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Abstract There are currently two fundamental paradigms
that have been used to enhance the convergence speed of
Learning Automata (LA). The first involves the concept of
utilizing the estimates of the reward probabilities, while
the second involves discretizing the probability space in
which the LA operates. This paper demonstrates how both
of these can be simultaneously utilized, and in particular,
by using the family of Bayesian estimates that have been
proven to have distinct advantages over their maximum like-
lihood counterparts. The success of LA-based estimator al-
gorithms over the classical, Linear Reward-Inaction (LRI )-
like schemes, can be explained by their ability to pursue
the actions with the highest reward probability estimates.
Without access to reward probability estimates, it makes
sense for schemes like the LRI to first make large explor-
ing steps, and then to gradually turn exploration into ex-
ploitation by making progressively smaller learning steps.
However, this behavior becomes counter-intuitive when pur-
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suing actions based on their estimated reward probabili-
ties. Learning should then ideally proceed in progressively
larger steps, as the reward probability estimates turn more
accurate. This paper introduces a new estimator algorithm,
the Discretized Bayesian Pursuit Algorithm (DBPA), that
achieves this by incorporating both the above paradigms.
The DBPA is implemented by linearly discretizing the ac-
tion probability space of the Bayesian Pursuit Algorithm
(BPA) (Zhang et al. in IEA-AIE 2011, Springer, New York,
pp. 608–620, 2011). The key innovation of this paper is
that the linear discrete updating rules mitigate the counter-
intuitive behavior of the corresponding linear continuous up-
dating rules, by augmenting them with the reward probabil-
ity estimates. Extensive experimental results show the su-
periority of DBPA over previous estimator algorithms. In-
deed, the DBPA is probably the fastest reported LA to date.
Apart from the rigorous experimental demonstration of the
strength of the DBPA, the paper also briefly records the
proofs of why the BPA and the DBPA are ε-optimal in sta-
tionary environments.

Keywords Learning automata · Pursuit schemes ·
Bayesian reasoning · Estimator algorithms · Discretized
learning · ε-optimality

1 Introduction

Learning Automata (LA) has been widely studied as a “bare
bones” model of reinforcement learning. The fastest LA al-
gorithms to date are members of the family of Estimator
Algorithms (EAs), initially pioneered by the Pursuit Algo-
rithm (PA) [3], and more recently by the Bayesian Pursuit
Algorithm (BPA) [2]. Both the PA and the BPA pursue the
action currently perceived to be the optimal one. The main
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difference, however, lies in the strategy used to infer which
action is to be considered the “optimal” one. Whereas the
PA maintains Maximum Likelihood (ML) estimates to de-
cide which action is currently the best, the BPA utilizes a
Bayesian method to achieve a superior estimation. By pro-
viding optimistic reward probability estimates, the latter es-
timation approach leads the learning phenomenon in a rel-
atively “more correct” direction, thus making the learning
converge faster.

This is the first of the fundamental paradigms that have
been used to enhance the convergence speed of LA, namely,
to utilize the estimates of the reward probabilities. The sec-
ond philosophy which has been reported since the 1980s, in-
volves discretizing the probability space in which the LA op-
erates. This paper demonstrates how both of these can be si-
multaneously utilized, and in particular, by using the above-
mentioned family of Bayesian estimates that have distinct
advantages over their ML counterparts.

In this paper, we present a new algorithm—the Dis-
cretized Bayesian Pursuit Algorithm (DBPA), which is im-
plemented by linearly discretizing the action probability
space of the BPA. To the best of our knowledge, the DBPA
is the fastest reported LA to date, which has been demon-
strated here by rigorous experimentation. Besides this, the
paper also briefly records the proofs of why the BPA and the
DBPA are ε-optimal in stationary environments.

1.1 Learning automata: concept and their applications

A Learning Automaton (LA) is an adaptive decision-making
unit that learns the best action out of a set of actions, offered
by an environment. At each iteration, the LA chooses one
action, which is either rewarded or penalized by the envi-
ronment as a response. The response, in turn, affects which
action the LA chooses in the next iteration. The optimal ac-
tion is defined as the one with the highest probability of be-
ing rewarded.

