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Abstract. The goal of this paper is to present a novel approach to
model the behavior of a Teacher in a Tutorial-like system. In this model,
the Teacher is capable of presenting teaching material from a Socratic-
type Domain model via multiple-choice questions. Since this knowledge
is stored in the Domain model in chapters with different levels of com-
plexity, the Teacher is able to present learning material of varying degrees
of difficulty to the Students.

In our model, we propose that the Teacher will be able to assist the
Students to learn the more difficult material. In order to achieve this, he
provides them with hints that are relative to the difficulty of the learning
material presented. This enables the Students to cope with the process of
handlingmore complex knowledge, and to be able to learn it appropriately.

To our knowledge, the findings of this study are novel to the field
of intelligent adaptation using Learning Automata (LA). The novelty
lies in the fact that the learning system has a strategy by which it can
deal with increasingly more complex/difficult Environments (or domains
from which the learning as to be achieved). In our approach, the conver-
gence of the Student models (represented by LA) is driven not only by
the response of the Environment (Teacher), but also by the hints that
are provided by the latter. Our proposed Teacher model has been tested
against different benchmark Environments, and the results of these sim-
ulations have demonstrated the salient aspects of our model. The main
conclusion is that Normal and Below-Normal learners benefited signif-
icantly from the hints provided by the Teacher, while the benefits to
(brilliant) Fast learners were marginal. This seems to be in-line with our
subjective understanding of the behavior of real-life Students.

Keywords: Tutorial-like Systems, Learning Automata, Modeling of
Adaptive Tutorial Systems, Modeling of Teacher.

1 Introduction

The Teacher is the main source of knowledge to Students in a teaching environ-
ment. The success of the Students to effectively learn the domain knowledge is
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mainly influenced by the ability and skills of the Teacher. Similarly, the effec-
tiveness of a Tutorial-like system is influenced by the modeling of the Teacher,
so that the knowledge would be imparted successfully to the Students.

In a Tutorial system, the Teacher model is a representation of the Teacher
and for the process whereby he1 takes pedagogical decisions to communicate and
impart the teaching material to the Students. It decides on what, how and when
the material must be presented to the Students.

In our Tutorial-like system, the Teacher is modeled to teach a Socratic-type
Domain model, where the knowledge is represented via multiple-choice questions,
which are used also to test the Students in the knowledge imparted. The aim
of this paper is present, within the Learning Automata (LA) paradigm, a new
approach where the Teacher not only presents a Socratic-type domain knowledge
to the Students, but he also assists them so that they would be able to learn
more complex material. The Teacher tasks in imparting the knowledge involves
the following concepts:

– He obtains knowledge from the Domain model to present it to the Students.
– The Domain model contains knowledge, of Socratic-type presented via

multiple-choice questions.
– Thedomainknowledge ismodeledwith increasing complexity,which is intended

to represent the increasing complexityof subsequentchapters.Thus, eachchap-
ter represents a level of difficulty that is harder than the previous one.

– Students learn from the questions presented to them, and by the Teacher
testing them in these questions.

– The Teacher is capable of improving the abilities of the Students to learn
more complex material by assisting them to handle this augmented difficulty.

Briefly, we achieve this goal as follows. In order for the Teacher to enable the
Students to improve their abilities to handle more complex material, he provides
them with hints. The Teacher provides these hints in the form of suggestions to
the Students so as to increase the initial probability for one of the actions in the
action probability vector, P. The Teacher provides this hint to the correct answer,
which is the action with the highest reward probability, in a stochastic manner,
which, in turn, assigns the probability that the Student, correctly, receives the
hint. In our model, that probability increases with the increasing complexity of
the material being taught.

The experimental results of this model, as will be presented later, confirm that
our approach is feasible in modeling the Teacher in a Tutorial-like system. The
proposed model have been tested against different benchmark Environments, and
the results have shown that our model was successful in teaching the Students,
and in assisting them to improve their abilities to learn even as the domain be-
come increasingly complex. The main finding from the simulations is that Normal
and Below-Normal Students succeeded significantly in improving their abilities to
learnmore complex domain knowledgewhen theTeacher provided themwith these

1 For the ease of communication, we request the permission to refer to the entities
involved (i.e. the Teacher, Student, etc.) in the masculine.
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hints. For example, in some Environments, the learning of a Normal Student im-
proved by more than 67% when the Teacher provided hints to the Students, when
the initial action probability of the best action was increased by 0.6.

To our knowledge, this represents the first published results in which the
learning of the LA, in terms of Student Simulators, is influenced not only by
the response from the Teacher (i.e. an Environment within a LA paradigm), but
also by the hints that are provided by the Teacher.

