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Abstract

This paper submits a comprehensive report of the use of Order Statistics (OS) for parametric

Pattern Recognition (PR) for various distributions within the exponential family. Although the

field of parametric PR has been thoroughly studied for over five decades, the use of the OS of

the distributions to achieve this has not been reported. The pioneering work on using OS for

classification was presented earlier for the Uniform distribution and for some members of the

exponential family, where it was shown that optimal PR can be achieved in a counter-intuitive

manner, diametrically opposed to the Bayesian paradigm, i.e., by comparing the testing sample

to a few samples distant from the mean. Apart from the results for the Gaussian and double-

exponential which are merely cited here, our new results include the Rayleigh, Gamma and

certain Beta distributions. The new scheme, referred to as Classification by Moments of Order

Statistics (CMOS), has an accuracy that attains the Bayes’ bound for symmetric distributions,

and is, otherwise, very close to the optimal Bayes’ bound, as has been shown both theoretically

and by rigorous experimental testing. The results here also give a theoretical foundation for the

families of Border Identification (BI) algorithms reported in the literature.

Keywords : Pattern Classification, Prototype Reduction Schemes, Classification by Moments of

Order Statistics

1 Introduction

The theory of statistical pattern classification is founded on two sets of distributions, namely the

a priori distributions of the various classes, and the class conditional distributions for the fea-

tures. Since the a priori probabilities are rather straightforward quantities, in reality, the basis
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for statistical Pattern Recognition (PR) is that the individual classes are characterized by their

own specific class conditional distributions, and their corresponding characteristics. The question

of which characterizing indicators are used in achieving the PR is, truly, a study in itself.

Statisticians understand that all distributions have numerous indicators such as their means,

variances etc.. Consequently, researchers in PR have, traditionally, used these indicators to play

a prominent role in achieving pattern classification, and in designing the corresponding training

and testing algorithms. In the field of PR, however, there are some families of indicators that

have noticeably been uninvestigated. Indeed, it is well known that a distribution has many other

characterizing indicators, for example, those related to its Order Statistics (OS). The interesting

point about these indicators is that some of them are quite unrelated to the traditional moments

themselves, and in spite of this, have not been used in achieving PR. The main question that has

excited our interest [22] is whether these indicators/indices possess any potential in PR.

The amazing answer to this question is that OS can be used in PR, and that such classifiers

operate in a completely “anti-Bayesian” manner, i.e., by only considering certain “outliers” of the

distributions. This must be contrasted with Bayesian classifiers which attain the optimal lower

bound, and that often reduces to testing the sample point using the corresponding distances/norms

to the means or the “central points” of the distributions.To be more specific, within a Bayesian

paradigm, if we are allowed to compare the testing sample with only a single point in the fea-

ture space from each class, the optimal Bayesian strategy would be to achieve this based on the

(Mahalanobis) distance from the corresponding means. The reader should observe that, in this

context, the mean, in one sense, is the most central point in the respective distribution. The norms

themselves are distribution dependent, and so, for example, one uses the Mahalanobis distance for

Gaussian distributions. Earlier, in [23], we showed that we could obtain optimal results by the

above-mentioned “anti-Bayesian” paradigm by using the OS. Indeed, our counter-intuitive result is

that by working with a very few points distant from the mean, one can obtain remarkable classifi-

cation accuracies. The number of points can sometimes be as small as two. Further, if these points

are determined by the Order Statistics of the distributions, the accuracy of our method, referred to

as Classification by Moments of Order Statistics (CMOS), attains the optimal Bayes’ bound.

The interesting aspect of the study of CMOS is that it is closely related to other families of

non-parametric methods in PR. For decades since the initial formulation of PR as a research field,

researchers have attempted to develop efficient classification methods in which the schemes achieve

their task based on a subset of the training patterns. These are commonly referred to as “Prototype

Reduction Schemes” (PRS)[10, 25]. For the sake of our work, a PRS will be considered to be

a generic method for reducing the number of training vectors, while simultaneously attempting to

guarantee that the classifier built on the reduced design set performs as well, or nearly as well, as the

classifier built on the original design set [14]. Thus, instead of considering all the training patterns
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for the classification, a subset of the whole set is selected based on certain criteria. The learning

(or training) is then performed on this reduced training set, which is also called the “Reference”

set. This Reference set not only contains the patterns which are closer to the true discriminant’s

boundary, but also the patterns from the other regions of the space that can adequately represent

the entire training set. Border Identification (BI) algorithms, which are a subset of PRSs, work

with a Reference set which only contains “border” points1. Recent research [17] has shown that

for overseeing the task of achieving the classification, the samples extracted by a BI scheme, and

which lie close to the boundaries of the discriminant function, have significant information when

it concerns the classification ability of the classifier. Although this is quite amazing, the formal

analytical reason for this is yet unproven. Our research seems to close the conceptual gap, because

the CMOS classifiers truly utilize “border” points (which could almost be considered to be outliers)

to yield near-optimal accuracy.

We conclude by mentioning that as far as we know, like the results in [23] which were both

pioneering and novel, the results submitted here represent the first application of OS in PR for the

spectrum of distributions within the exponential family.

2 Relevant Background Areas

2.1 Prototype Reduction Schemes

To quote Bezdek[16], “zillions of PRS techniques” have developed over the years, and it is clearly

impossible to survey all of these here. These include the Condensed Nearest Neighbor (CNN) rule

[12], the Reduced Nearest Neighbor (RNN) rule [11], the Prototypes for Nearest Neighbor (PNN)

classifiers [3], the Selective Nearest Neighbor (SNN) rule [20], the Edited Nearest Neighbor (ENN)

rule [5], Vector Quantization (VQ) etc..

While some of the above techniques merely select a subset of the existing patterns as proto-

types, other techniques create new prototypes so as to represent all the existing patterns in the

best manner. Of the above-listed PRS techniques, the CNN, RNN, SNN and ENN merely select

prototypes from the existing patterns, while the PNN and VQ create new prototypes that collec-

tively represent the entire training set. Comprehensive surveys of the state-of-the-art in PRSs can

be found in [10, 13, 25]. The formal algorithms2 are also found in [22].

2.2 Border Identification Algorithms

Border Identification (BI) algorithms form a distinct subset of PRSs. The aim of the BI algorithms

is also to obtain a Reference set of points close to the discriminant function that can perform

near-optimal classification. Duch [7] and Foody [9] proposed schemes to achieve this. But as the

1In the interest of brevity, detailed description of PRS and BI algorithms are omitted here. They are found in [23].
2A copy of the PhD proposal can be found at http://people.scs.carleton.ca/~athomas1/Proposal.pdf.
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patterns of the Reference Set described in [7] and [9] are only the “near” borders, they do not have

the potential to represent the entire training set, and thus do not perform well. In order to compete

with other classification strategies, it has been shown that we need to also include the set of “far”

borders to the Reference set [17]. A detailed description of traditional BI algorithms namely Duch’s

approach, Foody’s algorithm and the Border Identification in Two Stages can be found in [23].

The CMOS scheme proposed in [23] and developed here, give a rationale for BI algorithms.

2.3 Order Statistics

Let x1, x2, ...., xn be a univariate random sample of size n that follows a continuous distribution

function Φ, where the probability density function (pdf) is ϕ(·). Let x1,n, x2,n, ...., xn,n be the

corresponding Order Statistics3 (OS). The rth OS, xr,n, of the set is the rth smallest value among

the given random variables [1]. The pdf of y = xr,n is given by:

fy(y) =
n!

(r − 1)!(n − r)!
{Φ(y)}r−1 {1− Φ(y)}n−r ϕ(y),

where r = 1, 2, ..., n. The reasoning for the above expression is straightforward and is omitted here.

It is found in [23].

Although the distribution fy(y) contains all the information resident in y, the literature char-

acterizes the OS in terms of quantities which are of paramount importance, namely its moments

[24], as briefly cited below.

Using the distribution fy(y), one can see that the kth moment of xr,n can be formulated as:

E[xk
r,n] =

n!

(r − 1)!(n − r)!

∫ +∞

−∞
ykΦ(y)k−1(1− Φ(y))n−rϕ(y)dy,

provided that both sides of the equality exist [2, 19].

The fundamental theorem concerning the OS that we invoke is found in many papers [18, 19, 24].

The result is merely cited below inasmuch as the details of the proof are irrelevant and outside the

scope of this study. The theorem, proven in [18], can be summarized as follows.

Theorem 1. Let n ≥ r ≥ k + 1 ≥ 2 be integers. Then, since Φ is a nondecreasing and right-

continuous function from R → R, Φ(xr,n) is uniform in [0,1]. If we now take the kth moment of

Φ(xr,n), it has the form:

E[Φk(xr,n)] =
B(r + k, n− r + 1)

B(r, n− r + 1)
=

n! (r + k − 1)!

(n+ k)! (r − 1)!
, (1)

where B(a, b) denotes the Beta function, and B(a, b) = (a−1)!(b−1)!
(a+b−1)! .

3We are grateful to the anonymous Referee who gave us the pointer to [1]. This subsection has also been modified
based on this reference.
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The above fundamental result can also be used for characterization purposes as follows [18]. Let

n ≥ r ≥ k + 1 ≥ 2 be integers, with Φ being nondecreasing and right-continuous. Let G be any

nondecreasing and right-continuous function from R → R on the same support as Φ. The relation

E[Gk(xr,n)] =
n! (r + k − 1)!

(n+ k)! (r − 1)!
(2)

holds if and only if ∀x,Φ(x) = G(x). In other words, Φ(·) is the unique function that satisfies Eq.

(2), implying that every distribution is characterized by the moments of its OS.

The implications of the above are the following:

1. If n = 2, implying that only two samples are drawn from x, we can deduce from Eq. (1) that:

E[Φ1(x1,2)] =
1

3
, =⇒ E[x1,2] = Φ−1

(

1

3

)

, and (3)

E[Φ1(x2,2)] =
2

3
, =⇒ E[x2,2] = Φ−1

(

2

3

)

. (4)

Thus, from a computational perspective, the first moment of the first and second 2-order OS

would be the values where the cumulative distribution Φ equal 1
3 and 2

3 respectively.

2. For any n > 2, implying that we are considering the kth-OS from n samples drawn from x,

we can deduce from Eq. (1) that:

E[Φ1(xk,n)] =
k

n+ 1
, =⇒ E[xk,n] = Φ−1

(

k

n+ 1

)

, and (5)

E[Φ1(xn−k,n)] =
n− k + 1

n+ 1
, =⇒ E[xn−k,n] = Φ−1

(

n− k + 1

n+ 1

)

. (6)

Again, computationally, the first moment of the kth and n − kth n-order OS would be the

values where the cumulative distribution Φ equal k
n+1 and n−k+1

n+1 respectively.