The beauty of an LA is that it learns the optimal action
through interaction with the environment, without any prior
knowledge about it. The environment can be treated as a
“black box”. Indeed, independent of the intricacies exhib-
ited by the behavior of the environment, the LA, considering
only the responses it receives, learns to choose the best ac-
tion, and adapts itself to the environment. By way of exam-
ple, consider the Goore Game [4–6], which is a voting game
that consists of N voters and one referee, with the referee
conducting a series of voting rounds. On each round of vot-
ing, the voters vote “Yes” or “No” simultaneously and inde-
pendently and the referee counts the number of “Yes” votes.
The referee has a unimodal performance criterion g(θ) over
the closed interval [0,1], and is optimized when the frac-
tion of “Yes” votes is exactly θ�. At the end of each voting
round, the referee gives to every voter, independently, a re-
ward with probability g(θ) and a penalty with probability

1 − g(θ). Each voter, modeled as an LA, adjusts the voting
strategy and votes “Yes” or “No”, based only on its indi-
vidual rewards and penalties. We emphasize that in doing
this, it does not possess any prior information on the crite-
rion of the referee, nor does it communicate with the other
voters. It can be seen that, amazingly enough, after enough
number of trials, the fraction of “Yes” votes within a round
converges to the unknown value of θ�, which optimizes the
reward probability g(θ) for the entire set of voters.

Because of the “magical” nature of learning, LA have
found numerous applications in a variety of fields. They
have been used in game playing [4–10], parameter optimiza-
tion [11, 12], channel selection in cognitive radio networks
[13], assigning capacities in prioritized networks [14], solv-
ing knapsack problems [15], optimizing the web polling
problem [16, 17], stochastically optimally allocating limited
resources [15, 18, 19], service selection in stochastic envi-
ronments [20], numerical optimization [21], web crawling
[22], microassembly path planning [23], multiagent learn-
ing [24], and in batch sequencing and sizing in just-in-
time manufacturing systems [25]. An asynchronous action-
reward learning has been used for nonstationary serial sup-
ply chain inventory control [26].

1.2 Outline of the classification of learning automata

Learning criteria for evaluating an LA involve two basic as-
pects. The first of these is its accuracy, i.e., to what degree
the LA is able to adapt itself to the optimal action. The other
is its rate of convergence, i.e., how much time it takes for
the LA to converge. In the pursuit of designing accurate
and fast LA, a number of algorithms have been both pro-
posed and studied, and most of the learning automata have
been reviewed by Lakshmivarahan [27], and by Narendra
and Thathachar [5, 28]. In this paper, a rough classification
of different LA will be outlined, including these reviewed
LA and the most recent LA.

Initial LA, which had time invariant transition and deci-
sion functions are considered to be Fixed Structure Stochas-
tic Automata (FSSA). The Tsetlin, Krylov and Krinsky au-
tomata [5] are the most notable examples of this type. Later,
Variable Structure Stochastic Automata (VSSA) were devel-
oped, with either the transition function, decision function,
or both functions evolving with time. In fact, VSSA can be
completely characterized by the function that updates the
probability of choosing the actions [5]. Earlier representa-
tives of this type include the Linear Reward-Penalty (LR−P )
scheme, the Linear Reward-Inaction (LR−I ) scheme and the
Linear Inaction-Penalty (LI−P ) scheme [5]. Of these, the
LR−I scheme is the most accurate and the fastest, as it fa-
vors rewards over penalties.

Thathachar and Sastry [3, 29] were the first to introduce
the concept of Pursuit Algorithms (PA), initiating the re-
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search on estimator algorithms [30, 31]. As opposed to non-
estimator algorithms, where the action probabilities are di-
rectly updated based on rewards/penalties, the estimator al-
gorithms combine running estimates of reward probabilities
to make the updating more goal-directed. That is, the reward
from the chosen action does not necessarily increase its ac-
tion probability, but the action probability associated with
the largest reward probability estimate will be increased.
Therefore, the current rewards alone will not influence the
learning progress in the short term, except by modifying the
estimate of the reward vector. Because estimator algorithms
consider both the short-term responses of the Environment
and the long-term reward probability estimates in formulat-
ing the action probability updating rules, they significantly
outperform non-estimator schemes in terms of accuracy and
rate of convergence.

As an estimator algorithm, the PA utilizes ML method
for estimating the reward probabilities, and pursues the cur-
rent best action (the one with the greatest reward probability
estimate) by increasing its action probability, in each itera-
tion. More recently, in [32], Granmo presented the Bayesian
Learning Automata (BLA), which uses Bayesian reward
probability estimation, and subsequently bases its explo-
ration on the Thompson sampling principle [33]. Inspired
by the performance benefits of the BLA and the PA, the
Bayesian Pursuit Algorithm (BPA) was proposed in [2], fol-
lowing the concept of pursuing the currently-estimated best
action, while utilizing Bayesian principles in the estimation
itself. In the majority of environments in which the LA were
tested, the BPA outperformed its previous competitors.

