Decision-cache Based XACML Authorisation and Anonymisation for XML Documents.

Nils Ulltveit Moe ™, Vladimir Oleshchuk
University of Agder, serviceboxr 509, N /898 Grimstad, Norway

Abstract

This paper suggests a fine-grained authorisation model based on the eXtensible Access Control Markup Language
(XACML) for XML based messages and documents, that is extended to support privacy-enhanced anonymisation of
XML elements containing sensitive information. The solution implements a decision cache for XACML decisions and
anonymisation policies. The decision cache is implemented as an XACML obligations service, where a specification
of the XML elements to be authorised and anonymised is sent to the decision cache in the Policy Enforcement Point
(PEP) during initial authorisation. Further authorisation of individual XML elements according to the authorisation
specification is then performed on all matching XML resources, and decisions are stored in the decision cache. This makes
it possible to cache fine-grained XACML authorisation and anonymisation decisions, which reduces the authorisation load
on the Policy Decision Point (PDP). The theoretical solution is related to a practical case study consisting of a privacy-
enhanced intrusion detection system that needs to perform anonymisation of Intrusion Detection Message Exchange
Format (IDMEF) XML messages before they are sent to a security operations centre that operates in privacy-preserving
mode. The solution increases the scalability of XACML based authorisation significantly, and may be instrumental in
implementing federated authorisation and anonymisation based on XACML in several areas, including intrusion detection

systems, web services, content management systems and GRID based authentication and authorisation.

Keywords:

Privacy Policy, Authorisation, Anonymisation, Caching, XML, IDS, XACML

1. Introduction

The eXtensible Access Control Markup Language
(XACML) is an access control policy language that is gain-
ing popularity [1]. It can for example be used together with
the Security Assertion Markup Language (SAML) for au-
thorisation of web services. It can also be used for autho-
risation in federated environments like Shibboleth!, or for
giving users control over their data [2]. Our objective is to
use XACML for fine-grained authorisation and anonymi-
sation of IDMEF XML messages from Intrusion Detection
Systems (IDS), in order to control what information that
can be disseminated to who from an IDS service.

There are also other authorisation languages that could
have been considered. For example the Enterprise Pri-
vacy Authorisation Language (EPAL) [3] or the Platform
for Privacy Preferences (P3P) [4]. P3P is more end-user
oriented focusing mainly on web based authorisation. It
seems to lack the rich functionality and extensibility of
XACML and is perhaps more a supplement than a replace-
ment, to XACML for web-based authorisations. XACML
can in many respects be considered a superset of EPAL [5].
However EPAL supports obligations, so a similar frame-
work for cache control and anonymisation of XML data

*Corresponding author. Phone: 447 91876897, fax: 37233001 .

Email addresses: nils.ulltveit-moeQuia.no (Nils Ulltveit
Moe *), vladimir.oleshchuk@uia.no (Vladimir Oleshchuk)

ISee http://shibboleth.internet2.edu

Preprint submitted to Elsevier Computer Standards € Interfaces

may be possible to implement also for this policy lan-
guage. The main reason for choosing XACML, is that it is
a mature OASIS standard [1], that fits well into a Service
Oriented Architecture (SOA). Furthermore, XACML has
quite broad vendor support compared to EPAL.

However, a limitation with XACML is that the current
implementations do not scale well [6]. It is a for example
a risk that the central rule processing engine in the Policy
Decision Point (PDP) may be a bottleneck for a poten-
tially large amount of authorisation requests from individ-
ual XML elements. Another challenge, that has not been
solved as far as we are aware of, is how to do fine-grained
anonymisation or pseudonymisation of XML documents or
messages by using XACML. We propose how this can be
mitigated by adding a decision cache as an XACML obli-
gations service that can store decisions based on unique
key values.

Our solution is not limited to the domain of IDS ser-
vices. Fine-grained access control and anonymisation of
XML documents backed up by a client-side decision cache
may also be useful for GRID services to provide a more
scalable authorisation that effectively can delegate simple
decisions to a distributed set of decision caches. It can
be useful for authorisation and anonymisation of web ser-
vices, middleware like for example JBoss or even content
management systems, in order to ensure that some infor-
mation deemed sensitive is not distributed via the service.

5th June 2011

13. Obligations

XML
Authorisation

12. Response

Access 2. Access request
requester

3. Request

Obligations
service
—
Decision
cache
4. Request notificatidn
5. Attribute queries Context 9. Resource content
PDP 10. Attributes handler Resources
——’/ 11. Response context
—_—

6. Attribute 8. Attribute
query 7c. Resource
attributes
N
1. Policy
l PIP
—
7a. Subject 7b. Env.
attributes attributes

PAP l Subjects I IEnvironmentI

Figure 1: XACML architecture with decision cache.

