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Abstract. This paper deals with the relatively new field of designing
a Chaotic Pattern Recognition (PR) system. The benchmark of such a
system is the following: First of all, one must be able to train the sys-
tem with a set of “training” patterns. Subsequently, as long as there is
no testing pattern, the system must be chaotic. However, if the system
is, thereafter, presented with an unknown testing pattern, the behavior
must ideally be as follows. If the testing pattern is not one of the trained
patterns, the system must continue to be chaotic. As opposed to this,
if the testing pattern is truly one of the trained patterns (or a noisy
version of a trained pattern), the system must switch to being periodic,
with the specific trained pattern appearing periodically at the output.
This is truly an ambitious goal, with the requirement of switching from
chaos to periodicity being the most demanding. Some related work has
been done in this regard. The Adachi Neural Network (AdNN) [1–5] has
properties which are pseudo-chaotic, but it also possesses limited PR
characteristics. As opposed to this, the Modified Adachi Neural Network
(M-AdNN) proposed by Calitoiu et al [6], is a fascinating NN which has
been shown to possess the required periodicity property desirable for
PR applications. However, in this paper, we shall demonstrate that the
PR properties claimed in [6] are not as powerful as originally reported.
Indeed, the claim of the authors of [6] is true, in that it resonates peri-
odically for trained input patterns. But unfortunately, the M-AdNN also
resonates for unknown patterns and produces these unknown patterns at
the output periodically. However, we describe how the parameters of the
M-AdNN for its weights, steepness and external inputs, can be specified
so as to yield a new NN, which we shall refer to as the Ideal-M-AdNN.
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Using a rigorous Lyapunov analysis, we shall analyze the chaotic prop-
erties of the Ideal-M-AdNN, and demonstrate its chaotic characteristics.
Thereafter, we shall verify that the system is also truly chaotic for un-
trained patterns. But most importantly, we demonstrate that it is able
to switch to being periodic whenever it encounters patterns with which
it was trained. Apart from being quite fascinating, as far as we know,
the theoretical and experimental results presented here are both unre-
ported and novel. Indeed, we are not aware of any NN that possesses
these properties!

Keywords: Chaotic Neural Networks, Chaotic Pattern Recognition, Adachi-
like Neural Networks.

1 Introduction

Pattern Recognition (PR) has numerous well-established sub-areas such as sta-
tistical, syntactic, structural and neural. The field of Chaotic PR is, however,
relatively new and is founded on the principles of chaos theory. It is also based
on a distinct phenomenon, namely that of switching from chaos to periodicity.
Indeed, Freeman’s clinical work has clearly demonstrated that the brain, at the
individual neural level and at the global level, possesses chaotic properties. He
showed that the quiescent state of the brain is chaos. However, during perception,
when attention is focused on any sensory stimulus, the brain activity becomes
more periodic [7].

If the brain is capable of displaying both chaotic and periodic behavior, the
premise of this paper is that it is expedient to devise artificial Neural Network
(NN) systems that can display these properties too. Thus, the primary goal of
chaotic PR is to develop a system which mimics the brain to achieve chaos and
PR, and to consequently develop a new PR paradigm in itself.

Philosophically, the question of whether we can achieve chaotic PR by using
non-dynamic methods seems to have an unequivocal negative response. The
subsequent question of whether we can accomplish the goal of designing a chaotic
PR system with a single computing element (or neuron) also seems improbable.
It appears as if we have to resort to a network of neurons, and any such network
which possesses chaotic properties is referred to as a Chaotic Neural Network
(CNN). The fundamental issue, really, is whether we can drive such a NN from
chaos to periodicity and vice versa by merely controlling the input patterns.

At a very fundamental level, the field of NNs deals with understanding the
brain as an information processing machine. Conversely, from a computational
perspective, it concerns utilizing the knowledge of the (human) brain to build
more intelligent computational models and computer systems. Thus, NNs have
been widely and successfully applied to an ensemble of information processing
problems, and the areas of PR and forecasting are rather primary application
domains.

Before we proceed, it is fitting for us to submit a consistent terminology,
i.e., to distinguish between systems that possess Associative Memory (AM) and
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Pattern Recognition (PR). The reader should note that our primary concern is
the latter. The literature reports that AM has two forms: auto-association and
hetero-association. In auto-association, a NN is required to store a set of pat-
terns. Whenever a single pattern or its ”distorted” version is presented to the
NN, a system possessing auto-association should be able to recall the particu-
lar pattern correctly. Hetero-association differs from auto-association in that an
arbitrary set of input patterns is paired with another arbitrary set of output
patterns. As opposed to these, the phenomenon of PR is mainly concerned with
“classification”.

CNNs which also possessed a weak form of PR were first proposed by Adachi
and his co-authors [1–5]. It would be fair to state (and give them the honor)
that they pioneered this “new” field of CNNs. In their papers, by modifying
the discrete-time neuron model of Caianiello, Nagumo and Sato, they designed
a novel and simple neural model possessing chaotic dynamics, and an Artificial
Neural Network (ANN) composed of such chaotic neurons. Their experimental
results demonstrated that such a CNN (referred to the AdNN in this paper)
possesses both AM and PR properties, as will be illustrated in Section 2.

Historically, the initial and pioneering results concerning these CNNs were
presented in [1–5]. In the next year, the author of [8] proposed two methods of
controlling chaos by introducing a small perturbation in continuous time, i.e., by
invoking a combined feedback with the use of a specially-designed external os-
cillator or by a delayed self-controlling feedback without the use of any external
force. The reason for the introduction of this perturbation was to stabilize the
unstable periodic orbit of the chaotic system. Subsequently, motivated by the
work of Adachi, Aihara and Pyragas, various types of CNNs have been proposed
to solve a number of optimization problems (such as the Traveling Salesman
Problem, (TSP)), or to obtain AM and/or PR properties. Later, the author of
[9] proposed a NN model based on the Globally Coupled Map (GCM) derived
by modifying the Hopfield network. It was reported that this model was capa-
ble of information processing and solving the TSP. Chen and Aihara reported
a new method referred to as chaotic simulated annealing based on a NN model
with transient chaos properties [10]. They also numerically investigated the tran-
siently chaotic neurodynamics with examples of a single neuron model and the
TSP. Their conclusion was that this new model possessed a higher searching
ability for solving combinatorial optimization problems when compared to both
the Hopfield-Tank approach and a stochastic simulated annealing scheme. An
interesting step in this regard was the work reported in [11], where the authors
utilized the delayed feedback and the Ikeda map to design a CNN to mimic the
biological phenomena observed by Freeman [7].

From a different perspective, in [12–14], Hiura and Tanaka investigated several
CNNs based on a piecewise sine map or the Duffing’s equation to solve the
TSP. Their results showed that the latter yielded a better performance than the
former.

More recently, based on the AdNN, Calitoiu and his co-authors made some
interesting modifications to the basic network connections so as to obtain PR
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properties and “blurring”. In [15], they showed that by binding the state vari-
ables to those associated with certain states, one could obtain PR phenomena.
However, by modifying the manner in which the state variables were bound,
they designed a newly-created machine, the so-called Mb-AdNN, which was also
capable of justifying “blurring” from a NN perspective.