1.1 Tutorial-like Systems

Our entire research will be within the context of Tutorial-like systems [1]. In
these systems, there need not be real-life Students, but rather each Student
could be replaced by a Student Simulator that mimics a real-life Student. Alter-
natively, it could also be a software entity that attempts to learn. The Teacher, in
these systems, attempts to present the teaching material to a School of Student
Simulators. The Students (synonymously referred to also as Student Simulators)
are also permitted to share information between each other to gain knowledge.
Therefore, such a teaching environment allows the Students to gain knowledge
not only from the Teacher but also from other fellow Students.

In the Tutorial-like systems which we study, the Teacher has a stochastic
nature, where he has an imprecise knowledge of the material to be imparted.
The Teacher also doesn’t have a prior knowledge about how to teach the subject
material. He “learns” that himself while using the system, and thus, hopefully,
improves his skills as a teacher. Observe that, conceptually, the Teacher, in some
sense, is also a “student”.

On the other hand, the Student Simulators need to learn from the Stochastic
Teacher, as well as from each other. Each Student needs to decide when to request
assistance from a fellow Student and how to “judge” the quality of information he
receives from them.Thus,we require eachStudent to possess amechanismwhereby
it can detect a scenario of procuring inaccurate information from other Students.

In our model of teaching/learning, the teaching material of the Tutorial-like
system follows a Socratic model, where the domain knowledge is represented in
the form of questions, either to be of a Multiple Choice sort or, in the most
extreme case, of a Boolean sort. These questions, in our present paradigm, carry
some degree of uncertainty, where each question has a probability that indicates
the accuracy for the answer of that question.

1.2 Stochastic Learning Automaton

Learning Automaton2 (LA) have been used in systems that have incomplete
knowledge about the Environment in which they operate [2,3,4,5,6,7,8]. The
learning mechanism attempts to learn from a stochastic Teacher which models
the Environment. In his pioneer work, Tsetlin [9] attempted to use LA to model
biological learning. In general, a random action is selected based on a probability

2 In the interest of completeness, we have included a fairly good review of the field of
LA here. This can be deleted or abridged as per the desire of the Referees.
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vector, and these action probabilities are updated based on the observation of
the Environment’s response, after which the procedure is repeated.

The term “Learning Automata” was first publicized in the survey paper by
Narendra and Thathachar. The goal of LA is to “determine the optimal ac-
tion out of a set of allowable actions” [2]. The distinguishing characteristic of
automata-based learning is that the search for the optimizing parameter vector
is conducted in the space of probability distributions defined over the parameter
space, rather than in the parameter space itself [10].

In the first LA designs, the transition and the output functions were time
invariant, and for this reason these LA were considered “fixed structure” au-
tomata. Tsetlin, Krylov, and Krinsky [9] presented notable examples of this type
of automata. Later, Vorontsova and Varshavskii introduced a class of stochastic
automata known in the literature as Variable Structure Stochastic Automata
(VSSA). In the definition of a VSSA, the LA is completely defined by a set of
actions (one of which is the output of the automaton), a set of inputs (which
is usually the response of the Environment) and a learning algorithm, T . The
learning algorithm [5] operates on a vector (called the Action Probability vector)

P(t) = [p1(t), . . . , pr(t)]
T,

where pi(t) (i = 1, . . . , r) is the probability that the automaton will select the
action αi at time ‘t’,

pi(t) = Pr[α(t) = αi], i = 1, . . . , r, and it satisfies∑r
i=1 pi(t) = 1 ∀ t.

Note that the algorithm T : [0,1]r × A × B → [0,1]r is an updating scheme
where A = {α1, α2, . . . , αr}, 2 ≤ r < ∞, is the set of output actions of the
automaton, and B is the set of responses from the Environment. Thus, the
updating is such that

P(t+1) = T (P(t), α(t), β(t)),
where P(t) is the action probability vector, α(t) is the action chosen at time t,
and β(t) is the response it has obtained.

If the mapping T is chosen in such a manner that the Markov process has
absorbing states, the algorithm is referred to as an absorbing algorithm. Many
families of VSSA that posses absorbing barriers have been reported [5]. Ergodic
VSSA have also been investigated [5,11]. These VSSA converge in distribution
and thus, the asymptotic distribution of the action probability vector has a value
that is independent of the corresponding initial vector. Thus, while ergodic VSSA
are suitable for non-stationary environments, automata with absorbing barriers
are preferred in stationary environments.

In practice, the relatively slow rate of convergence of these algorithms con-
stituted a limiting factor in their applicability. In order to increase their speed
of convergence, the concept of discretizing the probability space was introduced
[11,15]. This concept is implemented by restricting the probability of choosing
an action to a finite number of values in the interval [0,1]. If the values allowed
are equally spaced in this interval, the discretization is said to be linear, other-
wise, the discretization is called non-linear. Following the discretization concept,



Modeling a Teacher in a Tutorial-like System Using LA 41

many of the continuous VSSA have been discretized; indeed, discrete versions of
almost all continuous automata have been presented in the literature [11].