Although the analogous expressions can be derived for the higher order moments of these OS,

for the rest of this paper we shall merely focus on the first moment of these OS, and derive the

consequences of using them in classification.

3 Optimal Bayesian Classification using Two Order Statistics

3.1 The Generic Classifier

Having characterized the moments of the OS of arbitrary distributions, we shall now consider how

they can be used to design a classifier.
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Let us assume that we are dealing with the 2-class problem with classes ω1 and ω2, where their

class-conditional densities are f1(x) and f2(x) respectively (i.e, their corresponding distributions are

F1(x) and F2(x) respectively)4. Let ν1 and ν2 be the corresponding medians of the distributions.

Then, classification based on ν1 and ν1 would be the strategy that classifies samples based on a

single OS. We shall show the fairly straightforward result that for all symmetric distributions, the

classification accuracy of this classifier attains the Bayes’ accuracy.

This result is not too astonishing because the median is centrally located close to (if not exactly)

on the mean. The result for higher order OS is actually far more intriguing because the higher order

OS are not located centrally (close to the means), but rather distant from the means. Consequently,

we shall show that for a large number of distributions, mostly from the exponential family, the

classification based on these OS again attains the Bayes’ bound.

The results we obtained for some distributions of the exponential family namely Uniform, Doubly

Exponential and Gaussian distributions are mentioned here, but the details of the analysis and

experiments are omitted in the interest of brevity even though they can be found in [23].

3.2 The Uniform Distribution

The continuous Uniform distribution is characterized by a constant function U(a, b), where a and

b are the minimum and the maximum values that the random variable x can take. If the class

conditional densities of ω1 and ω2 are uniformly distributed,

f1(x) =







1
b1−a1

if a1 ≤ x ≤ b1;

0 if x < a1 or x > b1, and

f2(x) =







1
b2−a2

if a2 ≤ x ≤ b2;

0 if x < a2 or x > b2.

The results obtained for Uniform distribution are as follows:

Theorem 2. For the 2-class problem in which the two class conditional distributions are Uniform

and identical, CMOS, the classification using two OS, attains the optimal Bayes’ bound.

The proof of the theorem can be found in [23] and omitted here to avoid repetition. However,

the argument is based on the following. By virtue of Eq. (3) and (4), the expected values of the first

moment of the 2-order OS for uniformly distributed random variables can be seen to be E[x1,2] =
1
3 ,

and E[x2,2] =
2
3 . Similarly, for the distribution U(h, 1+ h), the expected values are E[x1,2] = h+ 1

3

and E[x2,2] = h+ 2
3 . If we perform the classification with respect to these CMOS points, we have

shown in [23] that the optimal Bayes’ bound can be attained.

4Throughout this section, we will assume that the a priori probabilities are equal. If they are unequal, the above
densities must be weighted with the respective a priori probabilities.
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This method has been rigorously tested for various uniform distributions with 2-OS. In the

interest of brevity, a few typical results are given below.

For each of the experiments, we generated 1,000 points for the classes ω1 and ω2 characterized

by U(0, 1) and U(h, 1 + h) respectively. We then invoked a classification procedure by utilizing the

Bayesian and the CMOS strategies. In every case, CMOS was compared with the Bayesian classifier

for different values of h, as tabulated in Table 1. The results in Table 1 were obtained by executing

each algorithm 50 times using a 10-fold cross-validation scheme.

h 0.95 0.90 0.85 0.80 0.75 0.70

Bayesian 97.58 95.1 92.42 90.23 87.82 85.4

CMOS 97.58 95.1 92.42 90.23 87.82 85.4

Table 1: Classification of Uniformly distributed classes by the CMOS 2-OS method for different
values of h.

Theorem 3. For the 2-class problem in which the two class conditional distributions are Uniform

and identical as U(0,1) and U(h, 1+h), optimal Bayesian classification can be achieved by using

symmetric pairs of the n-OS, i.e., the n − k OS for ω1 and the k OS for ω2 if and only if k >

(n+1)(1−h)
2 . If k <

(n+1)(1−h)
2 , optimal Bayesian classification can be achieved by using the Dual

symmetric pairs of the n-OS, i.e., the k OS for ω1 and the n− k OS for ω2.

The proof of this theorem5 is omitted here in the interest of brevity and can be found in [23].

But, the argument can be summarized as follows. By virtue of Eq. (3) and (4), the expected values

of the first moment of the k-order OS have the form E[xk,n] =
k

n+1 . Our claim is based on the

classification in which we can choose any of the symmetric pairs of the n-OS, i.e., the n− k OS for

ω1 and the k OS for ω2, whose expected values are n−k+1
n+1 and h+ k

n+1 respectively. At any instant,

we must enforce the ordering of the OS of the two distributions, and this requires that:

n− k + 1

n+ 1
< h+

k

n+ 1
=⇒ k >

(n+ 1)(1 − h)

2
. (7)

If we perform the classification with regard to these symmetric points, provided the condition

k >
(n+1)(1−h)

2 is enforced, the optimal Bayes’ bound can be attained. The fact that the Dual

criterion is valid when the condition is not satisfied can also be proven with identical arguments,

and the details are again omitted to avoid repetition.

The experimental results obtained for k-OS are depicted in Table 2.
5This theorem is slightly more powerful than the one proved in [23] because it considers both the cases when the

condition is satisfied and when it is violated.
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Trial No. Order(n) Moments OS1 OS2 CMOS CMOS/Dual CMOS

1 Two { i
3 |1 ≤ i ≤ 2} 2

3 h+ 1
3 90.23 CMOS

2 Three { i
4 |1 ≤ i ≤ 3} 3

4 h+ 1
4 90.23 CMOS

3 Four { i
5 |1 ≤ i ≤ 4} 4

5 h + 1
5 90.23 CMOS

4 Five { i
6 |1 ≤ i ≤ 5} 4

6 h+ 2
6 90.23 CMOS

5 Six { i
7 |1 ≤ i ≤ 6} 4

7 h+ 2
7 90.23 CMOS

6 Seven { i
8 |1 ≤ i ≤ 7} 5

8 h+ 3
8 90.23 CMOS

7 Eight { i
9 |1 ≤ i ≤ 8} 6

9 h+ 3
9 90.23 CMOS

8 Nine { i
10 |1 ≤ i ≤ 9} 7

10 h+ 3
10 90.23 CMOS

9 Ten { i
11 |1 ≤ i ≤ 10} 10

11 h+ 1
11 90.23 Dual CMOS

10 Ten { i
11 |1 ≤ i ≤ 10} 9

11 h+ 2
11 90.23 CMOS

11 Ten { i
11 |1 ≤ i ≤ 10} 7

11 h+ 4
11 90.23 CMOS

12 Ten { i
11 |1 ≤ i ≤ 10} 6

11 h+ 5
11 90.23 CMOS

Table 2: Results of the classification of Uniformly distributed classes obtained by using the sym-
metric pairs of the OS for different values of n. The value of h was set to be 0.8. Note that in
every case, the accuracy attained the Bayes’ value whenever the conditions stated in Theorem 3
were satisfied.

3.3 The Laplace (or Doubly-Exponential) Distribution

The Laplace distribution is a continuous uni-dimensional pdf named after Pierre-Simon Laplace.

It is sometimes called the doubly exponential distribution, because it can be perceived as being

a combination of two exponential distributions, with an additional location parameter, spliced

together back-to-back.

If the class conditional densities of ω1 and ω2 are doubly exponentially distributed,

f1(x) =
λ1

2
e−λ1|x−c1|, −∞ < x < ∞, and

f2(x) =
λ2

2
e−λ2|x−c2|, −∞ < x < ∞,

where c1 and c2 are the respective means of the distributions. By elementary integration and

straightforward algebraic simplifications, the variances of the distributions can be seen to be 2
λ2
1
and

2
λ2
2
respectively.

Theorem 4. For the 2-class problem in which the two class conditional distributions are Doubly

Exponential and identical, CMOS, the classification using two OS, attains the optimal Bayes’ bound.
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By virtue of Eq. (3) and (4), the expected values of the first moments of the two OS can be

obtained by determining the points where the cumulative distribution function attains the values 1
3

and 2
3 . Let u1 be the point for the percentile 2

3 of the first distribution, and u2 be the point for the

percentile 1
3 of the second distribution. By straightforward integrations and simplifications, these

points are obtained as:

u1 = c1 −
1

λ1
log

(

2

3

)

, (8)

u2 = c2 +
1

λ2
log

(

2

3

)

. (9)

Classification can be performed with regard to these points, and the results are depicted in Table

3. From the experimental results and the theoretical analysis, we conclude that the expected values

c1 0 0 0 0 0 0 0 0 0

c2 10 9 8 7 6 5 4 3 2

Bayesian 99.75 99.65 99.25 99.05 98.9 97.85 96.8 94.05 89.9

CMOS 99.75 99.65 99.25 99.05 98.9 97.85 96.8 94.05 89.9

Table 3: Classification for the Doubly Exponential Distribution by the CMOS.

of the first moment of the 2-OS of the Doubly Exponential distribution can always be utilized to

yield the exact accuracy as that of the Bayes’ bound, even though this is a drastically anti-Bayesian

operation.

Theorem 5. For the 2-class problem in which the two class conditional distributions are Doubly

Exponential and identical, the optimal Bayesian classification can be achieved by using symmetric

pairs of the n-OS, i.e., the n − k OS for ω1 and the k OS for ω2 if and only if log
(

2k
n+1

)

> c1−c2
2 .

Again, if the latter condition is violated, optimal Bayesian classification can be achieved by using

the Dual symmetric pairs of the n-OS, i.e., the k OS for ω1 and the n− k OS for ω2.

As in 2-OS, by virtue of Eq. (3) and (4), the CMOS positions can be obtained by straightforward

integrations and simplifications as:

u1 = c1 − log

(

2k

n+ 1

)

, (10)

u2 = c2 + log

(

2k

n+ 1

)

. (11)

CMOS can achieve optimal classification with these positions, and the formal proof of this

assertion is found in [23]. This has also been rigorously tested with different possibilities of k-OS
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and for various values of n, and the test results are given in Table 4.