After Thathachar and Oommen proposed the Discretized
Reward-Inaction LA [34], the principle of discretizing the
action probability space became a general way for improv-
ing the rate of convergence of various LA. The concept of
discretization is implemented by restricting the probability
of choosing an action to only finitely many values from the
interval [0,1]. The discrete counterpart of the PA is called
the Discretized Pursuit Algorithm (DPA) [35, 36], and the
DPA has been shown to be superior to the PA.

In this paper, as alluded to earlier, we shall incorporate
this paradigm into the design of the new algorithm i.e., the
DBPA.

We now present one more fundamental contribution of
this paper. The most difficult part in the design and analysis
of LA consists of the formal proofs of their convergence ac-
curacies.1 The mathematical techniques used for the various
families (FSSA, VSSA, Discretized, etc.) are quite distinct.
The proof methodology for the family of FSSA is the sim-
plest: it quite simply involves formulating the Markov chain

1We refer the readers to [5] and the various papers about the families
of estimator algorithms to understand the basic fundamentals of the
convergence analysis for various LA.

for the LA, computing its equilibrium (or steady state) prob-
abilities, and then computing the asymptotic action selec-
tion probabilities. The proofs of convergence for VSSA are
more complex and involve the theory of small-step Markov
processes, distance diminishing operators, and the theory of
Regular functions. The proofs for Discretized LA involve
the asymptotic analysis of the Markov chain that represents
the LA in the discretized space, whence the total probability
of convergence to the various actions is evaluated. However,
understandably, the most difficult proofs involve the fam-
ily of EAs. This is because the convergence involves two
intertwined phenomena, namely the convergence of the re-
ward estimates and the convergence of the action probabili-
ties themselves. Ironically, the combination of these vectors
in the updating rule is what renders the EA fast. However, if
the accuracy of the estimates are poor because of inadequate
estimation (i.e., if the sub-optimal actions are not sampled
“enough number of times”), the convergence accuracy can
be diminished. Hence the dilemma!

This paper also presents a sketch of the formal analysis
concerning why the BPA and DBPA are ε-optimal.

1.3 Contributions and paper organization

In this paper, we extend the BPA into the domain of dis-
cretization, and propose a new Bayesian estimator algo-
rithm, namely, the Discretized Bayesian Pursuit Algorithm
(DBPA) [1]. Firstly, the DBPA maintains an action proba-
bility vector for selecting actions. Secondly, it follows the
concept of pursuing the action currently inferred to be the
“best”. Thirdly, at any time instant, the DBPA uses Bayesian
estimates to infer which action is the best. Finally, the DBPA
updates its action probability vector according to linear dis-
cretized rules. In the DBPA, the combination of Bayesian
estimation for reward probabilities augmented with linear
discretized updates makes learning converge approximately
20 % faster than the previously-recorded algorithms includ-
ing the BPA, as our extensive experimental results demon-
strate.

As opposed to our previous paper on the BPA [2], this
present paper also analyzes the performance of the BPA in
a stricter and more challenging manner, namely, by com-
paring the performance of the BPA and the PA under their
individual optimal learning rates. The advantage of the BPA
over the PA thus becomes more evident.

One of the key innovations of this paper is that it points
out the incongruity existing in continuous estimator algo-
rithms. Typically, in estimator algorithms, since the estima-
tion of the reward probability is less accurate initially, large
changes in the action probabilities at the beginning should
be considered as unwise, and almost reckless. Besides, it
is also counter-intuitive and unnecessary to reduce the size
of the learning steps as the learning proceeds, since as this
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happens, the reward probability estimates also get more ac-
curate. Unfortunately, continuous estimator algorithms, uti-
lizing linear continuous updating rules for the action prob-
abilities, operate exactly in this manner. The DBPA, on the
other hand, uses linear discretized updating rules to mitigate
this incongruity.

Besides, this paper states that both the BPA and the
DBPA are ε-optimal in stationary environments. However,
since these proofs are extremely lengthy, in the interest of
brevity, we provide here only a sketch of the proof.

The paper is organized as follows. In Sect. 2, we give
an overview of the PA, DPA and BPA, as they are the most
related algorithms from the family of EAs. In Sect. 3, we
analyze the incongruity existing in continuous estimator al-
gorithms, and then present the new LA algorithm—the Dis-
cretized Bayesian Pursuit—by discretizing the probability
space of the BPA. Section 4 expands on the ε-optimality
of the BPA and the DBPA, and outlines the proofs of these
claims. Extensive experimental results provided in Sect. 5
show the advantages of the DBPA over the BPA, and demon-
strate that the BPA is truly superior to the PA under their in-
dividual optimal learning rates. Finally, Sect. 6, reports op-
portunities for further research and submits concluding re-
marks.