In that respect, the solution can also be regarded as a sim-
ple XACML controlled application level firewall for XML
documents.

This paper is organised as follows: The next section
gives an introduction to XACML and an overview of the
proposed solution. i Section 3 describes the architecture
and Section 4 covers the technical solution in more de-
tail. Section 5 shows an example authorisation of XML
resources based on the proposed XACML solution includ-
ing initial authorisation, individual element authorisation
request and response and decision cache handling. Section
6 describes the efficiency of the proposed solution. Related
work is subsequently discussed in Section 7 and Section 8
concludes the paper and gives some suggestions for further
research.

2. Overview of the Proposed Solution

XACML is an access control policy language based on
policies written in XML. It uses a model for access con-
trol that clearly separates policy decisions in the Policy
Decision Point (PDP) from policy enforcement the Policy
Enforcement Point (PEP) as shown in Figure 1. The Con-
text Handler and Policy Information Point (PIP) ensure
that subjects, resources and other environment attributes
can be made available to the PDP when policies are be-
ing evaluated. Subjects, resources and environmental at-
tributes can also be passed in via the XACML Request
message. We use this approach, since the anonymisation
and authorisation service basically is an extension of the
PEP.

Our solution implements an XML authorisation service
that is integrated with both the PEP and the obligations
service. The obligations service furthermore manages the
decision cache.

From an architectural and system management per-
spective, it is preferable to be able to reuse XACML as far
as possible for fine-grained authorisation and anonymisa-
tion of XML documents and messages. This is viable under
the assumption that access control decisions for authorisa-
tion or anonymisations can be regarded as final and do not
change within a defined time span. This means that an ac-
cess control decision to publish sensitive material will not
be undone or reconsidered under normal circumstances.

Rules for access control policies will in many cases be
static, meaning that they are based on some stable con-
ditions. For example rules using fixed strings or rule pat-
terns identifying IP addresses, e-mail addresses or URLSs
accessed. For static rules, it will be possible to have deci-
sion cache entries with infinite expiry time, that only will
be ejected from the cache if the cache is invalidated, for
example due to an updated authorisation policy. In other
cases it may be useful to only grant access for a limited
time period before authorisation needs to be renegotiated.

Utilising a decision caching authorisation system also
means that cache entries and rules can be made much sim-
pler than the original XACML expressions, however at the
expense of using more memory. It can however be expected
that the cache has a minimum working set of active au-
thorisations, which means that the decision cache will need
at least a certain amount of memory for cache entries in
order to operate efficiently. However, if the working set
of cached decisions fit into memory, then the load on the
XACML rule engine is expected to be tolerable. These
assumptions make it viable to use a caching strategy for
access control decisions.

3. Architecture

Figure 2 illustrates how the XACML-based anonymis-
ing proxy for IDMEF XML reports is implemented. Ini-
tially, the Managed Security Service (MSS) providers will
be authorised towards the PEP. In this example, two MSS
providers are shown: an outsourced first line service that
only is allowed to see anonymised IDS alerts and a sec-
ond line service, possibly run in-house, that can see non-
anonymised IDMEF alerts. This initial authorisation opens
a secure connection from the anonymiser thread and to the
alert database of the MSS provider.

Then the IDS sensors are authorised towards the PEP
in order to open a connection from the IDS to a dedicated
Producer thread in the PEP for each IDS. The Producer
thread is responsible for copying IDMEF messages to all
input queues of authorised anonymisers/proxies. Each
Anonymiser/proxy thread will then read IDMEF messages
and anonymise them according to the XACML policy.

Policy decisions are cached in the decision cache to im-
prove the overall efficiency, so that cached decisions that
have not timed out will be reused to save the overhead
on XACML requests. Different authorised sessions can
then have different anonymisation policies based on secu-
rity level. For example so that a first line outsourced IDS

Symbol | Description

i XACML policy number.

j Decision number.

k scope parameter number for XACML identifiers.

ai,j The XACML authorisation decision number j by resource policy number 4.

b ; The block marker or pattern used to anonymise the data (optional).

d; ; Decision number j performed by the XACML resource policy number .

K ; Unique dictionary key for decision j and policy i.

lij Last time this decision cache entry was used.

Di.; Anonymisation policy to perform on the content of r; for decision j.

R All resource XPath expressions for XML elements/attributes that need authorisation.

T Resource number i that needs authorisation.

Sik XPath scope expression that extracts required parameter values for the the XACML policy i.

ti; The absolute time (UTC) when the cached authorisation decision times out.