While all of the above are both novel and interesting, since most of these CNNs
are completely-connected graphs, the computational burden is rather intensive.
Aiming to reduce the computational cost, in our previous paper [16], we proposed
a mechanism (the Linearized AdNN (L-AdNN)) to reduce the computational
load of the AdNN. This was achieved by using a spanning tree of the complete
graph, and invoking a gradient search algorithm to compute the edge weights,
thus minimizing the computation time to be linear.

Although it was initially claimed that the AdNN and M-AdNN possessed
“pure” (i.e., periodic) PR properties, in actuality, this claim is not as precise
as the authors claimed. We shall now clarify this. As explained in detail in
[16, 17], if the AdNN weights the external inputs with the quantities determined
by ai = 2 + 6xi, the properties of the system become closer to mimicing a PR
phenomenon. Adachi et al. claimed that such a NN yields the stored pattern
at the output periodically, with a short transient phase and a small periodicity.
However, it turns out that if untrained patterns are presented to the system,
they also appear periodically, although with a longer periodicity. Besides, the
untrained input patterns can lead to having the system occasionally output
trained patterns. Although the former can be considered to be a PR phenomenon,
the latter is a handicap because we would rather prefer the system to be chaotic
for all untrained patterns - which the AdNN cannot achieve for these settings.
This phenomenon is also pertinent for the M-AdNN, i.e., the output can be
periodic for both trained and untrained inputs.

To complete this historical overview, we mention that in [16], we showed that
the AdNN goes through a spectrum of characteristics (i.e., AM, quasi-chaotic,
and PR) as one of its crucial parameters, α, changes. In particular, it is even
capable of recognizing masked or occluded patterns.

The primary aim of this paper is to show that the M-AdNN, when tuned
appropriately, is capable of demonstrating ideal PR capabilities. Indeed, we shall
argue that this NN, referred to as the Ideal-M-AdNN:

– Can be trained by a set of patterns. This will determine the weights of the
CNN.

– When the Ideal-M-AdNN is presented with a trained pattern (or its noisy
version) at the input, it resonates and yields only this pattern at the output
periodically. We emphasize that, in this case, no other trained pattern is
observed at the output.

– When the Ideal-M-AdNN is presented with an untrained pattern at the
input, it continues to behave chaotically. In this case, none of the trained
patterns is observed at the output - thus yielding the gold standard of chaotic
PR.
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One should remember that the method for setting {wi,j} and {ai} were al-
ready specified for the AdNN in the paper by Adachi and Aihara. But the reader
should remember that we are not working with the AdNN, but rather with the
M-AdNN, in which the state bindings are significantly different. Apart from mak-
ing the changes in the structure, the authors of the M-AdNN also made changes
in the assignment strategies. Our task in this paper is: (a) To demonstrate that
these latter changes are not warranted; (b) To argue that in the paper due to
Adachi and Aihara, the choice of a = 2 is not the best value that can yield
AM properties; and (c) To demonstrate that the value of one of its parameters,
ε (explained presently) that was used, is just a single one of the choices that
can force the system to be chaotic.Thus, the primary contributions of the
paper are:

1. We formalize the requirements of a PR system which is founded on the
theory of chaotic NNs;

2. We enhance the M-AdNN to yield the Ideal-M-AdNN, so that it does, indeed,
possess Chaotic PR properties;

3. We show that the Ideal-M-AdNN does switch from chaos to periodicity when
it encounters a trained pattern, but that it is truly chaotic for all other input
patterns;

4. We present results concerning the stability of the network and its transient
and dynamic retrieval characteristics. This analysis is achieved using eigen-
value considerations, and the Lyapunov exponents;

5. We provide explicit experimental results justifying the claims that have been
made.

We conclude by mentioning that in this paper, we were not so concerned about
the application domain. Rather, our work is intended to be of an investigatory
sort.

2 State of the Art

The AdNN and Its Variants: The AdNN is a network of neurons with weights
associated with the edges, a well-defined Present-State/Next-State function, and
a well-defined State/Output function. It is composed of N neurons which are
topologically arranged as a completely connected graph. A neuron, identified by
the index i, is characterized by two internal states, ηi(t) and ξi(t) (i = 1...N)
at time t, whose values are defined by Equations (1) and (2) respectively. The
output of the ith neuron, xi(t), is given by Equation (3), which specifies the
so-called Logistic Function.

ηi(t+ 1) = kfηi(t) +
N∑

j=1

wijxj(t), (1)

ξi(t+ 1) = krξi(t)− αxi(t) + ai. (2)
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xi(t+ 1) = f(ηi(t+ 1) + ξi(t+ 1)). (3)

where f(·) is defined by f(x) = 1/(1 + e−x). Under certain settings, the AdNN
can behave as a dynamic AM. It can dynamically recall all the memorized pat-
terns as a consequence of an input which serves as a “trigger”. If the external
stimulations correspond to trained patterns, the AdNN can also behave like a
PR system, although with some limitations and weaknesses, as will be explained
below, and as also illustrated in [18].

By invoking a Lyapunov Exponents (LE) analysis, one can show that the
AdNN has 2N negative LEs. In order to obtain a system with positive LEs, Cal-
itoiu et al [15] proposed a model of CNNs, called the M-AdNN, which modifies
the AdNN to enhance its PR capabilities.

The fundamental difference between the AdNN and the M-AdNN in terms
of their Present-State/Next-State equations is that the latter has only a single
global neuron (and its corresponding two global states) which is used for the
state updating criterion for all the neurons. Thus, ηi(t) and ξi(t) are updated
as per:

ηi(t+ 1) = kfηm(t) +

N∑

j=1

wijxj(t) (4)

ξi(t+ 1) = krξm(t)− αxi(t) + ai. (5)

xi(t+ 1) = f(ηi(t+ 1) + ξi(t+ 1)). (6)

Observe that at time t+ 1, the global states are updated with the values of the
states of the single neuron, ηm(t) and ξm(t). The value of m is set to be N . This
is in contrast to the AdNN in which the updating at time t+1 uses the internal
state values of all the neurons at time t. The weight assignment rule for the
M-AdNN is the classical variant wij = 1

p

∑p
s=1 x

s
ix

s
j . This is in contrast to the

AdNN which uses wij =
1
p

∑p
s=1(2x

s
i − 1)(2xs

j − 1). Additionally, Calitoiu et al.
set ai = xs

i , as opposed to the AdNN in which ai = 2+6xs
i . Thus, as the authors

demonstrated, the M-AdNN will be more “receptive” to external inputs, leading
to a chaotic PR system. However, we will illustrate that the parameters Calitoiu
et al. set were not the appropriate ones to yield PR, and show how these settings
must be tuned to yield a more superior PR system. This will be done in Sections
3.1 and 3.2.

We list below the relevant salient features of the M-AdNN in the interest of
completeness and continuity:

1. Being a variant of the AdNN, the M-AdNN is topologically a completely-
connected NN;

2. The main difference between the M-AdNN and the classical auto-AM model
is that unlike the latter, the M-AdNN was seen to be chaotic, this behavior
being a consequence of the dynamics of the underlying system. The M-AdNN
seems to be more representative of the way by which the brain achieves PR;
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3. The most significant difference between the AdNN and the M-AdNN is the
way by which the values of the internal state(s) are updated. The M-AdNN
uses two global internal states, both of which are associated with a single
neuron. By using these global states, the transient phase is reduced to be
approximately 30 [6], which is in contrast to the AdNN’s transient phase –
which can be as large 21, 000;

4. The authors of [6] show that the largest Lyapunov exponent of the AdNN
is λ = log kr < 0 when kr = 0.9, which implies that AdNN is not really
chaotic. In contrast, the M-AdNN has a positive largest Lyapunov exponent
given by λ = 1

2 logN + log kr, rendering it chaotic.
5. The experimental results reported in [6] claimed that the M-AdNN responds

periodically for a trained input pattern. However, it turns out that this
periodic output occurs for both trained and untrained patterns, as can be
seen in [16].