2 Related work

In this section, we briefly review three typical algorithms
from the family of EAs, namely, the Pursuit Algorithm (PA),
the Discretized Pursuit Algorithm (DPA), and the Bayesian
Pursuit Algorithm (BPA).

The PA, the DPA and the BPA share a common “pursuit”
paradigm of learning—in each iteration, they pursue the ac-
tion currently perceived to be optimal. Firstly, they maintain
an action selection probability vector P = [p1,p2, . . . , pr ],
with

∑r
i=1 pi = 1 and r being the number of actions. The

question of which action is to be selected is decided by
sampling from P , which is, initially, uniform. Secondly,
they maintain a reward probability estimate vector D̂ =
[d̂1, d̂2, . . . , d̂r ], with d̂i (i = 1,2, . . . , r) being the estimate
of the reward probability for Action i. D̂ is updated each
time an action is selected and a response of either a reward or
a penalty is received. At each iteration, the LA treats the ac-
tion currently possessing the highest reward probability esti-
mate d̂ as the optimal one. Finally, based on the inference of
the optimal-action and the response from the environment,
these LA update the action probability vector P according
to a Linear Reward-Inaction rule [5]. The result is that the
action selection probability of the optimal action increases
and the other action probabilities decrease. The updated ac-
tion selection probabilities, P , thus come into effect in the
next round of action selection. Subtle differences between
the PA, DPA and BPA result in fine performance benefits.

Pursuit algorithm The PA utilizes the Maximum Likeli-
hood (ML) method to estimate the reward probability of
each action. The ML reward probability estimate d̂i can be
calculated as d̂i = Wi

Zi
, with Zi being the number of times

Action i has been selected, and Wi the number of times Ac-
tion i has been rewarded.

The PA updates the action probabilities according to the
linear continuous rules:

• If selecting an action results in a reward:
pj = (1 − λ) × pj , j �= i, λ ∈ (0,1);
pi = 1 −∑

j �=i pj , where i is the index of the action with

the largest element in D̂.
• If selecting an action results in a penalty: ∀j,pj = pj .

Discretized pursuit algorithm The DPA is implemented by
following the paradigm of the PA with the action probability
space being discretized. If we denote the distance between
two neighboring permitted probability values to be �, the
DPA updates the {pi} as per the discretized rules:

• If selecting an action results in a reward:
pj = max{pj − �,0}, j �= i;
pi = 1 −∑

j �=i pj , where i is the index of the action with

the largest element in D̂.
• If selecting an action results in a penalty: ∀j,pj = pj .

Bayesian pursuit algorithm The BPA also follows the
paradigm of a general PA. However, as opposed to using the
ML estimates as in the PA, the BPA utilizes Bayesian esti-
mates for reward probability estimation. The Bayesian esti-
mation is based on the Beta Distribution, which is the con-
jugate prior for the Bernoulli distribution. A pair of hyper-
parameters, denoted as ai and bi , are maintained to count the
rewards and penalties received by each action. These param-
eters, in turn, determine the shape of the Beta Distribution
and produce the following probability density function:

f (xi;ai, bi) = x
ai−1
i (1 − xi)

bi−1

∫ 1
0 uai−1(1 − u)bi−1 du

, xi ∈ [0,1]. (1)

A 95 % percentile value of the posterior is chosen as the
appropriate estimate. The latter is calculated by means of
the respective cumulative distribution F(xi;a, b):

F(xi;ai, bi) =
∫ xi

0 vai−1 (1 − v)bi−1 dv
∫ 1

0 uai−1(1 − u)bi−1 du
, xi ∈ [0,1]. (2)

By virtue of the Beta Distribution, the Bayesian estima-
tion is implemented in a computationally simple way.

3 Discretized Bayesian pursuit algorithm

The initial motivation for discretizing LA was to increase
their rate of convergence and to avoid the need for generat-
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ing real numbers with arbitrary precision [35]. In continuous
algorithms, since the action probability is updated by multi-
plying a constant 1 − λ, the probability of selecting the op-
timal action can only be approached asymptotically to unity,
but can never be actually attained. However, in discrete al-
gorithms, a minimum step size is obtained by discretizing
the probability space, and the updating of the action selec-
tion probabilities is achieved by subtracting or adding one
or a multiple of the step size. If the automaton is close to
the end state, the probability of the optimal action will be
increased directly to unity with a few more favorable re-
sponses.

