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Abstract

The gold standard for a classifier is the condition of optimality attained by the Bayesian

classifier. Within a Bayesian paradigm, if we are allowed to compare the testing sample with

only a single point in the feature space from each class, the optimal Bayesian strategy would be

to achieve this based on the (Mahalanobis) distance from the corresponding means. The reader

should observe that, in this context, the mean, in one sense, is the most central point in the

respective distribution. In this paper, we shall show that we can obtain optimal results by oper-

ating in a diametrically opposite way, i.e., a so-called “anti-Bayesian” manner. Indeed, we assert

a completely counter-intuitive result that by working with a very few points distant from the

mean, one can obtain remarkable classification accuracies. The number of points can sometimes

be as small as two. Further, if these points are determined by the Order Statistics of the distri-

butions, the accuracy of our method, referred to as Classification by Moments of Order Statistics

(CMOS), attains the optimal Bayes’ bound. This claim, which is totally counter-intuitive, has

been proven for many uni-dimensional, and some multi-dimensional distributions within the ex-

ponential family, and the theoretical results have been verified by rigorous experimental testing.

Apart from the fact that these results are quite fascinating and pioneering in their own right,

they also give a theoretical foundation for the families of Border Identification (BI) algorithms

reported in the literature.
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1 Introduction

Pattern classification is the process by which unknown feature vectors are categorized into groups or

classes based on their features. The age-old strategy for doing this is based on a Bayesian principle

which aims to maximize the a posteriori probability. It is well known that when expressions for

the latter are simplified, the classification criterion which attains the Bayesian optimal lower bound

often reduces to testing the sample point using the corresponding distances/norms to the means or

the “central points” of the distributions.

In this paper, we shall demonstrate that we can obtain optimal results by operating in a diamet-

rically opposite way, i.e., a so-called “anti-Bayesian” manner. Indeed, we shall show the completely

counter-intuitive result that by working with a few points distant from the mean, one can obtain

remarkable classification accuracies. The number of points referred to can be as small as two in

the uni-dimensional case. Further, if these points are determined by the Order Statistics of the dis-

tributions, the accuracy attains the optimal Bayes’ bound. Thus, put in a nut-shell, we introduce

here the theory of optimal pattern classification using order statistics of the features rather than

the distributions of the features themselves. Thus, we propose a novel methodology referred to as

Classification by Moments of Order Statistics (CMOS). It turns out, though, that this process is

computationally not any more complex than working with the latter distributions.

If we fast-forward the clock by five decades since the initial formulation of Pattern Recognition

(PR) as a research field, the informed reader will also be aware of the development of efficient

classification methods in which the schemes achieve their task based on a subset of the training

patterns. These are commonly referred to as “Prototype Reduction Schemes” (PRS)[7, 21]. For

the sake of our work, a PRS will be considered to be a generic method for reducing the number

of training vectors, while simultaneously attempting to guarantee that the classifier built on the

reduced design set performs as well, or nearly as well, as the classifier built on the original design

set [12]. Thus, instead of considering all the training patterns for the classification, a subset of the

whole set is selected based on certain criteria. The learning (or training) is then performed on this

reduced training set, which is also called the “Reference” set. This Reference set not only contains

the patterns which are closer to the true discriminant’s boundary, but also the patterns from the

other regions of the space that can adequately represent the entire training set.

Border Identification (BI) algorithms, which are a subset of PRSs, work with a Reference set

which only contains “border” points. To enable the reader to perceive the difference between a

traditional PRS and a BI algorithm, we present some typical data points in Figure 1. Consider

Figure 1a in which the circles belong to ω1 and rectangles belong to ω2. A PRS would attempt

to determine the relevant samples in both the classes which are capable of achieving near-optimal

classification. Observe that some samples which fall strictly within the collection of points in each
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class, such as A and B in Figure 1b, could be prototypes, because testing samples that fall close to

them will be correctly classified. As opposed to this, in a BI algorithm, one uses only those samples

which lie close to the boundaries of the two classes, as shown in Figure 1c.

Recent research [14] has shown that for overseeing the task of achieving the classification, the

samples extracted by a BI scheme, and which lie close to the boundaries of the discriminant function,

have significant information when it concerns the classification ability of the classifier.

Although this is quite amazing, the formal analytical reason for this is yet unproven.

(a) Training Set

A B

(b) Prototypes (c) Border Patterns

Figure 1: Border patterns vs Prototypes

In this paper, we present some pioneering results which bridge this conceptual gap. First of all,

we shall formally and analytically show that operating in a totally anti-Bayesian perspective can, in

spite of the diametrically opposite philosophy, still lead to an optimal Bayesian classification. More

precisely, we shall show that by computing the appropriate distances/norms to certain (in many

cases, as few as two) points that are distant from the means, we can obtain classification identical to

the Bayesian scheme – as long as the corresponding comparisons are achieved using the appropriate

data points that characterize the distributions. Indeed, the points that we refer to here will be shown

to be the expected values of the moments of Order Statistics (OS) of the respective distributions.

These representative OS points will model the above-mentioned representative prototypes derived

by means of a BI algorithm, thus closing the conceptual gap.

The question of how we can compute the BI points which match these criteria from the training

data is presently being investigated.

1.1 Problem Formulation

The objective of a PRS is to reduce the cardinality of the training set to be as small as possible by

selecting some training patterns based on various criteria, as long as the reduction does not affect

the performance. Specializing this criterion, the current-day BI algorithms, designed by Duch,

Foody, and Li et al., and which are briefly explained in Section 2.2, attempt to select a Reference

set which contains border patterns derived, in turn, from the set of training patterns. Observe that,
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in effect, these algorithms also yield reduced training sets. Once the Reference set is obtained, all

of these traditional methods perform the classification by invoking some sort of classifier, like the

SVM, a neural network etc. Recent research in the field of PR have claimed that the points which

are closer to the class borders are more informative, and that they can play a significant role in the

classification. Contrary to a Bayesian intuition, these border patterns have the ability to accurately

classify the testing patterns, as we shall presently demonstrate. The prime objective of this paper

is to explain the theoretical reason for why those points are more informative and important.

Our main hypothesis is that the classification could just as well be attempted in the OS space

as in the original space itself. Our work will show that the OS points themselves are not necessarily

central to the distribution.

1.2 Contributions of this Paper

The novel contributions of this paper are the following:

• We propose an “anti-Bayesian” paradigm for the classification of patterns within the paramet-

ric mode of computation, where the distance computations are not with regard to the “mean”

but with regard to some samples “distant” from the mean. These points, which is sometimes

as few as two, are the moments of OS of the distributions;

• We provide a theoretical framework for adequately responding to the question of why the

border points are more informative for the task of classification;

• To justify these claims, we submit a formal analysis and the results of various experiments

which have been performed for many distributions within the exponential family, and the

results are clearly conclusive.

We conclude by mentioning that our results probably represent the state-of-the-art in BI.

1.3 Paper Organization

The rest of the paper is organized as follows. First of all, in Section 2 we present a brief overview of

the PRSs and the present-day BI algorithms, and also include a brief introduction to the concept

of Order Statistics (OS) of a distribution, and of the moments of the OS. Section 3 includes the

main results of the paper and gives a clear understanding of the optimal classification that can be

achieved by invoking the properties of the moments of the OS for various distributions. In each case,

we include the analytic proofs followed by the experimental results obtained by rigorous testing. In

many cases, the results have been derived and simulated for uni-dimensional and multi-dimensional

distributions. Section 4, which concludes the paper, also includes a suite of problems which can be

studied from the perspective of OS criteria.
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2 Relevant Background Areas

2.1 Prototype Reduction Schemes

Zillions of PRS [13] techniques have developed over the years, and it is clearly impossible to survey

all of these here. These include the Condensed Nearest Neighbor (CNN) rule [10], the Reduced

Nearest Neighbor (RNN) rule [8], the Prototypes for Nearest Neighbor (PNN) classifiers [2], the

Selective Nearest Neighbor (SNN) rule [18], the Edited Nearest Neighbor (ENN) rule [3], Vector

Quantization (VQ) etc., some of which are briefly explained below1.