3 The Ideal-M-AdNN

Traditionally, PR systems work with the following model: Given a set of training
patterns, a PR system learns the characteristics of the class of the patterns,
and retains this information either parametrically or non-parametrically. When
a testing sample is presented to the system, a decision of the identity of the
sample class is made using the corresponding “discriminant” function, and this
class is “proclaimed” by the system as the identity of the pattern.

The goal of the field of Chaotic PR systems can be expressed as follows: We
do not intend a chaotic PR system to report the identity of a testing pattern
with such a “proclamation”. Rather, what we want to achieve for a the chaotic
PR system are the following phenomena:

– The system must yield a strong periodic signal when a trained pattern is to
be recognized.

– Further, between two consecutive recognized patterns, none of the trained
patterns must be recalled.

– On the other hand, and most importantly, if an untrained pattern is pre-
sented, the system must be chaotic.

Calitoiu et al were the first researchers who recorded the potential of chaotic
NNs to achieve PR. But unfortunately, their model, as presented in [6], named
the M-AdNN, was not capable of demonstrating all the PR properties mentioned
above. To be more accurate:

– For trained patterns, the M-AdNN reacts exactly as what we want: The
specific input patterns appear at the output periodically.

– However, for untrained patterns, the M-AdNN still yields the unexpected
untrained pattern periodically.
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– In summary, the M-AdNN yields at the output whatever is presented to the
system as its input1, and therefore we claim that the M-AdNN is not good
enough for PR since it is not able to resonate only for the trained patterns.

Nevertheless, the M-AdNN is still a fascinating network since it can produce
periodic output while it is still in the midst of chaotic iterations, which, since it
was previously unreported in the literature, is really a ground-breaking work in
the area of chaotic NNs. Based on the results of Calitoiu et al, we improve the
M-AdNN for it to truly possess Chaotic PR properties. The new model proposed
here is referred as the “Ideal-M-AdNN”.

The topology of the Ideal-M-AdNN is exactly the same as that of the M-AdNN,
which is, on deeper consideration, seen to actually also be a Hopfield-like model.
Structurally, it is also composed of N neurons, topologically arranged as a com-
pletely connected graph.Again, each neuron has two internal states ηi(t) and ξi(t),
and an output xi(t). Just like the M-AdNN, the Present-State/Next-State equa-
tions of the Ideal-M-AdNN are defined in terms of only a single global neuron (and
its corresponding two global states), which, in turn, is used for the state updating
criterion for all the neurons. Thus, η(t) and ξ(t) are updated as per:

ηi(t+ 1) = kfηm(t) +

N∑

j=1

wijxj(t), (7)

ξi(t+ 1) = krξm(t)− αxi(t) + ai, (8)

xi(t+ 1) = f(ηi(t+ 1) + ξi(t+ 1)), (9)

where m is the index of this so-called “global” neuron.
We shall now concentrate on the differences between the two models, which

are the parameters: {wij}, ε and ai. In the work reported in [6], these parameters
were arbitrarily set to be wij = 1

4Σ
4
s=1x

s
ix

s
j , ε = 0.00015 and ai = xi. In this

paper, we will show that these values must not be set arbitrarily. Rather, we
shall address the issue of how these parameters must be assigned their respective
values so as to yield all the properties required of a Chaotic PR system.

3.1 The Weights of the Ideal-M-AdNN

In the interest of clarity, we first argue that the weights assignment Equation
(10) for the M-AdNN is not appropriate. We rather advocate another form of the
Hebbian rule given by Equation (15) instead. The reason is explained as below:
As we have observed above, the M-AdNN uses a form of the Hebbian rule to
determine the weights of the connections in the network. This rule is defined by
the following equation:

1 This phenomenon was not observed nor reported in [6].
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wij =
1

p

p∑

s=1

P s
i P

s
j , (10)

where {P} are the training patterns, P s
i denotes the ith neuron of the sth pattern

P s, and p is the number of training patterns.
At this juncture, we emphasize that the Hebbian rule, Equation (10), is

founded on one fundamental premise: Any pair of learning vectors, P and Q,
must be orthogonal, and thus, for all P and Q, if PT is the transpose of P :

PTQ =

{
0, (P �= Q)

N, (P = Q).
(11)

The reasons why the formula given by Equation (10) is based on the above,
is because of the following:

If P denotes an N-by-1 vector (e.g, the P1 of Figure 8 (a) is a 100-by-1 vector),
Equation (10) can be rewritten as:

W =
1

p

p∑

s=1

P s(P s)T . (12)

Thus, the output for any given input vector P k is:

O = WP k =
1

p

p∑

s=1

P s(P s)TP k

=
1

p

p∑

s=1

P s
[
(P s)TP k

]
=

N

p
P k (13)

As per Equation (11), the output O = N
p P

k is a scalar2 of the input P k. Oth-

erwise, if the learning vectors {P} are not orthogonal, Equation (13) has the
form:

O =
1

p

p∑

s=1

P s[(P s)TP k] =
1

p

(
NP k + Pnoise

)
, (14)

where Pnoise =
∑p

s=1,s�=k bsP
s and bs = (P s)TP k. Obviously, O = N

p P
k if and

only if Pnoise = 0, explaining the rationale for orthogonality.
The need for orthogonality is not so stringent, because, as per the recorded re-

search, when the number of neurons is much larger than the number of patterns,
and the learning vectors are randomly chosen from a large set, the probabil-
ity of having the learning vectors to be orthogonal is very high. Consequently,
Equation (11) is true, albeit probabilistically.

Summary: Based on the above observations, we conclude that for the M-AdNN,
we should not use the Hebbian rule as dictated by the form given in Equation

2 Observe that without loss of generality, we can easily force O = P k instead of
O = N

p
P k, by virtue of a straightforward normalization.
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(10), since the data sets used by both Adachi et al and Calitoiu et al are defined
on {0, 1}N , and the output is further restricted to be in [0, 1] by virtue of the
logistic function. We may easily verify that any pair of the given patterns in
Figure 8 are NOT orthogonal. In fact, this is why Adachi and Aihara computed
the weight by scaling all the patterns to -1 and 1 using the formula given by
Equation (15) instead of (10):

wij =
1

p

p∑

s=1

(2P s
i − 1)(2P s

j − 1). (15)

By virtue of this argument, in this paper, we advocate the use of Equation (15),
to determine the network’s weights.

It is pertinent to mention that since the patterns P are scaled to be in the
range between -1 and 1, it does change the corresponding property of orthogonal-
ity. Actually, it is very interesting to compare the inner product of the so-called
Adachi dataset before and after scaling (please see Table 1). From it we see that
the inner products of any pair of scaled patterns while not being exactly 0, are
very close to 0 – i.e., these patterns are almost orthogonal. In contrast, the inner
products of the corresponding unscaled patterns are very large. Again, this table
confirms that Equation (15) is a more suitable (and reasonable) expression than
Equation (10).

