you using 

them? With which operation are related them? 

Ah, yes. They are not necessary. 

 
 

From this dialogue I can see Dea‟s uncertain in active use of brackets. She is right with using 

brackets for two sides of cuboid that are expressed by algebraic expressions, and in this line 

she is tackling sides of cuboid as mathematical objects by considering algebraic expressions, 

with which two sides are expressed, as products (Gray and Tall, 1991, 1992). But I think that 

Dea has not achieved a synthesis of the necessity of brackets‟ use since she did not 

discriminate (Sierpinska, 1994) the use of brackets concerning two cases that one of them was 

related to an operation and the other was not. I think that the use of brackets in algebraic 

expressions means not only to group elements but to group elements, which will undergo a 

change based on a law. I will relate Dea‟s uncertainty to non-considering even syntactic 

aspect (Berg, 2009; Demby, 1997; Drijvers et al., 2011) of brackets‟ use in algebraic 

expressions concerning the use of square brackets, since there is no operation that act on these 

square brackets.  

7.3.3 Dea’s “active use of brackets” 
In this criterion I have involved Dea‟s answers for task 2 of the third exercise. 

7.3.3.1 Exercise 3, Task 2 

Dea wrote algebraic expressions for the perimeter and area of the rectangle in the second task 

of third exercise, and we had this conversation: 

Dialogue 13 

Name Dialogue Notes  

D 

Dea 

 

 

 

D 

Dea 

Why are you using brackets and square ones? 

I have involved the side „2+a‟ into brackets, while 

the „5+(2+a)‟ is involved into square brackets. I 

needed to use twice brackets and, if I use once 

brackets then I should use square brackets. 

Ok. Which operation is related to square brackets? 

Multiplication by „2‟. 

Exercise 3/ Task 2 

 

 

 

This is evidence of active use of brackets by Dea since she has used brackets for two different 

algebraic expressions and has discriminated cases of using brackets and square brackets. I 

want to emphasize that Dea has used brackets in relation to one algebraic expression and to 

one operation, and the same with square brackets. Based on syntactic aspect (Berg, 2009; 

Demby, 1997; Drijvers et al., 2011) of using brackets she has passed correctly from the first to 

the second algebraic expression of the perimeter.  

7.3.4 Dea’s “generalization concerning use of bracket related to 

mathematical objects (algebraic and arithmetic expressions)”  
In this criterion are involved Dea‟s answers for task 3 of the third exercise. 
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7.3.4.1 Exercise 3, Task 3 

In the third task of the last exercise during task-based-interview, Dea wrote the algebraic 

expression for area of the diagram. Referring to the figure (diagram) this area is the difference 

between the area of the big rectangle with sides, „y+12‟ and „8+4‟, and the area of the small 

one with sides, „x‟ and „4‟. But Dea has chosen to find the area of the diagram by adding area 

of  rectangle with sides, half of „y+12‟ and „8+4‟, and the area of another one with sides, half 

of „y+12‟ and „8‟. I think she has considered these two rectangles as if they have one side 

equal. Regardless of her interpretation, I am interesting on the way she has tackled arithmetic 

expression, such as „8+4‟. After the following dialogue we generated the correct algebraic 

expression for the diagram‟s area. 

Dialogue 14 

Name Dialogue Notes  

D 

Dea 

D 

 

Dea 

 

 

D 

Dea 

 

Why did you use brackets? 

To show sides of rectangles. 

Is it necessary the use of brackets for the half of 

„12+y‟? 

No, it is not because even without brackets I should 

add the value of „y‟ with „12‟ and then to divide it 

by „2‟.  

Is it necessary the use of brackets for „4+8‟? 

Yes, otherwise only four will multiply the other 

side. 

Exercise 3/ Task 3 

 

 

 

Dea has used brackets for algebraic expressions which even without brackets they have only 

one product thanks to the way of representation. For example, „
12+𝑦

2
‟ does not need brackets 

to be involved into, but if I will present this algebraic expression using „:‟ instead of „/‟ I have 

to write, „(12+y):2‟. So, I will consider this use of brackets as case “to show sides of 

rectangles”. It is necessary to emphasize that Dea has generalized (Sierpinska, 1994) the use 

of brackets for algebraic and arithmetic expressions with purpose to tackle them as a whole 

object (Gray and Tall, 1991, 1992). 

Considering the four criteria involved in the analysis of Dea‟s performance during the post-

test, I could see a correct tackle of algebraic expressions as mathematical objects, since she 

involves polynomials into brackets while she multiplies or subtract them. On the other side, 

she explains which the result in absence of brackets is, discriminating cases of using and non-

using brackets. She justifies tackling of algebraic expressions as objects by using brackets for 

them, but she uses the term „addition‟ to refer to the process and to the object (sum). This 

makes me think about semantic aspect of using brackets which is also related to her 

uncertainty in discriminating cases of using brackets and furthermore she uses brackets even 

where they are not necessary. In this point I will mention Dea‟s misconception in the pre-

test‟s answers, related to considering algebraic expressions with and without brackets as 

equivalent, as the opposite of using brackets even if they are not necessary. It is needed to 

emphasize that she has an active use of brackets concerning tackling of algebraic expressions 

and arithmetic expressions as objects, generalizing the use of brackets, of which base stands 

relational understanding of the use of brackets.  

Comparing to the pre-test‟s performance, I can see improvements concerning Dea‟s use of 

brackets and tackling of algebraic expressions. In post-test‟s answers she does not have no-
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active use of brackets, contrary she uses brackets even if they are not necessary or if they are 

not related to algebraic operations. But also this is not a good way of using brackets because it 

shows uncertainty and non-capturing the principle of using brackets. In her post-test‟s 

answers there is no evidence of her misconception in considering algebraic expressions with 

and without brackets as equal; and instrumental proofs. This latest is because she tried to 

explain and to justify her tasks‟ solutions basing on her intuitive conceptual understanding. 

She had a very good performance during the post-test, on the other side our discussions 

during my teaching lessons were short but meaningfully and with attention to lead Dea toward 

semantic aspect (Berg, 2009; Demby, 1997; Drijvers et al., 2011) of algebraic expressions.  