Vi jk Parameter values identified by s; ythat are required by the XACML policy ¢ in order to perform
decision number j.

Table 1: List of notations

| Parameter |

Decision cache XACML Attributeld |

b ; b; ; is stored in an AttributeAssignment with ID urn:prile:org:resource:i:policy: function

5 urn:prile:org:resource:i:id

i urn:prile:org:resource:i:policy: function where function =[replace-with|pad-with|...|

Sik urn:prile:org:resource:i:assertion:k:scope
At; urn:prile:org:resource:i:cache-timeout (PEP calculates ¢; from the current time plus At;)
Vi .k urn:prile:org:resource:s:assertion:k:value for decision j

Table 2: Mapping of XACML response parameters.

service, that handles the bulk of the alerts, operates with
anonymised data; and a second line service, that operates
in-house, can have access to the full alerts. This limits
the amount of sensitive information that is visible to the
outsourced first-line service.

4. Technical Solution

This section performs a more formal analysis of the
technical solution. Figure 3 shows an example IDMEF
report that matches the XPath expressions used in the
case study and Tables 1 and 2 show the formal notations
used. The proposed solution uses the initial XACML au-
thorisation request from the data consumer to return an
obligation with a list of n > 0 XPath expressions identify-
ing XML resources R = {ry, 72, ..., 7, } that require further
authorisation. This is shown in Figure 4. The figure shows
a successful XACML Response that permits access to the
PEP, but with a cache specification sent as an XACML
obligation to authorise any XML elements referenced by
the XPath expression
/Alert/Additional Data/@meaning="payload’]
with a requirement to also request the element referred
to by the XPath expression /Alert/Classification/@ident
from the XML document, and send the requested value as
a resource attribute in the XACML request. The PDP can
based on this information perform a decision on whether

PDP

XACML request/response

IDMEF First line service

alerts

DS IDMEF
alerts

IDS ——
Anonymised

IDMEF alerts

0

.

.
Producer|

Second line service

Not anonymised
IDMEF alerts

Figure 2: XACML-based IDMEF anonymiser/proxy with decision
cache.

the payload for a given type of IDS alert is considered
privacy violating or not.

The other resource requires authorisation of all XML
elements below the XPath expression
/Alert/Source/Node/*. The cache specification also re-
quires that /Alert/Source/Node/Address/address is retrieved
from the XML document and passed to the XACML pol-
icy for evaluation. Later, this value is also used as part of
the cache key for a given document.

The XACML obligations service in the anonymiser /proxy
will subsequently perform XACML authorisation requests

the first time a new (uncached) decision for a resource
element is identified. The XACML response contains an
access control decision from the PDP that will be cached
for a retention time period as defined in the obligations of
the access control decision.

Caching access control decisions require some knowl-
edge about the authorisation policy being used, since check-
ing for a cache hit requires that all relevant parameter
values that the access control decision is based upon are
known. These parameter values are together with the re-
source id used as keys when checking whether a cache entry
matches the relevant set of parameters in the XML docu-
ment being checked.

The decision process for XACML authorisation and
anonymisation can be considered as a mapping from a re-
source and a set of parameter values that are required
by a given XACML resource policy and to a decision. If
this decision is positive, then the decision may have addi-
tional obligations, like an obligation to anonymise data or
an obligation that expresses authorisation timeout. The
parameters required by the system in order to make a de-
cision are defined more formally below:

e r; identifies the set of one or more XML resource(s)
to be authorised by the XACML resource policy 1,
expressed as an XPath expression on the current
XML document, for example:
r1 =/Alert/Additional Data/@meaning="payload’]
ro=/Alert/Source/Node/* (applies to any elements
below node);

e s; 1 are the XPath expressions used to extract re-
quired parameters for the the XACML policy ¢ and
parameter number k.

® v; ;1 are the parameter values extracted from the
XML document by applying the XPath search ex-
pression s; ;. These parameter values are required
by the XACML policy 7 in order to evaluate deci-
sion number j. Sent as XACML resource context
parameter number k.