No. Order(n) Moments OS1 OS2 CMOS CMOS/Dual CMOS

1 Two
(

2
3
, 1
3

)

c1 − 1
λ1

log
(

2
3

)

c2 + 1
λ2

log
(

2
3

)

95.2 CMOS

2 Three
(

3
4
, 1
4

)

c1 − 1
λ1

log
(

1
2

)

c2 + 1
λ2

log
(

1
2

)

95.2 CMOS

3 Four
(

5−i
5

, i
5

)

, 1 ≤ i ≤ n
2

c1 − 1
λ1

log
(

4
5

)

c2 + 1
λ2

log
(

4
5

)

95.2 CMOS

4 Five
(

6−i
6

, i
6

)

, 1 ≤ i ≤ n
2

c1 − 1
λ1

log
(

1
3

)

c2 + 1
λ2

log
(

1
3

)

95.2 CMOS

5 Six
(

7−i
7

, i
7

)

1 ≤ i ≤ n
2

c1 − 1
λ1

log
(

4
7

)

c2 + 1
λ2

log
(

4
7

)

95.2 CMOS

6 Seven
(

8−i
8

, i
8

)

1 ≤ i ≤ n
2

c1 − 1
λ1

log
(

1
4

)

c2 + 1
λ2

log
(

1
4

)

95.2 CMOS

7 Eight
(

9−i
9

, i
9

)

, 1 ≤ i ≤ n
2

c1 − 1
λ1

log
(

2
9

)

c2 + 1
λ2

log
(

2
9

)

95.2 Dual CMOS

8 Eight
(

9−i
9

, i
9

)

, 1 ≤ i ≤ n
2

c1 − 1
λ1

log
(

4
9

)

c2 + 1
λ2

log
(

4
9

)

95.2 CMOS

9 Nine
(

10−i
10

, i
10

)

, 1 ≤ i ≤ n
2

c1 − 1
λ1

log
(

3
5

)

c2 + 1
λ2

log
(

3
5

)

95.2 CMOS

Table 4: Results of the classification obtained by using the symmetric pairs of the OS for different
values of n. The value of c1 and c2 were set to be 0 and 3. Note that in every case, the accuracy
attained the Bayes’ value whenever the conditions stated in Theorem 5 were satisfied.

3.4 The Gaussian Distribution

The Normal (or Gaussian) distribution is a continuous probability distribution that is often used as

a first approximation to describe real-valued random variables that tend to cluster around a single

mean value. It is particularly pertinent due to the so-called Central Limit Theorem. The univariate

pdf of the distribution is:

f(x) =
1√
2πσ

e
−(x−µ)2

2σ2 .

Theorem 6. For the 2-class problem in which the two class conditional distributions are Gaussian

and identical, CMOS, the classification using 2-OS, attains the optimal Bayes’ bound.

The moments of the OS for the Normal distribution can be determined from the generalized

expression:

E[xr
k,n] =

n!

(k − 1)!(n − k)!

∫ +∞

−∞
xrΦk−1(x)(1 − Φ(x))n−kϕ(x)dx,

where ϕ(x) = 1√
2π
e

−x2

2 and Φ(x) =
∫ x
−∞ ϕ(t)dt. From this expression, the expected values of the

first moment of the 2-OS can be determined as:

E[x1,2] = µ− σ√
2π

, and (12)

E[x2,2] = µ+
σ√
2π

, (13)
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as shown in [2]. With these values, we showed that for identically distributed classes differing only

in the means, the CMOS with 2-OS can yield the same Bayesian accuracy. The analysis and proofs

can be found in [23]. The CMOS classifier was rigorously tested for a number of experiments with

various Gaussian distributions having means µ1 and µ2. In every case, the 2-OS CMOS gave exactly

the same accuracy as that of the Bayesian classifier. The method was executed 50 times with the

10-fold cross validation scheme. The test results are displayed in Table 5, whence the power of the

scheme is clear.

µ1 0 0 0 0 0 0

µ2 14 12 10 8 6 4

Bayesian 99.2 96.5 95.1 95 90 85

CMOS 99.2 96.5 95.1 95 90 85

Table 5: Classification of Normally distributed classes by the CMOS 2-OS method for different
means.

If we intend to use higher order CMOS pairs, one can easily see that the
(

k
n+1

)th
and the

(

n−k+1
n+1

)th
percentiles of the Normal function are precisely the CMOS points which are to be used

in the corresponding classification strategy. Again, if the
(

n−k+1
n+1

)th
percentile of ω1 is greater than

the
(

k
n+1

)th
percentile of ω2, the optimal bound is attained by invoking the corresponding Dual

classifier.

Using these, the CMOS method has been rigorously tested with different possibilities of k-OS

and for various values of n, and the test results are given in Table 6.

No. Order(n) Moments CMOS CMOS/Dual CMOS

1 Two
(

2
3 ,

1
3

)

91.865 CMOS

2 Four
(

4
5 ,

1
5

)

91.865 CMOS

3 Six
(

6
7 ,

1
7

)

91.865 CMOS

4 Eight
(

8
9 ,

1
9

)

91.865 CMOS

5 Ten
(

10
11 ,

1
11

)

91.865 Dual CMOS

6 Ten
(

9
11 ,

2
11

)

91.865 CMOS

7 Twelve
(

12
13 ,

1
13

)

91.865 Dual CMOS

8 Twelve
(

10
13 ,

3
13

)

91.865 CMOS

Table 6: Results of the classification obtained by using the symmetric pairs of the k-OS for different
values of n.
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This concludes our brief report on the study of symmetric distributions within the exponential

family, that have already been reported earlier [23].

4 The Rayleigh Distribution

The Rayleigh distribution is a continuous probability distribution which is often observed when the

overall magnitude of a vector is related to its directional components. The pdf of the Rayleigh

distribution, with parameter σ > 0 is:

ϕ(x, σ) =
x

σ2
e−x2/2σ2

, x ≥ 0,

and the cumulative distribution function is:

Φ(x) = 1− e−x2/2σ2
, x ≥ 0.

The mean, the variance and the median of the Rayleigh distribution are µ(x) = σ
√

π
2 , V ar(x) =

4−π
2 σ2 and Median(x) = σ

√
ln 4, respectively.

4.1 Theoretical Analysis: Rayleigh Distribution - 2-OS

The typical PR problem involving the Rayleigh distribution would consider two classes ω1 and ω2

where the class ω2 is displaced by a quantity θ, and the values of σ are σ1 and σ2 respectively.

As in the previous cases, we consider the scenario when σ1 = σ2 = σ. Consider the distributions:

f(x, σ) = x
σ2 e

−x2

2σ2 and f(x− θ, σ) = x−θ
σ2 e

−(x−θ)2

2σ2 . In order to do the classification based on CMOS,

we shall first derive the moments of the 2-OS for the Rayleigh distribution. By virtue of Eq. (3)

and (4), the expected values of the first moments of the two OS can be obtained by determining the

points where the cumulative distribution function attains the values of 1
3 and 2

3 respectively. Let

u1 be the point for the percentile 2
3 of the first distribution, and u2 be the point for the percentile

1
3 of the second distribution. Then:

∫ u1

0

x

σ2
e−x2/2σ2

dx =
2

3
=⇒ 1− e

u21
2σ2 =

2

3

=⇒ u1 = σ
√
2 ln 3. (14)

Using a similar argument, u2 can be evaluated as:

u2 = θ + σ

√

2 ln
3

2
. (15)

We now derive the result concerning the efficiency of the CMOS when compared to the Bayesian

12



classifier.

Theorem 7. For the 2-class problem in which the two class conditional distributions are Rayleigh

and identical, the accuracy obtained by CMOS, the classification using two OS, deviates from the

optimal Bayes’ bound as the solution of the transcendental equality ln x
x−θ = −θ2+2θx

2σ2 deviates from

θ
2 +

σ√
2

(√
ln 3 +

√

ln 3
2

)

.

Proof. Without loss of generality, let the distributions of ω1 and ω2 be R(x, σ) and R(x − θ, σ),

where σ is the identical scale parameter. Then, to get the Bayes’ classifier, we argue that:

p(x|ω1)P (ω1)
ω1

≷
ω2

p(x|ω2)P (ω2) =⇒ x

σ2
e

−x2

2σ2
ω1

≷
ω2

x− θ

σ2
e

−(x−θ)2

2σ2

=⇒ x

x− θ

ω1

≶
ω2

e
−(x−θ)2

2σ2 + x2

2σ2

=⇒ ln
x

x− θ

ω1

≶
ω2

−θ2 + 2θx

2σ2
. (16)

The discriminant is then the solution to the transcendental equation:

ln
x

x− θ
=

−θ2 + 2θx

2σ2
. (17)

We now consider the classification with respect to the expected values of the moments of the

2-OS, u1 and u2, where as per Eq. (14) and (15), u1 = σ
√
2 ln 3 and u2 = θ + σ

√

2 ln 3
2 . The

discriminant enforced by the 2-OS classifier satisfies:

D(x, u1) = D(x, u2). (18)

The condition imposed by Eq. (18) leads to the following:

D(x, u1) = D(x, u2) =⇒ D
(

x, σ
√
2 ln 3

)

= D

(

x, θ + σ

√

2 ln
3

2

)

=⇒ 2x = θ + σ
√
2 ln 3 + σ

√

2 ln
3

2

=⇒ x =
θ

2
+

σ√
2

(

√
ln 3 +

√

ln
3

2

)

. (19)

The difference in the errors of the two classifiers is clearly related to differences in the corre-

sponding discriminant functions specified by Eq. (17) and (19). The result follows.

Remark:

Another way of comparing the approaches is by obtaining the error difference created by the

CMOS classifier when compared to the Bayesian classifier. In Figure 1, the small area marked as

13



“Error Difference” is the difference between the probability of error formed by the CMOS classifier

when compared to the Bayesian counterpart, and we can evaluate this area by using the correspond-

ing definite integrals. As Eq. (17) is transcendental in nature, the only way to find the Bayesian

classifier is to resort to a numerical strategy, for example, by using a Taylor series expansion. The

area depicting the differences in classification accuracy (in percentage) is reported in Table 7. Since

the accuracy of the Taylor’s expansion depends on the point around which the expansion is done,

in Table 7, we have also recorded this point, i.e., the one around which the Taylor’s expansion has

been invoked for each specific scenario. From this table, we can see that the CMOS classifier is

bounded by an error difference of less than 0.15%, which is truly, negligible.

Figure 1: The differences of the error probability quantified by the differences between the areas
under the curves of the resulting errors.