In this paper, we state another important reason for dis-
cretizing estimator algorithms. As can be readily under-
stood, in the early learning period, the reward probabilities
will be inaccurate due to the small number of samples avail-
able. As learning proceeds, however, the number of sam-
ples increases, and hence the reward probability estimates
become progressively more accurate. Thus, it is unwise to
make large action selection probability changes initially, and
correspondingly counter-intuitive to update the action selec-
tion probabilities with smaller and smaller increments, as
more samples are obtained. Unfortunately, in continuous al-
gorithms, action selection probabilities are updated exactly
in this non-intuitive manner. Indeed, the size of the update
increments varies with the action selection probability vec-
tor itself, tending to be greater earlier on, and smaller as
the learning progresses. In other words, when the estima-
tion of the reward probabilities cannot reliably discriminate
between the actions, “large” changes are made to the ac-
tion selection probabilities, causing the algorithm to be af-
fected by a “gravitational” pull towards an inferior action.
This is tacitly caused by the action selection mechanism,
since large action selection probabilities translate into biases
towards the corresponding actions. The LA can thus either
fail to converge to the best action or invest effort into pur-
suing an incorrect action, leading to a reduced convergence
rate.

Discretized LA are characterized by their discrete action
probability space. They are linear if the probability values
are spaced equally in the interval [0,1], otherwise, they are
called nonlinear [37]. In this paper, we study linear discrete
algorithms, where the equally divided state space indicates
that the change of action selection probabilities is a fixed
value. When one compares the “large-to-small” changes in
continuous algorithms, the fixed-value of the changes in dis-
crete algorithms are more reasonable as per the accuracy of
estimating the reward probabilities.

With the above reasoning in mind, we improve the latest
estimator algorithm—the Bayesian Pursuit Algorithm—by
discretizing its action probability space. The new algorithm,
given below, is the Discretized Bayesian Pursuit Algorithm
(DBPA).

Algorithm: DBPA
Notations of DBPA: Refer to Table 5 in the Appendix.
Initialization:
1. pi(t) = 1/r , where r is the number of actions.
2. Set ai = bi = 1. Initialize ai and bi , by doing Step 1 and
Step 2 in “Method” below a small number of times (i.e., in
this paper 10 ∗ r times).
Method:
For t := 1 to N Do

1. Pick α(t) randomly as per the action selection probability
vector P(t). Suppose α(t) = αi .

2. Based on the Bayesian nature of the conjugate distribu-
tions, update ai(t) and bi(t) according to the response
from the environment:
If R(t) = 0 Then ai(t) = ai(t −1)+1;bi(t) = bi(t −1);
Else ai(t) = ai(t − 1);bi(t) = bi(t − 1) + 1;

3. Identify the upper 95 % reward probability bound of d̂i (t)

for each action i as:

∫ d̂i (t)

0 v(ai−1)(1 − v)(bi−1)dv
∫ 1

0 u(ai−1)(1 − u)(bi−1)du
= 0.95

4. Update the action selection probability vector P(t + 1)

according to the linear discretized rule:
If R(t) = 0 Then
pj (t + 1) = max{pj (t) − �,0}, j �= m,
pm(t + 1) = 1 − ∑

j �=m pj (t + 1).
Else
P(t + 1) = P(t).

End Algorithm: DBPA

Briefly speaking, the DBPA maintains an action probabil-
ity vector P for selecting actions, and runs Bayesian reward
probability estimates to determine the current best action,
and updates the action probabilities as per linear discretized
rules. The combination of Bayesian estimation and linear
discretized updating rules allow the LA to converge in a rela-
tively more correct direction, and thus, achieve a higher rate
of convergence.

4 Convergence of the BPA and the DBPA

Most of the analysis of the convergence of LA is centered
around their ε-optimality. An LA is said to be ε-optimal,
if given a sufficiently small learning parameter, it is able
to converge to the optimal action with an arbitrarily large
probability. We state that both the BPA and the DBPA are
ε-optimal in all stationary environments. The proof of this
statement involves many mathematical details, but due to
the lack of space, only a sketch of the proof will be given
in this section.
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Table 1 Bernoulli distributed rewards used in 2-action, 4-action and 10-action configurations

Config./Actions 1 2 3 4 5 6 7 8 9 10

1 0.90 0.60 – – – – – – – –

2 0.90 0.80 – – – – – – – –

3 0.55 0.45 – – – – – – – –

4 0.90 0.60 0.60 0.60 – – – – – –

5 0.90 0.80 0.80 0.80 – – – – – –

6 0.55 0.45 0.45 0.45 – – – – – –

7 0.90 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60

8 0.90 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80

9 0.55 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

The formal claims of the ε-optimality of the BPA and the
DBPA can be described by Theorems 1 and 2 respectively.
In both of these theorems, ‘t’ is measured in terms of the
number of iterations.

