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Abstract

In this paper, we present a fundamental study on the stationarity and ergodicity of eight classes of sum-of-cisoids
(SOC) processes for the modeling and simulation of frequency-nonselective mobile Rayleigh fading channels. The
purpose of this study is to determine which classes of SOC models enable the design of channel simulators that
accurately reproduce the channel’s statistical properties without demanding information on the time origin or the
time-consuming computation of an ensemble average. We investigate the wide-sense stationarity, first-order
stationarity of the envelope, mean ergodicity, and autocorrelation ergodicity of the underlying random processes
characterizing the different classes of stochastic SOC simulators. The obtained results demonstrate that only the class
of SOC models comprising cisoids with constant gains, constant frequencies, and random phases is defined by a set of
stationary and ergodic random processes. The analysis presented here can easily be extended with respect to the
modeling and simulation of frequency-selective single-input single-output (SISO) and multiple-input multiple-output
channels. For the case of frequency-selective SISO channels, we investigate the stationarity and ergodicity in both
time and frequency of 16 different classes of SOC simulation models. The findings presented in this paper can be used
in the laboratory as guidelines to design efficient simulation platforms for the performance evaluation of modern
mobile communication systems.

1 Introduction
Computer simulators have become fundamental tools
for the design, test, and optimization of modern mobile
communication systems [1]. They provide a powerful,
affordable, and reproducible means to assess the system
performance. An important component of any computer
simulator employed for system analysis is the model cho-
sen to simulate the channel. This is indeed a critical
component as most of the problems affecting the per-
formance of wireless communication systems, e.g., inter-
symbol interference and cross modulation, are caused by
the channel [2]. There exist several different approaches
to the design of fading channel simulators, such as those
described in [3-6]. While the underlying methodology
may differ, the principal objective of all stochastic chan-
nel simulators is the same: synthesizing a random process
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that can efficiently be realized on a software or hard-
ware simulation platform under the constraint that its
statistical properties resemble those of a nonrealizable
reference channel model. A typical nonrealizable refer-
ence channel model is, for example, the Rayleigh fading
channel model under isotropic scattering conditions ([7],
Sec. 2.1.2). A realizable random process constitutes the
so-called channel simulation model ([8], Sec. 4.1).
Two often desirable properties of any stochastic simu-

lation model for small-scale multipath radio channels are
stationarity and ergodicity. These properties enable the
channel simulator to accurately emulate the channel’s sta-
tistical properties on the basis of a single simulation run
(ergodicity) without requiring information on the time
origin (stationarity). In the strict sense, a channel sim-
ulator is stationary if all marginal and joint probability
density functions (PDFs) of the underlying random pro-
cess characterizing the simulation model are independent
of a time-shift ([9], pp. 297–303). On the other hand,
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a channel simulator is ergodic if the time averages of the
simulation model are equal to the ensemble averages ([9],
Sec. 13.1). These conditions are too stringent and can
hardly be met in practice. However, the information about
the channel’s statistics of order higher than 2 is rarely
required to assess the performance of wireless commu-
nication systems. Hence, for most practical purposes, it
suffices if the channel simulator is wide-sense station-
ary (WSS) and ergodic with respect to (w.r.t.) the mean
value and the autocorrelation function (ACF). In [10,11],
the advantages of ergodic channel simulators versus non-
ergodic simulation models for the performance analysis
w.r.t. the bit error probability have been demonstrated.
More specifically, in [10], this observation has been done
for noncoherent differential phase shift keying since the
bit error probability depends on the ACF of the under-
lying complex Gaussian process. If the channel simulator
is nonergodic, time ACF of the simulation model does
not fit well with ensemble ACF of the reference model. In
this case, one needs to average over different realizations
of the underlying stochastic process to increase the per-
formance, which also drastically increases the complexity
of the channel simulator. Indeed, an important aspect of
the statistical characterization of a channel simulator con-
sists in determining whether the simulation model is a
WSS, a mean-ergodic (ME), or an autocorrelation-ergodic
(AE) random process. For some applications, such as the
evaluation of diversity systems ([7], Ch. 6), it is also very
important to know whether the envelope of the simula-
tion model is a first-order stationary (FOS) process. An
interesting study of the relation between the coherence
interval and the spectral spread of a zero-mean WSS pro-
cess and its application to mobile fading channels can be
found in [12]. In addition, an investigation of the time
interval within which the fading process is expected to ful-
fill the stationarity assumption in real-world channels can
be found in [13,14].
Among the variety of channel simulation models pro-

posed in the literature, those based on Rice’s sum-of-
sinusoids (SOS) principle [15,16] have widely been in use
as a basis for the design of multipath radio channel simu-
lators (e.g., see [17-21]). In the conventional SOS channel
simulation approach, it is assumed that the inphase and
quadrature (IQ) components of the channel’s complex
envelope are statistically independent Gaussian processes.
Under this consideration, the simulation of the channel’s
IQ components is carried out by means of two uncor-
related SOS processes having disjoint sets of parameters
- gains, frequencies, phases, and number of sinusoids.
This approach has been applied for over four decades
to the simulation of a variety of mobile fading channels,
ranging from simple single-input single-output (SISO)
channels [18] to sophisticated multiple-input multiple-
output (MIMO) channels [19]. It is important to notice

that the conventional SOS simulation approach suffers
from a serious limitation, that is, it can only be used to
simulate fading channels characterized by symmetrical
Doppler power spectral densities (DPSDs), leaving aside
the more realistic case of channels having asymmetrical
DPSDs.a A solution to overcome this limitation provides
a variation of the conventional SOS approach, where a
finite sum of complex sinusoids (cisoids) is used to sim-
ulate the channel’s complex envelope [22]. Basically, SOC
models differ from conventional SOSmodels such that the
IQ components of the former models are characterized
by the same set of parameters [22]. This feature of SOC
models enables the simulation of fading channels having
symmetrical and asymmetrical DPSDs [23-26]. Another
important feature of SOC models is that they have a clear
physical meaning as they are related to the electromag-
netic plane wave model [8,27]. This is in contrast to the
conventional SOS model, which cannot be interpreted
physically.
Despite the significant attention that SOC channel sim-

ulation models have attracted, a comprehensive study on
their stationary and ergodic properties is still lacking in
the literature. To close this gap, we present in this paper
a systematic analysis of the wide-sense stationarity, first-
order stationarity of the envelope, mean ergodicity, and
autocorrelation ergodicity of eight fundamental classes
of SOC simulation models for frequency-nonselective
SISO Rayleigh fading channels. This analysis can easily
be extended with respect to the modeling and simula-
tion of frequency-selective SISO andMIMO channels. For
the case of frequency-selective SISO channels, we pro-
vide in this paper a concise investigation of the stationarity
and ergodicity in both time and frequency of 16 different
classes of SOC simulation models. The presented results
are intended to serve as guidelines for the design of effi-
cient channel simulators for the performance evaluation
of mobile communication systems.
The rest of the paper is organized as follows. In

Section 2, we discuss the related work and highlight the
novelty and importance of our paper. In Sections 3 and 4,
we briefly review the reference model and the SOCmodel,
respectively. In Section 5, we summarize the characteris-
tics of stationary and ergodic processes. Section 6 intro-
duces eight classes of SOC-based simulation models and
investigates their stationary and ergodic properties. An
extension to frequency-selective channels can be found in
Section 7. A discussion of the obtained results and their
applications to widely used parameter computation meth-
ods can be found in Section 8. Finally, the conclusions are
drawn in Section 9.