θ 1 1.5 2 2.5 3

a 3 4 5 5.3 6.5

Max. Bounded Error(in %) 0.15 0.06 0.05 0.001 0

Table 7: The maximum bounded error by the CMOS classifier when compared to the Bayesian
classifier, for different values of θ of the Rayleigh Distribution. In each case, σ = 2, and the Taylor’s
expansion was invoked around the point a.
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Theorem 8. For the 2-class problem in which the two class conditional distributions are Rayleigh

and identical, CMOS, the accuracy obtained by CMOS, the classification using two OS, deviates

from the classifier which discriminates based on the distance from the corresponding medians as

θ
2 + σ

√
ln 4 deviates from θ

2 +
σ√
2

(√
ln 3 +

√

ln 3
2

)

.

Proof. As the curve of the Rayleigh distribution is not symmetric, for the present analysis, we

shall consider the scenario that the classification is done based on the median, which is the most

central point of the distribution, other than the mean. In order to prove the theorem, we shall first

show that when the class conditional distributions are Rayleigh and identical, the accuracy of the

corresponding near-optimal discriminant obtained by a comparison to the corresponding medians is

almost equal to the accuracy of the CMOS. Again, as in the case of Theorem 7, as the equations are

transcendental, we can consider the classification based on the medians of the given distributions,

namely ν1 = σ
√
ln 4 and ν2 = θ + σ

√
ln 4, respectively. The classification will be based on the

distances that the testing point has with respect to the respective medians. Thus,

D(x, ν1) < D(x, ν2) =⇒ x− σ
√
ln 4 < θ + σ

√
ln 4− x

=⇒ 2x < θ + 2σ
√
ln 4

=⇒ x <
θ

2
+ σ

√
ln 4. (20)

The discriminant function with regard to the medians of the distributions is: x = θ
2 + σ

√
ln 4.

We now consider the classification with respect to the expected values of the moments of the

2-OS, u1 and u2, where as per Eq. (14) and (15), u1 = σ
√
2 ln 3 and u2 = θ + σ

√

2 ln 3
2 . The

discriminant enforced by 2-OS CMOS is:

D(x, u1) = D(x, u2). (21)

This equation simplifies to:

D(x, u1) = D(x, u2) =⇒ D
(

x, σ
√
2 ln 3

)

= D

(

x, θ + σ

√

2 ln
3

2

)

=⇒ 2x = θ + σ
√
2 ln 3 + σ

√

2 ln
3

2

=⇒ x =
θ

2
+

σ√
2

(

√
ln 3 +

√

ln
3

2

)

. (22)

The difference in the errors of the two classifiers is clearly related to differences in the corre-

sponding discriminant functions specified by Eq. (20) and (22). Hence the theorem.

Remark: As in Theorem 7, we can show that Eqs. (20) and (22) are almost identical by obtaining
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the error difference created by the CMOS classifier when compared to the classifier based on the

corresponding medians for different values of θ. The area depicting the differences in classification

accuracy (in percentage) is reported6 in Table 8. From this table, we can see that the CMOS

classifier is bounded by an error difference of less than 0.42%, which is again, negligible.

θ 1 1.5 2 2.5 3 3.5

Maximum Bounded Error(in %) 0.40 0.34 0.20 0.14 0 0

Table 8: Maximum bounded error by the CMOS classifier when compared to the classifier obtained
with regard to the median, for different values of θ of the Rayleigh Distribution. In each case, σ = 1.

Corollary 1. By virtue of the almost-identical nature of the two expressions for the Rayleigh dis-

tribution, the classification using the proximity to the median is almost indistinguishable from that

of the Bayesian classifier.

Proof. This result is an indirect implied consequence of Theorems 7 and 8.

4.2 Data Generation: Rayleigh Generation

To experimentally verify our results, we made use of a Uniform (0, 1) random variable generator

to generate data values that follow a Rayleigh distribution. The expression x = σ
√

−2 ln (1− u),

where σ is the parameter and u is a random variate from the Uniform distribution U(0, 1), generates

Rayleigh distributed values [6].

4.3 Experimental Results: Rayleigh Distribution - 2-OS

The CMOS classifier was rigorously tested for a number of experiments with various Rayleigh

distributions having the identical parameter σ. In every case, the 2-OS CMOS gave almost the

same classification as that of the Bayesian classifier. The method was executed 50 times with the

10-fold cross validation scheme. The test results are tabulated in Table 9 and justify Theorem 7.

The results presented justify the claims of Theorems 7 and 8.

θ 3 2.5 2 1.5 1

Bayesian 99.1 97.35 94.45 87.75 78.80

CMOS 99.1 97.35 94.40 87.70 78.65

Table 9: A comparison of the accuracy of the Bayesian and the 2-OS CMOS classifier for the
Rayleigh Distribution.

6Since the expressions are directly solvable, we do not need to resort to a Taylor’s expansion in this case.
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4.4 Theoretical Analysis: Rayleigh Distribution - k-OS

We have seen from Theorem 7 that for the Rayleigh distribution, the moments of the 2-OS are

sufficient for a near-optimal classification. As in the case of the other distributions, we shall now

consider the scenario when we utilize other k-OS. The formal result pertaining to this is given in

Theorem 9.

Theorem 9. For the 2-class problem in which the two class conditional distributions are Rayleigh

and identical, a near-optimal Bayesian classification can be achieved by using symmetric pairs of the

n-OS, i.e., the n−k OS for ω1 and the k OS for ω2 if and only if
√

ln n+1
k −

√

ln n+1
n+1−k < θ

σ
√
2
.

If this condition is violated, the CMOS classifier uses the Dual condition, i.e., the k OS for ω1 and

the n − k OS for ω2. In both these cases, the classification obtained by CMOS deviates from the

optimal Bayes’ bound as the solution of the transcendental equality ln x
x−θ = −θ2+2θx

2σ2 deviates from

θ
2 +

σ√
2

[
√

ln n+1
k +

√

ln n+1
n+1−k

]

.

Proof. First of all, we invoke the result of Corollary 1 that classification based on the proximity to

the median is almost equivalent to the Bayesian classification. We shall now show the result for the

k-OS, that the classification is almost identical to the classification based on the medians. Before

proceeding further, we have to show that the expected values of the first moment of the k-order

OS for the Rayleigh distribution have the form E[xk,n] = σ

√

2 ln n+1
k . Let u1 be the point for the

percentile n+1−k
n+1 (the (n− k)th-OS) of the first distribution, and u2 be the point for the percentile

k
n+1 (the k-OS) of the second distribution. Then:

∫ u1

0

x

σ2
e−x2/2σ2

dx =
n+ 1− k

n+ 1
=⇒ 1− e

u21
2σ2 =

n+ 1− k

n+ 1

=⇒ u1 = σ

√

2 ln
n+ 1

k
. (23)

Using a similar argument, u2 can be evaluated as:

u2 = θ + σ

√

2 ln
n+ 1

n+ 1− k
. (24)

Our present claim is based on the classification in which we can choose any of the symmetric pairs

of the n-OS, i.e., the n− k OS for ω1 and the k OS for ω2, where these quantities are σ

√

2 ln n+1
k

and θ + σ
√

2 ln n+1
n+1−k respectively.

It is obvious that an OS value can correctly classify a testing point only when their positions
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have the correct ordering, i.e., u1 < u2. We can resolve this condition by solving this inequality as:

σ

√

(

2 ln
n+ 1

k

)

< θ + σ

√

(

2 ln
n+ 1

n+ 1− k

)

=⇒ σ
√
2

[

√

ln
n+ 1

k
−
√

ln
n+ 1

n+ 1− k

]

< θ

=⇒
√

ln
n+ 1

k
−
√

ln
n+ 1

n+ 1− k
<

θ

σ
√
2
. (25)

We have seen from Eq. (17) that the Bayesian classifier is the solution to the transcendental

equation:

ln
x

x− θ
=

−θ2 + 2θx

2σ2
. (26)

The discriminant enforced by the k-OS CMOS classifier is D(x, u1) = D(x, u2) which can further

be simplified to:

D(x, u1) = D(x, u2) =⇒ D

(

x, σ

√

(

2 ln
n+ 1

k

)

)

= D

(

x, θ + σ

√

(

2 ln
n+ 1

n+ 1− k

)

)

=⇒ x−
(

σ

√

(

2 ln
n+ 1

k

)

)

=

(

θ + σ

√

(

2 ln
n+ 1

n+ 1− k

)

)

− x

=⇒ x =
θ

2
+

σ√
2

[

√

ln
n+ 1

k
+

√

ln
n+ 1

n+ 1− k

]

. (27)

The difference in the errors of the two classifiers is clearly related to differences in the corre-

sponding discriminant functions specified by Eq. (26) and (27). The case when the Dual condition

has to be invoked follows in an analogous manner and is omitted in the interest of brevity. Hence

the theorem.

Remark: As in the case of the 2-OS, if we examine the error bounded by the CMOS classifier with

regard to the classifier which discriminates based on the distance from the corresponding medians

for different values of θ, k and n, we can see that the classifiers are almost identical. This is

demonstrated by the results tabulated in Table 10.

4.5 Experimental Results: Rayleigh Distribution - k-OS

The CMOS method has been rigorously tested with different possibilities of the k-OS and for various

values of n, and the test results are given in Table 11. For the distribution under consideration,

the Bayesian approach provides an accuracy of 82.5%, and from the table, it is obvious that some

of the considered k-OSs attains the optimal accuracy and the rest of the cases attain near-optimal

accuracy. Also, we can see that the Dual CMOS has to be invoked if the condition stated in Theorem
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θ x : 4-OS, k = 2 x : 6-OS, k = 3 x : 8-OS, k = 4

1 0.05 0.03 0.01

1.5 0.08 0.04 0.03

2 0.08 0.05 0.02

2.5 0.04 0.02 0.01

3 0 0 0

Table 10: Maximum bounded error (in %) by the CMOS classifier when compared to the classifier
with respect to the medians of the distributions, for different values of θ, k and n of the Rayleigh
Distribution. In each case, σ = 2.

9 is not satisfied.