Theorem 1 Given any ε > 0 and δ > 0, there exist a λ� > 0
and a t0 < ∞ such that for all time t ≥ t0 and for any posi-
tive learning parameter λ < λ�,

Pr
{
pm(t) > 1 − ε

}
> 1 − δ.

Theorem 2 Given any ε > 0 and δ > 0, there exist an
N0 > 0 and a t0 < ∞ such that for all time t ≥ t0 and for
any positive learning parameter N > N0,

Pr
{
pm(t) > 1 − ε

}
> 1 − δ.

The details of the proofs consists of the following three
steps.

1. Given a sufficiently small/large value for the learning pa-
rameter λ/N , we first prove that all actions will be se-
lected enough number of times before a finite time in-
stant, t0.

The proof for this step is the same as that for the PA
and the DPA. The reader can refer to [3, 36] and [38] to
find the details of this proof.

2. The second step of the proof confirms that the sequence
of probabilities, {pm(t)(t>t0)}, is a submartingale.

This step can be proved by showing that after time
instant t0,
∣
∣pm(t)

∣
∣ ≤ 1 and

�pm(t) = E
[
pm(t + 1) − pm(t)|Ḡ(t0)

]
> 0.

In the above equations, Ḡ(t0) is the necessary condition
for {pm(t)(t>t0)} to be a submartingale. Ḡ(t0) requires
that ∀t > t0, Pr{d̂m(t) > d̂j (t),∀j �= m} > δ′, with prob-
ability 1. Briefly speaking, because by the time instant t0,
each action has been selected a sufficiently large number

of times, the estimation for each reward probability after
t0 is accurate enough. Consequently, after t0, the proba-
bility of the optimal action being on top of the ranking of
actions will almost always be greater than δ′.

3. The final step proves the ε-optimality by showing
Pr{pm(∞) = 1} → 1.

Based on the conclusion from the second step, that
{pm(t)(t>t0)} is a submartingale, according to the sub-
martingale convergence theory [5], pm(t) converge to ei-
ther 0 or 1. The goal in this step is to prove that the con-
vergence probability Pr{pm(∞) = 1} → 1 as λ/� → 0.
This result can be proved by using the theory of Regular
functions [5].

The detailed proofs for the second and the third steps
are extremely lengthy. They are omitted here due to the
lack of space.

5 Experimental results and analysis

In this section, we evaluate the computational efficiency of
the DBPA by comparing it with the latest estimator algo-
rithm, the BPA, as well as the PA and the DPA mentioned in
Sect. 2. The computational efficiency is characterized by the
rate of convergence, i.e., the average number of iterations
it takes for an algorithm to converge to the optimal action.
Extensive experiments have been conducted based on the
experimental configurations listed in Table 1 and Table 2.

5.1 Experiment design

In the experiments considered, Configurations 1, 4 and 7
form the simplest environments, possessing a low reward
variance and a large difference between the reward proba-
bilities of the actions. By reducing the differences between
the actions, we increase the learning difficulty of the envi-
ronment. Configurations 2, 5 and 8 achieve this task. The
challenge of Configurations 3, 6 and 9 is their high variance
combined with the small differences between the actions.
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Table 2 Bernoulli distributed rewards used in benchmark configurations

Config./Actions 1 2 3 4 5 6 7 8 9 10

10 0.70 0.50 0.30 0.20 – – – – – –

11 0.10 0.45 0.84 0.76 – – – – – –

12 0.70 0.50 0.30 0.20 0.40 0.50 0.40 0.30 0.50 0.20

13 0.10 0.45 0.84 0.76 0.20 0.40 0.60 0.70 0.50 0.30

Table 3 The average number of iterations for the PA, DPA, BPA and DBPA to converge in Configurations 1–9

Conf./Alg. PA DPA BPA DBPA

Conf. 1 76.6040 61.0680 52.7465 54.0889

Conf. 2 891.2050 454.1912 491.1346 361.8910

Conf. 3 1890.3317 929.5736 1007.0200 699.3099

Conf. 4 165.3456 122.4167 110.3835 98.2777

Conf. 5 2110.6593 1042.7655 981.5411 693.5873

Conf. 6 4487.0094 2238.2541 2072.5094 1401.9219

Conf. 7 479.1508 517.0978 465.7514 510.9999

Conf. 8 6138.0661 3601.4218 3248.8014 2711.5099

Conf. 9 13154.1980 7553.5158 5860.3236 4998.4137

Table 4 The average number of iterations for the LA to converge in benchmark configurations

Conf./Alg. PA DPA BPA DBPA

Conf. 10 654.220 337.974 276.675 239.539

Conf. 11 3155.000 1566.020 1412.750 1085.100

Conf. 12 1876.370 1060.710 826.257 622.820

Conf. 13 7645.190 3854.640 2753.300 2303.740

Configurations 10, 11, 12 and 13 are the environments which
have been earlier used as benchmarks in the field of LA.