Table 1. The inner products of the patterns of the Adachi set. In the left table, all
patterns are scaled to -1 and 1 by 2P − 1. In the table on the right, all the patterns
are defined on {0, 1}N . The inner products in the table on the left are much smaller
and almost 0, implying that the patterns are almost orthogonal.

P1 P2 P3 P4

P1 100 10 10 6
P2 10 100 -4 4
P3 10 -4 100 12
P4 6 4 12 100

P1 P2 P3 P4

P1 49 27 27 26
P2 27 50 24 26
P3 27 24 50 28
P4 26 26 28 50

3.2 The Steepness, Refractory and Stimulus Parameters

Significance of ε for the AdNN. The next issue that we need to consider
concerns the value of the steepness parameter ε of the output function. From
Section 2 we see that the output function is defined by the Logistic function
f(x) = 1

1+e−x/ε , which is a typical sigmoid function.

One can see that ε controls the steepness of the output. If ε = 0.01, then f(x)
is a normal sigmoid function. If ε is too small, say, 0.0001, the Logistic function
almost degrades to become a unit step function (see Figure 1). The question,
really, is one of knowing how to set the “optimal” value for ε. To provide a
rationale for determining the best value of ε, we concentrate on the Adachi’s
neural model [2] defined by:
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Fig. 1. A graph demonstrating the effect of the parameter ε to change the steepness
of the sigmoidal function. The ε for the dash and solid lines are 0.01 and 0.0001
respectively.

y(t+ 1) = ky(t)− αf(y(t)) + a, (16)

where f(·) is a continuous differentiable function, which as per Adachi et al [2],
is the Logistic function3.

The properties of Equation (16) greatly depend on the parameters k, α, a
and f(·). In order to obtain the full spectrum of the properties represented by
Equation (16), it is beneficial for us to first consider f(·) in terms of a unit step
function, and to work with a fixed point analysis. To do this, we consider a few
distinct cases listed below:

1. If the system has only one fixed point.

– In this case, obviously, y(t) = 0 is not a fixed point of Equation (16) unless
a = 0.

– If Equation (16) has only one positive fixed point, say y0, then the value of
this point can be resolved from Equation (16) as y0 = a−α

1−k . In the paper by
Nagumo and Sato [19], the authors set α = 1, k < 1, and let a vary from 0
to 1. Apparently, the above value of y0 is always negative, which contradicts
our assumption that y0 is a positive fixed point. Similarly, we can see that
Equation (16) does not have any negative fixed points either. In other words,
we conclude that Equation (16) does not have any fixed point.

2. If the system has period-2 points, say y1 and y2 (where y1 �= y2), we see
that these points must satisfy:

{
y2 = ky1 − αf(y1) + a

y1 = ky2 − αf(y2) + a.
(17)

– If 0 is one of the period-2 points (without loss of generality, y1 = 0, y2 �= 0),
then we can solve the above equations to yield the two solutions as:

3 Historically, the original form of this equation initially appeared in the paper by
Nagumo and Sato [19]. The only difference between the function that these re-
searchers used and the one discussed here is the function f(·), since in [19], they
utilized the unit step function instead of the logistic function.
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{
y2 = a
y1 = (k + 1)a− α.

From this, we see that the two points exist if and only if a �= 0 and α =
(1 + k)a.

– If the system has two positive period-2 points (assume y1 > 0, y2 > 0), we
see that the system can be rewritten as:

{
y2 = ky1 − α+ a
y1 = ky2 − α+ a,

which is equivalent to implying that y2 − y1 = k(y1 − y2). Clearly, this
equality cannot hold since y1 �= y2 and k > 0. In an analogous manner we
can conclude that the system does not have two negative period-2 points
either.

– If the system has two period-2 points with different signs (without loss of
generality we can assume that y1 > 0, y2 < 0), we solve Equation (17) as:

{
y1 = a(k+1)−kα

1−k2

y2 = a(k+1)−α
1−k2 .

(18)

Since y1 > 0 and y2 < 0, this yields the inequality:

kα

1 + k
< a <

α

1 + k
. (19)

In Nagumo’s paper [19], the authors set k = 0.5 and α = 1, implying that
the system has period-2 fixed points only when 1/3 < a < 2/3.
From the above, we know the Nagumo-Sato model does not have any fixed
points, but that it rather does have period-2 points. The next question that
we have to resolve is whether it possesses chaotic properties? To determine
this, we have to investigate what happens to the iteration orbits when the
initial point is not exactly on, but close to a period-2 point? Indeed, this
question can be answered by considering the inequality:

∣∣∣∣
∂g(2)(y)

∂y

∣∣∣∣
y=y1

< 1, (20)

where g(y) = ky− αf(y) + a, and f(·) is still a unit step function. A simple
algebraic manipulation displays that the inequality given by Equation (20)
is always true whenever k < 1, implying that whatever the initial condi-
tion, after a sufficiently large number of iterations, the orbits converge to
the period-2 points. In other words, all the period-2 points are attracting,
implying that the system does not demonstrate any chaotic phenomena.

3. If we now consider the period-n orbits, one can see that it is not possible
to resolve the set of equations that generalize from Equations (18) and (19) for
n variables. However, the analysis that corresponds to generalizing the stability
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equation is exactly the same as in Equation (20), and in every case, one can
again show that the inequality is true4. This again leads to the conclusion that
all the period-n orbits are also attracting. This can be verified by considering
the graphs in Figure 2.

The situation is, however, completely different if the unit step function is
replaced by the sigmoid function. This is a relevant issue because, as stated
earlier, the difference between the Nagumo-Sato model and the Adachi model
lies in the output function f(·), where the former uses the unit step function and
the latter uses a sigmoid function. The issue is further accentuated because the
logistic function may degrade to an unit step function if an inappropriate value
of ε is utilized, as shown in Figure 1. Indeed, when ε is very small, the sigmoid
function will “degrade” to the unit step function, leading us to the analysis which
we have just concluded.
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Fig. 2. The period-n orbits (a) and the averaged firing rate (b) of the Nagumo-Sato
model, in which a varies from 0 to 1.

Significance of ε for the M-AdNN. Since the M-AdNN is a modified version
of the AdNN (which uses the Logistic function as the output function), setting
the value of ε is also quite pertinent in our case. As we shall argue now, in order
to enable the system to have chaotic properties, the parameter ε should not be
close to zero.

To demonstrate the role of parameter ε of the Adachi model, as before, we
analyze the behavior of the model starting from fixed points or period-n points.

Let us first analyze whether the Adachi neuron has any fixed points, i.e., if

y(t+ 1) = y(t) = ky(t)− αf(y(t)) + a

4 This has been done for values of n which equal 3, 4 and 5. The general analysis for
arbitrary values of n can also be done using the Schwarz derivative and the period
doubling bifurcation theorem. However, this goes beyond the scope of this paper and
is thus omitted here.
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is ever satisfied. Since this equation is a transcendental equation, obtaining the
exact fixed point(s) is far from trivial. Nevertheless, we are still able to achieve
some analysis on the bifurcation parameters.

As we know, if a fixed point(s) y∗ exists, it should satisfy:

αf(y∗) = ky∗ − y∗ + a.