No. Order(n) Moments OS1 OS2 CMOS CMOS/Dual CMOS

1 Two
(

2
3
, 1
3

)

σ
√

(

2 ln 3
1

)

θ + σ
√

(

2 ln 3
2

)

82.05 CMOS

2 Four
(

5−i
5

, i
5

)

, 1 ≤ i ≤ n
2

σ
√

(

2 ln 5
1

)

θ + σ
√

(

2 ln 5
4

)

81.8 CMOS

3 Four
(

5−i
5

, i
5

)

, 1 ≤ i ≤ n
2

σ
√

(

2 ln 5
2

)

θ + σ
√

(

2 ln 5
3

)

82.0 CMOS

4 Six
(

7−i
7

, i
7

)

1 ≤ i ≤ n
2

σ
√

(

2 ln 7
1

)

θ + σ
√

(

2 ln 7
6

)

81.6 Dual CMOS

5 Six
(

7−i
7

, i
7

)

1 ≤ i ≤ n
2

σ
√

(

2 ln 7
2

)

θ + σ
√

(

2 ln 7
5

)

82.10 CMOS

6 Six
(

7−i
7

, i
7

)

1 ≤ i ≤ n
2

σ
√

(

2 ln 7
3

)

θ + σ
√

(

2 ln 7
4

)

82.15 CMOS

7 Eight
(

9−i
9

, i
9

)

, 1 ≤ i ≤ n
2

σ
√

(

2 ln 9
1

)

θ + σ
√

(

2 ln 9
8

)

81.55 Dual CMOS

8 Eight
(

9−i
9

, i
9

)

, 1 ≤ i ≤ n
2

σ
√

(

2 ln 9
2

)

θ + σ
√

(

2 ln 9
7

)

82.05 CMOS

9 Eight
(

9−i
9

, i
9

)

, 1 ≤ i ≤ n
2

σ
√

(

2 ln 9
4

)

θ + σ
√

(

2 ln 9
5

)

82.15 CMOS

Table 11: A comparison of the accuracy of the Bayesian(i.e., 82.5%) and the k-OS CMOS classifier
for the Rayleigh Distribution by using the symmetric pairs of the OS for different values of n. The
value of σ and θ were set to be 2 and 1.5 respectively. Note that in every case, CMOS attained
near-optimal accuracy whenever the conditions stated in Theorem 9 were satisfied.

To clarify the table, consider the cases in which the 6-OS were invoked for the classification. For

6-OS, the possible symmetric OS pairs could be 〈1, 6〉, 〈2, 5〉, and 〈3, 4〉 respectively. Observe that

the expected values for the first moment of the k-OS has the form E[xk,n] = σ

√

(

2 ln n+1
k

)

. For the

cases where the condition
√

ln n+1
k −

√

ln n+1
n+1−k < θ

σ
√
2
, the accuracy attained is either optimal or

near-optimal, as indicated by the results in the table (denoted by Trial Nos. 5 and 6). Now, consider

the results presented in the row denoted by Trial No. 7. In this case where the CMOS positions were

σ

√

(

2 ln 7
1

)

and θ + σ

√

(

2 ln 7
6

)

, the inequality of the condition imposed in Theorem 9 simplified
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to 1.002339 < 0.88388, which is not valid. Observe that if
√

ln n+1
k −

√

ln n+1
n+1−k > θ

σ
√
2
, the Dual

CMOS should be invoked in which the symmetric pairs are reversed to obtain the near-optimal

Bayes’ bound.

This concludes our study on the CMOS for the Rayleigh distribution.

5 The Gamma Distribution

The Gamma distribution is a continuous probability distribution with two parameters - a, a shape

parameter and b, a scale parameter. Another parametrization which is commonly used in Bayesian

statistics has the parameters α, the shape parameter and the inverse scale parameter or the rate

parameter, β = 1
b . The pdf of the Gamma distribution with the parameters a and b is:

1

Γ(a) ba
xa−1e

−x
b ; a > 0, b > 0, (28)

with mean ab and variance ab2. The pdf of the Gamma distribution with the parameters a and β

is:
βα

Γ(α)
xα−1e−βx; α > 0, β > 0, (29)

with mean α
β and variance α

β2 . Unfortunately, the cumulative distribution function does not have a

closed form expression [15, 21, 26]7.

5.1 Theoretical Analysis: Gamma Distribution - 2-OS

The typical PR problem invoking the Gamma distribution would consider two classes ω1 and ω2

where the class ω2 is displaced by a quantity θ, and in the case analogous to the ones we have

analyzed, the values of the scale and shape parameters are identical. As in the previous cases, we

consider the scenario when a1 = a2 = a and b1 = b2 = b.

In the interest of simplicity, consider the distributions: f(x, 2, 1) = x e−x and f(x − θ, 2, 1) =

(x− θ) e−(x−θ).

We first derive the moments of the 2-OS, which are the points of interest for CMOS, for the

Gamma distribution. By virtue of Eq. (3) and (4), the expected values of the first moments of

the two OS can be obtained by determining the points where the cumulative distribution function

attains the values of 1
3 and 2

3 respectively. Let u1 be the point for the percentile 2
3 of the first

7The closed form expression (described in terms of the incomplete Gamma function) is defined and readily available
in mathematical software such as Wolfram, Mathematica and Matlab. However, what we communicate here is the
concept stated in [15, 21, 26] that the cdf does not have a form that it is described independent of the (complete or
incomplete) Gamma function itself.
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distribution, and u2 be the point for the percentile 1
3 of the second distribution. Then:

∫ u1

0
x e−xdx =

2

3
=⇒ 1− u1e

−u1 − e−u1 =
2

3

=⇒ lnu1 − 2u1 = ln
1

3
. (30)

By a similar argument, the CMOS point for the 1
3 percentile of the second distribution leads to

the equation:

ln(u2 − θ)− 2(u2 − θ) = ln
1

3
− ln θ. (31)

We now prove that the classification with regard to the CMOS points are almost identical to

the classification based on the median8.

Without loss of generality, let the distributions of ω1 and ω2 be G(x, 2, 1) and G(x − θ, 2, 1),

where θ is the displacement. As the curve of the Gamma distribution is not symmetric, we shall

consider the scenario that the classification is done based on the median, which is the most central

point of the distribution, other than the mean. The claim can be stated as in Theorem 10.

Theorem 10. For the 2-class problem in which the two class conditional distributions are Gamma

and identical with a = 2 and b = 1, the accuracy obtained by CMOS, the classification using

two OS, deviates from the accuracy attained by the classifier with regard to the distance from the

corresponding medians as the areas under the error curves deviate from the positions 1.7391 + θ
2

and 1.6783 + θ
2 .

Proof. The claim of this theorem is that CMOS classification can attain an accuracy which is almost

identical to the one obtained with regard to the corresponding medians of the distributions.

As Eqs. (30) and (31) are of a transcendental nature, they cannot be simplified further, and

hence it is not possible to obtain a closed form expression for the CMOS positions. The reason for

this phenomenon is that the Gamma distribution lacks a closed form expression for its cumulative

distribution function. Consequently, the only possible way by which we can proceed further to prove

the claim is through a numerical formulation. The 2-OS CMOS positions u1 and u2 for Γ(x, 2, 1)

and Γ(x − θ, 2, 1) can be obtained by making use of the built-in functions available in standard

software packages [8] as u1 = 2.2893 and u2 = θ + 1.1888. Also, we can obtain the values of ν1 and

ν2 for the same distributions as ν1 = 1.6783 and ν2 = 1.6783 + θ respectively. Then, the classifier

8The Bayes’ classifier, in this case when we are only using the 2-OS, is more distant than the CMOS, because of
the skewed asymmetric form of the Gamma distribution. However, as we shall see later, other k-OS CMOS classifiers
become more near-optimal.
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with regard to the medians of the distributions can be obtained as:

D(x, ν1) < D(x, ν2) =⇒ D(x, 1.6783) < D(x, 1.6783 + θ)

=⇒ x− 1.6783 < 1.6783 + θ − x

=⇒ x < 1.6783 +
θ

2
. (32)

The discriminant function with regard to the medians of the distributions is thus:

x = 1.6783 +
θ

2
. (33)

We now consider the classification with respect to the expected values of the moments of the

2-OS. We can see that the discriminant enforced by 2-OS CMOS is D(x, u1) = D(x, u2) which can

further be simplified to:

D(x, u1) = D(x, u2) =⇒ D(x, 2.2893) = D(x, 1.1888 + θ)

=⇒ x− 2.2893 = 1.1888 + θ − x

=⇒ x = 1.7391 +
θ

2
. (34)

The difference in the errors of the two classifiers is clearly related to differences in the corre-

sponding discriminant functions specified by Eq. (35) and (34).

Remark: As in the case of the Rayleigh distribution, we can show that the resulting classifiers are

almost identical by considering the differences of the error probabilities quantified by the differences

between the areas under the curves of the resulting errors. These error differences can be calculated

by evaluating the corresponding definite integrals. Since closed form expressions for the integrals

are not available, this has to be achieved numerically. The maximum area differences created by

the CMOS classifier and the classifier based on the medians of the distributions for different values

of θ are listed in Table 12. The claim of Theorem 10 is thus justified.

θ 1 1.5 2 2.5 3

Max. Bounded Error(in %) 0.71 0.95 0.90 0.83 0.23

Table 12: Maximum bounded error by the CMOS classifier when compared to the classifier with
regard to the medians, for different values of θ of the Gamma Distribution.
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5.2 Data Generation: Gamma Generation

There are a number of data generation algorithms reported for the Gamma distribution, all of which

make use of the Uniform random variate U(0, 1). In our experiments, data was generated using the

built-in function available in MatLab [4], namely gamrnd(a, b, sz), where a is the shape parameter,

b is the scale parameter, and sz is the size of the array. To be specific, gamrnd(2, 1, 10) will generate

100 values that follow the Gamma distribution with the shape parameter 2 and the scale parameter

1. For our experiments, we generated 1,000 points for each of the distributions, where the second

distribution was displaced by a constant, θ.

5.3 Experimental Results: Gamma Distribution - 2-OS

The CMOS classifier was rigorously tested for a number of experiments for various Gamma distribu-

tions having the identical shape and scale parameters a1 = a2 = 2, and b1 = b2 = 1. In every case,

the 2-OS CMOS gave almost the same classification as that of the classifier based on the central

moments, namely, the mean and the median. The method was executed 50 times with the 10-fold

cross validation scheme. The test results are tabulated in Table 9.

n Median CMOS

4.5 94.825 95.01

4.0 94.25 94.49

3.5 92.74 92.915

3.0 90.765 90.425

2.5 86.51 85.985

2.0 80.145 79.54

1.5 72.64 72.34

Table 13: A comparison of the accuracy with respect to the median and the 2-OS CMOS classifier
for the Gamma Distribution.

5.4 Theoretical Analysis: Gamma Distribution - k-OS

We have already seen in Theorem 10 that the 2-OS CMOS can obtain classification accuracy com-

parable to that obtained by comparing the testing sample with respect to the medians of the

distributions. We shall now move on to examine the k-OS CMOS.