7.4 Summary of Dea’s portrayal 
Dea did not have a good performance during the test. There were unsolved tasks and not 

accurately solved tasks. In addition, I had my doubts even for her correct answers. But, during 

the interview I could get even correct answers from Dea but also argumentations and 

justifications concerning the use of brackets and tackling of algebraic expressions. This is the 

reason why I have considered her mistakes as slips. In Dea‟s performance during the pre-test I 

have noticed that she has a misconception about considering algebraic expressions with and 

without brackets as equivalent. This is followed by uncertainty in active use of brackets. I 

think that Dea has mathematical understanding for use of brackets and tackling algebraic 

expressions involved into brackets, more instrumental than relational (Skemp, 1976). This is 

because she is not correct in using brackets in active way and she is based on syntactic aspect 

(Berg, 2009; Demby, 1997; Drijvers et al., 2011) of using brackets and transforming algebraic 

expression.  

Also during my teaching lessons, I could notice that Dea had considered only the syntactic 

aspect of algebraic expressions. This leads me to conclude that in Dea‟s answers dominates 

instrumental understanding (Skemp, 1976) of tackling algebraic expressions. I tried to lead 

Dea to considering also semantic aspect of algebraic expressions (Berg, 2009; Demby, 1997; 

Drijvers et al., 2011). All these are related to my first activity “Evaluating algebraic 

statements”, while during the second activity “Interpreting multiple representations” I could 

emphasize her active use of brackets and also her consideration for syntactic aspect of 

tackling algebraic expressions (Berg, 2009; Demby, 1997; Drijvers et al., 2011). 

Considering Dea‟s performance during the post-test, she achieved to discriminate (Sierpinska, 

1994) cases of using and non-using brackets, which is linked to tackling of algebraic 

expressions as objects (Gray & Tall, 1991, 1992). It is needed to emphasize that she has an 

active use of brackets concerning tackling of algebraic expressions and arithmetic expressions 

as objects (Gray & Tall, 1991, 1992), generalizing the use of brackets (Sierpinska, 1994), in 

whose base stands relational understanding of the use of brackets. But the misconception that 

I noticed in Dea‟s performance is that she used brackets even if they were not necessary.  

Comparing the pre-test‟s analysis with the post-test one, I can conclude that in the latest there 

was no evidence of considering algebraic expressions with and without brackets as 

equivalent (Booth, 1984) (this was the misconception from her performance during the pre-

test); and no evidence of instrumental proofs (Weber, 2002), since she tried to explain and to 

justify her answers basing on her intuitive conceptual understanding. Furthermore she 

achieved to generalize the use of brackets (Sierpinska, 1994) concerning tackling of algebraic 

expressions as procept (Gray & Tall, 1991, 1992), and I think she has considered even the 

semantic aspect of use of brackets and of algebraic expressions (Berg, 2009; Demby, 1997; 

Drijvers et al., 2011). This was missing in her performance during my teaching lessons while 

we were discussing. However, I am not considering our conversation and my work during 
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teaching lessons that I conducted, as the cause of improvement of Dea‟s performance. This is 

because I have not concrete evidences (in terms) of argumentations and justifications used by 

Dea referring to what she understood during my teaching lessons. I mean, during task-based-

interview Dea did not refer to examples or argumentations done during activities of my 

teaching lessons.   

Following, I introduce briefly my findings, from tests and interviews, and discuss about them 

considering my theoretical approach and results from previous research studies, in order to 

have answers for my research questions. Also, in the next chapter I indicate suggestions for 

further research and some improvement concerning my education. 
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8 Discussion and conclusions 
In three previous chapters I presented the results of analysis of all tests and the whole 

performance of two pupils, concerning participants‟ mistakes and their understanding related 

to the use of brackets. In addition, I achieved my data analysis basing on my theoretical 

approach proposed in chapter 3 and comparing to previous evidences presented in chapter 2.  

In this chapter, I am having a flashback to recall my research questions, and results from 

findings with purpose to discuss these results and to achieve conclusions for my dissertation. 

In addition I will have some reflections in order to indicate pedagogical implications and 

direction for further research.  

8.1 The main aspects of my study 
The topic of my research study is the use of brackets and one of my aims is to point out 

mistakes and misconceptions concerning the understanding of brackets‟ use in algebraic 

expressions. My second aim is to follow four pupils during pre-test and post-test and to 

compare the answers. Therefore I formulated the following two research questions: 

1. What kind of mistakes pupils in grade 10, involved in my study, do? 

Form data analysis, it seems that some pupils show evidence of improvement in their 

performance during the post-test comparing to the pre-test. Thereby I want to address the 

following research question, which is composed by two parts:  

2. a) What kind of improvement is showed in performance during the post-test? 

2. b) What kind of causes can be identified concerning the improvement? 

To answer these research questions I have implemented methods such as, test, semi-structured 

interviews, task-based-interview and my teaching lessons. I have involved thirty pupils in test 

and in my teaching lessons, and only four pupils are interviewed twice. Because the time 

constrains I have described the portrayal of only two pupils concerning their performances 

during my data collection. I decided for Alba and Dea, because their tests contained mistakes 

concerning the use of brackets and then during their one after another interviews I noticed 

improvements in their performances. In addition, by presenting an analysis of two pupils and 

not of the four pupils, I had the opportunity to analyze in much more detail their answers.  

Through the first research question, I achieved to have an overview of the types of mistakes 

that pupils in tenth grade in upper secondary level involved in my study do. While I was 

looking for mistakes in thirty written tests I also was referring to types of mistakes evidenced 

by other authors and by me during my experience as a teacher, and these are introduced in 

chapter 2. In addition I concluded some results concerning my theoretical approach, and I 

elaborated it on the basis of several authors‟ theoretical approaches, such as Skemp (1976), 

Sierpinska (1994), Gray and Tall (1991, 1992), Swan (2005, 2006), Berg (2009), Demby 

(1997), Drijvers et al. (2011), Weber (2002), which is introduced in the third chapter. It is 

necessary to emphasize that these results are open because I took in consideration only written 

answers of thirty pupils during the test.  

Again by virtue in my theoretical framework and especially in some key words such as, 

relational and instrumental understanding and learning (Skemp, 1976), instrumental and 

relational proofs (Weber, 2002), procept (Gray and Tall, 1991, 1992), identification, 

discrimination, generalization and synthesis (Sierpinska, 1994), syntactic and semantic aspect 

(Berg, 2009; Demby, 1997; Drijverset al., 2011), I have compiled portrayals of two pupils. 
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This is because my theoretical approach enables me to have access for analyzing the 

development of participants‟ mathematical thinking concerning the use of brackets during my 

data collection, which has three stages: pre-test, my teaching lessons, and post-test. And I can 

address this through the second research question‟s answer, which consists in analyzing 

improvement‟s evidences concerning the two participants‟ use and understanding of brackets. 

