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Abstract. Managing the uncertainties that arise in disasters – such as ship fire – 
can be extremely challenging. Previous work has typically focused either on 
modeling crowd behavior or hazard dynamics, targeting fully known 
environments. However, when a disaster strikes, uncertainty about the nature, 
extent and further development of the hazard is the rule rather than the 
exception. Additionally, crowd and hazard dynamics are both intertwined and 
uncertain, making evacuation planning extremely difficult. To address this 
challenge, we propose a novel spatio-temporal probabilistic model that 
integrates crowd with hazard dynamics, using a ship fire as a proof-of-concept 
scenario. The model is realized as a dynamic Bayesian network (DBN), 
supporting distinct kinds of crowd evacuation behavior – both descriptive and 
normative (optimal). Descriptive modeling is based on studies of physical fire 
models, crowd psychology models, and corresponding flow models, while we 
identify optimal behavior using Ant-Based Colony Optimization (ACO). 
Simulation results demonstrate that the DNB model allows us to track and 
forecast the movement of people until they escape, as the hazard develops from 
time step to time step.  Furthermore, the ACO provides safe paths, dynamically 
responding to current threats. 

Keywords: Dynamic Bayesian Networks, Ant Based Colony Optimization, 
Evacuation Planning, Crowd Modeling, Hazard Modeling. 

1 Introduction 

Evacuating large crowds of people during a fire is a huge challenge to emergency 
planners and ill-conceived evacuation plans have resulted in many potentially 
avoidable deaths over the years [1]. However, accurately evaluating evacuation plans 
through real world evacuation exercises is disruptive, hard to organize and does not 
always give a true picture of what will happen in the real situation. These challenges 
are further aggravated by the uncertainty of how a hazard will evolve; requiring 
evacuation plans to be dynamically adapted to the situation at hand. 

Formal crowd models have previously been found useful for off-line escape 
planning in large and complex buildings, frequented by a significant number of 
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people [9-15].  The focus is typically either on crowd behavior or hazard dynamics, 
for fully known environments. However, when a disaster strikes, uncertainty about 
the nature, extent and evolution of the hazard is the rule rather than the exception. 
Additionally, crowd- and hazard dynamics will be both intertwined and uncertain, 
making evacuation planning extremely difficult. To address this challenge, we 
propose a novel spatio-temporal probabilistic model that integrates crowd dynamics 
with hazard dynamics. The overall goal is to build an integrated emergency 
evacuation model comprising hazard and threat maps, crowd evacuation, and path 
planning. 

The research reported here is conducted as part of the SmartRescue project, where 
we are also currently investigating how to use smartphones for real-time and 
immediate threat assessment and evacuation support, addressing the needs of both 
emergency managers and the general public. Smartphones are equipped with ever 
more advanced sensor technologies, including accelerometer, digital compass, 
gyroscope, GPS, microphone, and camera. This has enabled entirely new types of 
smartphone applications that connect low-level sensor input with high-level events to 
be developed. The integrated crowd evacuation- and hazard model reported here is 
fundamental for the smartphone based reasoning engine that we envision for threat 
assessment and evacuation support. 

We take as our case study the emergency evacuation of passengers from a ship, 
triggered by a major fire.  Managing uncertainty in such a scenario is of great 
importance for decision makers and rescuers. They need to be able to evaluate the 
impact of the different strategies available so that they can select an evacuation plan 
that ensures as ideal evacuation as possible.  

The organization of this paper is as follows: Sect. 2 presents the ship scenario, 
forming the environment for our approach. We then introduce the novel integrated 
hazard- and crowd evacuation model in Sect. 3, covering a detailed DBN design for 
intertwined modeling of hazard- and crowd dynamics, including congestion. A 
pertinent aspect of this approach is that we apply Ant-Based Colony Optimization 
(ACO) to configure the DBN with optimal escape paths. In Sect. 4, we present and 
discuss simulation results that demonstrate that the DNB model allows us to track and 
forecast the movement of people until they escape, as the hazard develops from time 
step to time step.  Furthermore, the ACO approach provides safe paths, dynamically 
responding to current threats. We conclude the paper in Sect. 5 by providing pointers 
for further research.  