The decision related parameters are explained below:

o a; ; is the XACML authorisation, which can be either
Permat or Deny.

e b; ; is the block marker or pattern used to anonymise
the data. This parameter is optional, and the default
block marker is an empty string if it is not specified.

e p; ; specifies the anonymisation policy to perform
on the content matching resource r; for decision j,
which can be one of a set of P predefined anonymisa-
tion policies, for example to anonymise by removing
or replacing content, anonymise by padding content
using a block marker instead of the content (leaves
the length of content intact), modify content using
regular expression or perform a pseudonymisation

policy, for example prefix-preserving pseudonymisa-
tion of IP addresses or use an encryption policy.

e t; ; is the absolute time (UTC) when the authorisa-
tion decision times out. Different timeout values may
be applicable for different authorisations. It is for ex-
ample natural that authorisations that are based on
dynamic variables may need a relatively short time-
out period. On the other hand, decisions based on
static parameters, like IP address ranges, may not
need any timeout value, so the timeout value can be
set very large or even infinite. It is then sufficient
to have a notification service that can invalidate the
policy cache in case the PDP reloads a new policy
from the PAP. After ¢; ; times out, then the cached
decision will be discarded the next time the cache
entry is used, and a new XACML authorisation will
be performed;

e [; j shows the last time this decision cache entry was
used. (Useful for debugging and optimising the Least
Recently Used cache.)

With these definitions a decision, denoted by d; ;, is rep-
resented as a tuple d; ; = (ai j,%i j, i ;,Di,j, bi,j) which re-
flects the j** decision performed by the XACML resource
policy number i. The decision cache is implemented as a
dictionary where the key K; ; consists of the resource pol-
icy number and all n values concatenated i.e.
t||vij1llvij.2|]-.-|vi,j,n, sO that the dictionary indexed on
the key returns the cached access decision. The resource
policy number ¢ needs to be part of the key to avoid am-
biguities between the values, for example that source IP
address and destination IP address are being confused for
different resource policies.

5. XACML Policy Example

This section provides an example of how the envisaged
IDS XACML profile can be used. It does not focus on the
authentication part, which is expected to be very similar
to existing federated access control solutions using SAML
to convey XACML requests [7]. We assume in the follow-
ing sections that the XML schema namespace
(http://www.w3.org/2001 /X MLSchemaz) is denoted by
éxs;.

In this example, a company considers information about
hosts residing on the network 10.0.2.0/24 as sensitive. The
company does not want to reveal IP addresses clear-text
in the IDS alerts. Furthermore, the payload is considered
sensitive for certain classes of IDS alerts, as indicated by
the ident attribute of the Classification element in the ID-
MEF report. IDMEF alerts from IDSs on this network
can for example look like the simplified IDMEF excerpt in
Figure 3.

<IDMEF -Message >
<Alert messageid="0c18ec3c-1b2e-11e0-99b2">
<Source spoofed="unknown"
interface="wlanO">
<Node category="unknown">
<Address category="ipv4-addr">
<address >10.0.2.2</address >
</Address>
</Node >
</Source>
<Classification ident="1:5976"
text="SNMP AgentX/tcp request">
</Classification>
<AdditionalData type="byte-string"
meaning="payload">
REhDUEM=
</AdditionalData>
</Alert>
</IDMEF -Message >

Figure 3: Simplified excerpt of IDMEF message used in the case
study.

5.1. Initial Authorisation

The initial XACML request is an ordinary XACML
authorisation request to get read access to the Anonymis-
er/proxy in the PEP, similar to the one described in [§],
and is not shown in this article for space reasons. How-
ever, the XACML response is shown, to illustrate how the
PEP is being made aware of the cache parameter speci-
fication necessary manage the decision cache in the form
of XACML obligations. The mapping between the nota-
tion used in this article and XACML identifiers is shown
in Table 2.

The initial authorisation shown in Figure 4 returns a
set of XML resource identifiers r; that consists of XPath
expressions that cover authorisation of one or more XML
elements in the document. Each XACML response also
contains k& XPath expressions s;j, that uniquely define
the parameters required by the XACML policy to autho-
rise the resources defined by r; and that will be sent in
subsequent XACML resource authorisation requests as re-
source attributes.

Since an XPath expression may return more than one
element, it is then up to the XACML policy to define the
attributes so that the cache is kept consistent. The sim-
plest way to do this, is to require that s; is defined to
return only a single element from the XML document in-
stance being authorised. If an assertion XPath expression
returns more than one element, and their result is differ-
ent, then the evaluation of the policy would also poten-
tially be inconsistent. One element may claim access and
the other may not. If it is necessary to do conflict resolu-
tion, then all individual assertion elements must be passed
in to the XACML policy, which defines how the conflict
resolution should be done. All XPath expressions from the
initial authorisation are precompiled and stored in a two

dimensional list indexed by resource number i and scope
expression k.

5.2. XML Element Authorisation Request

After the initial authorisation, the XML parser of the
Anonymiser/proxy in the PEP will get XML messages (ID-
MEF alerts) from the queue and start parsing them. The
PEP then iterates through all XPath matches for all re-
sources in R. If there is no authorisation cached for the
XML resource elements r; refers to, then the PEP will per-
form XACML authorisation requests for all non-authorised
resources, asking for read access to the resource elements.
An example authorisation request for an XML element is
shown in Figure 5. The request authorises the subject
socl@outsourced.exzample.com for access to the resource:
r1 =/Alert/AdditionalData/@meaning—"payload’].