While some of the above techniques merely select a subset of the existing patterns as prototypes,

other techniques create new prototypes so as to represent all the existing patterns in the best man-

ner. Of the above-listed PRS techniques, the CNN, RNN, SNN and ENN merely select prototypes

from the existing patterns, while the PNN and VQ create new prototypes that collectively represent

the entire training set. The review below is necessarily brief since we have merely listed two schemes

which select prototypes and one which creates them. Comprehensive survey of the state-of-the-art

in PRSs can be found in [7, 11, 21]. The formal algorithms2 are also found in [19].

2.1.1 Condensed Nearest Neighbor (CNN)

The CNN has been suggested as a rule that retains the basic approach of a Nearest Neighbor

paradigm to determine a consistent subset of the original sample set. However, this technique, in

general, will not lead to a minimal consistent sample set, which is a set that contains a minimum

number of samples able to correctly classify all the remaining samples in the given set.

Initially, the first pattern of the original training set T is copied to TCNN. Then, the second

pattern of T is classified by considering TCNN as the Reference set. If that pattern is correctly

classified, it is moved to R, which is the set of patterns to be removed. Otherwise, it is moved to

the Reference set. This procedure is repeated for all the patterns of T . Once all the patterns have

been considered for such a verification phase, the same procedure is repeated for the set R, which

contains the patterns to be removed. This phase will be repeated until either the set R becomes

empty (i.e., the Reference set is equivalent to the original set), or no more patterns are left in R

which have any effect on the classification.

Once this pre-processing has been achieved, TCNN will be the Reference set for the NN rule.

The patterns that are moved to R will be discarded.

1This section can be removed or abridged if requested by the referees.
2A copy of the PhD proposal can be found at http://people.scs.carleton.ca/~athomas1/Proposal.pdf.
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2.1.2 Reduced Nearest Neighbor (RNN)

Gates proposed the RNN as an extension of the CNN, that attempts to further reduce the original

training set, from what was suggested by the CNN. The RNN algortihm first invokes the CNN

algorithm to obtain TCNN, the reduced training set derived by the CNN rule. It then tries to

discard those patterns which do not have any influence in the classification process. To accomplish

this, the RNN algorithm removes one pattern per iteration, by classifying T using the set TRNN as

the Reference set. If at least one pattern is not correctly classified, it is obvious that the removed

pattern has some influence on the classification. Consequently, the removed pattern is again included

into TRNN, and the procedure is continued with the next pattern of TRNN.

2.1.3 Prototypes for Nearest Neighbor (PNN)

Another PRS scheme, the PNN algorithm [2], can be described as follows: Given a training set T ,

the algorithm starts with every point in T as a prototype. We now define two auxiliary sets A and

B. Initially, set A is empty and set B is equal to T , where every prototype (data sample) has an

associated weight of unity. The algorithm selects an arbitrary point in B and initially assigns it to A.

After this, the two closest prototypes p in A and q in B of the same class are merged, successively,

into a new prototype, p∗. This is done only if the merging will not degrade the classification of the

patterns in T , where p∗ is the weighted average of p and q. After determining the new value of

p∗, p from A and q from B are deleted, and p∗ is included into A. Thereafter, the procedure is

repeated until a static condition attains.

If either p and q are not of the same class, or if merging is unsuccessful, q is moved from B

to A, and the procedure is repeated. When B becomes empty, the entire procedure is repeated by

setting B to be the final A obtained from the previous cycle, and by resetting A to be the empty

set, until no new merged prototypes are obtained. The final prototypes in A are then used as the

Reference set in a NN classifier. The bottom-up nature of this method is crucial to its convergence.

2.2 Border Identification Algorithms

Border Identification (BI) algorithms form a distinct subset of PRSs. Since our aim is to also

formalize the rationale for BI methods, they are briefly surveyed here.

2.2.1 Duch’s Algorithms

Duch, in a pioneering endeavor, developed algorithms to obtain the Reference set based on a border

analysis of every training pattern. He designed two techniques which serve to select the most

effective reference vectors near the class borders. The first method, referred to as Duch1, starts

with an empty Reference set. For every training pattern x, the scheme identifies k nearest patterns,
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and those patterns which are from the class other than the class of x are added to the Reference

set. In this way, the algorithm, in effect, attempts to add patterns which are closer to the class

boundary, to the Reference set [5].

The whole procedure is repeated a number of times, from a maximum value of k, denoted by

K2, to a minimum value of k, denoted by K1, with K1 < K2.

The alternate method proposed by Duch to select the Reference set starts with the entire training

set, T . For every pattern x in T , k nearest patterns are identified. If all the k nearest patterns

are from the same class as that of x, the pattern x is removed from the Reference set, since all

the removed patterns are, possibly, farther from the class borders. Thus, the Reference set that is

retained contains only the patterns which are closer to the class borders.

In order to apply Duch’s approaches, the value of k should be considered as a user-defined

parameter.

2.2.2 Foody’s Algorithm

Another important development in this area was proposed by Foody [6]. According to his approach,

the training set is divided into two sets - the first comprising of the set of border patterns, and the

second being the set of non-border patterns. A border training set should contain patterns from

different classes, but which are close together in the feature space and which are thus in the proximity

of the true classification boundary. A pattern which is almost as close to its actual class as it is to

the other class can be considered as a border pattern. In order to decide whether a training pattern

is a border pattern or not, a scale of “borderness” is defined. Foody expressed “borderness” as the

difference between the two smallest Mahalanobi’s distances measured for each training pattern. It

is obvious that even though the algorithm is aimed for obtaining border patterns, it yields near and

far borders.

2.2.3 Border Identification in Two Stages (BI2)

The “traditional” BI algorithms proposed by Duch and Foody are based on the concept of similarity

distance metrics. However, Li claimed that those algorithms are unable to learn the so-called “Full”

border points, which include the “Far” border points. This being the case, more recent research had

proposed the concept of finding the border patterns in two stages (i.e., the BI2 algorithm) [14]. The

border patterns obtained by the traditional approaches are considered to be the “Near” borders,

and using the latter, the “Far” borders are identified from the remaining data points. It turns out

that the final border points computed in this manner are more accurate than the initially identified

“Near” borders. The “Near” and the “Far” borders collectively constitute the so-called Full border

set for the training data.
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The first stage of the BI2 algorithm, proposed by Li et al.[14], used an approach similar to Duch’s

first algorithm to get the initial Reference set. After obtaining the Near borders, the algorithm

then identifies the Far borders from the Remaining set. To achieve this, the scheme removes the

redundant data patterns from the Remaining set, and this process is repeated until the Remaining

set becomes empty. This scheme has been further augmented by the inclusion of a phase referred to

as Progressive Sampling (PS). Li et al. have recommended that PS be applied to BI2 so as to detect

when the scheme has converged to, thereby, yield a more optimal border set. The new algorithm,

the PBS, proposed by Li et al., progressively learns sufficient borders that can classify the whole

training set. In other words, it is used to yield a criterion by which one can get an iterative process

for finding new border patterns.

2.3 Order Statistics

Let x1, x2, ...., xn be a univariate random sample of size n that follows a continuous distribution

function Φ, where the probability density function (pdf) is ϕ(·). Let x1,n, x2,n, ...., xn,n be the

corresponding Order Statistics (OS). The rth OS, xr,n, of the set is the rth smallest value among

the given random variables. The pdf of y = xr,n is given by:

fy(y) =
n!