2 Related work
Even though the stationary and ergodic properties of SOC
channel simulation models are not fully known, those
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of conventional SOS simulators have thoroughly been
analyzed in [28-30]. In these papers, the authors have
analyzed the ME and AE properties of eight classes of
deterministic and stochastic SOS simulation models for
Rayleigh fading channels. They also investigated the wide-
sense stationarity and the first-order stationarity of the IQ
components of all eight classes of SOS channel simulators.
It is shown in [28-30] that an SOS process is stationary
and ergodic if and only if the sinusoids’ gains and Doppler
frequencies are constant quantities and the phases are
random variables. We notice, nonetheless, that the con-
clusions drawn in these papers cannot be extrapolated to
the case of SOC simulators. The reason is that the inves-
tigations performed in [28-30] were carried out in the
framework of the conventional SOS channel simulation
approach, implying the condition that the IQ components
of the channel simulation model are uncorrelated. This
condition does not necessarily hold for SOC simulators,
meaning that their IQ components are in general corre-
lated [31]. It is precisely this particular feature that enables
SOC models to simulate fading channels characterized
not only by symmetrical DPSDs but also by asymmetri-
cal ones. It is therefore necessary to revisit the analysis in
[28-30] to shed light on the peculiar and important case
of SOC channel simulators. The results presented in this
paper will demonstrate that the distribution of the enve-
lope and the autocorrelation properties of SOC models
differ completely from what is known from conventional
SOS models.

3 The referencemodel
A Rayleigh process ζ (t) is defined as

ζ (t) = |μ1(t) + jμ2(t)|, (1)

where μ1(t) and μ2(t) are zero-mean real Gaussian pro-
cesses, each with variance σ 2

0 .b The process μ(t) =
μ1(t) + jμ2(t) will be considered as a complex Gaus-
sian process. In general, it is usually assumed that μ1(t)
and μ2(t) are uncorrelated, but in this paper, we have
allowed them to be correlated. The correlation properties
are described by the correlation matrix in ([32], eq. (17)).
Here, a process X(t) is called a complex Gaussian pro-
cess if each finite-dimensional vector [X(t1), . . . ,X(tn)]T
is a complex Gaussian vector. A complex random vec-
tor is said to be Gaussian if its real and imaginary
parts are jointly Gaussian [33]. Therein, it is shown
that if the process μ(t) is proper (or circularly sym-
metric), the density of the mentioned complex Gaussian
vector is completely described by the ACF rμμ(τ) �
E{μ∗(t)μ(t + τ)}.

According to the correlation model proposed by Clarke
in [34] for two-dimensional scattering environments, the
ACF rμμ(τ) of μ(t) can be expressed as

rμμ(τ) = 2σ 2
0

2π∫
0

pα(α)e j2π fmax cos(α)τ dα . (2)

In the equation above, fmax is referred to as the maxi-
mum Doppler frequency, and pα(α) denotes the density
function of the angle of arrival (AOA) of the incoming
waves.

4 The SOCmodel
It is well known (see, e.g., [35-37]) that Rayleigh fading
channel models, characterized by the complex Gaussian
process μ(t), can be modeled and efficiently simulated
using the SOC process

μ̂(t) =
N∑

n=1
cne j(2π fnt+θn), (3)

where N denotes the number of cisoids, cn is called
the gain, fn designates the Doppler frequency, and θn
denominates the phase of the nth cisoid. The phases θn
are independent and identically distributed (i.i.d.) ran-
dom variables, each following a uniform distribution over
[ 0, 2π). It is worth mentioning that the frequencies fn
are related to the maximum Doppler frequency fmax and
AOAs αn of the waves that reach the receiver antenna by
means of the transformation

fn = fmax cos(αn), n = 1, . . . ,N . (4)

These parameters have a strong influence on the tempo-
ral correlation properties of SISO channels and also on
the spatial and temporal correlation properties of MIMO
channels. Furthermore, in [25], it is shown that the cisoids’
frequencies are directly related to the angles of departure
of transmitted waves in mobile-to-mobile double Rayleigh
fading channels.
Owing to the central limit theorem ([9], p. 278), the

stochastic process μ̂(t) tends to the complex Gaussian
processμ(t) asN → ∞. From the results obtained in [22],
it is straightforward to show that the obtained process
μ(t) is proper. If the phases θn are outcomes (realizations)
of a random generator with a uniform distribution in the
interval (0, 2π ], then the stochastic process μ̂(t) results in
the sample function

μ̃(t) =
N∑

n=1
cne j(2π fnt+θn), (5)

which is completely deterministic.
The SOC model depends on three types of parameters,

namely the gains cn, the frequencies fn, and the phases θn.
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In principle, each type of these parameters can be intro-
duced as a random variable or constant. Hence, altogether,
23 = 8 classes of SOCmodels for Rayleigh fading channels
can be defined. If all parameters are constants, we obtain
a completely deterministic process, denoted by ζ̃ (t) =
|μ̃(t)| = |μ̃1(t) + jμ̃2(t)|. As opposed to this, at least one
random variable is required to obtain a stochastic pro-
cess, denoted by ζ̂ (t) = |μ̂(t)| = |μ̂1(t) + jμ̂2(t)|. For the
performance evaluation of SOC simulation models with
random/constant parameters, it is important to know
the conditions for which the resulting stochastic process
ζ̂ (t) is stationary. Also, it is important to know under
which conditions the stochastic process μ̂(t) results in an
ergodic process. In the next section, we will review briefly
the characteristics of stationary and ergodic processes.

5 Stationarity and ergodicity
A stochastic process ζ̂ (t) is called strict-sense stationary
(SSS) ([9], p. 387) if its statistical properties are invariant
to a shift of the origin. This means that the stochastic pro-
cesses ζ̂ (t) and ζ̂ (t + c) have the same statistics for any
c ∈ R. It follows that themth-order density function must
satisfy the equation

p
ζ̂
(x1, . . . , xm; t1, . . . , tm) = p

ζ̂
(x1, . . . , xm;

t1 + c, . . . , tm + c),
(6)

for all values of t1, . . . , tm, and c.
A stochastic process ζ̂ (t) is called FOS ([9], p. 392) if the

density of ζ̂ (t) satisfies

p
ζ̂
(x; t) = p

ζ̂
(x; t + c), (7)

for all values of t and c. This implies that the mean and the
variance of ζ̂ (t) are independent of time. If a stochastic
process is SSS, then the process is also FOS. The inverse
statement is not always true. For simplicity and brevity,
we only investigate the FOS properties of ζ̂ (t). A stochas-
tic process ζ̂ (t) is called asymptotically FOS if the density
p

ζ̂
(x; t + c) tends to a limit, which is independent of c as

c → ∞ ([9], p. 392).
A stochastic process μ̂(t) is said to be WSS ([9], p. 388)

if μ̂(t) satisfies the following conditions:

1. The mean of μ̂(t) is constant, i.e.,

E{μ̂(t)} = mμ̂ = const . (8)

2. The ACF of μ̂(t) depends only on the time difference
τ = t2 − t1, i.e.,

rμ̂μ̂(t1, t2) = rμ̂μ̂(τ ) (9)

where

rμ̂μ̂(t1, t2) = E{μ̂∗
(t1)μ̂(t2)} (10)

rμ̂μ̂(τ ) = E{μ̂∗
(t)μ̂(t + τ)} . (11)

Note that all SSS processes are WSS, but the converse
need not be true. Following ([38], p. 422), we define a
stochastic process μ̂(t) to be asymptotically WSS if its
mean is constant and its ACF rμ̂μ̂(t1, t2) depends only on
the time difference τ = t2 − t1 as t1 → ±∞ and/or
t2 → ±∞.
Furthermore, a stochastic process μ̂(t) is said to be

mean ergodic if its ensemble average mμ̂ equals the time
averagemμ̃ of μ̃(t), i.e.,

mμ̂ = mμ̃ := lim
T→∞

1
2T

T∫
−T

μ̃(t) dt . (12)

The stochastic process μ̂(t) is said to be autocorrelation
ergodic if its ACF rμ̂μ̂(τ ) equals the time ACF rμ̃μ̃(τ ) of
μ̃(t), i.e.,

rμ̂μ̂(τ ) = rμ̃μ̃(τ ) := lim
T→∞

1
2T

T∫
−T

μ̃∗(t)μ̃(t + τ) dt .

(13)

6 Classification of channel simulators
In this section, eight classes of SOC simulation models for
frequency-nonselective Rayleigh fading channels will be
introduced, seven of which are stochastic simulationmod-
els and one is completely deterministic. Before presenting
a detailed analysis of the various classes of simulation
models, some constraints are imposed on the three types
of parameters. These constraints are as follows.
In cases, where the gains cn, frequencies f n, and phases

θn are random variables, it is reasonable to assume that
their values are real and they are mutually indepen-
dent. Also, it is assumed that the gains c1, c2, . . . , cN
are i.i.d. random variables. The same is assumed for the
sequences of random Doppler frequencies f 1, f 2, . . . , f N
and phases θ1, θ2, . . . , θN .
Whenever the gains cn and frequencies fn are con-

stant quantities, it is assumed that they are different from
0, such that cn �= 0 and fn �= 0 hold for all values
of n = 1, 2, . . . ,N . Further constraints might also be
imposed on the SOC model. For example, it is required
that all frequencies fn are different. This latter condition
is introduced to avoid correlations within the inphase
(quadrature) component of μ̃(t).

6.1 Class I channel simulators
The channel simulators of Class I are defined by a set of
deterministic processes μ̃(t) (see (5)) with constant gains
cn, constant frequencies fn, and constant phases θn. Since
all model parameters are constants, there is no meaning
to examine the stationary and ergodic properties of this
class of channel simulators. However, in the following, the
mean and ACF of μ̃(t) will be investigated.
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Since μ̃(t) is a deterministic process, its mean mμ̃ has
to be determined using time averages instead of statistical
averages. Using (5) and taking into account that fn �= 0,
we obtain mμ̃ = 0. Hence, we realize that the determin-
istic process μ̃(t) of the simulation model has the same
mean value as the stochastic process μ(t) of the reference
model, i.e.,

mμ̃ = mμ = 0 . (14)

Similarly, the ACF rμ̃μ̃(τ ) of μ̃(t) has to be determined
using time averages. By taking into account that all fre-
quencies fn are different, we can express the ACF rμ̃μ̃(τ )

of μ̃(t) in the following form

rμ̃μ̃(τ ) =
N∑

n=1
c2ne j2π fnτ . (15)

The mean mμ̃ and the ACF rμ̃μ̃(τ ) will be intensively
used in the next subsections.

6.2 Class II channel simulators
The channel simulators of Class II are defined by a set
of stochastic processes ζ̂ (t) with constant gains cn, con-
stant frequencies fn, and random phases θn, which are
uniformly distributed in the interval (0, 2π ]. Using our
notation, the complex process μ̂(t) = μ̂1(t) + jμ̂2(t) can
be written as

μ̂(t) =
N∑

n=1
cne j(2π fnt+θn) . (16)

In [22], it has been shown that the density p
ζ̂
(z) of the

stochastic process ζ̂ (t) = |μ̂(t)| can be represented as

p
ζ̂
(z) = (2π)2z

∞∫
0

[ N∏
n=1

J0(2π |cn|y)
]
J0(2πzy)y dy .

(17)

Also, in [22], it has been shown that the density p
ζ̂
(z)

approaches the Rayleigh density as N → ∞ and cn =
σ0

√
2/N .

The mean mμ̂ and the ACF rμ̂μ̂(τ ) of μ̂(t) can be easily
expressed as

mμ̂ = 0, (18)

rμ̂μ̂(τ ) =
N∑

n=1
c2ne j2π fnτ . (19)

With reference to (17), we notice that the density p
ζ̂
(z)

is independent of time. Furthermore, from (18) and (19),
we can realize that conditions 1 and 2 (see (8) and (9))
are fulfilled, respectively. Hence, the stochastic process
ζ̂ (t) is FOS, and the stochastic process μ̂(t) is WSS. A
specific realization of the random phases θn converts the

stochastic process μ̂(t) into a deterministic process (sam-
ple function) μ̃(t). This allows us to interpret Class I as
a subset of Class II. The stochastic process μ̂(t) is ME
since the identity mμ̂ = mμ̃ holds. Also, the stochastic
process μ̂(t) is AE. This statement follows from a com-
parison of (19) and (15), which reveals that the criterion
rμ̂μ̂(τ ) = rμ̃μ̃(τ ) is fulfilled.

6.3 Class III channel simulators
The channel simulators of Class III are defined by a set of
stochastic processes ζ̂ (t) with constant gains cn, random
frequencies f n, and constant phases θn. Hence, the com-
plex process μ̂(t) = μ̂1(t) + jμ̂2(t) has the following form

μ̂(t) =
N∑

n=1
cne j(2π f nt+θn) . (20)

To obtain the density p
ζ̂
(z; t) of the stochastic process

ζ̂ (t), we continue as follows. In the first step, we consider
a single complex cisoid at a fixed time instant t = t0. Thus,

μ̂n(t0) = cne j(2π f nt0+θn) (21)

describes a complex random variable. From [29], in the
limit |t0| → ∞, the density pμ̂1,n(x1) of μ̂1,n(t0) =
Re{μ̂n(t0)} = cn cos(2π f nt0 + θn) can be expressed as

pμ̂1,n(x1) =
{ 1

π |cn|
√

1−(x1/cn)2
, |x1| < cn

0, |x1| ≥ cn .
(22)

Now, by following the same procedure as described in
[22], we can conclude that the density p

ζ̂
(z;±∞) is given

by (17). If t is finite, we must replace the expression in (22)
by ([29], Eq. (32)). In this case, it turns out that the density
p