Also, in the second research question‟s answer is involved the cause of these improvements, 

and I chose to be careful since it seems that I cannot find evidence of links between my own 

teaching and Alba‟s and Dea‟s performances in post-test. This is because my teaching 

activities were new activities during pupils‟ mathematics lessons and as something new might 

cause changes. Also my teaching lessons lasted three school hours, which means it was a 

short period of time during which pupils could become familiar with these methods and could 

capture their meaning and intentions, and then to be able to show what they have understood, 

have changed, and have learned.  

8.2 The main findings and discussion about them 
As I have presented also in previous section and previous chapters, I have generated two 

research questions and I tried to bring them in my mind all the time while I was analyzing in 

order to achieve answers for them. I will introduce in this section the main findings from my 

data analysis in order to discuss them with other authors‟ results introduced in chapter 2, and 

my theoretical approach introduced in chapter 3, with purpose to achieve answers for my 

research questions. 

8.2.1 Main findings from tests  
Considering only test‟s answers, I will list the types of mistakes according to the frequency 

that they are displayed. This implies that type of mistake Nr. 1 is observed with highest 

density while type of mistake Nr. 9 with lowest density.  

Nr Type of mistake Example Table 

1 Non-use of brackets  

for mathematical objects 

Algebraic 

expression 

-3x[(2x)
2
-(1)

2
] = -3x•4x

2
-1 5.4 

Sides of 

diagrams 

A = 4x•6-2x 5.5 

2 Use of brackets were it is not necessary (x+x
2
+3·x)+4 = x

2
+4x+4 5.2 

3 Wrong-apply of distributive law (x+4)(x-5) = x
2
-20 5.1 

4 Use the distributive law‟s principle in 

situations where it is not involved 
( 2𝑥 − 2 𝑦)

2 
= ( 2𝑥)2 − (2 𝑦)

2
 5.4 

5 Considering as equivalent the algebraic 

expressions with and without brackets 

V=(3x-5)(2x)(x+x)   {with brackets} 

V=3x-5•2x•2x      {without brackets} 

5.5 

6 Brackets indicate multiplication (2x-y)+y = 2xy-y
2
 5.1 

7 Incorrect factorization x
2
y-xy

2 
= x

2
(y-y

2
) 5.1 

8 Non-use of brackets and in the same 

time operating as if they are present 

V=(2x•2x)•3x-5=4x
2
•3x-5=12x

3
-20x

2
 5.5 

9 Order of operations 5y-(3x-6y):3=5y-3x+6y:3=11y-3x:3 5.4 
Table 8.1. Types of mistakes ordered in density ordered 

Based on five tables introduced in section 5.1, I have compiled the Table 8.1 for types of 

mistakes that pupils did during the test. In the very last column is introduced the table from 

section 5.1 in which the particular incorrect answer is announced during tests‟ analysis. 
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Almost all these types of mistakes I have countered even in other authors‟ studies, and they 

are introduced in chapter 2. The most wide spread mistake in pupils‟ test is no-active use of 

brackets involving algebraic expressions, even if they present sides of diagrams. I think this is 

related to not tackling algebraic expressions as procept (Gray and Tall, 1991, 1992). Related 

to this type of mistake I can mention studies of authors, such as: Kaur (1990), who has 

concluded that several pupils are ignorant of the use of brackets or they ignore the use of 

brackets since they consider them unnecessary; Booth (1984), who states that there are pupils 

that regard brackets as irrelevant in algebraic expressions; and Kieran (1979), in whose study 

there are pupils that has no-use of brackets for algebraic expressions.  

Except of pupils that do not use brackets in order to involve algebraic expressions with 

purpose to tackle them as objects, there are pupils that use brackets even where they are not 

necessary, involving algebraic expressions (monomials, polynomials) followed by addition or 

no operation. I think that using brackets if they are not necessary means to have not 

consideration for syntactic aspect (Berg, 2009; Demby, 1997; Drijvers et al., 2011) since 

brackets are used to group several elements that are related to the same operation. And this 

type of mistakes is so wide spread in tests of my participants and I have not found it in 

previous research studies. I have mentioned in “Review of Literature” the study of Ayres 

(2000) since it was a study based on expanding brackets using the distributive law.  

Also, I have evidences from my participants for this type of mistake, and they do not achieve 

a correct multiplication of two brackets, or one monomial with a bracket. And mostly of 

mistakes have happened during the second multiplication than the first one. I will relate this 

type of mistakes to non-considering at least syntactic aspect (Berg, 2009; Demby, 1997; 

Drijvers et al., 2011) of use of brackets.  

Since pupils do not consider semantic aspect (Berg, 2009; Demby, 1997; Drijvers et al., 2011) 

of an algebraic expression and try to use the distributive law in each situation, they achieve 

incorrect results. So, squaring a polynomial means multiplying it by itself, and not squaring 

the first monomial and then the second one. This type of mistake is not mentioned before in 

chapter 2 (Review of Literature). 

Considering as equivalent the algebraic expressions with and without brackets is another type 

of mistakes encountered in my participants‟ tests, but also this is a conclusion in Booth‟s 

study (Booth, 1984). I think that this misunderstanding is related to non-considering neither 

syntactic nor semantic aspect (Berg, 2009; Demby, 1997; Drijvers et al., 2011) of the use of 

brackets and algebraic expressions; non-tackling of algebraic expressions as procept (Gray 

and Tall, 1991, 1992); no discrimination for cases of using and non-using of brackets; and 

finally I cannot classify both as instrumental or relational proofs (Weber, 2002). 

Kaur (1990) identified in her study one misconception for several pupils that brackets indicate 

multiplication, and the same one is showed in my several participants‟ answers.  

Incorrect factorization, as the inverse operation of expanding brackets, is another type of 

mistake for which I have evidences from test‟s answers. I will relate non-finding of the 

correct common factor with non-considering semantic aspect of algebraic expressions and 

with non-proving its correctness by considering syntactic aspect of the use of brackets (Berg, 

2009; Demby, 1997; Drijvers et al., 2011).  