(r − 1)!(n − r)!
{Φ(y)}r−1 {1− Φ(y)}n−r ϕ(y),

where r = 1, 2, ..., n. The reasoning for the above expression is straightforward. If the rth OS

appears at a location given by y = xr,n, it implies that the r − 1 smaller elements of the set are

drawn independently from a Binomial distribution with a probability Φ(y), and the other n − r

samples are drawn using the probability 1−Φ(y). The factorial terms result from the fact that the

(r − 1) elements can be independently chosen from the set of n elements.

Although the distribution fy(y) contains all the information resident in y, the literature charac-

terizes the OS in terms of quantities which are of paramount importance, namely its moments [20].

To better appreciate the results presented later in this paper, an understanding of the moments of

the OS is necessary. This is briefly presented below.

Using the distribution fy(y), one can see that the kth moment of xr,n can be formulated as:

E[xk
r,n] =

n!

(r − 1)!(n − r)!

∫ +∞

−∞
ykΦ(y)k−1(1− Φ(y))n−rϕ(y)dy,

provided that both sides of the equality exist [1, 16].

The fundamental theorem concerning the OS that we invoke is found in many papers [15, 16, 20].

The result is merely cited below inasmuch as the details of the proof are irrelevant and outside the

scope of this study. The theorem can be summarized as follows.
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Let n ≥ r ≥ k + 1 ≥ 2 be integers. Then, since Φ is a nondecreasing and right-continuous

function from R → R, Φ(xr,n) is uniform in [0,1]. If we now take the kth moment of Φ(xr,n), it has

the form [15]:

E[Φk(xr,n)] =
B(r + k, n− r + 1)

B(r, n− r + 1)
=

n! (r + k − 1)!

(n+ k)! (r − 1)!
, (1)

where B(a, b) denotes the Beta function, and B(a, b) = (a−1)!(b−1)!
(a+b−1)! since its parameters are integers.

The above fundamental result can also be used for characterization purposes as follows [15]. Let

n ≥ r ≥ k + 1 ≥ 2 be integers, with Φ being nondecreasing and right-continuous. Let G be any

nondecreasing and right-continuous function from R → R on the same support as Φ. The relation

E[Gk(xr,n)] =
n! (r + k − 1)!

(n+ k)! (r − 1)!
(2)

holds if and only if ∀x,Φ(x) = G(x). In other words, Φ(·) is the unique function that satisfies Eq.

(2), implying that every distribution is characterized by the moments of its OS.

The implications of the above are the following:

1. If n = 1, implying that only a single sample is drawn from x, from Eq. (1),

E[Φ1(x1,1)] =
1

2
, =⇒ E[x1,1] = Φ−1

(

1

2

)

. (3)

Informally speaking, the first moment of the 1-order OS would be the value where the cumu-

lative distribution Φ equals 1
2 , which is the Median(x).

2. If n = 2, implying that only two samples are drawn from x, we can deduce from Eq. (1) that:

E[Φ1(x1,2)] =
1

3
, =⇒ E[x1,2] = Φ−1

(

1

3

)

, and (4)

E[Φ1(x2,2)] =
2

3
, =⇒ E[x2,2] = Φ−1

(

2

3

)

. (5)

Thus, from a computational perspective, the first moment of the first and second 2-order OS

would be the values where the cumulative distribution Φ equal 1
3 and 2

3 respectively.

Although the analogous expressions can be derived for the higher order OS, for the rest of

this paper we shall merely focus on the 2-order OS, and derive the consequences of using them in

classification.

9



3 Optimal Bayesian Classification using Two Order Statistics

3.1 The Generic Classifier

Having characterized the moments of the OS of arbitrary distributions, we shall now consider how

they can be used to design a classifier.

Let us assume that we are dealing with the 2-class problem with classes ω1 and ω2, where their

class-conditional densities are f1(x) and f2(x) respectively (i.e, their corresponding distributions are

F1(x) and F2(x) respectively)3. Let ν1 and ν2 be the corresponding medians of the distributions.

Then, classification based on ν1 and ν1 would be the strategy that classifies samples based on a

single OS. We shall show the fairly straightforward result that for all symmetric distributions, the

classification accuracy of this classifier attains the Bayes’ accuracy.

This result is not too astonishing because the median is centrally located close to (if not exactly)

on the mean. The result for higher order OS is actually far more intriguing because the higher order

OS are not located centrally (close to the means), but rather distant from the means. Consequently,

we shall show that for a large number of distributions, mostly from the exponential family, the

classification based on these OS again attains the Bayes’ bound.

We shall initiate this discussion by examining the Uniform distribution. The reason for this is

that even though the distribution itself is rather trivial, the analysis will provide the reader with

an insight into the mechanism by which the problem can be tackled, which can then be extended

for other distributions.

3.2 The Uniform Distribution

The continuous Uniform distribution is characterized by a constant function U(a, b), where a and

b are the minimum and the maximum values that the random variable x can take. If the class

conditional densities of ω1 and ω2 are uniformly distributed,

f1(x) =







1
b1−a1

if a1 ≤ x ≤ b1;

0 if x < a1 or x > b1, and

f2(x) =







1
b2−a2

if a2 ≤ x ≤ b2;

0 if x < a2 or x > b2.

The reader should observe the following:

• If a2 > b1, the two distributions are non-overlapping, rendering the classification problem

trivial.

3Throughout this section, we will assume that the a priori probabilities are equal. If they are unequal, the above
densities must be weighted with the respective a priori probabilities.
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• If a2 < b1, but b1 − a1 6= b2 − a2, the optimal Bayesian classification is again dependent only

on the heights of the distributions. In other words, if b2 − a2 < b1 − a1, the testing sample

will be assigned to ω2 whenever x > a2. This criterion again is not related to the mean of the

distributions at all, and is thus un-interesting to our current investigations.

• The meaningful scenario is when b1 − a1 is exactly equal to b2 − a2, and if a2 < b1. In this

case, the heights of the two distributions are equal and the distributions are overlapping. This

is really the interesting case, and corresponds to the scenario when the two distributions are

identical. We shall analyze this in greater detail and demonstrate that the optimal Bayesian

classification is also attained by using the OS.

3.2.1 Theoretical Analysis: Uniform Distribution - 2-OS

We shall now derive the formal properties of the classifier that utilizes the OS for the Uniform

distribution.

Theorem 1. For the 2-class problem in which the two class conditional distributions are Uniform

and identical, CMOS, the classification using two OS, attains the optimal Bayes’ bound.

Proof. The proof of the result is done in two steps. We shall first show that when the two class

conditional distributions are Uniform and identical, the optimal Bayesian classification is achieved

by a comparison to the corresponding means. The equivalence of this to a comparison to the

corresponding OS leads to the final result.

Without loss of generality let the class conditional distributions for ω1 and ω2 be U(0, 1) and

U(h, 1 + h), with means µ1 = 1
2 and µ2 = h + 1

2 , respectively. In this case, the optimal Bayes’

classifier assigns x to ω1 whenever x < h, x to ω2 whenever x > 1, and x to ω1 and to ω2 with equal

probability when h < x < 1. Since:

D (x, µ1) < D (x, µ2) ⇐⇒ x− 1

2
< h+

1

2
− x

⇐⇒ 2x < 1 + h

⇐⇒ x <
1 + h

2
, (6)

we see that the optimal Bayesian classifier assigns the sample based on the proximity to the corre-

sponding mean, proving the first assertion.

We now consider the moments of the OS of the distributions. If x1, x2, ...., xn are n independent

univariate random variables that follow the Uniform distribution U(0, 1), by virtue of Eq.(1), the

expected values of the first moment of the k-order OS can be seen to be E[xk,n] =
k

n+1 . Thus, for
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U(0, 1), E[x1,2] =
1
3 and E[x2,2] =

2
3 . Similarly, for the distribution U(h, 1+h), the expected values

are E[x1,2] = h+ 1
3 and E[x2,2] = h+ 2

3 .