ζ̂
(z; t) depends on time t so that the stochastic process

ζ̂ (t) is not FOS. Thus, we can conclude that a Class III
channel simulator is an asymptotically FOS process.
In the following, we assume that the random frequen-

cies f n are given by

f n = fmax cos(αn) (23)

where the AOAs αn, n = 1, . . . ,N , are i.i.d. random
variables, each having a density pα(α) identical to that
characterizing the reference model’s AOA statistics.
The mean mμ̂(t) of the stochastic process μ̂(t) is

obtained by computing the statistical average of (20) with
respect to the random characteristics of the frequencies
f n. Hence, we can write

mμ̂(t) = rμμ(t)
2σ 2

0

N∑
n=1

cne jθn , (24)

where rμμ(t) is the ACF of the reference model described
in (2). From (24), we see that themeanmμ̂(t) changes gen-
erally with time. To avoid this, we impose the following
boundary condition on the phases
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N∑
n=1

cne jθn = 0 . (25)

The condition above can easily be fulfilled if the num-
ber of cisoids N is even; the gains cn are constants given
by cn = σ0

√
2/N , and θn = −θn+N/2 = π/2 for n =

1, . . . ,N/2. If the condition in (25) is fulfilled, then the
mean mμ̂(t) is not only constant but also equal to zero,
i.e.,mμ̂ = 0.
The ACF rμ̂μ̂(t1, t2) of μ̂(t) is obtained by substituting

(20) in (10). In general, rμ̂μ̂(t1, t2) is time-shift sensitive
since it is given as

rμ̂μ̂(t1, t2) =
N∑

n=1

⎡
⎢⎣ c2n
2σ 2

0
rμμ(τ) + 1

4σ 4
0
r∗μμ(t1)rμμ(t2)

N∑
m=1
m�=n

cncme j(θn−θm)

⎤
⎥⎦ .

(26)

However, rμ̂μ̂(t1, t2) becomes time-shift insensitive if we
impose the following boundary condition on the gains and
phases

N∑
n=1

N∑
m=1
m�=n

cncme j(θn−θm) = 0 . (27)

In case that the above boundary condition is fulfilled
and the gains cn are equal to cn = σ0

√
2/N , we easily see

that the ACF rμ̂μ̂(τ ) of the stochastic simulation model
is identical to the ACF rμμ(τ) of the reference model.
In Appendix 1, it is shown that conditions (25) and

(27) cannot be simultaneously satisfied. However, if we
let t1 → ±∞ and/or t2 → ±∞, then the ACFs r∗μμ(t1)
and/or rμμ(t2) tend to zero, and hence the ACF rμ̂μ̂(t1, t2)
depends only on the time difference τ = t2 − t1. In this
case, together with the condition given in (25), we can
conclude that the stochastic process μ̂(t) is an asymp-
totically WSS process. Furthermore, if t → ±∞, then
μ̂(t) tends to an asymptotically FOS process. The stochas-
tic process μ̂(t) is ME since the condition mμ̂ = mμ̃

is fulfilled. However, the stochastic processes μ̂(t) of
Class III channel simulators are always non-AE because
the inequality rμ̂μ̂(τ ) �= rμ̃μ̃(τ ) holds.

6.4 Class IV channel simulators
The channel simulators of Class IV are defined by a set
of stochastic processes ζ̂ (t) with constant gains cn, ran-
dom frequencies f n, and random phases θn, which are
uniformly distributed in the interval (0, 2π ]. In this case,
the complex process μ̂(t) = μ̂1(t) + jμ̂2(t) is given by

μ̂(t) =
N∑

n=1
cne j(2π f nt+θn) . (28)

The density p
ζ̂
(z) of ζ̂ (t) = |μ̂(t)| is still given by (17),

as the random frequencies f n have no effect on the density

p
ζ̂
(z) in (17). The meanmμ̂(t) is given by (18). If the gains

cn are equal to cn = σ0
√
2/N and the frequencies f n are

given by (23), then it is straightforward to show that the
ACF rμ̂μ̂(τ ) of the stochastic simulation model is identical
to the ACF rμμ(τ) of the reference model, i.e., rμ̂μ̂(τ ) =
rμμ(τ). The stochastic processes μ̂(t) of Class IV chan-
nel simulators are non-AE since the inequality rμ̂μ̂(τ ) �=
rμ̃μ̃(τ ) holds.

6.5 Class V channel simulators
A Class V channel simulator is determined by a stochastic
process ζ̂ (t) with random gains cn, constant frequencies
fn, and constant phases θn. Thus, the complex process
μ̂(t) = μ̂1(t) + jμ̂2(t) has the following form

μ̂(t) =
N∑

n=1
cne j(2π fnt+θn) . (29)

In Appendix 2, it is shown that the density p
ζ̂
(z; t) of the

stochastic process ζ̂ (t) = |μ̂(t)| is given by

p
ζ̂
(z; t) = 2πz

2π∫
0

∞∫
0

⎡
⎣ N∏

n=1

∞∫
−∞

(30)

pc(y)e j2πry cos(2π fnt+θn−θ) dy

⎤
⎦ J0(2πzr)r drdθ

where pc(·) denotes the density of the gains cn. From the
equation above, we realize that the density p

ζ̂
(z; t) is a

function of time. Hence, the stochastic process ζ̂ (t) is not
an FOS process.
In the following, we will impose on the stochastic chan-

nel simulator that the i.i.d. random variables cn have zero
mean and variance σ 2

c , i.e., mc = E{cn} = 0 and σ 2
c =

Var{cn} = E{c2n}. Thus, for the meanmμ̂(t) of the stochas-
tic process μ̂(t), we obtainmμ̂(t) = 0. The ACF rμ̂μ̂(t1, t2)
of μ̂(t) can be expressed as

rμ̂μ̂(t1, t2) =
N∑

n=1

⎡
⎢⎣(σ 2

c + m2
c )e j2π fnτ +

N∑
m=1
m�=n

m2
c e j(2π(fnt2−fmt1)+θn−θm)

⎤
⎥⎦ .

(31)

By taking into account that the gains cn have zero mean,
i.e.,mc=0, we obtain

rμ̂μ̂(t1, t2) = rμ̂μ̂(τ )

= σ 2
c

N∑
n=1

e j2π fnτ . (32)

Despite the fact that the ACF of μ̂(t) depends only on
the time difference τ = t2 − t1 if mc = 0, the stochas-
tic process μ̂(t) turns out to be non-AE as the inequality
rμ̂μ̂(τ ) �= rμ̃μ̃(τ ) holds.



Hogstad et al. EURASIP Journal onWireless Communications and Networking 2013, 2013:125 Page 7 of 15
http://jwcn.eurasipjournals.com/content/2013/1/125

6.6 Class VI channel simulators
The channel simulators of Class VI comprise a set of
stochastic processes ζ̂ (t) with random gains cn, constant
frequencies fn, and random phases θn. In this case, the
complex process μ̂(t) = μ̂1(t) + jμ̂2(t) is of type

μ̂(t) =
N∑

n=1
cne j(2π fnt+θn) . (33)

In order to find the density p
ζ̂
(z) of ζ̂ (t) = |μ̂(t)| of

Class VI channel simulators, we make use of the condi-
tional density p

ζ̂
(z|cn = cn) of Class II channel simu-

lators. The density p
ζ̂
(z) of Class VI channel simulators

can then be obtained by averaging the conditional den-
sity p

ζ̂
(z|cn = cn) over the distribution pc(y) of the N

i.i.d. random variables c1, c2, . . . , cN , i.e.,

p
ζ̂
(z) =

∞∫
−∞

· · ·
∞∫

−∞
p

ζ̂
(z|c1 = y1, . . . , cN = yN )

N∏
n=1

pc(yn) dy1 · · · dyN

= (2π)2z
∞∫
0

⎡
⎣ ∞∫

−∞
pc(y)J0(2π |y|)ν dy

⎤
⎦
N

J0(2πzν) ν dν .