Pursuit and Estimator-based LA were introduced to be faster schemes, char-
acterized by the fact that they pursue what can be reckoned to be the current
optimal action or the set of current optimal schemes [11]. The updating al-
gorithm improves its convergence results by using the history to maintain an
estimate of the probability of each action being rewarded, in what is called the
reward-estimate vector. While, in non-estimator algorithms, the action proba-
bility vector is updated solely on the basis of the Environment’s response, in a
Pursuit or Estimator-based LA, the update is based on both the Environment’s
response and the reward-estimate vector. Families of Pursuit and Estimator-
based LA have been shown to be faster than VSSA [10]. Indeed, even faster
discretized versions of these schemes have been reported [2,11].

With regard to applications, the entire field of LA and stochastic learning, has
had a myriad of applications [3,4,5,7,8], which (apart from the many applications
listed in these books) include solutions for problems in network and communi-
cations [16,17,18,19], network call admission, traffic control, quality of service
routing, [20,21,22], distributed scheduling [23], training hidden Markov models
[24], neural network adaptation [25], intelligent vehicle control [26], and even
fairly theoretical problems such as graph partitioning [27]. Besides these fairly
generic applications, with a little insight, LA can be used to assist in solving
(by, indeed, learning the associated parameters) the stochastic resonance prob-
lem [28], the stochastic sampling problem in computer graphics [29], the problem
of determining roads in aerial images by using geometric-stochastic models [30],
the stochastic and dynamic vehicle routing problem [31], and various location
problems [32]. Similar learning solutions can also be used to analyze the stochas-
tic properties of the random waypoint mobility model in wireless communica-
tion networks [33], to achieve spatial point pattern analysis codes for GISs [34],
to digitally simulate wind field velocities [35], to interrogate the experimental
measurements of global dynamics in magneto-mechanical oscillators [36], and to
analyze spatial point patterns [37]. LA-based schemes have already been utilized
to learn the best parameters for neural networks [25], optimizing QoS routing
[38], and bus arbitration [17] – to mention a few other applications.

1.3 Contributions of This Paper

This paper presents a novel approach for modeling how a Teacher can present
and teach Socratic-type domain knowledge, with varying degrees of difficulty,
to the Students, or Student Simulators. In this model, the Teacher, apart from
“teaching”, will also assist Students to handle more complex domain knowledge
material. Thus, the salient contributions of this paper are:

– The modeling of a Teacher in a Tutorial-like system, within the LA paradigm.
– The Teacher who interacts with Students, provides them with material from

the domain knowledge, and responds to their answers for the questions.
– The concept of a Teacher providing hints to the Students so as to assist them

in handling more complex information.
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2 Intelligent Tutorial and Tutorial-like Systems

Since our research involves Tutorial-like systems, which are intended to mimic
Tutorial systems, a brief overview of these follows.

Intelligent Tutorial Systems (ITSs) are special educational software packages
that involve Artificial Intelligence (AI) techniques and methods to represent the
knowledge, aswell as to conduct the learning interaction [39]. ITSsare characterized
by their responsiveness to the learner’s need. They adapt according to the knowl-
edge/skill of the users. They also incorporate experts’ domain specific knowledge.

An ITS mainly consists of a number of modules, typically three [40], and
sometimes four when a communication module (interface) is added [41]. The
former three modules are the domain model (knowledge domain), the student
model, and the pedagogical model, (which represent the tutor model itself). Self
[42] defined these components as the tripartite architecture for an ITS – the
what (domain model), the who (student model), and the how (tutoring model).
Figure 1 depicts a common ITS architecture.

System Interface

Tutoring Model

Domain Model
Student Model

Fig. 1. A Common ITS Architecture

2.1 Tutorial-like Systems

Tutorial-like systems share some similarities with the well-developed field of
Tutorial systems. Thus, for example, they model the Teacher, the Student, and
the Domain knowledge. However, they are different from “traditional” Tutorial
systems in the characteristics of their models, etc. as will be highlighted below.

1. Different Type of Teacher. In Tutorial systems, as they are developed
today, the Teacher is assumed to have perfect information about the material
to be taught. Also, built into the model of the Teacher is the knowledge of
how the domain material is to be taught, and a plan of how it will communi-
cate and interact with the Student(s). This teaching strategy may progress
and improve over time. The Teacher in our Tutorial-like system possesses
different features. First of all, one fundamental difference is that the Teacher
is uncertain of the teaching material – he is stochastic. Secondly, the Teacher
does not initially possess any knowledge about “How to teach” the domain
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subject. Rather, the Teacher himself is involved in a “learning” process and
he “learns” what teaching material has to be presented to the particular
Student. To achieve this, as mentioned, we assume that the Teacher follows
the Socratic model of learning by teaching the material using questions that
are presented to the Students. He then uses the feedback from the Students
and their corresponding LA to suggest new teaching material.