In order to evaluate the algorithms under fair conditions,
the experiments were designed by considering the follow-
ing:

1. To keep the conditions identical, each algorithm sampled
all actions ten times each in order to initialize the esti-
mate vector. These extra iterations are also included in
the results.

2. As the PA, DPA, BPA and the new algorithm, DBPA,
depend on an external learning parameter, the optimal
learning parameter has to be found for each of the four
algorithms.

3. In each learning experiment, the LA is considered to have
converged if the probability of selecting one action is
greater than or equal to the threshold 0.999. If the LA
converges to the best action, it is considered to have con-
verged correctly.

4. For each algorithm, in each configuration, 750 indepen-
dent learning experiments were conducted. The opti-

mal learning rate λ or � is the largest/smallest one that
achieves 100 % accuracy, i.e., all the 750 experiments
converge correctly.

5. For these configurations, an ensemble of 100 indepen-
dent replications with different random number streams
were performed to minimize the variance of the optimal
learning rate.

6. The algorithms were compared with each other as per
their individual optimal learning rates.

5.2 Experimental results

Table 3 and Table 4 represent the average number of itera-
tions that each of the four algorithms require to converge to
the best action in different configurations.

As can be seen from the tables, in the simplest configura-
tions of Configurations 1, 4 and 7, the discretized algorithms
do not necessarily outperform their continuous counterparts.
For example, on the average, the DBPA spent 54 steps to
converge to the best action, while the BPA spent only 52
steps. At the same time, it took, on average, 76 steps for
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Fig. 1 The improvement of the
DPA over the PA versus the
improvement of the DBPA over
the BPA

the PA to converge correctly, while only 61 steps it took for
the DPA to achieve its goal. Besides, discrete algorithms get
better results than their continuous counterparts in 4-action
configurations, but in 10-action configurations, continuous
algorithms outperform the discrete algorithms. This can be
explained by the simplicity of the learning problems asso-
ciated with the environments. Due to the combination of
a low reward variance and a large difference between the
reward probabilities of the actions, both ML estimates and
Bayesian estimates are able to provide good estimates for
the reward probabilities. Therefore, the fixed change in the
action probabilities in discrete algorithms yields no evident
advantage over the great-to-small changes of action prob-
abilities in the continuous algorithms, and thus the perfor-
mance of the discrete algorithms is similar to that of their
continuous counterparts. Thus, by virtue of the simplicity of
the environment, all the four algorithms converge to the best
action very quickly.

As a result of the above, our focus is on the relatively
more difficult configurations, namely, Configurations 2, 3, 5,
6, 8 and 9 and the benchmark Configurations 10, 11, 12 and
13. The results in Table 3 show that the DBPA is 26 % faster
than the BPA in Configuration 2, and 31 % faster in Config-
uration 3. For example, in Configuration 2, the DBPA con-
verges, on the average, in 362 steps, and the BPA needs 491
steps, on average, to converge, which shows an improvement
of 26 %. In Configuration 3, the DBPA requires, on aver-
age, 699 steps for convergence while the BPA requires 1007
steps. The improvement is remarkable, i.e., 31 %.

Similarly, the results in Table 3 also present the improve-
ment of the DBPA over the BPA being up to 29 % in Con-
figuration 5, 32 % in Configuration 6, 17 % in Configuration
8 and 15 % in Configuration 9. The results in Table 4 show

that the improvement of the DBPA over the BPA in bench-
mark configurations are 13 % in Configuration 10, 23 % in
Configuration 11, 25 % in Configuration 12 and 16 % in
Configuration 13. The superiority of the DBPA to its coun-
terpart is clear!

One can also observe that the DPA is obviously faster
than the PA in these configurations. If we denote the advan-
tage of the DPA over PA by ξ1 and the advantage of the
DBPA over the BPA by ξ2, the comparison of ξ1 and ξ2 is
shown in Fig. 1.