(34)

From (34), we can conclude that the density p
ζ̂
(z) is inde-

pendent of time. Hence, the stochastic process ζ̂ (t) is FOS.
Themeanmμ̂(t) of the stochastic process μ̂(t) is still given
by (18) since the behavior of the random gains cn has no
effect on the mean in (18).
The ACF rμ̂μ̂(τ ) of the stochastic process μ̂(t) can be

expressed as

rμ̂μ̂(τ ) = (σ 2
c + m2

c )
N∑

n=1
e j2π fnτ . (35)

Without imposing any specific distribution on the random
gains cn, we can conclude that the stochastic process μ̂(t)
is non-AE since the inequality rμ̂μ̂(τ ) �= rμ̃μ̃(τ ) holds.

6.7 Class VII channel simulators
This class of channel simulators involves all stochastic
processes ζ̂ (t) = |μ̂(t)| with random gains cn, random
frequencies f n, and constant phases θn, i.e.,

μ̂(t) =
N∑

n=1
cne j(2π f nt+θn) . (36)

To obtain the density p
ζ̂
(z) of the stochastic process

ζ̂ (t), we consider first the case t → ±∞. The density p
ζ̂
(z)

can be considered as the conditional density p
ζ̂
(z|cn = cn)

obtained for Class III channel simulators. By following the
same procedure described in SubSection 6.6, we can con-
clude that the density p

ζ̂
(z) is given by (34). If t is finite, we

have to repeat the procedure described in SubSection 6.6
using ([29], Eq. (32)) instead of (22). In this case, it turns

out that the density p
ζ̂
(z; t) is a function of t. Hence, the

stochastic processes ζ̂ (t) of Class VII channel simulators
are asymptotically FOS processes.
The mean mμ̂(t) of this class of channel simulators is

given by

mμ̂(t) = mcrμμ(t)
2σ 2

μ

N∑
n=1

e jθn . (37)

It follows from (37) that the mean value is time indepen-
dent if any of the boundary conditions mc = 0, t → ±∞,
or (25) are fulfilled.
Let us assume that the random frequencies f n are given

by (23). Then, the ACF rμ̂μ̂(t1, t2) of the stochastic pro-
cess μ̂(t) is obtained by computing the statistical average
of (31) with respect to the random characteristics of the
frequencies f n. Thus, we obtain

rμ̂μ̂(t1, t2) = N(σ 2
c + m2

c )

2σ 2
0

rμμ(τ) + m2
c

4σ 4
0
r∗μμ(t1)rμμ(t2)

N∑
n=1

N∑
m=1
m�=n

e j(θn−θm) .

(38)

From the equation above, it follows that the ACF
rμ̂μ̂(t1, t2) depends only on the time difference τ = t2 − t1
if we impose on this class of channel simulators any of
the boundary conditions mc = 0 or (27). In addition,
similar to the explanations given in SubSection 6.3, we
can conclude that the ACF rμ̂μ̂(t1, t2) depends only on
the time difference τ = t2 − t1 if t1 → ±∞ and/or
t2 → ±∞. Furthermore, remember from SubSection 6.3
that the conditions (25) and (27) cannot be fulfilled simul-
taneously. If any of the boundary conditions mc = 0 or
(27) is fulfilled and if σ 2

c = 2σ 2
0 /N − m2

c , then rμ̂μ̂(t1, t2)
in (38) reduces to

rμ̂μ̂(t1, t2) = rμ̂μ̂(τ ) = rμμ(τ), (39)

which states that the channel simulators of Class VII and
the reference model have identical correlation properties.
However, the stochastic process μ̂(t) is non-AE since the
inequality rμ̂iμ̂i(τ ) �= rμ̃iμ̃i(τ ) holds.

6.8 Class VIII channel simulators
The channel simulators of Class VIII are defined by a set
of stochastic processes ζ̂ (t) = |μ̂(t)| with random gains
cn, random frequencies f n, and random phases θn, i.e.,

μ̂(t) =
N∑

n=1
cne j(2π f nt+θn) . (40)

The density p
ζ̂
(z) of the stochastic process ζ̂ (t) is given

by (34) because the random behavior of the frequencies
f n has no influence on p

ζ̂
(z). Hence, a Class VIII channel

simulator is FOS.
For this class of channel simulators, it is straightforward

to show that the mean mμ̂(t) of the stochastic process
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μ̂(t) is constant and equal to zero, i.e., mμ̂ = 0. From
(38), we can easily obtain the ACF rμ̂μ̂(τ ) for this class
of channel simulators by taking into account the random
characteristics of the phases θn, i.e.,

rμ̂μ̂(τ ) = N(σ 2
c + m2

c )

2σ 2
0

rμμ(τ) . (41)

Hence, rμ̂μ̂(τ ) = rμμ(τ) holds if σ 2
c = 2σ 2

0 /N − m2
c .

Note that in contrast to Class VII channel simulators, the
ACF of Class VIII channel simulators only depends on
the time difference τ = t2 − t1 even if mc �= 0. However,
the channel simulators of Class VIII prove to be non-AE
since the inequality rμ̂iμ̂i(τ ) �= rμ̃iμ̃i(τ ) holds.

7 Extension with respect to frequency selectivity
In this section, we extend our fundamental study on the
stationarity and ergodicity of SOC simulation models for
frequency-nonselective channels to SOC simulationmod-
els for frequency-selective channels. The time-variant
impulse response, denoted by h̃(τ ′, t), of deterministic
SOC simulation models for frequency-selective channels
can be expressed in the equivalent complex baseband by
the following ([8], Eq. (3.9))

h̃(τ ′, t) =
N∑

n=1
cne j(2π fnt+θn)δ(τ ′ − τ ′

n), (42)

where τ ′
n is the propagation delay of the nth path. For rea-

sons of causality, we impose that τ ′
n ≥ 0 for n = 1, . . . ,N .