2 Ship Fire Scenario and Modeling Approach 

2.1 Ship Scenario 

We use an onboard ship fire as an application scenario for our model. Fig. 1(a) depicts 
the ship layout and 1(b) shows the layout as a directed graph. The ship consists of 
compartments, stairways, corridors and an embarkation area. ܤ ,ܣ and ܥ are the 
compartments, each with doors connecting them to ܦ - a corridor. ܦଵ, ܦଶ and  ܦଷ 
represent the corridor area that directly links to the different compartments. ܧ is an 
embarkation area (muster or assembly area) where in an emergency, all passengers 
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Here, ܼ௧௜  is the i-th node at time step ݐ. ܲܽ൫ܼ௧௜൯ are the parents of ܼ௧௜ , which can be 
from a previous time slice. The structure repeats itself, and the process is stationary, 
so parameters for the slices ݐ ൌ 2,3 … remain the same. Accordingly, the joint 
probability distribution for a sequence of length T can be obtained by unrolling the 
2TBN network: 

ሺܼ௧|ܼ௧ିଵሻ݌ ൌ ෑ ෑ ሺܼ௧௜|ܲܽሺே݌
௜ୀଵ ܼ௧௜ሻሻ்

௧ୀଵ (3)

We now proceed to proposing how the above DBN framework can capture hazard- 
and crowd dynamics in an integrated manner, using the SMILE reasoning engine as 
the implementation tool. Furthermore, we will illustrate our simulation findings using 
the GeNIe modeling environment. Both SMILE and GeNIe were developed by the 
Decision Systems Laboratory at the University of Pittsburgh and are available at 
http://genie.sis.pitt.edu/.  

3 Spatio-temporal Probabilistic Model of Hazard- and Crowd 
Dynamics  

In this section, we describe the rescue planning model and the integrated evacuation 
model. The rescue planning model is a brute force search of all possible escape paths 
to find paths that minimize hazard exposure for the full range of hazard scenarios. We 
apply the ACO algorithm to efficiently find optimal paths for large disasters. 

The application of BNs for decision support in maritime accidents has been 
discussed by Datubo et al. [5]. Their focus is to model and simulate accident scenarios 
such as fire, flooding and collision. The purpose is to identify optimal decision 
policies, including alarm- and evacuation strategies, based on maximizing expected 
utility under different hazard scenarios. Our approach is quite different from Datubo 
et al.’s work, since we are focusing on tracking both passenger and hazard, dealing 
with the uncertainty that arises when one has to rely more or less on limited sensor 
information. In addition we forecast crowd behavior and hazard development for the 
purpose of producing real-time risk maps, evacuation paths, and dynamically 
identifying the optimum movements of passengers as the hazard evolves. 

3.1 Rescue Planning  

Rescue planning can be regarded as a combinatorial optimization problem using graph 
traversal as a starting point. We let each location ݅ be connected with a vertex ݒ௜, and 
let each potential flow from location ݅ to ݆ be represented by an edge  ݁௜,௝. In addition 
to a common graph representation, we let each vertex ݒ௜ have a hazard ℎ௜ , so that the 
hazard values ℎ௜ א   .are probability values representing the likelihood of hazards ࡴ
Thus, the vertices, edges and hazards are a constructed graph with hazards ܩሺࢂ, ,ࡱ   .ሻࡴ

Further, we let one of the vertices, ݒ௡ א ଴ݒ represent the escape area, while ,ࢂ א  ࢂ
represents the starting locations for passengers. We then define a search space ࡿ as a 
finite set of discrete decision variables, so that any א ݏ  ଴ݒ is a possible route from ࡿ
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to ݒே. We further define a function ݂ representing the hazard probability of ݏ. The 
objective is therefore to find an כݏ א   ሻכݏሻ  is minimized. This way ݂ሺכݏso that ݂ሺ ࡿ 
can be read as an inverse survival rate by choosing the escape route כݏ. 

By calculating the escape route for every possible combination of ℎ௜ א   in the ࡴ
scenario in Fig.1, we can generate at least one escape route. Our approach is thus 
similar to the problem of finding the shortest path between two nodes in a graph, for 
which many optimization algorithms exist [7]. However, we are focusing on finding 
multiple paths that both address congestion and minimizes hazard exposure.  