The OS-based classification is thus as follows: Whenever a testing sample comes from these

distributions, the CMOS will compare the testing sample with E[x2,2] of the first distribution, i.e.,

2
3 , and with E[x1,2] of the second distribution, i.e., h+ 1

3 , and the sample will be labeled with respect

to the class which minimizes the corresponding quantity, as shown in Figure 2. Observe that for

the above rule to work, we must enforce the ordering of the OS of the two distributions, and this

requires that 2
3 < h+ 1

3 =⇒ h > 1
3 .

Figure 2: Uniform Distribution

In order to prove that for h > 1
3 the OS-based classification is identical to the mean-based

classification, we have to prove that D(x, µ1) < D(x, µ2) =⇒ D(x,O1) < D(x,O2), where O1 is

E[x2,2] of the first distribution and O2 is E[x1,2] of the second distribution. By virtue of Eq.(6),

D(x, µ1) < D(x, µ2) ⇐⇒ x <
h+ 1

2
. (7)

Similarly,

D(x,O1) < D(x,O2) ⇐⇒ D

(

x,
2

3

)

< D

(

x, h+
1

3

)

⇐⇒ x− 2

3
< h+

1

3
− x

⇐⇒ x <
h+ 1

2
. (8)

The result follows by observing that (7) and (8) are identical comparisons.

For the analogous result for the case when h < 1
3 , the CMOS will compare the testing sample

with E[x1,2] of the first distribution, i.e., 1
3 , and with E[x2,2] of the second distribution, i.e., h+ 2

3 .

Again, the sample will be labeled with respect to the class which minimizes the corresponding

quantity. The proofs of the equivalence of this to the Bayesian decision follows along the same lines

as the case when h > 1
3 , and is omitted to avoid repetition.

Hence the theorem!

By way of example, consider the distributions U(0, 1) and U(0.8, 1.8). Our claim is demonstrated
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in Figure 3. In the figure, dm1 and dm2 are the distances of the testing sample with respect to the

means of the first and the second class (i.e., 0.5 and 1.3) respectively, and dos1 and dos2 are the

distances of the testing sample with respect to the moments of the OS for both the classes. The

testing sample will be assigned to class ω1 if dos1 < dos2 otherwise to class ω2. The interesting point

is that the latter classification is, indeed, the Bayesian conclusion too.

Figure 3: Analysis of Uniform Distribution

3.2.2 Experimental Results: Uniform Distribution - 2-OS

The CMOS method explained in Section 3.2.1 has been rigorously tested for various uniform dis-

tributions with 2-OS. In the interest of brevity, a few typical results are given below.

For each of the experiments, we generated 1,000 points for the classes ω1 and ω2 characterized

by U(0, 1) and U(h, 1 + h) respectively. We then invoked a classification procedure by utilizing the

Bayesian and the CMOS strategies. In every case, CMOS was compared with the Bayesian classifier

for different values of h, as tabulated in Table 1. The results in Table 1 were obtained by executing

each algorithm 50 times using a 10-fold cross-validation scheme.

h 0.95 0.90 0.85 0.80 0.75 0.70

Bayesian 97.58 95.1 92.42 90.23 87.82 85.4

CMOS 97.58 95.1 92.42 90.23 87.82 85.4

Table 1: Classification of Uniformly distributed classes by the CMOS 2-OS method for different
values of h.

Observe that in every case, the accuracy of CMOS attained the Bayes’ bound.

By way of example, we see that CMOS should obtain the Bayesian bound for the distributions

U(0, 1) and U(0.8, 1.8) whenever n < 1+0.8
1−0.8 = 9. In this case, the expected values of the moments

are 1
10 and 9

10 respectively. These results justify the claim of Theorem 1.

13



3.2.3 Theoretical Analysis: Uniform Distribution - k-OS

We have seen from Theorem 1 that the moments of the 2-OS are sufficient for the classification to

attain a Bayes’ bound. We shall now consider the scenario when we utilize other k-OS. The formal

result pertaining to this is given in Theorem 2.

Theorem 2. For the 2-class problem in which the two class conditional distributions are Uniform

and identical as U(0,1) and U(h, 1+h), optimal Bayesian classification can be achieved by using

symmetric pairs of the n-OS, i.e., the n − k OS for ω1 and the k OS for ω2 if and only if k >

(n+1)(1−h)
2 .

Proof. We know that for the uniform distribution U(0, 1), the expected values of the first moment

of the k-order OS have the form E[xk,n] =
k

n+1 . Our claim is based on the classification in which

we can choose any of the symmetric pairs of the n-OS, i.e., the n − k OS for ω1 and the k OS for

ω2, whose expected values are n−k+1
n+1 and h+ k

n+1 respectively.

Consider the case when h > 1− 2k
n+1 , the relevance of which will be argued presently. Whenever

a testing sample comes, it will be compared with the corresponding k-OS symmetric pairs of the

expected values of the n-OS, and the sample will be labeled with respect to the class that minimizes

the distance. Observe that for the above rule to work, we must again enforce the ordering of the

OS of the two distributions, and this requires that:

n− k + 1

n+ 1
< h+

k

n+ 1
=⇒ k >

(n+ 1)(1 − h)

2
. (9)

Eq.(9) can be seen to be:

k >
(n+ 1)(1 − h)

2
=⇒ h > 1− 2k

n+ 1
, (10)

which justifies the case under consideration. As we have already proved that the Bayesian bound

can be achieved by a comparison to the corresponding means (in Eq.(6)), which in turn simplifies

to x ∼ ω1 ⇐⇒ x < h+1
2 , we need to show that to obtain optimal accuracy using these symmetric

n − k and k OS, D(x,O1) < D(x,O2) ⇐⇒ x < h+1
2 . Indeed, the OS-based classification also

attains the Bayesian bound because:

D(x,O1) < D(x,O2) ⇐⇒ D

(

x,
n− k + 1

n+ 1

)

< D

(

x, h+
k

n+ 1

)

⇐⇒ x− n− k + 1

n+ 1
< h+

k

n+ 1
− x

⇐⇒ x <
h+ 1

2
. (11)

For the symmetric argument when h < 1 − 2k
n+1 , the CMOS will compare the testing sample

14



with E[xk,n] of the first distribution and E[xn−k,n] of the second distribution and the classification

is obtained based on the class that minimizes this distance. The details of the proof are analogous

and omitted. Hence the theorem!

Remark: We can visualize this result from another perspective when we observe that we are

concerned about the ensemble of symmetric pairs that can be considered to be effective for the

classification. In order to obtain the maximum accuracy, the expected value of the first moment of

the OS for the first class should be less that 1+h
2 , which implies that n−k+1

n+1 < 1+h
2 , because if this

condition is violated, the testing samples will be misclassified. Thus:

n− k + 1

n+ 1
<

1 + h

2
⇐⇒ 2n− 2k + 2 < (n+ 1)(1 + h)

⇐⇒ k >
(n+ 1)(1 − h)

2
, (12)

which is again the same condition found in the statement of Theorem 2 and Eq. (9). This, indeed,

implies that the optimal Bayesian bound can be obtained with respect to different symmetric pairs

of the n-OS, n−k+1
n+1 and h+ k

n+1 , if and only if k >
(n+1)(1−h)

2 .

3.2.4 Experimental Results: Uniform Distribution - k-OS

The CMOS method has also been tested for the Uniform distribution for other k OS. In the interest

of brevity, we merely cite one example where the distributions for ω1 and ω2 were characterized

by U(0, 1) and U(0.8, 1.8) respectively. For each of the experiments, we generated 1,000 points for

each class, and the testing samples were classified based on the selected symmetric pairs for values

k and n− k respectively. The results are displayed in Table 2.

To clarify the table, consider the row given by Trial No. 6 in which the 7-OS were invoked for

the classification. Observe that the k-OS are now given by n−k+1
n+1 and k

n+1 respectively. In this

case, the possible symmetric OS pairs could be 〈1, 6〉, 〈2, 5〉, and 〈3, 4〉 respectively. In every single

case, the accuracy attained the Bayes’ bound, as indicated by the results in the table.