Furthermore, the time-variant channel transfer function,
denoted by H̃(f ′, t), is obtained by taking the Fourier
transform of h̃(τ ′, t) with respect to τ ′, i.e.,

H̃(f ′, t) =
∞∫

−∞
h̃(τ ′, t)e−j2π f ′τ ′ dτ ′

=
N∑

n=1
cne j(2π fnt+θn−2π f ′τ ′

n) . (43)

The time-variant channel transfer function H̃(f ′, t)
depends on four types of parameters, namely the gains
cn, the frequencies fn, the phases θn, and the propagation
delays τ ′

n. Each of these parameters can be defined either
as a random variable or as a constant quantity. Hence,
altogether, 24 = 16 classes of SOC models for frequency-
selective Rayleigh fading channels can now be defined.
The ACF, denoted by r̃HH(f ′, f ′ + ν′; t, t + τ), of the time-
variant channel transfer function H̃(f ′, t), defined by ([8],
Eq. (7.144))

r̃HH (f ′, f ′ + ν′; t, t + τ) = lim
T→∞

1
2T

T∫
−T

H̃∗(f ′, t)H̃(f ′ + ν′, t + τ) dt,

(44)

is called the time-frequency correlation function. After
substituting (43) in (44) and taking into account that all
frequencies fn are supposed to be different, we obtain

r̃HH(ν′, τ) =
N∑

n=1
c2ne j(2π fnτ−2πν′τn) . (45)

From (45), we can easily express the frequency correlation
function r̃HH(ν′) and the time correlation function r̃HH(τ )

as

r̃HH(ν′) = r̃HH(ν′, 0)

=
N∑

n=1
c2ne−j2πντ ′

n (46)

and

r̃HH(τ ) = r̃HH(0, τ)

=
N∑

n=1
c2ne j2π fnτ , (47)

respectively. We notice that the two expressions in (46)
and (47) are dual to each other. The duality allows us
to deduce the properties of the frequency correlation
function r̃HH(ν′) directly from the properties of the time
correlation function r̃HH(τ ) if we replace the determinis-
tic (random) frequencies fn(f n) by deterministic (random)
propagation delays τ ′

n(τ
′
n). After a straightforward inves-

tigation of the wide-sense stationarity, mean ergodicity,
autocorrelation ergodicity with respect to both frequency
and time, and the first-order stationarity of the envelope
of the underlying random processes characterizing the 16
different classes of frequency-selective SOC simulators,
we obtain the results presented in Table 1. For reasons of
brevity, we have omitted the detailed calculations leading
to the results in Table 1.

8 Discussion and applications to the design of
channel simulators

Based on the results presented in the previous sections, we
can analyze and compare the stationary and ergodic prop-
erties of the most relevant frequency-nonselective and
frequency-selective SOC channel simulators proposed
in the literature. In [39], Schulze proposed a stochastic
SOC model with random delays, constant gains, random
frequencies, and random phases to simulate wideband
Rayleigh fading channels satisfying the wide-sense sta-
tionary uncorrelated scattering (WSSUS) condition ([40],
Sec. 2.3). This model, which is inspired by the Monte
Carlo approach for the simulation of physical and math-
ematical systems, was refined and further developed by
Höher in [41]. The channel simulators by Schulze and
Höher can be categorized into the 12th class of frequency-
selective SOC simulationmodels. They are therefore char-
acterized by a WSS and ME random process having an
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Table 1 Classes of frequency-selective SOCmodels and their stationary and ergodic properties

Class Delays Gains Freq. Phases WSS ME AE FOS

Freq. Time Freq. Time Freq. Time Time-Freq. Time

I Det. Det. Det. Det. - - - - - - - -

II Det. Det. Det. Rand. Yes Yes Yes Yes Yes Yes Yes Yes

III Det. Det. Rand. Det. No/Yesc No/Yesc No/Yesc No/Yesc No/Yesc No No No/Yesc

IV Det. Det. Rand. Rand. Yes Yes Yes Yes Yes No No Yes

V Det. Rand. Det. Det. No/Yese No/Yese No/Yese No/Yese No No No No

VI Det. Rand. Det. Rand. Yes No/Yese Yes Yes No No No Yes

VII Det. Rand. Rand. Det. No/Yese No/Yese No/Yese No/Yese No No No No/Yesc

VIII Det. Rand. Rand. Rand. Yes Yes Yes Yes No No No Yes

IX Rand. Det. Det. Det. No/Yesa No/Yesa No/Yesa No/Yesa No No/Yesa No No/Yesa

X Rand. Det. Det. Rand. Yes Yes Yes Yes No Yes No No/Yesb

XI Rand. Det. Rand. Det. No/Yesa No/Yesa No/Yesa/c/d No/Yesa/c/d No No No No/Yesc

XII Rand. Det. Rand. Rand. Yes Yes Yes Yes No No No Yes

XIII Rand. Rand. Det. Det. No/Yesa/e No/Yesa/e No/Yesa/e No/Yesa/e No No No No

XIV Rand. Rand. Det. Rand. Yes Yes Yes Yes No No No Yes

XV Rand. Rand. Rand. Det. No/Yesa/c/e No/Yesa/c/e No/Yesa/c/d/e No/Yesa/c/d/e No No No No/Yesc

XVI Rand. Rand. Rand. Rand. Yes Yes Yes Yes No No No Yes

Freq., frequency; WSS, wide-sense stationary; ME, mean-ergodic; AE, autocorrelation ergodic; FOS, first-order stationary; Rand., random; Det., deterministic.a Only in the limit f ′ → ±∞; b Only in the limit f ′ → 0; c Only in the
limit t → ±∞; d If the boundary condition

∑N
n=1 cn exp{jθn} = 0 is satisfied; e If the mean of the random gains is equal to zero.
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FOS envelope. However, from the results presented in
Section 7, we can conclude that the channel simulators
developed by Schulze and Höher are not AE. This is
graphically demonstrated in Figure 1, where we present a
comparison between the ensemble ACF and the time ACF
of the channel simulator proposed in [41] with N = 20
cisoids, σ 2

0 = 1, and fmax = 100 Hz. Here, we assume
that all the delays are equal to zero so we only consider
frequency-nonselective channels. The curves depicted in
this figure were obtained by considering the simulation of
a mobile fading channel satisfying the isotropic scatter-
ing condition. Unless stated otherwise, the same setup is
considered for all simulation examples presented through-
out this section. Figure 2 provides a comparison between
the Rayleigh distribution and the envelope PDF of the
SOC model in [41] evaluated at three randomly chosen
observation time instants t1, t2, and t3. The graphs shown
in Figure 2 demonstrate that the envelope of the SOC
simulation model is an FOS process.
A different type of frequency-nonselective SOC model

was introduced in [42] by Crespo and Jimenez to simulate
WSSUS channels by applying a harmonic decomposition
technique to compute the model parameters. The SOC
simulator considered in that paper is defined by cisoids
with constant (null) phases, constant frequencies, and
random gains, where it is assumed that the cisoids’ gains
have zero mean. The underlying simulation model is thus
a Class V SOC process that satisfies the conditions for
wide-sense stationarity and mean ergodicity. However, it
does not fulfill the conditions for autocorrelation ergod-
icity, and its envelope is not an FOS process. This is
numerically demonstrated in Figures 3 and 4, where we
have again considered the simulation of a mobile fading

Figure 1 Ensemble and time ACFs of the Class III SOC channel
simulator proposed in [39,41].