ACO has some attractive properties, namely that ACO algorithms can efficiently 
handle dynamic situations, stochastic optimization problems, multiple objective 
optimization, parallel distributed implementations and incremental optimization [6]. 
For route-based escape planning this is particularly useful since we expect:  

• the parts of the layout graph for escape to change dynamically as the hazard 
evolves, 

• decisions to be based on stochastic information as the  hazards are represented by 
stochastic functions, 

• to face multiple objectives such as multiple escape nodes, and 
• parallel distributed implementations for online and offline computation, supporting 

for instance smartphone based sensing and computing. 

Finding the shortest path in a graph ܩሺࢂ,  ሻ using ACO works as follows: Artificialࡱ
ants move from vertex to vertex. When an ant finds a route ݏ  from ݒ௢  to ݒே , the ant 
deposits pheromones in all  ݒ௜ א  The amount of pheromone deposited depends on .ݏ
the quality of the solution. Consequently, the shorter the found path, the more 
pheromone per vertex is deposited. Furthermore, each ant is guided by a stochastic 
mechanism biased by the amount of pheromone on the trail; the higher the amount of 
pheromone, the more attractive the route will be to the ant. Thus, the ants walk 
randomly, but with a preference towards higher pheromone routes. In this way, the 
ants incrementally build up a promising search space. 

For rescue planning, we propose a slight adjustment to the ACO. Instead of 
deposited a constant amount of pheromone, we let the ants deposit pheromones 
equivalent to the inverse of the “size” of the perceived hazard in ݏ, i.e. 1 െ ݂ሺݏሻ. 
Thus, when an artificial ant arrives at ݒே  will have a combined probability value from 
the hazard probabilities from the visited vertexes as ሺݏሻ ൌ  1 െ  ∏ ሺ1 െ ℎ௜ሻ௏೔ א௦ .    
Hence, a low ݂ሺݏሻ signifies a low probability of a perceived hazard in route s, 
meaning more pheromone will be deposited. In Sect. 4 we provide empirical support 
for ACO finding the path with the smallest probability of hazards; a minimized ݂ሺݏሻ. 

3.2 Integrated Evacuation Model  

The integrated evacuation model (IEM) is designed to keep track of the location of 
people, their flow between locations, as well as the corresponding hazard status of the 
locations, from time step to time step. The overall structure of IEM is shown in Fig. 2. 
The IEM consists of a Hazard Model, a Risk Model, a Behavior Model, a Flow Model 
and a Crowd Model. Each model encapsulates a DBN, with the Hazard Model being 
detailed in Fig. 3 for example purposes (the other models have a similar structure).  
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For each location X, the Hazard Model contains a variable HaX(t) that represents 
the status of the hazard, for that location, at time step t. These variables capture the 
dynamics of the hazard, which for fire involves its development and spreading from 
location to location. The Hazard Model for our particular scenario thus consists of 
nine hazard nodes, each referring to a particular part of the ship layout from Fig. 1. 
We model the fire hazard based on physical fire properties, abstracting the 
progressive stages of fire using the states: Dormant, Growing, Developed, Decaying, 
and Burnout. Note that depending on the nature of the barriers separating locations, a 
Developed fire may potentially spread to neighboring locations, triggering a transition 
from Dormant to Growing in the neighboring location.    

 

Fig. 2. Macro view of DBN model for Integrated Evacuation Model (IEM)  

As illustrated in Fig. 2, the Risk Model at time step t depends on the Hazard Model. 
For each location X, the Risk Model contains a variable RX(t) with three states: Low 
Risk, Medium Risk, and High Risk.  Briefly stated, the Risk Model maps the state of 
each node in the Hazard Model to an appropriate risk level, to allow a generic 
representation of risk, independent of the type of hazard being addressed. For 
simulation purposes, the dormant fire stage is considered to be Low Risk, while a fire 
in the Growing or Burnout stage introduces Medium Risk. Finally, if the fire is 
Developed, then we have High Risk. 

Risk levels, in turn, are translated into a Behavior Model, with optimal response to 
each possible risk scenario being determined by ACO for normative crowd behavior 
in larger scenarios. We develop descriptive models based on studies of crowd 
psychology models. The Behavior Model is simply a single DBN variable, BX(t), with 
each state mapping to a particular flow graph (global evacuation plan), as defined in 
Sect. 3.1. For instance, one particular flow graph could suggest the escape routes: “A-
D1-S1-E”, “B-D2-D1-S1-E” and “C-D3-S2-E”.  Such paths are selected based on pre-
computed risk assessments, based on overall survival rate. Note that we study both the 
ideal evacuation and typical evacuation of the crowd for each hazard scenario.  