As the reader will observe, ξ1 is consistently greater
than ξ2 in these configurations. The results are consis-
tent with our statement in Sect. 3: In estimator algorithms,
when the estimation of the reward probabilities is not ac-
curate enough, updating the action probability in a linear
discretized manner will be superior than in a linear contin-
uous manner. The reason is as follows. As compared with
Bayesian estimates, the PA uses the less accurate ML es-
timates for the reward probabilities. Therefore, the linear
continuous manner of updating action probabilities in the
PA is more likely to lead the learning into a wrong direc-
tion, resulting in postponed correct convergence. The DPA,
on the other hand, with its linearly discretized action proba-
bility space, mitigates the problem caused by linear contin-
uous action probability updating. However, in the BPA, as
the Bayesian estimates are already able to provide relatively
accurate reward probability estimates, the improvement by
discretizing its action probability space becomes less signif-
icant.

In order to evaluate the four estimator algorithms in a
comprehensive manner, we set the performance of the PA
as a benchmark, and compared their individual performance
to the PA. Figure 2 demonstrates the performance of the al-
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Fig. 2 The improvements of
the DPA, the BPA and the
DBPA over the PA

gorithms relative to the PA, where ξ3 and ξ4 represent the
advantages of the BPA and the DBPA over the PA.

The result of ξ3 shows clearly that the BPA is superior to
the PA, being approximately 50 % faster than the latter. The
improvement is by virtue of the superiority of Bayesian esti-
mation to ML estimation. The results demonstrated in Fig. 2
also show that the DBPA is the best algorithm among the
four estimator algorithms, being approximately 60 % faster
than the PA. The improvement is due to the combination of
Bayesian estimation and the linearly discretized action prob-
ability space.

Based on the experimental results and analysis, we draw
the following conclusions:

1. Considering the average number of steps required to at-
tain the same accuracy of convergence in the listed con-
figurations, the algorithm that is newly proposed here, the
Discretized Bayesian Pursuit Algorithm is the best algo-
rithm among the five estimator algorithms.

2. By evaluating the performance of the algorithms under
their individual optimal learning rates, the superiority of
the Bayesian Pursuit Algorithm over the Pursuit Algo-
rithm is evident and persuasive.

3. In estimator algorithms, updating the action probabilities
in a linear discretized manner is more reasonable than in
a linear continuous manner. The extensive experimental
results warrant this assertion.

6 Conclusions and future work

LA have been studied for decades and a plentitude of al-
gorithms have been proposed, with the BPA being the most

recent and fastest one. Although the BPA is superior to pre-
vious estimator algorithms, its action selection probabili-
ties are updated in a linear continuous manner, which is
counter-intuitive in the light of the demands for initial cau-
tion and later confidence, dictated by the accuracy of the
reward probability estimates.

In this paper, we have introduced a new algorithm called
the Discretized Bayesian Pursuit Algorithm (DBPA). The
DBPA is implemented by discretizing the action selection
probabilities of the BPA. Since its estimation for reward
probabilities is Bayesian, and since it updates the action se-
lection probabilities in discretized equal-sized steps, more
aligned with the accuracy of estimates, the DBPA is able to
achieve an even higher rate of convergence than the BPA.

Besides, the BPA and the DBPA are ε-optimal in all sta-
tionary environments. A sketch of the proof has been given
in this paper.

This paper also presented a comprehensive comparison
between the four estimator algorithms. Besides, it evaluated
the performance of the BPA by comparing it with the PA un-
der fair and reasonable conditions. The results confirm that
while the BPA is inferior to the DBPA, it is still superior to
the PA. Thus, to the best of our knowledge, the DBPA is the
fastest reported LA to date.

A linearly discretized action selection probability space
represents an intuitive manner of mitigating the incongruity
between linear continuous updating and the mechanisms of
reward probability estimation. However, the question of how
to mitigate the incongruity to the largest extent, making up-
dating rules work consistently with the estimation mecha-
nism, remains open. Besides, introducing the state-of-the-art
DBPA algorithm to various fields of application also opens
promising avenues of research.
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Appendix

Table 5 Notations used in DBPA

Parameters Descriptions

α The action selected by LA.

pi The ith element of the action selection probability
vector, P .

ai, bi The two positive parameters of the Beta distribution
for Action i.

d̂i The ith element of the Bayesian estimates
vector D̂, given by the 95 % upper bound of the
cumulative distribution function of the
corresponding Beta distribution.

m The index of the maximal component of the reward
probability estimates vector D̂.

R The response from the environment, where R = 0
(reward) or R = 1 (penalty).

� The minimum step size. � = 1
rN

, with N being a
positive integer.
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