Figure 2 Comparison between Rayleigh distribution and
envelope PDF of the Class III SOC channel simulator proposed in
[39,41].

channel under isotropic scattering conditions. The graphs
presented in Figures 3 and 4 where obtained by setting the
relevant parameters p and T of the method in [42] equal
to p = 0.05 and T = 20/fmax. For this simulation setup,
the resulting number of cisoids in SOCmodel equalsN =
281. It should be mentioned that the computational com-
plexity by applying a harmonic decomposition technique
has been addressed in [43].
The authors of [44] proposed a deterministic simula-

tor for direction-selective and frequency-selective mobile
radio channels. The generated waveforms of the simulator

Figure 3 Ensemble and time ACFs of the Class V SOC channel
simulator proposed in [42].
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Figure 4 Comparison between Rayleigh distribution and
envelope PDF of the Class V SOC channel simulator proposed in
[42].

can be interpreted as sample functions of the frequency-
selective Class II SOC model having cisoids with ran-
dom phases uniformly distributed over the interval
(0, 2π ]. A channel simulator of frequency-nonselective
or frequency-selective Class II SOC model corresponds
in practice to scenarios where the scatterers around the
receiver introduce constant gains and random phases.
Furthermore, in these scenarios, the AOAs of the incom-
ing waves are considered as constants due to the constant
Doppler frequencies. Frequency-selective SOC channel
models of Class II play an important role in the design
of measurement-based channel simulators [45,46]. The
correlation functions of such channel simulators match
the correlation functions of measured channels accu-
rately over a wide range determined by the length of
the measured data. This can be achieved using the iter-
ative nonlinear least square approximation method [47],
which results in constant delays, constant gains, and
constant Doppler frequencies, corresponding to constant
AOAs. As the phases have no influence on the corre-
lation functions, they are usually assumed to be i.i.d.
uniform random variables. The assumption of constant
AOAs has been applied in the well-known one-ring scat-
tering model as demonstrated in [48,49]. Therein, the
statistical properties of the presented channel simulator
can be fitted nearly perfectly to the corresponding sta-
tistical properties of a reference model where the AOAs
are continuous random variables with a given distribu-
tion. Hence, by considering constant AOAs in the channel
simulator, we are able to simulate a large number of dif-
ferent propagation environments. From Sections 6 and 7,
it follows that a random process characterizing a channel

simulator as a frequency- nonselective or frequency-
selective Class II SOC model is WSS, ME, and AE [49].
In addition, the envelope of the generated complex wave-
forms proves to be an FOS process. These observations
are supported by the simulation results shown in Figures 5
and 6, where we present plots of the ensemble ACF,
time ACF, and envelope PDF of the frequency-selective
Class II SOC simulation model proposed in [44]. For
the simulation results presented in Figures 5 and 6, we
have again considered the case that all the delays are
equal to zero.
Building upon the simulation models introduced in

[39,41,42,44], other researchers have developed new
parameter computation methods to increase the simula-
tor’s accuracy and to reduce the simulation setup time.
The characteristics of some noteworthy parameter com-
putationmethods are summarized in Table 2.We refer the
interested reader to [8,26,36] for a detailed discussion on
the performance of the parameter computation methods
listed in Table 2.
Before closing this section, it is worth noticing that the

stationary and ergodic properties of the eight classes of
frequency-nonselective stochastic SOC and SOS mod-
els bear strong similarities as one may observe from
the results presented in this paper and those obtained
in [28-30]. A summary of the results obtained in
this paper and those presented in [28-30] is given in
Table 3.
This table shows that there exist some subtle but impor-

tant differences between SOC and SOS models. For
example, we have demonstrated that the SOC models of
Class III are strictly non-WSS processes, whereas the SOS

Figure 5 Ensemble and time ACFs of the Class II SOC channel
simulator proposed in [44].
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Figure 6 Comparison between Rayleigh distribution and
envelope PDF of the Class II SOC channel simulator proposed in
[44].

models of Class III are WSS if some boundary conditions
are fulfilled [29]. On the other hand, we have shown that
the SOC models of Class V are WSS if the random gains
of the cisoids have zero mean. In contrast, it is demon-
strated in [30] that the SOS models of Class V are strictly
non-WSS.

9 Conclusions
In this paper, we provided a comprehensive analysis of
the stationary and ergodic properties of eight classes of
deterministic and stochastic SOC simulation models for
frequency-nonselective mobile Rayleigh fading channels.
We conclusively demonstrated that only the class defined
by SOC models having cisoids with constant gains, con-
stant Doppler frequencies, and random phases enables
the design of channel simulators possessing the desired
WSS, ME, AE, and FOS properties. In practice, this cor-
responds to scenarios where the scatterers around the

receiver introduce constant gains and random phases.
Furthermore, in these scenarios, the AOAs of the incom-
ing waves are considered as constants due to the constant
Doppler frequencies. Also, such a channel simulator can
have nearly the same statistical properties as a given ref-
erence model where the AOAs are random variables with
a given distribution. Furthermore, such a channel sim-
ulator that is extended to frequency-selective channels
plays an important role in the design of measurement-
based channel simulators. Hence, the channel simulator
can be applied to a wide range of different propagation
environments. The main focus of our work is on provid-
ing a solid and comprehensive framework that researchers
can use to determine if a particular class of SOC mod-
els is well suited for the simulation of a given type of
channel. For example, if one aims to simulate a fading
channel having an FOS envelope, then it follows from
the results presented in this paper that the SOC mod-
els of Class V are not a suitable option. A comparison
with the results obtained in other papers for the stationary
and ergodic properties of conventional SOSmodels shows
that the stochastic SOC models and the SOS models have
similar properties. However, there exist some important
differences between the properties of both types of sim-
ulation models. Furthermore, we investigated the WSS,
ME, AE, and FOS properties of SOC processes for the
modeling and simulation of frequency-selective channels.
Our investigations are of fundamental importance for
the modeling and simulation of both SISO and MIMO
channels.
The ergodic properties of Class II simulators for both

frequency-nonselective and frequency-selective channels
hold, provided that the lengths of the generated wave-
forms (sample functions) are infinite. Unfortunately, this
condition cannot be fulfilled in practice. In order to deter-
mine whether the aforementioned properties hold under
realistic simulation conditions, it is necessary to revisit the
analysis presented in this paper by considering waveforms
of finite length. We leave this important open problem for
future research.

Table 2 Overview of parameter computationmethods for SOCmodels and statistical properties of resulting channel
simulators

Parameter computational method Class WSS ME AE FOSa

Monte Carlo method [39,41] IV Yes Yes No Yes

Harmonic decomposition technique [42] V Yes Yes No No

Lp-norm method [44] II Yes Yes Yes Yes

Method by Zheng [24] IV Yes Yes No Yes

Extended method of exact Doppler spread [25] II Yes Yes Yes Yes

Generalized method of equal areas [26] II Yes Yes Yes Yes

Riemann summethod [36] II Yes Yes Yes Yes

aFOS property refers to the envelope.
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Table 3 Classes of SOC and SOSmodels and their stationary and ergodic properties