The consequence of violating the condition imposed by Theorem 2 can be seen from the results

given in the row denoted by Trial No. 9. In this case, the testing attained the Bayes’ accuracy for

the symmetric OS pairs 〈2, 9〉, 〈3, 8〉, 〈4, 7〉 and 〈5, 6〉 respectively. However, the classifier “failed”

for the specific 10-OS, when the OS used were 10
11 and h + 1

11 , as these values did not satisfy the

condition h > 1 − 2k
n+1 . Observe that if h < 1 − 2k

n+1 , the symmetric pairs should be reversed, i.e.,

k
n+1 for the first distribution, and h + n−k+1

n+1 for the second distribution, to obtain the optimal

Bayesian bound. The astonishing facet of this result is that one obtains the Bayes’ accuracy even

though the classification requires only two points distant from the mean, justifying the rationale for

BI schemes, and yet operating in an anti-Bayesian manner.
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Trial No. Order(n) Moments OS1 OS2 CMOS Pass/Fail

1 Two { i
3 |1 ≤ i ≤ 2} 2

3 h+ 1
3 90.23 Passed

2 Three { i
4 |1 ≤ i ≤ 3} 3

4 h+ 1
4 90.23 Passed

3 Four { i
5 |1 ≤ i ≤ 4} 4

5 h + 1
5 90.23 Passed

4 Five { i
6 |1 ≤ i ≤ 5} 4

6 h+ 2
6 90.23 Passed

5 Six { i
7 |1 ≤ i ≤ 6} 4

7 h+ 2
7 90.23 Passed

6 Seven { i
8 |1 ≤ i ≤ 7} 5

8 h+ 3
8 90.23 Passed

7 Eight { i
9 |1 ≤ i ≤ 8} 6

9 h+ 3
9 90.23 Passed

8 Nine { i
10 |1 ≤ i ≤ 9} 7

10 h+ 3
10 90.23 Passed

9 Ten { i
11 |1 ≤ i ≤ 10} 10

11 h+ 1
11 9.77 Failed

10 Ten { i
11 |1 ≤ i ≤ 10} 9

11 h+ 2
11 90.23 Passed

11 Ten { i
11 |1 ≤ i ≤ 10} 7

11 h+ 4
11 90.23 Passed

12 Ten { i
11 |1 ≤ i ≤ 10} 6

11 h+ 5
11 90.23 Passed

Table 2: Results of the classification obtained by using the symmetric pairs of the OS for different
values of n. The value of h was set to be 0.8. Note that in every case, the accuracy attained the
Bayes’ value whenever the conditions stated in Theorem 2 were satisfied.

Remark: We believe that the CMOS, the classification by the moments of Order Statistics, is

also true for multi-dimensional distributions. For a prima facie case, we consider two (overlapping)

2-dimensional uniform distributions U1 and U2 in which both the features are in [0, 1]2 and [h, 1+h]2

respectively. Consequently, we see that the overlapping region of the distributions forms a square

(see Fig. 4). In this case, it is easy to verify that the Bayesian classifier is the diagonal that passes

through the intersection points of the distributions. For the classification based on the moments

of the 2-OS, because the features are independent for both dimensions, we can show that this is

equivalent to utilizing the OS at position 2
3 of the first distribution for both dimensions, and the OS

at the position h + 1
3 of the second distribution for both dimensions, as shown in Figure 4. In the

figure, the points a = [a1, a2] and c = [c1, c2] denote the corresponding locations of the first feature

at the positions 2
3 and h+ 1

3 of the distributions respectively. Similarly, b = [b1, b2] and d = [d1, d2]

denote the corresponding locations for the second feature of the given distributions. Observe that

the Bayesian classifier passes exactly through the middle of these points.

One can easily observe that a testing point is classified to ω1 if the value of its first feature is less

than a1 and is classified as ω2 if the feature value is greater than c1. The classification of the points

that have the feature value as a1 < x1 < c1, are equally likely and should thus be considered more

carefully. By virtue of the uni-dimensional result derived in Theorem 1, we see that for all values
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of the second dimension, the classifier for the first dimension in this region lies at the midpoint of

a and c, which is exactly the position determined by the Bayes’ classifier. Arguing in the same

manner for the second dimension, we see that the values defined by the corresponding OS criteria

will again be projected exactly onto the Bayes’ classifier. Hence we conclude that the CMOS attains

the Bayes’ bound.

Figure 4: The optimal Bayes’ classifier and the 2-OS CMOS for uniformly distributed 2-dimensional
features.

The CMOS method for 2-dimensional uniform distributions U1 (in [0, 1] in both dimensions) and

U2 (in [h, 1 + h] in both dimensions) has been rigorously tested, and the results are given in Table

3. A formal proof for the case when the second class is distributed in [h1, 1 + h1]× [h2, 1 + h2], and

for multi-dimensional features is currently being devised. It will appear in a forthcoming paper.

h 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60

Bayesian 99.845 99.505 98.875 98.045 97.15 95.555 94.14 91.82

CMOS 99.845 99.505 98.875 98.045 97.15 95.555 94.14 91.82

Table 3: Classification of Uniformly distributed 2-dimensional classes by the CMOS 2-OS method
for different values of h. In the last two cases, the OS points of interest are reversed as explained
in Section 3.2.4.
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We now proceed to consider the CMOS for other distributions in the exponential family.

3.3 The Laplace (or Doubly-Exponential) Distribution

The Laplace distribution is a continuous uni-dimensional pdf named after Pierre-Simon Laplace.

It is sometimes called the doubly exponential distribution, because it can be perceived as being

a combination of two exponential distributions, with an additional location parameter, spliced

together back-to-back.

If the class conditional densities of ω1 and ω2 are doubly exponentially distributed,

f1(x) =
λ1

2
e−λ1|x−c1|, −∞ < x < ∞, and

f2(x) =
λ2

2
e−λ2|x−c2|, −∞ < x < ∞,

where c1 and c2 are the respective means of the distributions. By elementary integration and

straightforward algebraic simplifications, the variances of the distributions can be seen to be 2
λ2
1
and

2
λ2
2
respectively.

By way of example, the pdfs of doubly exponential distributions for different values of the

parameter λ are given in Figure 5 where the optimal Bayes’ classifier will evidently be at the point

x∗. Thus, if λ1 6= λ2, the samples can be classified based on the heights of the distributions and their

point of intersection. The formal results for the general case are a little more complex. However, to

prove the analogous results of Theorem 1 for the Uniform distribution, we shall first consider the

case when λ1 = λ2. In this scenario, the reader should observe the following:

• Because the distributions have the equal height, i.e. λ1 = λ2, the testing sample x will

obviously be assigned to ω1 if it is less than c1 and be assigned to ω2 if it is greater than c2.

• Further, the crucial case is when c1 < x < c2. In this regard, we shall analyze the CMOS

classifier and prove that it attains the Bayes’ bound even when one uses as few as only 2 OSs.

3.3.1 Theoretical Analysis: Doubly-Exponential Distribution - 2-OS

We shall first derive the moments of the 2-OS for the doubly exponential distribution. By virtue

of Eq. (4) and (5), the expected values of the first moments of the two OS can be obtained by

determining the points where the cumulative distribution function attains the values 1
3 and 2

3 . Let

u1 be the point for the percentile 2
3 of the first distribution, and u2 be the point for the percentile
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Figure 5: Doubly Exponential Distributions with different values for λ.