The Flow Model in Fig. 2 manages the flow of incoming and outgoing people 
along each edge in the layout graph in Fig. 1, represented by three mutually 
supporting variables for each location X. The variables IX(t) interleaves incoming 
flows by alternating between neighbor locations, while OX(t) routes the incoming flow 
into an outgoing flow by selecting an appropriate destination location. Finally, the 
variable SX(t) is used to calculate the resulting number of people in location X, having 
IX(t) and OX(t)  as parents. In other words, our DBN can keep track of the actual 
number of people at each location by just counting! This organization allows us to 
model the flow of incoming and outgoing people from different locations, as well as 
congestion, flow efficiency, and crowd confusion, all within the framework of DBNs. 
Here, flow efficiency reflects how quickly the evacuation process is implemented, and 
how quickly people are reacting. Confusion models suboptimal movement decisions, 
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and can potentially be extended to be governed by local factors such as smoke, panic, 
and so on. 

Finally, the Crowd Model keeps track of the amount of people at each location X at 
time step t. It also serves as storage for the crowd movement calculations performed 
by the Flow Model. Currently, we apply a rough counting scheme that for each 
location X keeps track of whether the location is Empty, contains Some people or 
contains Many people, using the variable CX(t). Basically, an Empty location or one 
that only contains Some people, can receive Some people from a neighboring location, 
while a location with Many people must be unloaded before more people can enter. 
This can easily be extended to more fine granular counting and flow management as 
necessary for different application scenarios. 

4 Simulations, Results and Discussion  

4.1 Simulations of Integrated Evacuation Model 

We have run several simulations based on the IEM. In one particularly challenging 
and representative scenario, we assumed that a fire had started concurrently at 
locations S2 and A at time step t1. This means that the shortest escape route from 
location B and C will be hazardous, and people should be rerouted through staircase 
S1.  We used 50 time slices to forecast and analyze hazard dynamics, as well as the 
behavior of people reacting to this complex fire scenario. To obtain estimates of the 
posterior probabilities given the evidence of fire, we applied Adaptive Importance 
Sampling (AIS). This algorithm is designed to tackle large and complex BNs [7], and 
is used here for forecasting purposes. For tracking, the use of more advanced variants 
of this algorithm, which support resampling, such as particle filtering, is appropriate. 
The obtained results are presented in Fig. 3 and Fig. 4. 

Fig. 3 illustrates the development of the hazard probability distribution 
HX(t)={Dormant, Growing, Developed, Decaying, Burnout} over time, for each 
location X. In brief, the bar charts inside each node in the Hazard Model summarize the 
probability (y-axis) associated with each phase of the corresponding hazard, for each 
time step (x-axis). Note how the development of the fire reflects our initial evidence, 
where we, for instance, can observe when the fire is likely to spread to neighbors, such 
as location D1 in time step 7, and at time step 14 for location D2. To conclude, our 
DBN provides us with a global probabilistic threat picture, allowing us to assess the 
current hazard situation, forecast further development, and relating cause and effect, 
despite potentially arbitrary and limited evidence. In addition to reasoning about 
hazards, we can also track and forecast crowd behavior using our DBN. The goal of an 
evacuation is to transfer people from unsafe to safe areas. Figs. 4 (a), (b) and (c) show 
the simulation results of people moving along the path A-D1-S1. At t0 we have Many 
people in each of the compartments (A,B,C), while corridors and stairways are Empty. 

As can be seen from Fig. 4, it is not until after time step 36 that the probability that 
room A is completely vacated starts approaching 1.0. Furthermore, Fig. 4 (b) and (c) 
show that the probability that the number of people in D1 and S1 are increasing 
initially, as people start arriving from locations A,B, and C . In general, under the 
simulated conditions, where people follow the optimal plan without panicking, most 
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intertwined relationship between crowd and hazard dynamics. Future directions of the 
SmartRescue project include calibrating and refining our model based on feedback 
from a group of practitioners. We also intend to investigate how a collection of 
smartphones can form a distributed sensing and computation platform. This involves 
distributed schemes for tracking, forecasting and planning; allowing the IEM and 
ACO schemes to run seamlessly in the smartphone network. 
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