Class Gains Frequency Phases WSS ME AE FOS

I SOC Det. Det. Det. - - - -

I SOS Det. Det. Det. - - - -

II SOC Det. Det. Rand. Yes Yes Yes Yes

II SOS Det. Det. Rand. Yes Yes Yes Yes

III SOC Det. Rand. Det. No/Yesa,b No/Yesa No No/Yesb

III SOS Det. Rand. Det. No/Yesc,d,e No/Yesc,d No No/Yesb,c,d,e

IV SOC Det. Rand. Rand. Yes Yes No Yes

IV SOS Det. Rand. Rand. Yes Yes No Yes

V SOC Rand. Det. Det. No/Yesf No/Yesf No No

V SOS Rand. Det. Det. No No/Yesf No No

VI SOC Rand. Det. Rand. Yes Yes No Yes

VI SOS Rand. Det. Rand. Yes Yes No Yes

VII SOC Rand. Rand. Det. No/Yesb/f No/Yesa/b/f No No/Yesb

VII SOS Rand. Rand. Det. No/Yesc,d,e No/Yesf/c,d No No/Yesb,c,d,e

VIII SOC Rand. Rand. Rand. Yes Yes No Yes

VIII SOS Rand. Rand. Rand. Yes Yes No Yes

WSS, wide-sense stationary; ME, mean-ergodic; AE, autocorrelation ergodic; FOS, first-order stationary; Rand., random; Det., deterministic. aIf the boundary condition∑N
n=1 cn exp{jθn} = 0 is satisfied; bOnly in the limit t → ±∞; cIf the density of the random Doppler frequencies is an even function; dIf the boundary condition∑Ni
n=1 cos(θi,n) = 0 is satisfied; eIf the boundary condition

∑Ni
n=1 cos(2θi,n) = 0 is satisfied; f If the mean value of the random gains is equal to zero.

Appendix 1
In this appendix, we will prove that the boundary condi-
tions in (25) and (27) cannot be satisfied simultaneously.
To that end, we observe that the equation in (27) is
equivalent to

N∑
n=1

cne jθn
N∑

m=1
cme−jθm −

N∑
n=1

c2n = 0 . (48)

Now, if (25) holds, then we have from (48) that
N∑

n=1
c2n = 0 . (49)

The equation above poses a condition that cannot be sat-
isfied because the cisoids’ gains cn are different from zero,

and therefore,
N∑

n=1
c2n > 0. This concludes the proof.

Appendix 2
In the following, we derive the density function of a
stochastic process ζ̂ (t) with random gains cn, constant
frequencies fn, and constant phases θn. The starting point
for the derivation of the density of the stochastic process
ζ̂ (t) = |μ̂(t)| is a single complex cisoid of the form

μ̂n(t) = cne j(2π fnt+θn) . (50)

For fixed values of t = t0, μ̂1,n(t0) = Re{μ̂n(t)} =
cn cos(2π fnt0 + θn) and μ̂2,n(t0) = Im{μ̂n(t)} =

cn sin(2π fnt0 + θn) represent two dependent random vari-
ables. From ([9], Eq. (5-18)), the density pμ̂1,n(x1; t0) of
μ̂1,n(t0) can be expressed as

pμ̂1,n(x1; t0) = pc(x1/ cos(2π fnt0 + θn))

| cos(2π fnt0 + θn)| , (51)

where pc(·) denotes the common density of the gains cn.
Using ([50], Eq. (3.15)), the joint density pμ̂1,nμ̂2,n(x1, x2; t0)
of the dependent random variables μ̂1,n(t0) and μ̂2,n(t0)
can be obtained as

pμ̂1,nμ̂2,n(x1, x2; t0) = pμ̂1,n(x1; t0)δ(x2 − g(x1; t0)) (52)

where g(x1; t0) = x1 tan(2π fnt0 + θn). The joint charac-
teristic function 
μ̂1,nμ̂2,n(ν1, ν2; t0) of the random vari-
ables μ̂1,n(t0) and μ̂2,n(t0) is defined by the Fourier
transformation


μ̂1,nμ̂2,n(ν1, ν2; t0) =
∞∫

−∞

∞∫
−∞

pμ̂1,nμ̂2,n

(x1, x2; t0)e j2π(ν1x1+ν2x2) dx1dx2 .

(53)

After substituting (52) in (53) and carrying out some
algebraic computations, we find


μ̂1,nμ̂2,n(ν1, ν2; t0) =
∞∫

−∞
pc(x1)e j2πν1x1 cos(2π fnt0+θn)

e j2πν2x1 sin(2π fnt0+θn) dx1 .
(54)
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Since we have assumed that the gains cn are i.i.d. ran-
dom variables, it follows that the quantities μn(t0) are
also i.i.d. random variables. Hence, the joint character-
istic function 
μ̂1μ̂2(ν1, ν2; t0) of μ̂1(t0) and μ̂2(t0) can
be expressed as the product of the joint characteristic
functions 
μ̂1,nμ̂2,n(ν1, ν2; t0) of μ̂1,n(t0) and μ̂2,n(t0), i.e.,


μ̂1μ̂2(ν1, ν2; t0) =
N∏

n=1

μ̂1,nμ̂2,n(ν1, ν2; t0) . (55)

From this and the two-dimensional inversion formula
for Fourier transforms, it follows that the joint den-
sity pμ̂1μ̂2(x1, x2; t0) of the statistically dependent random
variables μ̂1(t0) and μ̂2(t0) can be expressed as

pμ̂1μ̂2(x1, x2; t0)=
∞∫

−∞

∞∫
−∞

⎡
⎣ N∏

n=1

∞∫
−∞

pc(y)e j2πν1y cos(2π fnt0+θn)

× e j2πν2y sin(2π fnt0+θn) dy

⎤
⎦

e−j2π(ν1x1+ν2x2) dν1dν2 . (56)

If we now transform the Cartesian coordinates (x1, x2)
into polar coordinates (z,ϕ) by means of x1 = z cosϕ and
x2 = z sinϕ, then we obtain the joint density p

ζ̂ ϑ̂
(z,ϕ; t0)

of the envelope ζ̂ (t0) = |μ̂(t0)| and the phase ϑ̂(t0) =
arg{μ̂(t0)} as

p
ζ̂ ϑ̂

(z,ϕ; t0) = zpμ̂1μ̂2(z cosϕ, z sinϕ; t0)

= z
∞∫

−∞

∞∫
−∞

⎡
⎣ N∏
n=1

∞∫
−∞

pc(y)e j2πν1y cos(2π fnt0+θn)

× e j2πν2y sin(2π fnt0+θn) dy

⎤
⎦

× e−j2πz(ν1 cosϕ+ν2 sinϕ) dν1dν2, (57)

for z ≥ 0 and ϕ ∈ (−π ,π). Finally, the density p
ζ̂
(z; t0) of

the envelope ζ̂ (t0) can be obtained from the joint density
p

ζ̂ ϑ̂
(z, θ ; t0) by integrating over ϕ. By following this pro-

cedure, using ([51], Eq. (3.937.2)) and transforming the
Cartesian coordinates (ν1, ν2) into polar coordinates (r, θ),
we finally obtain

p
ζ̂
(z; t0) = 2πz

2π∫
0

∞∫
0

⎡
⎣ N∏

n=1

∞∫
−∞

pc(y)e j2πry cos(2π fnt0+θn−θ)

dy

⎤
⎦ J0(2πzr)r drdθ .

(58)

Endnotes
aWe notice, nonetheless, that the conventional SOS

simulation approach can be applied to the simulation of
fading channels with asymmetrical DPSDs if the
conventional approach is used in connection with the
Hilbert transform ([8], Sec. 6.1.4).

bFor clarity, we will use bold letters to indicate
stochastic processes as well as random variables, and
normal letters are used for deterministic processes
(sample functions) and realizations (outcomes) of
random variables.
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