Our first task is to see if a fixed point y∗ does exist.
To do this, we compose:

F (y) = −αf(y) + (k − 1)y + a, (21)

which is done so that the root of F (y) corresponds to the fixed point of y.
It is easy to observe that following: For any given negative y, f(y) is almost zero

by virtue of its sigmoidal nature. Thus, F (y) ≈ (k − 1)y + a > 0. Similarly, for
any given positive y, (for example, y=1), f(y) is almost unity, again by virtue of
its sigmoidal nature. Thus, F (y) ≈ −α+k−1+a < 0. Since F (y) is a continuous
function over (−∞,∞), and since it changes its sign, there must exist at least one
y∗ satisfying F (y∗) = 0 implying that this value of y∗ is the fixed point.

The next question is: How many fixed points does the system have? This
question can be answered by verifying the monotonicity of Equation (21). Since
f ′(y) = − 1

εf(y)[1− f(y)], we get:

F ′(y) = −α

ε
f(y)[1− f(y)] + k − 1. (22)

Again, since we always have f(y)[1−f(y)] ≈ 0, it implies that F ′(y) ≈ k−1 < 0,
which, in turn means that F (y) is a decreasing function. As a result of the fact
that it is positive on one side of the fixed point, negative on the other side, and
simultaneously always has a negative derivative, we conclude that the Adachi
model has only a single fixed point, y∗.

If y∗ is stable, it should satisfy the condition
∣∣∣∣
dy(t+ 1)

dy(t)

∣∣∣∣
y=y∗

< 1. (23)

From the dynamical form of y(t+ 1), this derivative can be rewritten as
∣∣∣k − α

ε
f(y∗)(1 − f(y∗))

∣∣∣ < 1, (24)

which is equivalent to:
{
αf2(y)− αf(y) + ε(k + 1) > 0

αf2(y)− αf(y) + ε(k − 1) < 0.
(25)

Since each neuron’s output is between 0 and 1, we see that for all values in (0,1)
the inequalities given by Equation (25) are always true. This leads us to the
discriminants:

{
Δ1 = α2 − 4αε(k + 1) < 0

Δ2 = α2 − 4αε(k − 1) > 0.
(26)
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Obviously, since k − 1 < 0, α > 0 and ε > 0, the second inequality is always
true. Concentrating now on the first inequality, we can solve for ε and see that
it has to satisfy:

ε >
α

4(k + 1)
. (27)

Briefly, this states that if the fixed point is stable, ε should be greater than
α/4(k + 1); otherwise, it is not stable.

This condition is experimentally verified in Figures 3 (a), (b) and (c). In
our experiment, the parameters were set to be α = 1, k = 0.5. In this case,
the “tipping point” for ε is 1/6 ≈ 0.1667. As one can very clearly see, if ε =
0.18 > 0.1667, all of the fixed points are stable (Figure 3 (a)); Otherwise, if
ε = 0.15 < 0.1667, there exist period doubling bifurcations5 (Figure 3 (b)). As
ε is further decreased, one can observe chaotic windows (Figure 3 (c)).

We conclude this section by emphasizing that ε cannot be too small, for if
it were, the Adachi neural model would degrade to the Nagumo-Santo model,
which does not demonstrate any chaotic behavior. This is also seen from Figures
4 (a) and (b). In (a), where the parameter ε is 0.015, we can see that the orbit
of the iteration is non-periodic, while in (b), in which ε is 0.00015, the orbit of
the trajectory is forced to have a periodicity of 5. In fact, we have calculated the
whole LE spectrum of the system (16) when it concerns the parameters ε, as
shown in Figure 5 (a). In order to get a better view, we have amplified the graph
in the area ε ∈ [0, 0.04] and in the area ε ∈ [−1.5, 0.5] in (b). As one can see
when ε = 0.015, the LE is positive, and has a value which is approximately 0.3,
which indicates chaos. On the other hand, when ε = 0.00015, the LE is negative.
Of course, there are some other optional values which also lead to chaos, such
as ε = 0.007, 0.008, 0.012 etc can also lead to chaos.

Indeed, our arguments show that the value of ε as set in [15] to be ε = 0.00015,
is not appropriate. Rather, to develop the Ideal-M-AdNN, we still opted to use
a value of ε which is two orders of magnitude larger, i.e., ε = 0.015.

4 Lyapunov Exponents Analysis of the Ideal-M-AdNN

We shall now analyze the Ideal-M-AdNN, both from the perspective of a single
neuron and of the entire network.

As is well known, the LEs describe the behavior of a dynamical system. There
are many ways, both numerically and analytically, to compute the LEs of a dy-
namical system. Generally, for systems with a small dimension, the best way is
to analytically compute it using its formal definition. As opposed to this, for
systems with a high dimension, it is usually not easy to obtain the entire LE
spectrum in an analytic manner. In this case, we have several other alternatives
to judge whether a system is chaotic. One of these is to merely determine the
largest LE (instead of computing the entire LE spectrum) since the existence

5 In this paper, we analyze the bifurcation in a rather simple way. The reader must
note that this could also be achieved by using the Schwarz derivative and the period
doubling bifurcation theorem.
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Fig. 3. This figure shows that as the steepness parameter, ε, varies, the dynamics of
the Adachi neuron changes significantly. In the three figures, the values of ε are 0.18,
0.15 and 0.015 respectively.

−1 0 1 2
−1

−0.5

0

0.5

a

y(
t)

−1 0 1 2
−1

−0.5

0

0.5

a

y(
t)

(a) (b)

Fig. 4. This figure shows that if the value of ε is too small, it will force the orbit of
the trajectory to be periodic (b). The values of ε for (a) and (b) are 0.015 and 0.00015
respectively.
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Fig. 5. This figure shows the LE spectrum of the system. Some values between 0.007 and
0.02may cause the system to be chaotic. The reader should observe that other parametric
settings are: k = 0.5, a = 0.31. The reason why we have used such settings is because
one can observe chaotic windows under these conditions, as shown in Figure 3 (c).

of a single positive LE indicates chaotic behavior. In this setting, this is usually
achieved by using a numerical scheme as described in Algorithm 1. In this algo-
rithm, the basic idea is to follow two orbits that are close to each other, and to
calculate their average logarithmic rate of separation [20–22].

In practice, this algorithm is both simple and convenient if we have the right to
access the equations that govern the system. Furthermore, if it is easy to obtain
the partial derivatives of the system, we can also calculate the LE spectrum by
QR decomposition [20, 23, 22].

We now present the theoretical basis for obtaining the LE spectrum using
the QR decomposition. To do this, in the interest of compactness, we use the
notation that Jt represents the Jacobian matrix at time t, i.e., Jt = J(t), whose
transpose is written as JT

t . Also, x0 is assumed to be a randomly chosen starting
point, and {f(x0), f2(x0), f3(x0) · · · ft(x0)} denotes the trajectory obtained as
a consequence of iterating as per the system’s dynamical equation. Again, to
simplify the notation, we shall use the notation that xk = fk(x0).

As we know, the LEs of a network are defined by the eigenvalues of the limit
of the matrix6

Λ = lim
t→∞[Jt · JT

t ]
1
2t . (28)

Generally, it is hard to compute the limit of Equation (28), which is why one
often invokes the QR decomposition. To achieve this, we note that by the chain
rule,

6 The conditions for the existence of the limit are given by the Oseledec theorem.
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Algorithm 1. Numerical Calculation of the Lyapunov Exponent

1: Start with any initial condition in the basin of attraction.
2: Iterate until the orbit is on the attractor.
3: Select a nearby point (separated by d0, as indicated in [21]. In our work, we set

d0 = 10−12).
4: Advance both orbits one iteration and calculate the new separation d1.
5: Evaluate log |d1/d0| in any convenient base.
6: Readjust one orbit so that its separation is d0 in the same direction as d1.
7: Repeat Steps 4-6 many times and calculate the average of Step 5.