1
3 of the second distribution. Then:

u1
∫

c1

λ1

2
e−λ1|x−c1|dx =

2

3
− 1

2
=

1

6
, and (13)

u2
∫

−∞

λ2

2
eλ2|x−c2|dx =

1

3
. (14)

The points of interest, i.e., u1 and u2, can be obtained by straightforward integrations and

simplifications as follows:

u1
∫

c1

λ1

2
e−λ1|x−c1|dx =

1

6
=⇒

[

−1

2
e−λ1(x−c1)

]u1

c1

=
1

6

=⇒ u1 = c1 −
1

λ1
log

(

2

3

)

. (15)

Using a similar argument, we can see that:

u2 = c2 +
1

λ2
log

(

2

3

)

. (16)

With these points at hand, we shall now demonstrate that, for doubly exponential distributions,

the classification based on the expected values of the moments of the 2-OS, CMOS, attains the

Bayesian bound.

Theorem 3. For the 2-class problem in which the two class conditional distributions are Doubly

Exponential and identical, CMOS, the classification using two OS, attains the optimal Bayes’ bound.
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Proof. The proof can be done in two steps. As in the uniform case, first of all, we shall show that

when the class conditional distributions are doubly exponential and identical, the optimal Bayes’

bound can be attained by a comparison to the corresponding means, and as the concluding step,

this can be shown to be equal to the accuracy of the CMOS, which lead to the proof of the theorem.

Without loss of generality, let the distributions of ω1 and ω2 be D(c1, λ) and D(c2, λ), where c1

and c2 are the means, and λ is the identical scale parameter. Then, to get the Bayes’ classifier, we

argue that:

p(x|ω1)p(ω1)
ω1

≷
ω2

p(x|ω2)p(ω2) =⇒ λ

2
e−λ|x−c1|

ω1

≷
ω2

λ

2
e−λ|x−c2|

=⇒ λ(x− c1)
ω1

≶
ω2

λ(c2 − x)

=⇒ x
ω1

≶
ω2

c1 + c2

2
. (17)

We now consider the classification with respect to the expected values of the moments of the

2-OS, u1 and u2, where as per Eq. (15) and (16), u1 = c1 − 1
λ
log

(

2
3

)

and u2 = c2 +
1
λ
log

(

2
3

)

. In

order to prove our claim, we need to show that

D(x, c1) < D(x, c2) ⇐⇒ D(x, u1) < D(x, u2). (18)

We first consider the LHS of Eq. (18). Indeed,

D(x, c1) < D(x, c2) =⇒ x− c1 < c2 − x

=⇒ 2x < c1 + c2

=⇒ x <
c1 + c2

2
. (19)

What remains to be proven is that the RHS of Eq. (18) also simplifies to the same expression.

This is true because:

D(x, u1) < D(x, u2) =⇒ D

(

x, c1 −
1

λ
log

(

2

3

))

< D

(

x, c2 +
1

λ
log

(

2

3

))

=⇒ 2x < c1 + c2

=⇒ x <
c1 + c2

2
. (20)

The result follows by observing that Eq. (19) and (20) are identical comparisons.

Hence the theorem!
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3.3.2 Data Generation: Doubly-Exponential Distribution

In order to generate data that follow non-uniform distributions, we made use of a Uniform (0, 1)

random variate generator. Data values that follow a Doubly Exponential distribution can be gen-

erated by using the expression x = c ± λlog|2u| where c is the mean of the distribution, λ is the

scale parameter, and u is uniform in U(0, 1) [4]. For both the classes, 1,000 points were generated

with means c1 and c2, and with identical values for λ1 and λ2.

3.3.3 Experimental Results: Doubly-Exponential Distribution - 2OS

The CMOS classifier was rigorously tested for a number of experiments with various Doubly Expo-

nential distributions having means c1 and c2. In every case, the 2-OS CMOS gave exactly the same

classification as that of the Bayesian classifier. The method was executed 50 times with the 10-fold

cross validation scheme. The test results are depicted in Table 4. From the experimental results

c1 0 0 0 0 0 0 0 0 0

c2 10 9 8 7 6 5 4 3 2

Bayesian 99.75 99.65 99.25 99.05 98.9 97.85 96.8 94.05 89.9

CMOS 99.75 99.65 99.25 99.05 98.9 97.85 96.8 94.05 89.9

Table 4: Classification for the Doubly Exponential Distribution by the CMOS.

and the theoretical analysis, we conclude that the expected values of the first moment of the 2-OS

of the Doubly Exponential distribution can always be utilized to yield the exact accuracy as that

of the Bayes’ bound, even though this is a drastically anti-Bayesian operation.

We now proceed to consider the analogous result for the k-OS.

3.3.4 Theoretical Analysis: Doubly-Exponential Distribution - k-OS

We have seen from Theorem 3 that for the Doubly Exponential distribution, the moments of the

2-OS are sufficient for the classification to attain a Bayes’ bound. We shall now consider the scenario

when we utilize other k-OS. The formal result pertaining to this is given in Theorem 4.

Theorem 4. For the 2-class problem in which the two class conditional distributions are Doubly

Exponential and identical, the optimal Bayesian classification can be achieved by using symmetric

pairs of the n-OS, i.e., the n− k OS for ω1 and the k OS for ω2 if and only if log
(

2k
n+1

)

> c1−c2
2 .

Proof. We shall first show that the expected values of the first moment of the k-order OS for the

Doubly Exponential distribution have the form E[xk,n] = log
(

2k
n+1

)

. This result is proven by

invoking a formal mathematical induction on k and is omitted here for the present.
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We have already solved the case when n = 2 and can be seen in Section 3.3.1. Now, we shall

consider the case when n = 4, for which the possible symmetric OS pairs could be 〈1, 4〉 and 〈2, 3〉
respectively. Considering the OS pair 〈1, 4〉, let u1 be the point for the percentile 4

5 of the first

distribution, and u2 be the point for the percentile 1
5 of the second distribution. Then:

u1
∫

c1

λ1

2
e−λ1|x−c1|dx =

4

5
− 1

2
=

3

5
, and (21)

u2
∫

−∞

λ2

2
eλ2|x−c2|dx =

1

5
. (22)

By straightforward integration and simplifications, we obtain:

u1 = c1 −
1

λ1
log

(

2

5

)

, u2 = c2 +
1

λ2
log

(

2

5

)

. (23)

Arguing in the same way, if we consider the symmetric pair 〈2, 3〉, we obtain:

u1 = c1 −
1

λ1
log

(

4

5

)

, u2 = c2 +
1

λ2
log

(

4

5

)

. (24)

The CMOS points for different values for n is given in Table 6.

n OS percentiles u1 u2

2
〈

2
3 ,

1
3

〉

c1 − 1
λ
log

(

2
3

)

c2 +
1
λ
log

(

2
3

)

4
〈

4
5 ,

1
5

〉

c1 − 1
λ
log

(

2
5

)

c2 +
1
λ
log

(

2
5

)

4
〈

3
5 ,

2
5

〉

c1 − 1
λ
log

(

4
5

)

c2 +
1
λ
log

(

4
5

)

6
〈

6
7 ,

1
7

〉

c1 − 1
λ
log

(

2
7

)

c2 +
1
λ
log

(

2
7

)

6
〈

5
7 ,

2
7

〉

c1 − 1
λ
log

(

4
7

)

c2 +
1
λ
log

(

4
7

)

6
〈

4
7 ,

3
7

〉

c1 − 1
λ
log

(

6
7

)

c2 +
1
λ
log

(

6
7

)

8
〈

8
9 ,

1
9

〉

c1 − 1
λ
log

(

2
9

)

c2 +
1
λ
log

(

2
9

)

8
〈

7
9 ,

2
9

〉

c1 − 1
λ
log

(

4
9

)

c2 +
1
λ
log

(

4
9

)

8
〈

6
9 ,

3
9

〉

c1 − 1
λ
log

(

6
9

)

c2 +
1
λ
log

(

6
9

)

8
〈

5
9 ,

4
9

〉

c1 − 1
λ
log

(

8
9

)

c2 +
1
λ
log

(

8
9

)

Table 5: CMOS values for different values of n.