I can link the last two types of mistakes encountered in test‟s answers, such as several pupils 

do not use brackets and in the same time they operate as if brackets are present, and the order 

of operations that means brackets first, with Kieran‟s conclusions (Kieran, 1979). In both 
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cases, if pupils would consider at least syntactic aspect of using brackets (Berg, 2009; Demby, 

1997, Drijvers et al., 2011) will not achieve incorrect results. 

8.2.2 Main findings from pupils’ portrayals  
Since it was difficult to achieve conclusions based only on pupils‟ written tests, I selected four 

pupils to be interviewed and to follow their performances during my all data collection. It is 

explained also in previous chapters, even the reason and the criteria of choosing two pupils to 

be introduced in my dissertation.    

Since Alba and Dea are selected to be interviewed and their performances to be analyzed, I 

have seen a lot of mistakes and uncertainty in their test concerning the use of brackets and 

tackling of algebraic expressions. In addition, I could not classify them as slips or bugs, and I 

could not decide about which aspect is taken in consideration, syntactic or semantic aspect. 

Both of two girls have had a better performance during the interview about their test while I 

was present and asking them in order to achieve an overview concerning their algebraic 

thinking related to the use of brackets. It is necessary to mention that this interview is 

conducted one day after the test and there was no mathematics lesson between. And, their 

improvement has started to bear from this step. This is because they had self-correction 

followed by justifications and argumentations, and this is the reason why mostly of their 

mistakes I have classified as slips.  

On the other side, considering even their answers during the first interview, I was convinced 

that Alba and Dea have misconceptions concerning the use of brackets and tackling of 

algebraic expressions. I can mention misconceptions, such as: brackets indicate 

multiplication, considering algebraic expressions with and without brackets as equivalent, no-

active and uncertainty use of brackets. These are mentioned even from other authors but also I 

will relate them to my theoretical framework. Brackets indicate multiplication, is the 

misconception introduced by Kaur (1990), also the third misconception is emphasized in 

Kaur‟s (1990) study. In addition, Booth (1984) concludes that, several pupils consider 

algebraic expressions with or without brackets as equivalent. The existence of these 

misconceptions has emerged instrumental understanding (Skemp, 1976) that pupils have 

concerning their mathematical thinking for the use of brackets (Berg, 2009; Demby, 1997; 

Drijvers et al., 2011), and their no-consideration for at least syntactic aspect of the use of 

brackets and algebraic expressions because they do not consider algebraic expressions after 

some transformations based on several rules (syntax) of algebraic expressions with brackets 

and to compare it to algebraic expressions without brackets.  

While during my teaching lessons I have noticed no consideration about semantic aspect of 

algebraic expressions (Berg, 2009; Demby, 1997; Drijvers et al., 2011). This is the reason 

why I think that they had instrumental understanding or mostly a superficial relational 

understanding (Skemp, 1976) concerning tackling of algebraic expressions as procept (Gray 

and Tall, 1991, 1992). My intention, during my teaching lessons, was to lead them towards 

understanding also meaning of algebraic expressions‟ representations. I had the opportunity to 

achieve this through my teaching activities, since these latest are based on confronting 

misconceptions and discussing about them with purpose to learn from them.  

In both pupils‟ performance during the post-test I could see improvements concerning the use 

of brackets and tackling algebraic expressions as mathematical objects. In this step I will 

focus shortly in each pupil‟s performance during the task-based-interview. 

Alba‟s improvements concerning her performance during the post-test and comparing with it 

during the pre-test, has evidences in these points: having no misconception that brackets 
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indicate multiplication; the criterion "no-active use of brackets" is substituted by criterion 

“active use of brackets”. 

Dea‟s improvements consist in: having no misconception that algebraic expressions with and 

without brackets are equivalent; active use of brackets for algebraic and arithmetic 

expressions; discriminating cases of using and non-using brackets for algebraic expressions, 

which is related to considering semantic aspect of using brackets and algebraic expressions; 

no evidences of instrumental proofs.  

8.2.3 Looking back to the first research question  
Referring to my first research question: what kind of mistakes pupils in grade 10, involved in 

my study, do? 

As I have mentioned and explained before, my first research question addressed the types of 

mistakes concerning the use of brackets, the way of considering brackets, and tackling of 

algebraic expressions. Considering previous research studies and my experience as a teacher, 

I had my expectations concerning errors that pupils involved in my study could do while they 

operate with brackets in algebraic expressions.  

In addition, I generated this research question with purpose to design an overview of pupils‟ 

mistakes concerning the use of brackets, the process of bracketing and factorizing, and 

tackling of algebraic expressions as mathematical objects. To have the answer for my first 

research question I am based on analyzing of test‟s answers of thirty pupils.  

Since I was confronting only with written answers, which may be wrong or correct, and 

without justifications and explanations, it was a little difficult to determine pupils‟ 

misconceptions and misunderstandings concerning the use of brackets. This is because “a 

misconception is not wrong thinking but is rather a concept in embryo or a local 

generalization” (Sierpinska, 1994, p. 82), which, I think, could not be identified by only the 

correctness of several tasks‟ answers. This is the reason why I am referring to mistakes pupils 

did during their test. 

Considering my findings from analysis of tests, presented even in previous section 5.2, my 

participants‟ mistakes, which are emphasized even by previous researchers, are such as: non-

use of brackets for mathematical objects, such as algebraic and arithmetic expressions; 

wrongly-apply of distributive law; considering as equivalent the algebraic expressions with 

and without brackets; brackets indicate multiplication; incorrect factorization; non-use of 

brackets and in the same time they operate as brackets are present; and confusion about the 

order of operations that brackets are the first.  

Except of these kind of mistakes concerning the use of brackets, I have noticed two other 

types of mistakes, such as: use the distributive law‟s principle in situations that it is not 

involved; and the use of brackets if they are not necessary, even if they are not related to any 

operation.  

So, the overview of test‟s pupils‟ answers contains several types of mistakes concerning 

tackling of brackets, which involves the use of brackets, and operating with them; and 

tackling of algebraic expressions, which involves considering them as mathematical objects, 

or referring to them as they are composed by several operations (processes).  
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8.2.4 Looking back to the second research question  
Referring to my second research question that is composed by two parts: what kind of 

improvement is showed in performance during the post-test, and what kind of causes can be 

identified concerning the improvement? 