Dft(x0) = J(ft−1(x0)) · · · J(f(x0)) · J(x0),

where J(xi) = Df(x)|x=xi = J(fi(x0)). As clarified in [20, 22], we can rewrite
J0(x0) using its QR decomposition as J0(x0) = Q1R1, where Q1 is orthogonal
implying that Q1 ·QT

1 = I. If we define J∗
k = J(fk−1(x0))Qk−1, we can write its

QR decomposition as J∗
k = QkRk. Thus, J(fk−1(x0)) · Qk−1 = QkRk. Conse-

quently, we obtain J(fk−1(x0)) = QkRkQ
−1
k−1. By applying this equation to the

chain rule, the differential Dft(x0) can be transformed to be:

Dft(x0) = QtRtQ
−1
t−1 ·Qt−1Rt−1Q

−1
t−2 · · ·R1

= QtRt · · ·R1. (29)

The LEs, {λi}, can then be obtained as:

lim
t→∞

1

t
ln |vii(t)| = λi, (30)

where {vii(t)} are the diagonal elements of the product Rt−1Rt−2 · · ·R1.
Again, for the reader’s convenience, the algorithmic details are formally given

in Algorithm 2.

4.1 Numeric Lyapunov Analysis of a Ideal-M-AdNN

We shall now undertake a Lyapunov Analysis of the Ideal-M-AdNN. To do this,
we first undertake the Lyapunov analysis of a single neuron in the interest of
simplicity. Indeed, it can be easily proven that a single neuron is chaotic when
the parameters are properly set.

Consider a primitive component of the Ideal-M-AdNN, where the model of a
single neuron can be described as7:

η(t+ 1) = kfη(t) + wx(t), (31)

ξ(t+ 1) = krξ(t)− αx(t) + a, (32)

x(t+ 1) =
1

1 + e−(η(t+1)+ξ(t+1))/ε
. (33)

7 It should be observed that wii = 1, i = 1, 2, · · · , N for the entire network. For a single
neuron, the value ofw should bew = 1.We should observe that, for a primitive neuron,
there is no difference between the AdNN, the M-AdNN and the Ideal-M-AdNN.
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Algorithm 2. Calculation of the Lyapunov Exponent by QR Decomposition

1: Choose a starting point x0 and compute the Jacobian matrix J0(x0) =
df(x)
dx

at x0.
2: Decompose J0(x0) by the QR decomposition: J0(x0) = Q1 · R1 where Q1 is an

orthogonal matrix and R1 is an upper triangular matrix. Let Υ = R1.
3: Compute the Jacobian matrix at x1, J1(x1) =

df(x1)
dx1

, where x1 = f(x0).
4: Let J∗

2 = J1 · Q1 and decompose J∗
2 using the QR decomposition: J∗

2 = Q2 · R2

where Q2 is also an orthogonal matrix and R2 is an upper triangular matrix. Let
Υ = R2 · Υ .

5: Repeat Steps 3 and 4 t− 1 times till we finally obtain Υ = RtRt−1 · · ·R1.
6: The LE spectrum is defined by the logarithm of the diagonal elements υii of Υ :

λi =
1
t
log |Υii|.

As we know from the records of [2, 5], the external stimulus a is considered
as a constant, i.e., a = 2. In [2, 5], the authors have shown the LE spectrum of
Equation (16) while a varies from 0 to 1. However, for a single Adachi neuron,
the role of a has not yet been discussed. As a matter of fact, most of papers
which concern the Lyapunov analysis of the AdNN and it’s variants focus on the
parameter kf and kr [2, 15, 6, 18, 24]. Indeed, the role of α and a have never
been discussed seriously in the literature.

Figures 6 (a) and (b) show the largest LE spectrum as obtained by Equations
(31)-(33). We can clearly observe that the largest LE fluctuates sharply with a and
α: For some values of a andα, the largest LE is positive and for others it is negative.
From this, we can understand that in all of the papers [2, 15, 6, 18, 24], the values of
a = 2 and α = 10 were really set arbitrarily. Indeed, these parameters could have
been replaced by one of many other values. As a matter of fact, we have verified in
a experimental way that the AdNN possessesmore powerful AM properties when
a = 7. As we can see from Figures 6 (a) and (b), when a = 2 and α = 10, the
largest LE is negative which indicates that there is no chaos. This also explains
why the AdNN converges after a long transient phase — which is a phenomenon
also reported in [2] — approximately 21, 000 iterations8.

4.2 Lyapunov Analysis of the Ideal-M-AdNN

We shall now perform an analysis of the Ideal-M-AdNN (i.e., the entire network)
from the viewpoint of its Lyapunov Exponents.

As we stated earlier in Section 3, the Ideal-M-AdNN originates from the
AdNN and the M-AdNN. It differs from the M-AdNN in its parameter set-
tings wij , ε and ai, which is quite crucial, because the same network can exhibit

8 Elsewhere, we have verified that the size of transient phase varies with the actual
initial input[25].
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Fig. 6. The variation of the Largest Lyapunov Exponents of a single neuron with the
parameters a and α. These two figures are plotted using Algorithm 1. In (a), a varies
from 0 to 10 with a step size of 0.1. In (b), α varies from 0 to 100 with a step size of 1.

completely different phenomena dependent on the settings themselves. Conse-
quently, the theoretical Lyapunov analysis of the Ideal-M-AdNN should be ex-
actly the same as that of the M-AdNN, except that the LEs are evaluated at the
current parameter settings.

As demonstrated in [6], the Jacobian matrix J of the Ideal-M-AdNN (and the
M-AdNN) can be seen to have the form9:

J =

(
J1
ij J

2
ij

J3
ij J

4
ij

)
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 kf 0 · · · 0
...
. . .

...
...

...
. . .

...
0 · · · 0 kf 0 · · · 0
0 · · · 0 0 · · · 0 kr
...
. . .

...
...

. . .
...

...
0 · · · 0 0 · · · 0 kr

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎧
⎨

⎩

kf , 0 < i ≤ N, j = N
kr, N < i ≤ 2N, j = 2N
0, otherwise

where Jn
ij is an N by N matrix, and J1

ij(t) =
∂ηi(t+1)
∂ηj(t)

, J2
ij(t) =

∂ηi(t+1)
∂ξj(t)

, J3
ij(t) =

∂ξi(t+1)
∂ηj(t)

, J4
ij(t) =

∂ξi(t+1)
∂ξj(t)

respectively.

Generally speaking, it is not easy to compute the limit of Equation (28).
However, due to the special form of J that we encounter here, we are able to
calculate the value of Λ easily. As illustrated above,

9 For the interest of brevity, we omit the detailed algebraic steps, but only present
the final results. The details of these expressions can be found in [6]. Since we have
chosen the N th neuron as the global neuron, we see that only the N th column vector
of J1

ij and J4
ij is non-zero.
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Jt =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 ktf 0 · · · 0
...
. . .

...
...

...
. . .

...
0 · · · 0 ktf 0 · · · 0

0 · · · 0 0 · · · 0 ktr
...
. . .

...
...
. . .

...
...

0 · · · 0 0 · · · 0 ktr

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

whence we get:

Λ = lim
t→∞[Jt · (Jt)T ] 1

2t =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

kf · · · kf 0 · · · 0
...
. . .