Our present claim is based on the classification in which we can choose any of the symmetric pairs

of the n-OS, i.e., the n−k OS for ω1 and the k OS for ω2, where these quantities are c1− log
(

2k
n+1

)

and c2 + log
(

2k
n+1

)

respectively.
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It is obvious that an OS value can correctly classify a testing point only when the position is

somewhere before the intersection of the curves. This point of intersection of the curves can be

obtained by equating them as below:

λ1

2
e−λ1(x−c1) =

λ2

2
e−λ2(x−c2) =⇒ λ1

λ2
=

eλ2(x−c2)

e−λ1(x−c1)

=⇒ λ1

λ2
= eλ1(x−c1)+λ2(x−c2)

=⇒ log(
λ1

λ2
) = x(λ1 + λ2)− λ1c1 − λ2c2

=⇒ x =
λ1c1 + λ2c2 + log

(

λ1
λ2

)

λ1 + λ2
(25)

Observe that this equality will reduce to c1+c2
2 when λ1 = λ2.

In order to prove the bounds specified in the statement of the theorem, we enforce the ordering

of the OS of the distributions as:

c1 − log

(

2k

n+ 1

)

<
c1 + c2

2
< c2 + log

(

2k

n+ 1

)

(26)

The LHS of Eq. (26) can easily be simplified to:

c1 − log

(

2k

n+ 1

)

<
c1 + c2

2
< c2 =⇒ c1 −

c1 + c2

2
< c2 < log

(

2k

n+ 1

)

=⇒ log

(

2k

n+ 1

)

>
c1 − c2

2
. (27)

The RHS of Eq. (26) can also be simplified to the same expression, for which the algebraic

details are omitted.

The fact that the scheme attains the Bayes’ accuracy when these bounds are enforced is now

demonstrated by observing that:

D(x, u1) < D(x, u2) =⇒ D

(

x, c1 − log

(

2k

n+ 1

))

< D

(

x, c2 + log

(

2k

n+ 1

))

=⇒ x−
(

c1 − log

(

2k

n+ 1

))

<

(

c2 − log

(

2k

n+ 1

))

− x

=⇒ x <
c1 + c2

2
. (28)

Hence the theorem!
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3.3.5 Experimental Results: Doubly-Exponential Distribution - k-OS

The CMOS method has been rigorously tested with different possibilities of k-OS and for various

values of n, and the test results are given in Table 6.

No. Order(n) Moments OS1 OS2 CMOS Pass/Fail

1 Two
(

2
3
, 1
3

)

c1 − 1
λ1

log
(

2
3

)

c2 + 1
λ2

log
(

2
3

)

95.2 Passed

2 Three
(

3
4
, 1
4

)

c1 − 1
λ1

log
(

1
2

)

c2 + 1
λ2

log
(

1
2

)

95.2 Passed

3 Four
(

5−i
5

, i
5

)

, 1 ≤ i ≤ n
2

c1 − 1
λ1

log
(

4
5

)

c2 + 1
λ2

log
(

4
5

)

95.2 Passed

4 Five
(

6−i
6

, i
6

)

, 1 ≤ i ≤ n
2

c1 − 1
λ1

log
(

1
3

)

c2 + 1
λ2

log
(

1
3

)

95.2 Passed

5 Six
(

7−i
7

, i
7

)

1 ≤ i ≤ n
2

c1 − 1
λ1

log
(

4
7

)

c2 + 1
λ2

log
(

4
7

)

95.2 Passed

6 Seven
(

8−i
8

, i
8

)

1 ≤ i ≤ n
2

c1 − 1
λ1

log
(

1
4

)

c2 + 1
λ2

log
(

1
4

)

95.2 Passed

7 Eight
(

9−i
9

, i
9

)

, 1 ≤ i ≤ n
2

c1 − 1
λ1

log
(

2
9

)

c2 + 1
λ2

log
(

2
9

)

4.8 Failed

8 Eight
(

9−i
9

, i
9

)

, 1 ≤ i ≤ n
2

c1 − 1
λ1

log
(

4
9

)

c2 + 1
λ2

log
(

4
9

)

95.2 Passed

9 Nine
(

10−i
10

, i
10

)

, 1 ≤ i ≤ n
2

c1 − 1
λ1

log
(

3
5

)

c2 + 1
λ2

log
(

3
5

)

95.2 Passed

Table 6: Results of the classification obtained by using the symmetric pairs of the OS for different
values of n. The value of c1 and c2 were set to be 0 and 3. Note that in every case, the accuracy
attained the Bayes’ value whenever the conditions stated in Theorem 4 were satisfied.

To clarify the table, consider the row given by Trial No. 5 in which the 6-OS were invoked

for the classification. In this case, the possible symmetric OS pairs could be 〈1, 6〉, 〈2, 5〉, and

〈3, 4〉 respectively. Observe that the expected values for the first moment of the k-OS has the form

E[xk,n] = log
(

2k
n+1

)

. In every single case, the accuracy attained the Bayes’ bound, as indicated by

the results in the table.

Now, consider the results presented in the row denoted by Trial No. 7. In this case, the

testing attained the Bayes’ accuracy for the symmetric OS pairs 〈2, 7〉, 〈3, 6〉 and 〈4, 5〉 respectively.
However, the classifier “failed” for the specific 8-OS, when the OS used were c1 − 1

λ1
log

(

2
9

)

and

c2 +
1
λ2
log

(

2
9

)

, as these values violate the condition log
(

2k
n+1

)

> c1−c2
2 , imposed by Theorem 4.

Observe that if log
(

2k
n+1

)

< c1−c2
2 , the symmetric pairs should be reversed to obtain the optimal

Bayes’ bound.

This concludes our discussion on the use of Order Statistics for the PR of features obeying a

Doubly Exponential distribution. The multi-dimensional case is currently being investigated and

will be published in a forthcoming paper.
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3.4 The Gaussian Distribution

The Normal (or Gaussian) distribution is a continuous probability distribution that is often used as

a first approximation to describe real-valued random variables that tend to cluster around a single

mean value. It is particularly pertinent due to the so-called Central Limit Theorem. The univariate

pdf of the distribution is:

f(x) =
1√
2πσ

e
−(x−µ)2

2σ2 .

The Gaussian curves for two sets of values for µ and σ is given in Figure 6. As is well known,

the optimal Bayesian classifier for equiprobable classes is determined by the point of intersection of

the curves, i.e., x∗.

Figure 6: Gaussian Distribution.

We shall now consider the consequence of utilizing CMOS with the 2-OS for classification and

again argue the strength of the anti-Bayesian method.

3.4.1 Theoretical Analysis: Gaussian Distribution

Working with the OS of Normal distributions is extremely cumbersome because its density function

is not integrable in a closed form. One has to resort to tabulated cumulative error functions or to

numerical methods to obtain precise percentile values. However, a lot of work has been done in this

area for certain OS, and can be found in [1, 9, 15, 17], from which we can make some interesting

conclusions.

The moments of the OS for the Normal distribution can be determined from the generalized

expression:

E[xr
k,n] =

n!

(k − 1)!(n − k)!

∫ +∞

−∞
xrΦk−1(x)(1 − Φ(x))n−kϕ(x)dx,
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where ϕ(x) = 1√
2π
e

−x2

2 and Φ(x) =
∫ x

−∞ ϕ(t)dt. From this expression, the expected values of the

first moment of the 2-OS can be determined as:

E[x1,2] = µ− σ√
2π

, and (29)

E[x2,2] = µ+
σ√
2π

, (30)

as shown in [1]. Using this result, we now show that for identically distributed classes differing only

in the means, the CMOS with 2-OS yields the same Bayesian accuracy, which is the primary thrust

of this paper.

Theorem 5. For the 2-class problem in which the two class conditional distributions are Gaussian

and identical, CMOS, the classification using 2-OS, attains the optimal Bayes’ bound.