In addition, the XACML request contains additional
resource context parameters representing the set of nec-
essary parameters s; , that are required to evaluate the
given security policy by the PDP. Here, the first element
of the tuple s;1 =/Alert/Classification/@ident refers to
the IDMEF Alert classification of the XML message being
authorised and v;; = 1 : 5976 refers to the unique iden-
tification of the alert class in the XML document being
inspected (See Figure 3). The next section describes how
the decision cache works for a cache miss. A cache hit, is
subsequently described in Section 5.4.

5.8. XML Element Authorisation Response

An accepted XACML response is illustrated in Figure
6. The obligations in XACML responses are mapped as
shown in Table 2.

The PEP will then collect all decision parameters d; ; =
(ai7j,ti,j,li,j,pi7j,bi,j). All of these except l@j and ti,j
are fetched from the obligations in the XACML response.
Then [; ; is set to the current time and ¢; ; is set to the
timeout value At; ; in the XACML response plus the cur-
rent time. Subsequently, the anonymisation policy p; ;
from the obligations in the XACML response will be ap-
plied to the content of all resources matching r;. This
can for example be to anonymise the content by padding
it with the block marker “X” if p; ; = pad — with and
b;,; =" X”. The anonymisation policy will then be cached
in the dictionary using the resource number and parameter

values concatenated as key, i.e. K; ; = i||vi j1||vi j2l|---||vijn-

If an authorisation request is denied, then the XML
message will be discarded, since it is not authorised to be
sent to the resource consumer.

A Deny authorisation decision can be cached in the
same way as a Permit decision, however this requires that
the XACML response includes an obligation with the nec-
essary parameters for the cache entry, as shown in Table 1.
The anonymisation policy p; ; can be omitted in this case,
since a Deny decision implies that the XML message is
dropped. This sequence is not illustrated, since it will be
very similar Figure 6, except that the decision is changed

<Response >
<Result ResourceID="PEP">
<Decision>Permit </Decision>
<Status>

<StatusCode Value="urn:oasis:names:tc:xacml:1.0:status:ok"/>

</Status>
<0Obligations>

<0bligation ObligationId="urn:prile:org:authorize -elements"

FulfillOn="Permit">

<AttributeAssignment Attributeld="urn:prile:org:resource:1:id"
DataType="&xs;string">/Alert/AdditionalData [@meaning=’payload’]

</AttributeAssignment >

<AttributeAssignment Attributeld="urn:prile:org:resource:l:assertion:1:scope"”
DataType="&xs;string">/Alert/Classification/@ident

</AttributeAssignment >

<AttributeAssignment Attributeld="urn:prile:org:resource:2:id"
DataType="&xs;string">/Alert/Source/Node/*

</AttributeAssignment >

<AttributeAssignment Attributeld="urn:prile:org:resource:2:assertion:1:scope"
DataType="&xs;string">/Alert/Source/Node/Address/address

</AttributeAssignment >
</0bligation>
</0bligations>
</Result>
</Response >

Figure 4: XACML reply to initial authorisation of the IDS-PEP.

from Permit to Deny, and there will typically only be a
cache timeout value as parameter.

5.4. XML Element Authorisation for Cache Hit

Checking for cache hits is performed for all resources
matching the pattern r; after the necessary scope values
v;,;; have been extracted from the XML document. A cache
hit means that there exists a cached decision d;; for a
key K, ; in the decision cache. If the cache has timed
out, then entry d; ; is deleted, and a full XACML resource
authentication is performed.

Finally, the anonymisation policy p; ; is enforced and
the anonymised XML document is sent to the authorised
data consumer.

6. Efficiency of the Proposed Solution

The XACML decision cache is implemented in Jython
running on Sun Java 6. The Jython interpreter gives a per-
formance overhead, so a native Java implementation can
be expected to be somewhat faster, however testing this
is left to future work. The implementation uses Ximple-
Ware’s Java based Virtual Token Descriptor XML parser
(VID-XML)? which has a small memory footprint com-
pared to traditional DOM implementations (1.3-1.5 times
the size of the XML document) and has also got a very
fast XPath 1.0 implementation.

2VTD-XML can be found at http://vtd-xml.sourceforge.net

The experiments are performed using Jython 2.2.1 on
a 64 bit machine running Ubuntu with 8 Gb ram and 2.53
GHz Intel Core 2 Duo CPU. The decision cache was lim-
ited to 3000 entries, using a Least Recently Used policy for
pruning the cache when it runs full. The cache was tested
with between one and thirty relatively simple anonymi-
sation policies that performed simple regular expression
match for any content.