...
...
. . .

...
kf · · · kf 0 · · · 0
0 · · · 0 kr · · · kr
...
. . .

...
...
. . .

...
0 · · · 0 kr · · · kr

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (34)

By a simple algebraic analysis we see that Λ has three different eigenvalues:
Nkf , Nkr and 0. As a result, the Lyapunov Exponents are:

λ1 = · · ·λN−1 = −∞,

λN = logN + log kf > 0,

λN+1 = · · ·λ2N−1 = −∞,

λ2N = logN + log kr > 0.

In conclusion, the Ideal-M-AdNN has two positive LEs, which indicates that the
network is truly a chaotic network!

At this juncture, we would like to point out that in the work of [6], the authors
took another form of Equation (28) as

Λ = lim
t→∞[(Jt)

T · Jt] 1
2t . (35)

Consequently, the Largest LE is the maximum of the { 1
2 logN+log kf ,

1
2 logN+

log kr}, which is different from ours. However, from a realistic perspective, the
choice of the definition does not matter. Indeed, independent of the definition
we use, the result is consistent: The largest LE is positive which implies that the
network is chaotic.

It’s very interesting to compare this result with the one presented for the
AdNN. Indeed, as we can see from [26], the AdNN has two different LEs: log kf
and log kr. Thus the largest LE is max{log kf , log kr}. One can observe the fol-
lowing from Figure 7 (a): When kr < 0.2, the largest LE is approximately −1.6,
while kr > 0.2, the largest LE is10 log kr. As opposed to this, the largest LE of

10 Please note that due to the fact that the computation is done numerically, there
are some numerical errors, and thus the largest LE is not exactly, but very close to
log kr at some points.
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Fig. 7. The spectrum of the largest LEs of (a) the AdNN and of (b) the Ideal-M-AdNN,
in which we vary kr from 0 to 1 with a step size of 0.02, and where kf = 0.2. Figure
(a) is calculated using Algorithm 1 while (b) is calculated using Algorithm 2.

the Ideal-M-AdNN is always positive, as shown in (b). The difference is that by
binding the states of all the neurons to a single “global” neuron, we force the
Ideal-M-AdNN to have two positive LEs.

5 Chaotic and PR Properties of the Ideal-M-AdNN

We shall now report the properties of the Ideal-M-AdNN. The protocol of our
experiments is quite simple: If the network output resonates a known input
pattern with any periodicity, we deem this pattern to have been recognized from
a chaotic PR perspective. Otherwise, we say that it is unrecognizable. These
properties have been gleaned as a result of examining the Hamming distance
between the input pattern and the patterns that appear at the output. As a
comparison, we also list the simulation results of the M-AdNN. By comparing
the Hamming distance of the Ideal-M-AdNN and the M-AdNN, we can then
conclude which of the schemes performs better when it concerns PR properties.
In this regard, we mention that the experiments were conducted using two data
sets, namely the figures used by Adachi et al given in Figure 8 (a), and the
numeral data sets used by Calitoiu et al [15, 6] given in Figure 8 (b). In both
the cases, the patterns were described by 10× 10 pixel images, and the networks
thus had 100 neurons.
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Fig. 8. The 10× 10 patterns used by Adachi et al (on the top) and Calitoiu et al (at
the bottom). In both figures (a) and (b), the first four patterns are used to train the
network. The fifth patterns are obtained from the corresponding fourth patterns by
including 15% noise in (a) and (b) respectively. In each case, the sixth patterns are the
untrained patterns.
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Before we proceed, we remark that although the experiments were conducted
for a variety of scenarios, in the interest of brevity, we present here only a few
typical sets of results – essentially, to catalogue the overall conclusions of the
investigation.

We discuss the properties of the Ideal-M-AdNN in two different settings: The
NNs AM properties and its PR properties. In all cases, the parameters were set
to be kf = 0.2, kr = 0.9, ε = 0.015, and all internal states ηi(0) and ξi(0) started
from 0. Further, we catalogue our experimental protocols as follows:

1. AM properties: Although the AM properties are not the main issues of this
paper, it is still interesting to examine whether the Ideal-M-AdNN possesses any
AM-related properties. This is because the Ideal-M-AdNN is a modified version
of the AdNN and the M-AdNN. By comparing the differences between the Ideal-
M-AdNN and the AdNN or the M-AdNN, we can obtain a better understanding
of its dynamical properties. In this case, the external stimulus a is a constant,
i.e., a = 2.

2. PR properties: This investigation is really the primary intent of this paper.
In this case, we investigate whether our new network is able to achieve pattern
recognition. This is accomplished by checking whether the output can respond
correctly to different inputs. In our experiments, we tested the network with
known patterns, noisy patterns and with unknown patterns. In this case, the
external stimulus was set to a = 2 + 6P , where P is the input pattern.

5.1 AM Properties

We now examine whether the Ideal-M-AdNN possesses any AM-related proper-
ties for certain scenarios, i.e., if we fix the external input ai = 2 for all neurons.
The observation that we report is that during the first 1,000 iterations (due to
the limitations of the file size, we present here only the first 36 images), the
network only repeats black and white image. This can be seen in Figure 9.

Fig. 9. The visualization of the output of the Ideal-M-AdNN under the external input
ai = 2. We see the output switches between images which are entirely only black or
white.
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It is very easy to understand this phenomenon: First of all, we see that all
the neurons have the same output, 0, at time t (i.e, t = 0). This is true because
we start the iteration with all internal states ηi(0) = 0, ξi(0) = 0 and xi(0) = 0.
As a result, the first image of Figure 9 is completely black11. At the next time
step, ηi(1) = 0, ξi(1) = a > 0, which causes the output of all the neurons to be
xi(1) = f(η+ξ) ≈ 1, which is why we see a completely white image. At the third

time step, we first computed the summation Σj=N
j=1 wijxj(1) where wij is defined

by Equation (15). We can verify that the summation of each line of of the matrix
w is either -0.5 or 0.5. Thus, ηi(2) is either 0.5 or -0.5. Meanwhile, we must note
that α = 10, which results in a negative value for ξi(2) and ηi(2) + ξi(2), and
consequently, xi(1) = f(η+ξ) ≈ 0. This is the reason why we see the third image
of Figure 9 to be completely black. If we follow the same arguments, we see that
at any time instant, the outputs of all the neurons only switch between 1 and
0 synchronically, which means the output image of Figure 9 switches between
black and white, implying that the network possesses no AM properties at all.

As a comparison, we mention that the M-AdNN also does not possess any
AM-related properties. In this regard, the M-AdNN and the Ideal-M-AdNN are
similar.

5.2 PR Properties

The PR properties of the Ideal-M-AdNN are the main concern of this paper. As
illustrated in Section 3, the goal of a chaotic PR system is the following: The
system should respond periodically to trained input patterns, while it should
respond chaotically (with chaotic outputs) to untrained input patterns. We now
confirm that the Ideal-M-AdNN does, indeed, possess such phenomena.

We now present an in-depth report of the PR properties of the Ideal-M-
AdNN’s by using a Hamming distance-based analysis. The parameters that we
used were: kf = 0.2, kr = 0.9, ε = 0.015 and ai = 2+6xi. The PR-related results
of the Ideal-M-AdNN are reported for the three scenarios, i.e., for trained inputs,
for noisy inputs and for untrained (unknown) inputs respectively. We report only
the results for the setting when the original pattern and the noisy version are
related to P4. The results obtained for the other patterns are identical, and
omitted here for brevity.