I formulated this research question as it is after I analyzed my data and I noticed 

improvements from one to the next pupils‟ performance during my data collection. In order to 

have answer for my second research question, I leaded analysis of pupils‟ performances 

during the pre-test and the post-test toward the process of understanding the use of brackets in 

algebraic expressions. I noticed mistakes in pupils‟ test that I decided to interview four of 

them with purpose to investigate deeper their use of brackets and tackling of algebraic 

expressions. Since I noticed improvements in two pupils‟ performance during the post-test 

comparing to the pre-test, I introduced only the portrayal of these two participants in order to 

go in depth in analyzing their answers. 

Considering my data analysis and portrayals of two participants, which are organized based 

on several criteria, I have noticed improvements in their mathematical thinking concerning the 

use of brackets and in tackling algebraic expressions as mathematical objects. Evidences of 

improvement are such as: having no misconception that brackets indicate multiplication; the 

criterion “no-active use of brackets” is substituted by criterion “active use of brackets”; 

having no misconception that algebraic expressions with and without brackets are equivalent; 

active use of brackets for algebraic and arithmetic expressions; discriminating cases of using 

and non-using brackets for algebraic expressions, which is related to considering semantic 

aspect of using brackets and algebraic expressions; no evidences of instrumental proofs.  

These improvements I have classified as improvements in the level of understanding and 

mathematical thinking concerning the use of brackets. This is because there are changes in: 

the way of perception and tackling the algebraic expressions, as objects or as processes (Gray 

and Tall, 1991, 1992); considering semantic aspect instead of syntactic aspect (Berg, 2009; 

Demby, 1997; Drijvers et al., 2011) of the use of brackets; understanding the use of brackets 

in relational way (Skemp, 1976) instead of instrumental understanding; and in confronting 

with cases of the use brackets discriminating them in order to generalize (Sierpinska, 1994) 

each case and finally to synthesize the use of brackets in algebraic expressions. 

As I have emphasized several times during writing of my dissertation that the test is 

conducted in the beginning of the chapter “Expressions with variables” (Babamusta and Lulja, 

2009) and the interview about the test is conducted in the next day. In addition the post-test is 

conducted after several mathematics lessons concerning operating with algebraic expressions, 

which contain brackets. This means that, regardless the way of organizing mathematics 

lessons and teaching, pupils have operated with brackets in algebraic expressions and they are 

used to work with brackets. Three activities involved in my teaching lessons were introduced 

for the first time to my participants during my data collection. As new things cause changes, 

these three activities might cause changes in pupils‟ performance during the post-test.  

On the other side, according to Swan (2005, p. 4), the main aims of conducting activities of 

„collaborative orientation‟ of doing mathematics are: challenging learners to become more 

active participants, to engage them in discussion, to share their thoughts, ideas, 

misconceptions and results with purpose to become more confident and effective learners. 

 However, as I mentioned before, I chose to be careful and, based on data analysis, I cannot 

see clear evidence explaining the cause of improvement of two participants‟ mathematical 

thinking concerning the use of brackets in algebraic expressions. 
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8.3 Results’ credibility, suggestions for improvements, and 

limitations  
During designing the frame of my research and the tasks involved in my research I was faced 

with the difficulty of non-existing another study similar to mine or which tackles the use of 

brackets as I do. At least, I have not read any of these studies even if they exist. Another 

challenge of my study was that I elaborated by myself my theoretical approach concerning 

mathematical thinking for the use of brackets, based on several authors‟ theoretical basis. In 

addition, I designed tasks and I analyzed pupils‟ answers basing on my theoretical approach. I 

do not think that everyone will agree with me in my choice of methods and tasks, but since I 

have indicated in details how and why I have chosen and designed them (in chapter 4) I show 

to the readers my reasons and then they can assess the relevance. In addition, it is important to 

have relevance between my research questions and results from my research. I tried to keep in 

mind my research questions all the time during designing tasks, and analyzing data.  

As I have explained several times that the purpose of my study is the highlighting of the ways 

that pupils have concerning the use and understanding of brackets in algebraic expressions. I 

expected to see two different ways of tackling brackets by pupils, which during the pre-test 

had done mistakes in their answers. So, I decided to implement, after the test, a semi-

structured interview about the test with pupils that did not tackled correctly brackets and 

algebraic expressions included into brackets, in order to point out their difficulties related to 

brackets‟ concept. I tried to cause some changes in my participants‟ mathematics lessons, 

introducing some new activities from the collaborative orientation of doing mathematics 

(Swan, 2005, 2006), with purpose to make more visible and clearer the use of brackets in 

algebraic expressions and other branches of mathematics. In the end, I decided to conduct 

task-based-interview to look for the changes that I thought would be caused by my three 

teaching lessons. Since task-based-interview is a semi-structured interview I thought that it 

would give me the opportunity to seep toward participants‟ mathematical thinking concerning 

the understanding and the use of brackets. According to my interpretation I think that this 

combination of methods has been valuable to collect the data I needed to achieve the purpose 

of this inquiry and to have evidences to answer my research questions. But on the other side, I 

have some suggestions for improvements concerning the content and implementations of 

methods I used during my data collection. 

Pre-Test 

Pupils were informed about the test planning, which will be conducted on Monday 

(24/10/2011), but not about its content. This was because I attempted to check pupils‟ 

knowledge about the use of brackets, emphasizing what they kept remembered from previous 

grades. Considering this criterion and the fact that in test are involved several new types of 

exercises, I would develop the test for 60 minutes and not 45 minutes. Several pupils have 

expressed their discontent concerning the time that was in disposal for the test, and I have 

noticed blank spaces in several pupils‟ tests. However there are pupils that are answered 

correctly for all tasks or mostly of them.  

My teaching lessons 

Since my teaching lessons were new activities for participants and I planned only three 

lessons to involve them, I think that the number of lessons was not enough for pupils to 

capture the idea and the aim of activities. In terms of organization of my teaching activities, I 

think, it would be more efficient for my data if I would have more time and space to discuss 

with my selected pupils (four pupils) and maybe to have an assistant, who could lead 

activities for the rest of the class. 
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Post-test 

The task-based-interview contains three types of exercises, the first two are new ones for 

participants and different from the pre-test. But these exercises contain two tasks each, and I 

was thinking that if they will have one task, then each pupil would not repeat the same 

explanations and justifications, which lead them to rote learning. And instead of them I could 

involve more exercises similar to exercises in the pre-test with purpose to make more visible 

and concrete the comparison of two performances during the pre-test and the post-test. 