For the sake of the argument, let the distributions of ω1 and ω2 be G(x, 2, 1) and G(x− θ, 2, 1),

where θ is the displacement. Then, our claim for the k-OS can be stated as in Theorem 11.
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Theorem 11. For the 2-class problem in which the two class conditional distributions are Gamma

and identical, the classification obtained by using certain symmetric pairs of the n-OS, i.e., the

(n − k)th OS for ω1 (represented as u1) and the kth OS for ω2 (represented as u2) is arbitrarily

close to the classification based on the medians if and only if u1 < u2. If u1 > u2, CMOS involves

invoking the Dual n-OS pairs,i.e., the kth OS for ω1 and the (n− k)th OS for ω2.

Proof. We shall now extend the result of Theorem 10 for k-OS, so as to determine if the CMOS

classification is almost identical to the classification based on the medians. Let u1 be the point

for the percentile n+1−k
n+1 (the (n − k)th-OS) of the first distribution, and u2 be the point for the

percentile k
n+1 (the k-OS) of the second distribution. Our task is to compare the classification with

respect to the CMOS positions and with the classifier obtained with regard to the medians of the

distributions. The classifier with regard to the medians of the distributions can be obtained as:

D(x, ν1) < D(x, ν2) =⇒ D(x, 1.6783) < D(x, 1.6783 + θ)

=⇒ x− 1.6783 < 1.6783 + θ − x

=⇒ x < 1.6783 +
θ

2
. (35)

Again, in order to compare the Bayesian, CMOS and median classifiers, as in the 2-OS case,

we can provide a numerical comparison of the schemes by evaluating the differences of the error

probabilities quantified by the differences between the areas under the curves of the resulting errors.

If we proceed in this manner, we are to first obtain the values for the CMOS positions for different

k-OS, and these are tabulated in Table 14.

n Percentile CMOS n Percentile CMOS

2 1
2 1.6783 Corresponds to the Median

3 1
3 1.1888 3 2

3 2.2893

5 1
5 0.8244 5 2

5 1.3764

5 3
5 2.0223 5 4

5 2.9943

7 1
7 0.6624 7 2

7 1.0584

7 3
7 1.4596 7 4

7 1.9183

7 5
7 2.5077 7 6

7 3.4356

9 1
9 0.5669 9 2

9 0.8855

9 4
9 1.5068 9 5

9 1.8627

9 7
9 2.8529 9 8

9 3.7568

Table 14: CMOS positions for Gamma distribution Γ(2, 1) for different percentiles.
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With these values on hand, we can now verify the claim that the CMOS classifier and its median-

based counterpart are almost identical for different values of k, n and θ by computing the respective

errors areas that they yield. For different values of θ, the areas are tabulated in Table 12 for certain

specific CMOS pairs (k, n-k+1). From Table 12, the reader can observe that the classifiers are

almost identical.

θ 2 2.5 3 3.5 4

n 8 8 8 8 6

k 4 4 4 2 1

Max. Bounded Error 0.11 0.08 0.0040 0.01 0.01

Table 15: Maximum bounded error (in %) by the CMOS classifier when compared to the classifier
with regard to the medians of the distributions, for different values of θ, k and n of the Gamma
Distribution.

We thus conclude that a classification that is arbitrarily close to the one obtained by comparing

to the medians can be achieved by using certain symmetric pairs of the n-OS, i.e., the (n− k)th OS

for ω1 (represented as u1) and the kth OS for ω2 (represented as u2).

The proof of the case when the Dual condition has to be invoked follows in an identical manner

and is omitted here.

Remark: Similar results are available for the comparison of CMOS and the corresponding Bayesian

classifier. To get the Bayes’ classifier, we argue that:

p(x|ω1)P (ω1)
ω1

≷
ω2

p(x|ω2)P (ω2) =⇒ x e−x
ω1

≷
ω2

(x− θ) e−(x−θ)

=⇒ x− θ

x

ω1

≶
ω2

e−θ

=⇒ x
ω1

≶
ω2

θ

1− e−θ
, (36)

whence the differences between the areas under the curves can be evaluated and seen to be almost

negligible. The details are omitted here to avoid repetition.

5.5 Experimental Results: Gamma Distribution - k-OS

The CMOS method has been rigorously tested for numerous symmetric pairs of the k-OS and for

various values of n, and the test results are given in Table 16. Experiments have been performed

for different values of θ, and we can see that the CMOS attained a near-optimal Bayes’ accuracy.

Also, we can see that the Dual CMOS has to be invoked if the condition stated in Theorem 11 is
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not satisfied.

No. Classifier Moments θ = 4.5 4.0 3.5 3.0 2.5 2.0

1 Bayes - 97.06 95.085 93.145 90.68 86.93 81.53

2 Mean - 96.165 94.875 92.52 88.335 83.105 77.035

3 Median - 96.04 93.57 92.735 90.775 86.275 80.115

4 2-OS
(

2
3 ,

1
3

)

95.285 93.865 92.87 90.61 86.085 79.48

5 4-OS
(

4
5 ,

1
5

)

95.905 94.605 93.11 89.57 84.68 77.875 (D)

6 4-OS
(

3
5 ,

2
5

)

95.185 93.675 92.82 90.855 86.02 80.32

7 6-OS
(

6
7 ,

1
7

)

96.405 95.01 92.125 88.005 82.71 (D) 76.435 (D)

8 6-OS
(

5
7 ,

2
7

)

95.47 94.11 93.135 90.16 85.495 79.55

9 6-OS
(

4
7 ,

3
7

)

95.135 93.625 92.78 90.745 86.135 80.165

10 8-OS
(

8
9 ,

1
9

)

96.815 94.895 91.555 86.905 (D) 80.59 (D) 75.94 (D)

11 8-OS
(

7
9 ,

2
9

)

95.8 94.445 93.11 89.885 84.81 78.535

12 8-OS
(

5
9 ,

4
9

)

95.135 93.625 92.735 90.7 86.085 80.045

Table 16: A comparison of the k-OS CMOS classifier when compared to the Bayes’ classifier and
the classifier with respect to the median and mean for the Gamma Distribution for different values
of n. In each column, the value which is near-optimal is rendered bold. The scenarios when we
have invoked the Dual condition are specified by noting them using the notation “(D)”.

By way of example, consider the case in Trial # 7 when θ = 3.0, where the condition u1 < u2

was not satisfied. Here, as the condition yielded an invalid inequality, i.e., 3.7568 < 3.5669, the

Dual CMOS has to be invoked by reversing the CMOS values to obtain the near-optimal accuracy.

Interestingly enough, if we examine the table, we can see that the Bayes’ accuracy is the highest

for all cases except for the scenario when θ = 3.0. This result must, in fact, be be considered as an

aberration.

This concludes the study of the Gamma distribution with regard to the CMOS classification.

6 The Beta Distribution

The Beta distribution is a family of continuous probability distributions defined in (0, 1) parame-

terized by two shape parameters α and β. The distribution can take different shapes based on the

specific values of the parameters. If the parameters are identical, the distribution is symmetric with

respect to 1
2 . Further, if α = β = 1, B(1, 1) becomes U(0, 1). The pdf of the Beta distribution is:

f(x;α, β) =
Γ(α+ β)

Γ(α) Γ(β)
xα−1(1− x)β−1. (37)
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The mean and the variance of the distribution are α
α+β and αβ

(α+β)2 (α+β+1)
respectively.

The Beta distribution can take different shapes based on the values of the shape parameters,

and hence any systematic analysis will have to be performed on a case-by-case basis. Some of the

cases are given in Table 17 and are plotted in Figure ??.

No α, β Distribution

1 α = 1, β = 1 Uniform Distribution

2 α < 1, β < 1 U-shaped

3 α = 1, β = 2 Straight line

4 α = β Symmetric about 1
2

5 α = 1
2 , β = 1

2 Arcsine Distribution

6 α > 1, β > 1 Unimodal Distribution

7 α = 1, β > 1 Strictly Convex

8 α = 1, 1 < β < 2 Strictly Concave

Table 17: Different forms of the Beta distribution for the various values of its parameters α and β.

For this study, we mainly consider three cases:

• α = 1, β = 1: Uniform Distribution.

• α = β: Symmetric about 1
2 . In this case, in this present work, we merely deal with the

scenario when α = β = 2. The results for the more general case (i.e., α = β > 2) will be

briefly alluded to, but is left as an avenue for future work.

• α > 1, β > 1: Unimodal Distribution.

Earlier, in [23], where we had initially introduced the concept of CMOS-based PR, we had

analyzed the 2-OS and k-OS CMOS schemes for the Uniform distribution, and had provided the

corresponding theoretical analysis and the experimental results. These were briefly catalogued in

Section 3.2, from which we can see that for the 2-class problem in which the two class conditional

distributions are Uniform and identical, CMOS can, indeed, attain the optimal Bayes’ bound. To

avoid repetition, the analysis for the Beta distribution, B(1,1) (which reduces to the analysis for

Uniform U(0,1)) is omitted here, closing the first of the above three cases.

We now proceed to consider the Beta distribution in which α = β.

6.1 Theoretical Analysis: Beta Distribution (α = β) - 2-OS

Consider two classes ω1 and ω2 where the class ω2 is displaced by a quantity θ, and the values

of the shape parameters are identical. As in the previous cases, we consider the scenario when
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α1 = α2 = α, β1 = β2 = β, and for the sake of simplicity, α = β = 2. With these settings, the

respective distributions become: f(x, 2, 2) = 6x(1− x) and f(x− θ, 2, 2) = 6(x− θ)(1− x+ θ).

We first derive the moments of the 2-OS, which are the points of interest for the CMOS, for the

Beta distribution. By virtue of Eq. (3) and (4), the expected values of the first moments of the two

OS can be obtained by determining the points where the cumulative distribution functions attain

the values of 1
3 and 2

3 respectively. As the distribution takes different forms based on the values of

the shape parameters, we have to solve each case separately, which we shall embark on. Let u1 be

the point for the percentile 2
3 of the first distribution, and u2 be the point for the percentile 1

3 of

the second distribution. Then:

∫ u1

0
6x(1 − x)dx =

2

3
=⇒ −6u31 + 9u21 − 2 = 0. (38)

By a similar argument, the CMOS point for the 1
3 percentile of the second distribution (if we

don’t take the displacement, θ, into consideration) leads to the equation:

− 6u32 + 9u22 − 1 = 0. (39)

We shall now prove that in this symmetric case, CMOS, indeed, attains the optimal Bayes’

bound.

Theorem 12. For the 2-class problem in which the two class conditional distributions are Beta(α, β)

(α = β) and identical, CMOS, the classification using two OS, attains an accuracy that is exactly

identical to the optimal Bayes’ bound.