The LRU class was implemented in Jython based on
the LinkedHashMap Java class by overriding the
removeEldestEntry() method. LRU functionality was then
achieved by first retrieving and removing the referenced
cached entry and then reinserting it at the tail of the linked
hash structure. The oldest entry was then automatically
removed from the head of the data structure by Linked-
HashMap when the cache capacity was exceeded.

The experiment consisted of first identifying a set of
resources with corresponding scope values that needs to
be cached. 30 resources were selected that it would be
reasonable to consider anonymising or that it would be
reasonable to consider using as a scope variable for that
resource. With the exception of payload, which uses the
IDS rule classification as scope (as discussed in this paper),
the rest of the simple rules tested the same parameter they
anonymised, amongst others: source IP address, destina-
tion IP address, source port, destination port etc. We at-
tempted to stress the cache by including scope variables
that referred to the TCP sequence and acknowledgment
numbers.

We used simple XACML policies in order to see the

00 ~J O Ut i W N

OO WO DN DD DD DD DD DD DD DD DD DD o R b e e
R OO0 IR WNHODOOW-NOU B WN = O ©

00 ~J O Ui W N

= e e e e e e
N O U W N E OO

<?xml version="1.0" encoding="UTF-8"7>
<Request xmlns="urn:oasis:names:tc:xacml:1.0:context:schema:os"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema -instance"
xsi:schemalocation="urn:oasis:names:tc:xacml:1.0:context:schema:os
http://docs.oasis-open.org/xacml/access_control -xacml-1.0-context-schema-os.xsd">
<Subject >
<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
DataType="urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name">
<AttributeValue >socl@outsourced .example.com</AttributeValue >
</Attribute >
</Subject >
<Resource >
<Attribute AttributelId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
DataType="&xs;string">
<AttributeValue >urn:prile:org:resource:1:id</AttributeValue>
</Attribute >
<Attribute Attributeld="urn:prile:org:resource:1l:assertion:1:scope"
DataType="&xs;string">
<AttributeValue >/alert/classification</AttributeValue>
</Attribute >
<Attribute AttributelId="urn:prile:org:resource:l:assertion:1:value"
DataType="&xs;string">
<AttributeValue >1:5976</AttributeValue >
</Attribute >
</Resource >
<Action>
<Attribute AttributelId="urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="&xs;string">
<AttributeValue >read</AttributeValue >
</Attribute >
</Action>
</Request >

Figure 5: XACML request for XML element authorisation.

<Response >
<Result ResourceID="urn:prile:org:resource:1:id">
<Decision >Permit </Decision>
<Status>
<StatusCode Value="urn:oasis:names:tc:xacml:1.0:status:ok"/>
</Status>
<0Obligations>
<0bligation ObligationId="urn:prile:org:element -restrictions" FulfillOn="Permit">
<AttributeAssignment Attributeld="urn:prile:org:resource:1l:cache-timeout"
DataType="http://www.w3.0org/TR/2002/WD-xquery -operators -20020816#dayTimeDuration">P1D
</AttributeAssignment >
<AttributeAssignment Attributeld="urn:prile:org:resource:10:policy:pad-with"
DataType="&xs;string">X</AttributeAssignment >
</0bligation>
</0Obligations>
</Result>
</Response >

Figure 6: XACML reply to successful XML element authorisation.

Average response time
20 : . :

T T
e e Cached %
x x Uncached x
x X
X
X
150 x
X
X
— X
n) X
E x %
X
B 10l x
3 « X
[
£ x X
[« X
X
X
X
5F x ee oo
X0
X ...ooo
X o0 ®e®
x .
et
oo ®
0
0 5 10 15 20 25 30

Number of anonymisation policies

Figure 7: Average response time of decision cache as a function of
number of anonymisation policies.

worst case performance of the decision cache compared to
not caching decisions.

A simple XACML policy generator was then used to
perform a random selection of n out of these 30 resources,
and then test the decision cache on 5000 alerts generated
by Snort 2.8 using the standard VRT rule set. Traffic
was generated by replaying the 1999 KDD cup data set3.
A problem with this data set, is that it does not give a
representative picture of the diversity of attack vectors to-
day and also not the diversity of data seen by a large MSS
provider. The cache hit rate (97% for 30 enabled rules with
3000 cache entries in the LRU cache) is therefore proba-
bly unrealistically high compared to what can be expected
with real data. The experiments still give a representative
picture of the cache performance, given that the cache hit
rate is high.