According to Goldin (2000), in a task-based interview as a semi-structured interview, the 

interview is preplanned, but it also gives space to the interviewer to act in the moment. So, 

during the interview about the test and the task-based-interview I should be vigilant 

concerning pupil‟s answers in order to act with the next question. And while I reflect over 

pupils‟ responses and my questions I think that I should insist more on getting the answer that 

I was looking for. For example, I asked “why have you written this…?”, and I got this 

response “oh, it is not correct, it should be like this…”.  

Since I am discussing about interviews in my study, it is necessary to emphasize that I 

transcribed almost all interviews and I translated into English several relevant dialogues. And 

I had “benefits in terms of bringing me closer to the data” (Bryman, 2008, p. 456). 

In addition I would like to mention limitations that I think they have affected in my study: 

 My first time as a researcher  

a. Finding relevant research literature 

b. Transcription and translation in English 

c. Time restriction for analysis 

 The effect of the test to participants 

 The effect of camera to participants 

 The effect of being interviewee 

 The environment, out from the class, during interviewing 

 The age of participants  

In accordance to Hart (1998) in Bell (2010, p. 103), review of literature is important in order 

to acquire “an understanding of your topic, of what has already been done on it, how it has 

been researched, and what the key issues are”. So, I wanted to have a picture from previous 

research studies concerning the topic and the aim of my study. But this was difficult because, 

as I have expressed in chapter 2, there are not so many studies concerning the use of brackets 

in algebraic expressions and the tackling of algebraic expressions involved into brackets as 

objects. I spent a lot of time reading previous literature related to algebra and algebraic errors 

with purpose to capture relevant ideas for my aim. In addition, I also spent a lot of time 

transcribing parts from interviews that I thought are relevant for data analysis with purpose to 

achieve answers for my research questions. On the other side, the transcription is very time-

consuming but also translating in English has its difficulties because it was needed to make 

adaption.  

So, the time spent for finding review of literature, collecting data in Albania, and transcribing 

interviews effect on the analyzing time. On the other hand, according to Bryman (2008, p. 

451), “qualitative researchers are frequently interested not just in what people say but also in 

the way that they say it” (p. 451), was a very big work to analyze in details eight interviews of 

four pupils. In addition, I decided to compile the portrayal of only two pupils and the criteria 

for choosing these two pupils are explained earlier (section 5.2), and this choice allow me to 

present in depth analysis of Alba and Dea.  
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I think these are some difficulties that I caused myself during my study by being for the first 

time in position of a researcher. By the side of participants in my study, I could list some 

causes that might have influenced in their performances. So, some of the limitations of the 

study can be associated with the test instrument and the way the students performed the tests. 

Since mostly of exercises involved in the test had something new, such as the demand (multy 

correct answers), or it is completely a new type of exercise, pupils might be more stressfully 

and do not concentrate on tasks. While, during the interviews I have used video recorder and 

this might affect in pupils‟ answers making them to feel uncomfortable or in front of a 

responsibility. I can consider the same even the effect of being interviewed. Also I would like 

to emphasize the possibility that taking pupils out of the usual context (classroom) in order to 

interview them could affect pupils‟ performances.  

In addition, it is necessary to emphasize the behavior‟s properties of teenagers and especially 

their non-serious way of considering lessons and teaching activities. Focusing on my 

participants‟ willingness and referring to how much I could understand it since I was alone in 

front of thirty pupils, I state that mostly of them were engaged during my data collection. 

However, I have my doubts concerning their involvement with seriousness in test and 

activities during my teaching lessons. This is because during the test, the work was individual 

and I could not interfere; and during my teaching lessons I was too tasked and it was 

impossible to check thirty pupils in the same time. 

8.4 Pedagogical implications and further research 
I got the idea to tackle an algebraic topic for my master thesis from my experience as a 

teacher. And I chose tackling of brackets in algebraic expressions since brackets are an 

important element in algebra language and on the other part, algebra is inserted and useful in 

other branches of mathematics. Skemp (1976), Weber (2002), Sierpinska (1994), Gray and 

Tall (1991, 1992), Berg (2009), Demby (1997) and Drijvers et al. (2011) offered me a 

theoretical basis within which are involved ways of tackling the use of brackets in algebraic 

expressions. I have called these ways, Way A and Way B, and they are introduced in Table 

8.2, followed by respective properties. 

 

Way A Way B 

Instrumental understanding 

Instrumental proof 

Syntactic aspect 

Process  

Relational understanding 

Relational proof 

Semantic aspect 

Concept (Object) 

Mental operations 
   Table 8.2. Ways of tackling use of brackets 

And in general, based on my data analysis, it is more preferable and more usable by pupils the 

Way A of tackling the use of brackets. But, thanks to this way pupils fail in new situations. I 

appreciate the way B, in which brackets are used significantly and meaningfully. I chose my 

teaching activities from Swan‟s (2005, 2006) collaborative orientation of doing mathematics, 

within which are important the discussion of pupils‟ ideas and the confrontation with their 

mistakes and misconceptions, and considering mathematics as an interconnected body of 

ideas, which means to attempt to show a mathematical concept in front of different branches 

of mathematics. In accordance to Swan (2005, p. 4), the main aims of conducting activities of 

„collaborative orientation‟ of doing mathematics are: challenging learners to become more 

active participants, to engage them in discussion, to share their thoughts, ideas, 

misconceptions and results with purpose to become more confident and effective learners. 
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This is because I consider Swan‟s model as a bridge to pass from the way A to the Way B. If 

pupils discuss their ideas about the use of brackets they would show to each other new ideas 

and justifications, their misunderstandings and their bad-use or lost-use of brackets, by 

comparing to their mathematical understanding and to understand their ideas. Facing pupils 

with the use of brackets in different situations from different mathematics‟ branches lead them 

toward the principle of the brackets‟ use.  

In this point, I need to address the transition between different representations (by words, 

algebraic expressions, tabular data, and area diagrams) in “Interpreting multiple 

representations” activity; and evaluating the equality of algebraic expressions referring even 

counterexamples or examples by different representations, such as area diagrams, in 

“Evaluating algebraic statements” activity, in order to help learners to make connections 

between their different mathematics branches‟ ideas. I think this is the manner of having the 

way B of tackling brackets even though I do not have compelling evidences for improvements 

caused by my teaching lessons.  