1. The external input of the network corresponds to a known pattern, say P4.
To report the results for this scenario, we request the reader to observe Figure
10, where we can find that P4 is retrieved periodically as a response to the
input pattern. This occurs 391 times in the first 500 iterations. On the other
hand, the other three patterns never appear in the output sequence. The
phase diagrams of the internal states that correspond to Figure 10 are shown
in Figure 11, where the x-axes are η86(t)+ ξ86(t) (the neuron with the index
86 has been set to be the global neuron), and where the y-axes are ηi(t) +
ξi(t) where the index i = 80, · · · , 88 (i is chosen randomly) respectively.

11 In our visualization, the value 0 means “black” while 1 means “white”.
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Fig. 10. PR properties: The Hamming distance between the output and the trained
patterns. The input was the pattern P4. Note that P4 appears periodically, i.e., the
Hamming distance is zero at periodic time instances.

From Figures 10 and 11, we can conclude that the input pattern can be
recognized periodically if it is one of the known patterns. Furthermore, from
Figure 11, we verify that the periodicity is 14, because all the phase plots
have exactly 14 points.
As a comparison, we report that the M-AdNN is also able to recognize known
patterns under certain conditions. However, this is not a phenomenon that
we can “universally” ascribe to the M-AdNN because it fails to pass the
necessary tests!
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Fig. 11. PR properties: The phase diagrams of the internal states corresponding to
Figure 10

2. The external input of the network corresponds to a noisy pattern, in this
case P5, which is a noisy version of P4.
Even when the external stimulus is a garbled version of a known pattern
(in this case P5 which contains 15% noise), it is interesting to see that only
the original pattern P4 is recalled periodically. In contrast, the others three
known patterns are never recalled. This phenomenon can be seen from the
Figure 12. By comparing Figures 10 and 12, we can draw the conclusion that
the Ideal-M-AdNN can achieve chaotic PR even in the presence of noise and
distortion.
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Fig. 12. PR properties: The Hamming distance between the output and the trained
patterns. The input was the pattern P5. Note that P4 (not P5) appears periodically,
i.e., the Hamming distance is zero at periodic time instances.

As in the previous case, the phase diagrams of the internal states that corre-
spond to Figure 12 are shown in Figure 13, where the x-axes are η86(t)+ξ86(t)
(the neuron with the index 86 has been set to be the global neuron), and
where the y-axes are ηi(t) + ξi(t) where the index i = 80, · · · , 88 (i is cho-
sen randomly) respectively. As before, from Figure 13, we verify that the
periodicity is 14, because all the phase plots have exactly 14 points.
Indeed, even if the external stimulus contains some noise, the Ideal-M-AdNN
is still able to recognize it correctly, by resonating periodically! Furthermore,
we have also tested the network using noisy patterns which contained up to
33% noise. We are pleased to report that it still resonates the input correctly,
as shown in Figure 14. If the noise is even higher, i.e., more than 34%, the
PR properties tend to gradually disappear. In this case, understandably,
the simulation results are almost the same as when does the testing with
unknown patterns.

3. The external input of the network corresponds to an unknown pattern, P6.
In this case we investigate whether the Ideal-M-AdNN is capable of dis-
tinguishing between known and unknown patterns. Thus, we attempt to
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Fig. 13. PR properties: The phase diagrams of the internal states corresponding to
Figure 12
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Fig. 14. The PR properties of the Ideal-M-AdNN when it encounters a noisy pattern
which contain up to 33% noise. Observe that the system still resonates the correspond-
ing known pattern correctly.
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Fig. 15. PR properties: The Hamming distance between the output and the trained
patterns. The input pattern was P6.
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Fig. 16. PR properties: The phase diagrams of the internal states corresponding to
Figure 15
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stimulate the network with a completely unknown pattern. In our experi-
ments, we used the pattern P6 of Figure 8 (a) initially used by Adachi et
al. From Figure 15 we see that neither those known patterns nor unknown
pattern appear.
As in the previous two cases, the phase diagrams of the internal states that
correspond to Figure 15 are shown in Figure 16, where the x-axes are η86(t)+
ξ86(t) (where, as before, the neuron with the index 86 has been set to be
the global neuron), and where the y-axes are ηi(t) + ξi(t) where the index
i = 80, · · · , 88 (i is chosen randomly) respectively. The lack of periodicity
can be observed from Figure 16, since the plots themselves are dense.
By way of comparison, we can see that the M-AdNN fails to pass this test,
as can be seen from Figure 17. In this figure, the input is an unknown
pattern, P6. We expect the network to respond chaotically to this input.
Unfortunately, one sees that it still yields a periodic output. In short, no
matter what the input is, the M-AdNN always yields the input pattern itself,
and that, periodically. Obviously, this property cannot be deemed as PR.
As opposed to this, the Ideal-M-AdNN responds intelligently to the various
inputs with correspondingly different outputs, each resonating with the input
that excites it – which is the crucial “golden” hallmark characteristic of a
Chaotic PR system. Indeed, the switch between “order” (resonance) and
“disorder” (chaos) seems to be consistent with Freeman’s biological results
– which, we believe, is quite fascinating!
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Fig. 17. The Hamming distance between the output and the trained patterns of the
M-AdNN. The output repeats the input pattern, P6, periodically.

6 Conclusions

In this paper we have concentrated on the field of Chaotic Pattern Recognition
(PR), which is a relatively new sub-field of PR. Such systems, which have only re-
cently been investigated, demonstrate chaotic behavior under normal conditions,
and “resonate” (i.e., by presenting at the output a specific pattern frequently)
when it is presented with a pattern that it is trained with. This ambitious goal,
with the requirement of switching from chaos to periodicity is, indeed, most
demanding.
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While the Adachi Neural Network (AdNN) [1–5] has properties which are
pseudo-chaotic, it also possesses limited PR characteristics. As opposed to this,
the Modified Adachi Neural Network (M-AdNN) proposed by Calitoiu et al [6],
is a fascinating NN which has been shown to possess the required periodicity
property desirable for PR. In this paper, we have explained why the PR prop-
erties claimed in [6] are not as powerful as originally claimed. Thereafter, we
have argued for the basis for setting the parameters of the M-AdNN. By appro-
priately tuning the parameters of the M-AdNN for its weights, steepness and
external inputs, we have obtained a new NN which we have called the Ideal-M-
AdNN. Using a rigorous Lyapunov analysis, we have demonstrated the chaotic
properties of the Ideal-M-AdNN. We have also verified that the system is truly
chaotic for untrained patterns. But most importantly, we have shown that it is
able to switch to being periodic whenever it encounters patterns with which it
was trained (or noisy versions of the latter).

Apart from being quite fascinating, as far as we know, the theoretical and
experimental results presented here are both unreported and novel. However, as
the reader can observe, we were not so concerned about the application domain.
Rather, our work was to be of an investigatory sort. Thus, although the data sets
that we used were rather simplistic, they were used to submit a prima facie case.
On one hand, if we could achieve our goal with these data sets, we believe that
this research direction has the potential of initiating new research avenues in PR
and AM. On the other hand, from a practical perspective, we believe that this is
also beneficial for other computer science applications such as image searching,
content addressed memory etc., and this is considered open at present. However,
although we have not yet developed any immediate applications, we are willing
to collaborate with others (and also provide them with our code) to do this.
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