Proof. Without loss of generality, let the distributions of ω1 and ω2 be B(x, 2, 2) and B(x− θ, 2, 2),

where θ is the displacement for the second distribution. Then, to get the Bayes’ classifier, we argue

that:

p(x|ω1)P (ω1)
ω1

≷
ω2

p(x|ω2)P (ω2) =⇒ 6x(1 − x)
ω1

≷
ω2

6(x− θ)(1− (x− θ))

=⇒ x
ω1

≶
ω2

θ + 1

2
. (40)

We now consider the classification with respect to the expected values of the moments of the

2-OS, u1 and u2. In order to prove our claim, we need to show that

x
ω1

≶
ω2

θ + 1

2
=⇒ D(x, u1)

ω1

≶
ω2

D(x, u2). (41)

If we examine Eqs. (38) and (39), we can see that Eq. (39) can be obtained by substituting
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1− u2 for u1 in Eq. (38) since:

− 6(1− u2)
3 + 9(1− u2)

2 − 2 = 0 =⇒ −6u32 + 9u22 − 1 = 0. (42)

Consequently, it is obvious that u2 = θ + u1 − 1, implying that the RHS of the claim given by

Eq. (41) leads to the following:

D(x, u1)
ω1

≶
ω2

D(x, u2) =⇒ D(x, u1)
ω1

≶
ω2

D(x, θ + 1− u1)

=⇒ x− u1
ω1

≶
ω2

θ + 1− u1 − x

=⇒ x
ω1

≶
ω2

θ + 1

2
. (43)

The result follows by observing that Eqs. (40) and (41) are identical comparisons. Hence the

theorem.

6.2 Data Generation: Beta Generation

As in the case of the Gamma distribution, the data is generated using the built-in function available

in MatLab, namely betarnd(α, β, r), where α and β are the shape parameters, and where the function

returns a square matrix with the dimension r. To be specific, betarnd(2, 2, 10) will generate 100

values that follow the Beta distribution with 2 being the value for the shape parameters. For our

experiments, we generated 1,000 points for each of the distributions, where the second distribution

was displaced by a constant, θ.

6.3 Experimental Results: Beta Distribution (α = β) - 2-OS

The CMOS has been rigorously tested for various Beta distributions with 2-OS with α = β = 2.

In the interest of brevity, a few typical results are given below. For each of the experiments,

we generated 1,000 points for the classes ω1 and ω2 characterized by B(x, 2, 2) and B(x − θ, 2, 2)

respectively. We then invoked a classification procedure by utilizing the Bayesian and the CMOS

strategies. In every case, CMOS was compared with the Bayesian classifier for different values of θ,

as tabulated in Table 18. The results were obtained by executing each algorithm 50 times using a

10-fold cross-validation scheme.

The results given in this table justify the claim of Theorem 12. We conjecture that this claim

is true for any α = β = t, but it is presently considered as an unsolved problem.

6.4 Theoretical Analysis: Beta Distribution (α = β)- k-OS

We have seen from Theorem 12 that the moments of the 2-OS are sufficient for the classification to

attain a Bayes’ bound. We shall now examine the scenario where the k-OS CMOS is invoked, and
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θ 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60

Bayesian 99.845 99.45 98.185 96.94 94.95 92.86 90.31 88.075

CMOS 99.845 99.45 98.185 96.94 94.95 92.86 90.31 88.075

Table 18: A comparison of the accuracy of the Bayesian and the 2-OS CMOS classifier for the Beta
distribution B(2, 2) for different values of θ.

thus determine the strength of the proposed method.

Theorem 13. For the 2-class problem in which the two class conditional distributions are Beta and

identical as B(x, α, β) and B(x − θ, α, β) where α = β = 2, optimal Bayesian classification can be

achieved by using symmetric pairs of the n-OS, i.e., the n−k OS for ω1 (represented by u1) and the

k OS for ω2 (represented by u2) if and only if u1 < u2. If u1 > u2, optimal Bayesian classification

can be achieved by using the Dual symmetric pairs of the n-OS, i.e., the k OS for ω1 and the n− k

OS for ω2.

Proof. Our claim is that we can choose any of the symmetric pairs of the n-OS, i.e., the n− k OS

for ω1 and the k OS for ω2 to obtain an optimal classification. Let u1 be the point for the percentile

n+1−k
n+1 of the first distribution, and u2 be the point for the percentile

k
n+1 of the second distribution.

Then:

∫ u1

0
6x(1 − x)dx =

n+ 1− k

n+ 1
=⇒ −2u31 + 3u21 −

n+ 1− k

n+ 1
= 0. (44)

By a similar argument, if we ignore the displacement θ, the CMOS point for the k
n+1 percentile

of the second distribution leads to the equation:

− 2u32 + 3u22 −
k

n+ 1
= 0. (45)

We have already shown in Eq. (40) that the Bayes’ classifier is equivalent to the inequality

x
ω1

≶
ω2

θ+1
2 . Thus, in order to prove our claim, we need to show that the same classification criterion

results for any symmetric pairs of the n-OS. Thus, our claim is:

x
ω1

≶
ω2

θ + 1

2
=⇒ D(x, u1)

ω1

≶
ω2

D(x, u2). (46)

As in the case of 2-OS, if we substitute u1 = 1 − u2 in Eq. (44), the equation reduces to

−2u32 + 3u22 − k
n+1 = 0, proving the fact that for the distributions ω1 and ω2, the

〈

n+1−k
n+1 , k

n+1

〉

CMOS positions (represented by u1 and u2 respectively) have the relation u2 = 1 − u1. Thus, the
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the RHS of the claim given by Eq. (46) simplifies to:

D(x, u1)
ω1

≶
ω2

D(x, u2) =⇒ D(x, u1)
ω1

≶
ω2

D(x, θ + 1− u1)

=⇒ x− u1
ω1

≶
ω2

θ + 1− u1 − x

=⇒ x
ω1

≶
ω2

θ + 1

2
, (47)

which is the condition sought for.

The arguments for the cases when the Dual condition has to be invoked follow in an identical

manner and are omitted. The theorem follows.

6.5 Experimental Results: Beta Distribution (α = β) - k-OS

The CMOS method has also been tested for the Beta distribution for other k OS when α = β = 2.

In the interest of brevity, we merely cite one example where the distributions for ω1 and ω2 were

characterized by β(x, 2, 2) and b(x− θ, 2, 2) respectively. For each of the experiments, we generated

1,000 points for each class, and the testing samples were classified based on the selected symmetric

pairs for values k and n− k respectively. The results are displayed in Table 19.

Trial No. Order(n) Moments OS1 OS2 CMOS CMOS/Dual CMOS

1 Two
〈

2
3 ,

1
3

〉

0.61304 θ + 0.38696 87.3 CMOS

2 Four
〈

4
5 ,

1
5

〉

0.71286 θ + 0.28714 87.3 CMOS

3 Four
〈

3
5 ,

2
5

〉

0.56707 θ + 0.43293 87.3 CMOS

4 Six
〈

6
7 ,

1
7

〉

0.7621 θ + 0.23790 87.3 CMOS

5 Six
〈

5
7 ,

2
7

〉

0.6471 θ + 0.3529 87.3 CMOS

6 Six
〈

4
7 ,

3
7

〉

0.54776 θ + 0.45224 87.3 CMOS

7 Eight
〈

8
9 ,

1
9

〉

0.79269 θ + 0.20731 87.3 Dual CMOS

8 Eight
〈

7
9 ,

2
9

〉

0.69508 θ + 0.30492 87.3 CMOS

9 Eight
〈

5
9 ,

4
9

〉

0.53711 θ + 0.46289 87.3 CMOS

Table 19: A comparison of the accuracy of the Bayesian and the k-OS CMOS classifier for the Beta
Distribution by using the symmetric pairs of the OS for different values of n. The value of θ was set
to be 0.58. Note that in every case, the accuracy attained the Bayes’ value whenever the conditions
stated in Theorem 13 were satisfied.

To clarify the table, consider the cases in which the 8-OS were invoked for the classification.

For 8-OS, the possible symmetric OS pairs could be 〈1, 8〉, 〈2, 7〉, and 〈4, 5〉 respectively. Wherever

the condition u1 < u2 is satisfied, the CMOS attained the optimal Bayes’ bound, as indicated by
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the results in the table (denoted by Trial Nos. 8 and 9). Now, consider the results presented in the

row denoted by Trial No. 7. In this case where the CMOS positions were 0.79269 and θ + 0.20731,

the inequality of the condition imposed in Theorem 13 simplified to 0.79269 < 0.78731, which is

not valid. Observe that if u1 > u2, the symmetric pairs should be reversed to obtain the optimal

Bayes’ bound.

This concludes our study on the symmetric Beta distribution.

We now move on to the unimodal Beta distribution characterized by the shape parameters α > 1

and β > 1, α 6= β.

6.6 Theoretical Analysis: Beta Distribution (α > 1, β > 1) - 2-OS

Consider the two classes ω1 and ω2 where the class ω2 is displaced by a quantity θ. In this section,

we consider the case when the shape parameters take the values α > 1 and β > 1 , and for the

interest of preciseness9, we consider the case when α = 2 and β = 5. Then, the distributions are:

f(x, 2, 5) = 30x(1 − x)4 (48)

and

f(x− θ, 2, 5) = 30(x− θ)(1− x+ θ)4. (49)

We first derive the moments of the 2-OS, namely u1 and u2 where u1 represents the point for the

percentile 2
3 of the first distribution, and u2 represents the point for the percentile 1

3 of the second

distribution. Then:

∫ u1

0
30x(1 − x)4dx =

2

3
(50)

and

∫ u2

0
30(x − θ)(1− x+ θ)4dx =

1

3
. (51)

These positions u1 and u2 can be obtained by making use of the built-in functions available in

standard software packages [8] as u1 = 0.34249 and u2 = θ + 0.1954. Thus, our aim is to show

that the classification based on these points can attain near optimal accuracies when compared to

the accuracy obtained by the classifier with regard to the medians, the most central points of the

distributions.

Theorem 14. For the 2-class problem in which the two class conditional distributions are Beta(α, β)

(α > 1, β > 1) and identical with α = 2 and β = 5, the accuracy obtained by CMOS, the

9Any analysis will clearly have to involve specific values for α and β. The analyses for other values of α and β will
follow the same arguments and are not included here.
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classification using two OS, deviates from the accuracy attained by the classifier with regard to

the distance from the corresponding medians as the areas under the error curves deviate from the

positions 0.26445 + θ
2 and 0.2689 + θ

2 .