On the other side, since arithmetic is introduced before algebra in mathematics textbooks and 

elementary school curricula, Kieran (1979), and Linchevski (cited in Welder, 2012, p. 257) 

suggest to introduce and to expand the concept of brackets during the study of arithmetic prior 

to algebra. So, the need for tackling the use of brackets in earlier studies is emphasized and by 

other researchers, and I think that understanding of the concept of brackets in arithmetic 

would be helpful for pupils to understand the concept of brackets in algebra because 

concretization (as arithmetic is for algebra) helps in understanding concepts. 

In terms of generalizing my results, I think it is difficult since this is a case study, which 

involves only thirty pupils. In order to have a generalization for the way Albanian pupils 

tackle brackets and algebraic expressions involved into brackets, it is needed an extensive 

research.  

Also, another reason is that this school is a private one, in which pupils are selected by an 

acceptance test and my participants follow the course of advanced mathematics. This means 

that these pupils are motivated to work with mathematics, which does not mostly happen.  

Since this is a case study, I think that if I would have chosen other participants, the results 

might have been different. Still my findings are supported by previous studies and are 

emerged by analyzing my data considering my theoretical approach in each step; and, new 

difficulties concerning the use of brackets and not reported in previous literature are 

highlighted among my other findings.  

In my study are involved several variables, and referring to some of them I could have 

suggestions for further research studies. It could be possible to involve younger participants 

since pupils in tenth grade are involved in my study. And in lower grades, eight or nine grade, 

operating with brackets in algebraic expressions is more widespread and more emphasized, so 

I could consider this as a stimulus for further research.  

Also I could suggest the composition of two groups of participants, such as the control group 

and experimental group, in order to compare their results with purpose to assess the effect of 

teaching activities taken from Swan‟s “collaborative orientation” (Swan, 2005, 2006) of doing 

mathematics. 
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8.5 My development as a teacher and as a researcher 
Since this is my first study, in which I had the role of the researcher, and since I have not a 

long experience in teaching, I think this was an opportunity to improve my being as a 

researcher and a teacher in the same time.  

Firstly I had the idea for tackling the use of brackets not only as part of the order of 

operations, but I was also confused concerning the way of tackling brackets. In this step, I 

knew what I did not want but I did not really know to explain what I want. I explained my 

ideas to my supervisor more easily using examples from my experience as a teacher, because 

I did not have theoretical part, in which I should base on for the way to tackle brackets. And 

so from my supervision meetings, discussions with my supervisor, and reading previous 

literature I started to concretize the theoretical basis and my theoretical framework concerning 

tackling of brackets as part of algebraic language. So, the elaboration of my theoretical 

approach is followed by the evolution of my own understanding and algebraic thinking 

concerning the use of brackets in algebraic expressions.  

Also I would like to emphasize another effect of reading a lot of other research studies, that I 

used to decide about what was relevant for my topic even though each of them was 

interesting; also I used to consider advantages and disadvantages of methods, which I could 

involve in my research.  

The process of analyzing my data had influenced my development as a researcher since from 

one supervision meeting to the next one I achieved to link my theoretical approach with my 

comments for pupils‟ answers. On the other side, the insights (results) emerging from the 

analysis of my data would be useful for my improvement as a teacher in order to be able to 

create an effective learning environment for the pupils. This is because I developed my own 

mathematical teaching concerning the use of brackets, basing on confronting my theoretical 

approach and concrete data.   

It is important to emphasize my agreement with Swan‟s “collaborative orientation” (Swan, 

2005, 2006) of doing mathematics concerning the way of teaching and creating effective 

learning environment for pupils.  
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10 Appendices  

10.1 Appendix A: Test 
PRE-TEST   ------------------------------------ 

I. Choose the right alternative (there are more than one for each task). 

 

 

1. -3(2x-5)= 

 

a) -6x+15 b) -6x-15 c) -6x-5  d) 15-6x e) -2x3-5 

 

2. 3x-2(2x+y)= 

 

a) 3x-4x-2y b) 3x-4x+y c) 3x-2x-2y d) –x-2y e) -2(
𝑥

2
+y) 

 

3. (2x-y)+y= 

 

a) 2xy-y2 b)2x  c) 2x-y+y d) 2x-2y e) 2x+2y 

 

4. (x+4)(x-5)= 

 

a) x2-20 b)x2+4x-5x-20 c) x2+20 d)x2-x-20 e) 2x-1 

 

5. x2y-(xy)2= 

 

a) 2x2y b) x2y-x2y2 c) 0  d) x2y-xy2 e) x2y(1-y) 

 

6. x2y-xy2= 

 

a) x2(y-y2) b) y(x2-xy) c) xy(x-y) d) xy(y-y2) e) x-y 

 

7. 15x-24x2= 

 

a) 3x(5+24x) b) 3x(5x-8x) c) 3x(5-8x) d) x(15-24x) e) -(9x) 

 

8. 
1

4
 (x2)2(2x)2= 

 

a) 
1

2
x6  b) 

1

2
x5  c) x6  d) 

1

4
 ·4·x4x2 e) 

𝑥2

4
 

 

9. 4x − 2[5y − x + 3(2x − y)]= 

 

a) -x-8y b) 14x-4y c) -6x-4y d) -2(3x+2y) e) 14x-16y 
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II. Place parentheses in these expressions to the left of the equal sign to create equality. 

 

c) x+x2+3·x+4= x2+4x+4    c) x+x2+3·x+4= x3+4x+4 

 

d) x+x2+3·x+4= x2+4x+12    d) x+x2+3·x+4= x3+5x2+7x+12 

 

 

 

III. Write out the following expansions, filling in the missing terms: 

 

a) (-4x)(2x+8)= ? -32x 

 

b) (x+4)(x-?)= x2-2x-24 

 

c) (2x+3)(x+?)= 2x2+9x+? 

 

d) (x-?)(x+5)= x2-2x-? 