Each result presented in Figure 7 is the average of
20 experiments, each anonymising 5000 alerts for a given
number of resources n. The experiment was then repeated
for n = (1,2, ...,30). Using an ensemble of 20 experiments
limits the effect of random selection of rules with varying
cache hit rates. This makes it possible to better see the
underlying trends. Only IDMEF Alert messages was sent
to the cache. Heartbeat messages was not processed, since
they are not relevant for the anonymisation policy.

Figure 7 shows the average response time of the deci-
sion cache as a function of number of anonymisation poli-
cies (i.e. number of XML elements being anonymised).
There seems to be a linear relationship between the num-
ber of anonymisation policies and the time used, as can
be expected. Also, the relative cache efficiency (fraction
of uncached to cached time used) increases with increasing
number of anonymisation policies, from a speedup factor
of 2.6-3.0 for less than 5 policies to around 3.5 for 25-30
policies. This shows that the cached solution both per-

SKDD Cup 1999 data (DARPA IDS test set)
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

forms better in terms of efficiency and scales somewhat
better than the non-cached solution with increasing num-
ber of anonymisation policies. The speedup factor can be
expected to be even larger for more complex XACML poli-
cies, as long as the cache hit rate is kept sufficiently high.

30 anonymisation policies is probably sufficient for the
IDMEF use case. Most of the remaining IDMEF elements
and attributes were either constant or varied between a few
values, which means they would fit into the cache without
causing any significant additional load on the cache. For
30 anonymisation rules, the decision cache will be able to
process up to 185 IDS alerts/s (vs max 52 IDS alerts/s
for the non-cached solution). If this is not sufficient, then
the architecture can easily be parallellised, for example by
adding individual anonymising PEPs for each IDS sensor
or even splitting traffic from single IDS sensors.

Memory usage is not a problem for the given experi-
ment since the cache had a hit rate of 97% with only 3000
cache entries. The JVM heap size went down to 130 Mb
between each garbage collection, and memory increased
slowly after garbage collection, which is another indica-
tion that memory usage was not problematic when using
the VTD-XML parser?. However, more realistic data (for
example from a MSS provider) are needed to verify that
memory usage is not a problem.

The decision cache is in other words useful for increas-
ing both the performance and scalability of XACML au-
thorisations. This means that it should be viable to per-
form fine-grained access control of XML elements and at-
tributes in IDMEF alerts from IDS by using an anonymis-
ing decision cache.

7. Related Work

This paper extends the simple XACML policy for anonymi-

sation proposed in [8]. The previous paper presented the
idea of anonymisation based on an XACML obligations
service for course-grained access control of IDMEF mes-
sages. This paper extends the solution to provide fine-
grained access control of XML messages in general with
decision caching support and support for several different
anonymisation policies.

There is as far as we are aware of no other similar so-
lutions. However, some other systems cover part of the
same functionality. A solution for controlling access to
XML documents is proposed in [9]. However, this solution
is not based on XACML and it does not support anonymi-
sation policies. An XACML-based privacy-centred access
control system is proposed in [2, 10]. This system focuses
on credential management to provide users with control
over their data. Our solution is different, since it proposes
an XACML caching solution with fine-grained access con-
trol and anonymisation of data.

4This picture was however different for Javas standard DOM im-
plementation, which showed heavy memory allocation/free patterns.

An extension of XACML to improve the performance
of decision making processes when dealing with stable con-
ditions is explained in [11]. This solution aims at reducing

the time that the Policy Information Point (PIP) uses

for

accessing remote services like SNMP agents and also the
decision making time. Our solution is different, since it
aims at performing access control of individual elements
and attributes in XML documents using a decision cache

based solution.

The BRO IDS [12] supports a way to anonymise the
payload of a packet instead of removing the entire pay-

load [13, 12]. There also exists some earlier work on privacy-

enhanced host-based IDS systems that pseudonymises au-
dit data and performs analysis on the pseudonymised audit
records [14, 15, 16, 17, 18]. However neither of these solu-
tions are based on XACML or provide native authorisation

and anonymisation of XML document instances.

8. Conclusions and Future Work

The paper proposes a viable solution for fine-grained
XACML authorisation and anonymisation of elements and

attributes in XML documents.

This allows for central

management of authorisation and anonymisation policies
for XML documents instead of using a hybrid solution with

several different, access control solutions or languages.

The decision caching protocol can easily be adapted to
other authorisation schemes by choosing a different cache
key generation scheme that reflects the authorisation sce-
nario. Caching can then be enabled by adding the timeout
parameter as an obligation in order to manage the cached
decisions. This opens up a possibility to significantly im-
prove the efficiency and scalability of other XACML based

authorisation schemes.