Proof. As in the previous cases, we shall first show that when the class conditional distributions

are Gaussian and identical, the optimal Bayes’ bound can be attained by a comparison to the

corresponding means, which can then be shown to be equal to the accuracy of the CMOS, whence

the theorem is proven.

Without loss of generality, let ω1 and ω2 be two classes that follow the Gaussian distribution

with means µ1 and µ2, and with equal standard deviations, σ. Let u1 and u2 be the first moments

of the 2-OS, where u1 = µ1 − σ√
2π

and u2 = µ2 +
σ√
2π
. It is well known that for this scenario the

optimal Bayes’ classifier can be obtained as:

p(x|ω1)p(ω1)
ω1

≷
ω2

p(x|ω2)p(ω2) =⇒ 1√
2πσ

e
−(x−µ1)

2

2σ2
ω1

≷
ω2

1√
2πσ

e
−(x−µ2)

2

2σ2

=⇒ x− µ1

ω1

≶
ω2

µ2 − x

=⇒ x
ω1

≶
ω2

µ1 + µ2

2
. (31)

We now prove that:

D(x, µ1) < D(x, µ2) =⇒ D(x, u1) < D(x, u2).

We first consider the LHS of the claim. Then,

D(x, µ1) < D(x, µ2) =⇒ x− µ1 < µ2 − x

=⇒ 2x < µ1 + µ2

=⇒ x <
µ1 + µ2

2
. (32)

For the result to be proved, we have to also prove that the RHS simplifies to the same expression.

26



Indeed, this is true because,

D(x, u1) < D(x, u2) =⇒ D (x, u1) < D (x, u2)

=⇒ D

(

x, µ1 −
σ√
2π

)

< D

(

x, µ2 +
σ√
2π

)

=⇒ x−
(

µ1 −
σ√
2π

)

<

(

µ2 +
σ√
2π

)

− x

=⇒ 2x < µ1 + µ2

=⇒ x <
µ1 + µ2

2
. (33)

The theorem follows!

3.4.2 Data Generation: Gaussian Distribution

As in the previous cases, we made use of a Uniform (0, 1) random variable generator to generate

data values that follow a Gaussian distribution. The expression z =
√

−2ln(u1) cos(2πu2), is known

to yield data values that follow N(0, 1) [4], from which the data values that follow N(µ, σ) can be

generated as x = µ + zσ, where µ is the mean and σ is the standard deviation of the required

distribution. For both the classes, 1,000 points were generated with means µ1 and µ2, and with

identical values for σ1 and σ2.

3.4.3 Experimental Results: Gaussian Distribution

After the data points were generated, the CMOS classifier was rigorously tested for a number of

experiments with various Gaussian distributions having means µ1 and µ2. In every case, the 2-OS

CMOS gave exactly the same accuracy as that of the Bayesian classifier. The method was executed

50 times with the 10-fold cross validation scheme. The test results are displayed in Table 7, whence

the power of the scheme is clear.

µ1 0 0 0 0 0 0

µ2 14 12 10 8 6 4

Bayesian 99.2 96.5 95.1 95 90 85

CMOS 99.2 96.5 95.1 95 90 85

Table 7: Classification of Normally distributed classes by the CMOS 2-OS method for different
means.

We believe that the optimal Bayes’ bound can also be attained by performing the classification

with respect to the k-OS. However, as the density function is not integrable, the expected values of

the moments of the k-OS should rather be obtained by invoking a numerical integration. It can be
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easily seen that the error function given by:

erf(x) =
1√
2π

∫ x

0
e

−t2

2 dt, (34)

is related to Φ, the cumulative distribution function of the Normal density as per:

Φ(x) =
1

2

[

1 + erf

(

x√
2

)]

. (35)

The inverse of Φ, named as the probit function or the normal quantile function, is expressed as:

probit(p) =
√
2 erf−1(2p − 1). (36)

In order to get the exact values of the
(

k
n

)th
percentile, the value computed as per Eq. (34 - 36)

should be interpolated.

Alternatively, the
(

k
n

)th
percentile of the normal distribution can be obtained [4] by making use

of the inverse of the normal distribution function as:

g(u) =
√

−2 logu · A
√
−2 logu

B
√−2 logu

, (37)

where A(x) =
∑4

i=0aix
i, B(x) =

∑4
i=0 bix

i, and where the coefficients are as shown in Table 8.

i ai bi

0 -0.3222232431088 0.0993484626060

1 -1.0 0.588581570495

2 -0.342242088547 0.531103462366

3 -0.0204231210245 0.103537752850

4 -0.0000453642210148 0.0038560700634

Table 8: Coefficients for the inverse Normal function.

One can easily see that the
(

k
n

)th
and the

(

n−k+1
n

)th
percentiles of the Normal function obtained

in this manner are precisely the CMOS points, which are to be used in the corresponding classifica-

tion strategy. Using these, the method has been rigorously tested with different possibilities of k-OS

and for various values of n, and the test results are given in Table 9. To clarify the table, consider

the row given by Trial No. 4 in which the 8-OS were invoked for the classification. In this case,

we know that the possible symmetric OS pairs can be 〈1, 8〉, 〈2, 7〉, 〈3, 6〉 and 〈4, 5〉 respectively. In
every single case, the accuracy attained the Bayes’ bound, as indicated by the results in the table.

Now, consider the results presented in the row denoted by Trial No. 5. In this case, the testing

attained the Bayes’ accuracy for the symmetric OS pairs 〈2, 9〉, 〈3, 8〉, 〈4, 7〉 and 〈5, 6〉 respectively.
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No. Order(n) Moments CMOS Pass/Fail

1 Two
(

2
3 ,

1
3

)

91.865 Passed

2 Four
(

4
5 ,

1
5

)

91.865 Passed

3 Six
(

6
7 ,

1
7

)

91.865 Passed

4 Eight
(

8
9 ,

1
9

)

91.865 Passed

5 Ten
(

10
11 ,

1
11

)

8.135 Failed

6 Ten
(

9
11 ,

2
11

)

91.865 Passed

7 Twelve
(

12
13 ,

1
13

)

8.135 Failed

8 Twelve
(

10
13 ,

3
13

)

91.865 Passed

Table 9: Results of the classification obtained by using the symmetric pairs of the k-OS for different
values of n.

However, the classifier “failed” for the specific 10-OS, when the moments used were 〈1, 10〉. As in the

Uniform and Doubly Exponential distributions, if the chosen moments are in the near proximity

of the Bayesian classifier, they do not possess sufficient information and capability to classify a

testing point inasmuch as both these moments would be almost equidistant from the testing point.

However, unlike the Uniform and Doubly Exponential distributions, since the Gaussian pdf is not

integrable, it is not possible to derive a closed form expression for this condition. The tabulated

cases, however, demonstrate this phenomenon.

A detailed explanation of how this is related to BI issues can be found in [19].

Classification for the multi-dimensional classes is also being investigated, and will be published

in a forthcoming paper.

4 Conclusions and Future Work

In this paper, we have shown that the optimal Bayes’ bound can be obtained by an “anti-Bayesian”

approach named CMOS, Classification by Moments of Order Statistics. We have proved that we

can achieve classification by working with a very few (sometimes as small as two) points distant

from the mean. Further, if these points are determined by the Order Statistics of the distributions,

the optimal Bayes’ bound can be attained. The claim has been proved for many uni-dimensional,

and some multi-dimensional distributions within the exponential family, and the theoretical results

have been verified by rigorous experimental testing.

With regard to future work, we believe that the work that can be done to investigate “anti-

Bayesian” and OS-based classification is almost unbounded. First of all, more research and theoret-
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ical analysis can be done for the multi-dimensional distributions. Further, even though this paper

deals with the 2-class problems, multi-class problems are also currently being investigated. Apart

from this, the method can be applied to non-parametric distributions also. Finally, we believe that

the CMOS can be applied for clustering, and for pattern recognition in which kernel-based methods

are invoked to achieve the classification.
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