 

e) (x+?)(x+?)= x2+6x+8 

 

 

 

IV. Expend the brackets 

 

a) (-2x)·8x+(6x+3x)2= 

 

b) (-4x+3)(-1+2x)+(-4x+3)-(-1+2x)= 

 

c) (12x3-x2)-3x(2x+1)(2x-1)= 

 

d) ( 2𝑥-2 𝑦)2+(x+x2+2)(5-x)= 

 

e) -{5x-(11y-3x)-[5y-(3x-6y):3]}= 
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V. a) Write down the area of the figures: 

  

  

 

A= 

 

A= 

 

 

A= 

 

 

 

  

A= 

b) Write down the expression for the volume of the object:  

1)containing brackets;  

2) with no brackets 

 

 

V= 

       V= 

  

4x 
6-2x 

x 2 

5 

x 

4 

6 

 

 

 

 

 

 

2 

x+2 

x 

3x-5 

2x 

x x 

y 
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10.2 Appendix B: Evaluating Algebraic Statements 
 

1.           2(x+5)=2x+10 

2.           (2x)2=4x2 

3.           (2x)2 =2x2 

4.           (x+5)(x-2)=x2-10 

5.         
4𝑥+6

2𝑥+3
 = 1/2 

6.            3(x-6)=3x-6 

7.            5x+25x2=x(5+25x) 

8.            (2x+5)/5=2x 

9.            (x2+3x-5)-(4x-5)=x2+3x-5-4x-5 

10. 3(2x-5)2=(6x-15)2  

ALWAYS TRUE SOMETIMES TRUE NEVER TRUE 
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10.3 Appendix C: Interpreting Multiple Representations 
 

Algebraic Expressions 

                        

𝒏+𝟔

𝟐
 

SH2 

      3n2 
 

SH3 

   2n 12 
 

SH4 

   2n 6 
 

SH5 

   2(n 3) 
 

SH6 

        
𝑛

2
 + 6 

SH7 

    (3n)2 
 

SH8 

  (n 6)2 
 

SH9 

 n
2
 12n 36 

 

SH10 

         
𝑛

2
 + 3 

SH11 

     n2
 6 

 

SH12 

     n2
 + 6

2
 

 
SH13 

 
SH14 

 

 

 

 

SH1 
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Area Diagrams 

           

 

                 n                   6 

  

  

S2 

 

                 n              3 

  

 

S3 

 

                 n          n         n 

   

 
  

S4 

 

              n    n     n 

   

   

   

 
  

S5 
 
 

                 n                   6 

  

  
 
   

S6 
 
            n                   6 

  

  

 
S7     
 

              n           6      

  

  

 
   

S8 

               n              6 

 

 
 

S9 

 
 
 
 
 
 
 

 

 

 

  

S1 

2 2 

n 
n 

n 

n 

1

2
 

1

2
 

n 

6 

n 
1 
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Tables 

           

      
  n 1 2 3 4 
The 
product 

14 16 18 20 

  

T2 

     

  n 1 2 3 4 
The 
product 

  81 144 
 

T3 

 

  n 1 2 3 4 
The 
product 

 10 15 22 
 

T4 

 

  n 1 2 3 4 
The 
product 

3  27 48 

   
T5 
 

 
  n 1 2 3 4 
The 
product 

  81 100 

    

T6 
 

 
  n 1 2 3 4 
The 
product 

 10 12 14 
 

T7     

 

  n 1 2 3 4 
The 
product 

 4  5 

     

T8 

 

  n 1 2 3 4 
The 
product 

6.5 7 7.5 8 

   
T9 

 

 

  n 1 2 3 4 
The 
product 

    

  

 

 

 

  

T1 
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Word Statements 

           

Multiply n by two, then 
add six 

 

F2 

Multiply n by three, then  
square the answer 

 
F3 

Add six to n, then multiply 
by two 

 

F4 

Add six to n, then divide 
by two 

 
F5 
 

Add three to n, then 
multiply by two 

 

F6 
 

Add six to n, then  
square the answer 

 
F7     

Multiply n by two, then 
add twelve 

 

F8 

Divide by two 
then add six 

 
F9 

Square n, then add six 
 

F10 

Square n, then multiply by 
nine 

F11 F12 

 
 

 
F13 

 
 

 

F14 

 

  

F1 
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10.4 Appendix D: Post-Test 
 

 

 

 

 

 

 

 

 

 

 

 

x=5 

x+2=7 

(x+2)•6=42 

6(x+2)-20=22 

[6(x+2)-20]:2=11 

{[6(x+2)-20]:2} -1=10 

 

x=3 

2x=6 

2x-4=2 

2x-4•2=4 

2x-8=4 

(2x-8):4=1 

(2x-8):4+3x=1+3x 

(2x-8):4+3x•3=3(1+3x) 

(2x-8):4+9x+4=3(1+3x+4) 

a+10  a+2 

+2 

a+7 a+5 

 

…+ … + … 

a+2 

+ 

X

       

X

       

2a2+16a+14 

  

 a+7 

X

       

X

       

+ 
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P=    A= 

 

P=    A= 

 

 

A= 

 

 

 

  

A= 

 

 

 

V= 

       V= 

 

 

  

3x 
10-2x 

a 2 

5 

y 

8 

12 

x 4 

x+1 

x-3 

4x-6 

2x 

2x x 
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10.5 Appendix E: Fieldwork permission  
 

Dear Pupils! 

 

My name is Dorela Kraja and I am a master student in Agder University in Kristiansand, 

Norway. I study mathematics education and my supervisor is Claire V. Berg. 

During being a pupil, studying mathematics and practicing as student-teacher, I have noticed 

some of difficulties and misconceptions of pupils, related to algebra and especially to the 

usage of brackets. 

I would like to achieve a general description about the algebraic mistakes that Albanian 

pupils, in the 10
th

 grade, do. 

I want to classify the errors of the pupils and to see the causes of those errors.  

I need your help to develop my project (completing tests, answering the questions of 

interviews and participating in my teaching lessons). And, according to them I am going to 

write a master thesis and article, but your names will be anonymous.   

I can assure you that: 

 The data collected from your tests, interviews and lessons will be used only for the intentions 

that I mentioned above.  

Your names will be coded in other names and in my papers I will use only coded names (the 

paper with names and respective codes will be secret and can be used only by me and my 

supervisor). 

In the end of my project, June 2012, I will destroy the whole tests, interviews, videos and the 

paper with coded names. 

If you feel uncomfortable during the process, you are free to back out at any given time and 

withdraw your consent, and everything yours (the test, the interviews and the video) will be 

destroyed in your presence.   

 

I agree to make the test ……………………………. 

 

I agree to be interviewed …………………….. 

 

Claire Berg       Dorela Kraja 

Associate Proffesor      Master Student 

Tel: +4738141728      Tel: +35522249778 

e-mail: Claire.V.Berg@uia.no    e-mail: dorelk10@student.uia.no  

 

mailto:Claire.V.Berg@uia.no
mailto:dorelk10@student.uia.no