Proof. Without loss of generality, let the distributions of ω1 and ω2 be B(x, 2, 5) and B(x− θ, σ),

where σ is the identical scale parameter. As already stated, the 2-OS CMOS positions and the

medians of the distributions can be obtained using the standard software packages, whence we can

determine that u1 = 0.34249, u2 = θ+0.1954, ν1 = 0.26445, and ν2 = θ+0.26445, where ν1 and ν2

are the medians of the distributions. The claim of this part is that CMOS classification can attain

an accuracy which is almost identical to the one obtained with regard to the corresponding medians

of the distributions.

Using the values of the medians of the distributions, the classifier can be obtained as:

D(x, ν1) < D(x, ν2) =⇒ D(x, 0.26445) < D(x, 0.26445 + θ)

=⇒ x− 0.26445 < 0.26445 + θ − x

=⇒ x < 0.26445 +
θ

2
. (52)

Thus, the discriminant function with respect to the medians of the distributions is:

x = 0.26445 +
θ

2
. (53)

If we consider the classifier with regard to the expected moments of the 2-OS, we can see that

the discriminant enforced by 2-OS CMOS is D(x, u1) = D(x, u2), which simplifies to:

D(x, u1) = D(x, u2) =⇒ D(x, 0.34249) = D(x, 0.1954 + θ)

=⇒ x− 0.34249 = 0.1954 + θ − x

=⇒ x = 0.2689 +
θ

2
. (54)

The difference in the errors of the two classifiers is clearly related to differences in the corre-

sponding discriminant functions specified by Eq. (53) and (54). Hence the theorem.

Remark:

1. As in the other asymmetric distributions, we can quantify the differences of the error proba-

bilities by the differences between the areas under the curves of the resulting errors of the considered

Beta distributions. The maximum bounded error by the CMOS classifier when compared to the

classifier with regard to the medians, for different values of θ, are tabulated in Table 20. From this

table, we can conclude that the classifiers obtained with respect to the medians and the CMOS
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positions are almost indistinguishable. Clearly, CMOS, the classification using two OS, attains the

near-identical bound obtained by comparison to the corresponding medians.

θ 0.30 0.35 0.4 0.45 0.5 0.55

Max. Bounded Error(in %) 0.3 0.25 0.17 0.03 0.16 0.21

Table 20: Maximum bounded error by the CMOS classifier when compared to the classifier with
regard to the medians, for different values of θ of the Beta Distribution.

2. A similar comparison can be done by considering the efficiency of CMOS and comparing it

with the optimal Bayesian classifier. Again, the accuracies of the two are almost indistinguishable,

and the details are omitted here to avoid repetition.

6.7 Experimental Results: Beta Distribution (α > 1, β > 1) - 2-OS

The CMOS has been rigorously tested for various Beta distributions with 2-OS. For each of the

experiments, we generated 1,000 points for the classes ω1 and ω2 characterized by B(x, 2, 5) and

B(x− θ, 2, 5) respectively. We then performed the classification based on the CMOS strategy and

with regard to the medians of the distributions. In every case, CMOS was compared with the

accuracy obtained with respect to the medians for different values of θ, as tabulated in Table 21.

The results were obtained by executing each algorithm 50 times using a 10-fold cross-validation

scheme. The quality of the classifier is obvious.

θ 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

Median 89.625 92.9 94.3 95.525 97.3 97.975 98.375 99.05 99.15

CMOS 89.475 92.775 94.525 95.75 97.3 98.05 98.375 99.2 99.225

Table 21: A comparison of the accuracy of the 2-OS CMOS classifier with the classification with
respect to the medians for the Beta Distribution for different values of θ.

6.8 Theoretical Analysis: Beta Distribution (α > 1, β > 1) - k-OS

We have seen in Theorem 12 that the 2-OS CMOS can attain a near-optimal classification when

compared to the classification obtained with regard to the medians of the distributions. We shall

now prove that the k-OS CMOS can also attain almost indistinguishable bounds for some symmetric

pairs of the n-OS. The formal theorem follows.

Theorem 15. For the 2-class problem in which the two class conditional distributions are Beta(α, β)

(α > 1, β > 1) and identical with α = 2 and β = 5, a near-optimal classification can be achieved by

using certain symmetric pairs of the n-OS, i.e., the (n− k)th OS for ω1 (represented as u1) and the
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kth OS for ω2 (represented as u2) if and only if u1 < u2. If this condition is violated, the CMOS

classifier uses the Dual condition, i.e., the k OS for ω1 and the n− k OS for ω2.

Proof. In order to prove this claim, we shall now extend the result of Theorem 14 for k-OS, that

the classification is almost identical to the classification based on the medians. Let u1 be the point

for the percentile n+1−k
n+1 (the (n − k)th-OS) of the first distribution, and u2 be the point for the

percentile k
n+1 (the k-OS) of the second distribution. We have to compare the CMOS classifier with

the classifier obtained with regard to the medians of the distributions. To achieve this, we need to

obtain the values for the CMOS positions for different k-OS, and these are tabulated in Table 22.

n Percentile CMOS n Percentile CMOS

2 1
2 0.26445 Corresponds to the Median

3 1
3 0.1954 3 2

3 0.3425

5 1
5 0.1399 5 2

5 0.2226

5 3
5 0.3095 5 4

5 0.4225

7 1
7 0.1140 7 2

7 0.1760

7 3
7 0.2344 7 4

7 0.2961

7 5
7 0.3684 7 6

7 0.4675

9 1
9 0.0984 9 2

9 0.1495

9 4
9 0.2409 9 5

9 0.2889

9 7
9 0.4072 9 8

9 0.4982

Table 22: CMOS positions for Beta distribution B(2, 5) for different percentiles.

With these values on hand, we can verify the claim that the CMOS classifier and its Bayesian

counterpart are almost identical for different values of k, n and θ by computing the differences

of the error probabilities quantified by the differences between the areas under the curves of the

resulting errors of the respective distributions. The computed areas are depicted in Table 23 for

certain CMOS pairs (k, n-k+1) for different values of θ. From the tabulated values, we can see that

the classifiers are almost identical.

The arguments are identical for the case when the Dual condition has to be invoked and are

omitted here. The result follows.

6.9 Experimental Results: Beta Distribution (α > 1, β > 1) - k-OS

The CMOS method has been rigorously tested for certain symmetric pairs of the k-OS and for

various values of n, and the test results are given in Table 24. Various experiments were performed
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θ 0.35 0.45 0.55 0.65

n 8 4,6,8 8 8

k 4 2,3,4 4 4

Max. Bounded Error 0.02 0 0.03 0.02

Table 23: Maximum bounded error (in %) by the CMOS classifier when compared to the classifier
with regard to the medians of the distributions, for different values of θ, k and n of the Beta
Distribution.

for different values of θ, and from them, we can see that CMOS attained a near-optimal Bayes’

accuracy. Also, we can see that the Dual CMOS has to be invoked if the condition stated in

Theorem 15 is not satisfied.

No. Classifier Moments θ = 0.35 0.45 0.55 0.65 0.75 0.85

1 Mean - 85.325 92.575 96.55 98.3 99.4 99.475

2 Median - 86.675 92.775 95.525 97.975 99.05 99.275

3 2-OS
(

2
3 ,

1
3

)

86.2 92.575 95.75 98.05 99.2 99.275

4 4-OS
(

4
5 ,

1
5

)

85.375 92.525 96.225 98.225 99.325 99.475

5 4-OS
(

3
5 ,

2
5

)

86.475 92.775 95.6 98.05 99.125 99.275

6 6-OS
(

6
7 ,

1
7

)

85.2 (D) 92.425 96.475 98.35 99.45 99.625

7 6-OS
(

5
7 ,

2
7

)

86.125 92.625 96.0 98.075 99.2 99.275

8 6-OS
(

4
7 ,

3
7

)

86.55 92.775 95.525 97.975 99.125 99.75

9 8-OS
(

8
9 ,

1
9

)

84.225 (D) 92.225 96.225 98.35 99.5 99.375

10 8-OS
(

7
9 ,

2
9

)

85.675 92.5 96.175 98.15 99.325 99.375

11 8-OS
(

5
9 ,

4
9

)

86.575 92.775 95.525 97.975 99.125 99.275

Table 24: A comparison of the k-OS CMOS classifier when compared to the classifier with respect
to means and medians for the Beta Distribution for different values of n. The scenarios when we
have invoked the Dual condition are specified by noting them using the notation “(D)”.

For example, if we examine Table 24, we see that CMOS attained the near-optimal value for

certain k-OS when compared to the accuracy obtained with regard to the medians of the dis-

tributions. However, if we consider the case in Trial # 9 when θ = 0.35, where the condition

u1 < u2 =⇒ 0.46753 < 0.46401. In such cases, the Dual CMOS (CMOS values have to be

reversed) has to be invoked in order to yield near-optimal accuracy.

This concludes the study of the Beta distribution with regard to the CMOS classification.
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7 Conclusions and Future Work

In this paper we have presented a comprehensive study on the use of Order Statistics (OS) for

parametric Pattern Recognition (PR) for various distributions within the exponential family. Within

the traditional Bayesian paradigm, if we are allowed to compare the testing sample with only a single

point in the feature space from each class, the optimal strategy would be to achieve this based on the

(Mahalanobis) distance from the corresponding central points, for example, the means. As opposed

to this, the paradigm has a different philosophy if we are working with the OS. The pioneering

work on using OS for classification (Classification by Moments of Order Statistics (CMOS)) was

presented in [23] for the Uniform distribution, by comparing the testing sample to a few samples

distant from the mean. In [23], we also showed that the results could be extended for a few symmetric

distributions within the exponential family. In this paper, we extended these results significantly by

considering a spectrum of symmetric and asymmetric distributions within the exponential family,

for some of which even the closed form expressions of the cumulative distribution functions are not

available. The paper initially cites (without going into any great detail) the results for the Gaussian

and double-exponential distributions. Thereafter, we have presented our new results which involve

the Rayleigh, Gamma and certain Beta distributions. As in [23], we show that the new scheme

has an accuracy that attains the Bayes’ bound for symmetric distributions, and is, otherwise, very

close to the optimal Bayes’ bound. This has been demonstrated by both a theoretical and rigorous

experimental testing.

As far as we know, our results for classification using the OS are both pioneering and novel.

With regard to future work, we intend to extend these results for multi-dimensional distributions

and to also test CMOS for real-life data sets10. The unsupervised aspects of OS-based PR are also

unsolved. Finally, the relationship between CMOS and the reported Border Identification schemes

is also currently being studied.
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