A potential critique of the proposed solution, is that
fine-grained access control decisions are delegated from the
PDP to the PEP via XACML obligations. This violates
the clear interface between policy authorisation and policy

enforcement.

Future work involves adding more functionality and if

necessary moving time critical parts to Java. It would also

be interesting to support the Multiple Resources Profile of

XACML in order to process several resources simultane-

ously by XACML. Last but not least, the anonymising

decision cache should be tested under realistic conditions

at a MSS provider.

Acknowledgments

This work is funded in part by Telenor Research &

Innovation under the contract DR-2009-1.

Bibliography
[1] T. Moses (ed), OASIS eXtensible Access Con-
trol Markup Language (XACML) Version 2.0,

http://docs.oasis-open.org/xacml/2.0/access_control-
xacml-2.0-core-spec-os.pdf (2005).

2]

(3]

[4]
[5]

[9]

[10]

[11]

[12]

[13]

C. A. Ardagna, S. D. C. di Vimercati, S. Paraboschi, E. Pedrini,
P. Samarati, An XACML-based privacy-centered access control
system, in: Proceedings of the first ACM workshop on Informa-
tion security governance, ACM, Chicago, Illinois, USA, 2009,
pp. 49-58.

C. Powers, M. Schunter (ed), Enterprise privacy authorization
language (epal 1.2), http://www.zurich.ibm.com/security/
enterprise-privacy/epal/Specification/index.html (2003).
M. Marchiori (ed), The platform for privacy preferences 1.0
specification, http://www.w3.org/TR/P3P (2002).

A. H. Anderson, A comparison of two privacy policy languages,
in: Proceedings of the 3rd ACM workshop on Secure web ser-
vices - SWS ’06, Alexandria, Virginia, USA, 2006, p. 53.

A. X. Liu, F. Chen, J. Hwang, T. Xije, T.: XEngine: a fast
and scalable XACML policy evaluation engine, Conference on
Measurement and Modeling of Computer Systems.

P. Periorellis, Securing Web Services, Idi Global, 2007.

N. Ulltveit-Moe, V. Oleshchuk, Two tiered privacy enhanced
intrusion detection system architecture, in: 2009 IEEE Interna-
tional Workshop on Intelligent Data Acquisition and Advanced
Computing Systems: Technology and Applications, Rende,
Italy, 2009, pp. 8-14.

E. Damiani, P. Samarati, S. De Capitani di Vimercati, S. Para-
boschi, Controlling access to xml documents, IEEE Internet
Computing 5 (2001) 18-28.

C. Ardagna, M. Cremonini, S. D. C. di Vimercati, P. Samarati,
A privacy-aware access control system, Journal of Computer
Security 16 (4) (2008) 369-397.

R. Laborde, T. Desprats, An extension of xacml to improve the
performance of decision making processes when dealing with
stable conditions, in: L. Boursas, M. Carlson, W. Hommel,
M. Sibilla, K. Wold (Eds.), Systems and Virtualization Man-
agement. Standards and New Technologies, Vol. 18 of Commu-
nications in Computer and Information Science, Springer Berlin
Heidelberg, 2008, pp. 13—24.

Lawrence Berkeley National Laboratory, Bro intrusion detec-
tion system, http://bro-ids.org.

R. Pang, V. Paxson, A high-level programming environment for
packet trace anonymization and transformation, in: Proceed-
ings of the 2003 conference on Applications, technologies, archi-
tectures, and protocols for computer communications, ACM,
Karlsruhe, Germany, 2003, pp. 339-351.

T. Holz, An efficient distributed intrusion detection scheme, in:
COMPSAC Workshops, 2004, pp. 39-40.

M. Sobirey, S. Fischer-Hiibner, K. Rannenberg, Pseudonymous
audit for privacy enhanced intrusion detection, in: Proceedings
of the IFTP T'C11 13th International Conference on Information
Security (SEC’97), 1997, pp. 151-163.

S. Fischer-Hiibner, IDA - An Intrusion Detection and Avoidance
System (in German), Aachen, Shaker, 2007.

M. Sobirey, B. Richter, H. Ktnig, The intrusion detection sys-
tem AID - architecture and experiences in automated autid trail
analysis, in: Proceedings of the IFIP TC6/TC11 International
Conference on Communications and Multimedia Security, 1996,
pp. 278-290.

R. Biischkes, D. Kesdogan, Privacy enhanced intrusion detec-
tion, in: G. Miiller, K. Rannenberg (Eds.), Multilateral Secu-
rity in Communications, Information Security, Addison Wesley,
1999, pp. 187-204.