Although removing the “How to teach” knowledge from the Teacher would
take away the “bread and butter” premise of the teaching process in a Tu-
torial system, in a Tutorial-like system, removing this knowledge allows the
system to be modeled without excessive complications, and renders the mod-
eling of knowledge less burdensome. The success of our proposed methodol-
ogy would be beneficial to systems in which any domain knowledge pertinent
to tutoring teaching material could be merely plugged into the system with-
out the need to worry about “how to teach” the material.

2. No Real Students. A Tutorial system is intended for the use of real-life
students. Its measure of accomplishment is based on the performance of these
students after using the system, and it is often quantified by comparing their
progress with other students in a control group, who would use a real-life
Tutor. In our Tutorial-like system, there are no real-life students who use
the system. The system could be used by either:

(a) Students Simulators, that mimic the behavior and actions of real-life
students using the system. The latter would themselves simulate how the
Students improve their knowledge and their interaction with the Teacher
and with other Students. They can also take proactive actions interacting
with the teaching environment by one of the following measures:

i. Asking a question to the Teacher
ii. Asking a question to another Student
iii. Proposing to help another Student

(b) An artificial Entity which, in itself, could be another software component
that needs to “learn” specific domain knowledge.

3. Uncertain Course Material. Unlike the domain knowledge of “tradi-
tional” Tutorial systems where the knowledge is, typically, well defined, the
domain knowledge teaching material presented in our Tutorial-like system
contains material that has some degree of uncertainty. The teaching mate-
rial contains questions, each of which has a probability that indicates the
certainty of whether the answer to the question is in the affirmative.

4. Testing Vs. Evaluation. Sanders [43] differentiates between the concepts
of “teaching evaluation” and “teaching testing”. He defines “teaching evalu-
ation” as an “interpretive process”, in which the Teacher “values, determines
merit or worth of the students performance, and their needs”. He also defines
“teaching testing” as a “data collection process”. In a Tutorial system, an
evaluation is required to measure the performance of the Student while us-
ing the system and acquiring more knowledge. In our Tutorial-like system,
the Student(s) acquire knowledge using a Socratic model, where it gains
knowledge from answering questions without having any prior knowledge
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about the subject material. In our model, the testing will be based on the
performance of the set of Student Simulators.

5. School of Students. Traditional Tutorial Systems deal with a Teacher who
teaches Students, but they do not permit the Students to interact with each
other. A Tutorial-like system assumes that the Teacher is dealing with a
School of Students where each learns from the Teacher on his own, and can
also learn from his “colleagues” if he desires, or is communicating with a
cooperating colleague. Notice that we will have to now consider how each
Student learns, and also how the entire School learns.

3 Concept of Teachers Who Provide Hints

3.1 Learning of Students in a LA Teaching Environment

In Tutorial-like systems, Students (or Student Simulators) try to learn some do-
main knowledge from the Teacher and from the interaction between themselves.
As mentioned earlier, there are no real-life Students who use the Tutorial-like
systems. Students are modeled using Student Simulators, that try to mimic the
actions and behavior of real-life Students. Student Simulators are, in turn, mod-
eled using LA which attempt to learn the domain knowledge from the Teacher,
who also may be a modeled entity.

First of all, the Tutorial-like system models the Students by observing their
behavior while using the system and examining how they learn. The Student
modeler tries to infer what type of Student it is providing the knowledge to.
This enables the Teacher to customize his teaching experience to each Student
according to his caliber.

If we are dealing with real-life Students, it would have been an easy task
to implement these concepts in a real Tutorial system. But since the goal of
the exercise is to achieve a teaching-learning experience, in which every facet
of the interaction involves a model (or a non real-life Student), the design and
implementation of the entire Tutorial-like system must be couched in a formal
established learning paradigm. As mentioned earlier, although there are host of
such learning methodologies, we have chosen to work within the LA paradigm, as
explained in Section 1.2. Thus, the questions encountered, before this endeavor
is successful, involve:

– How can we model the Teacher in terms of an LA Environment?
– How can we model the different types of Students that could be involved in

the learning?
– How can we model the Domain, from which the learning material is pre-

sented?
– How can we model chapters of teaching material with increasing complexity?
– How can we model the process of the Teacher assisting the Student to learn

the more complex material?

We shall address all of these issues now, and report the experimental results
obtained from such a modeling exercise.
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Modeling the Student: In our model, typically, a Student can be one of
these three types (although it is easy to generalize this to a larger spectrum of
Students) [1,12]:

– Fast Student. This type of Students can be simulated using a Pursuit scheme,
which is, typically, a fast convergence scheme.

– Normal Student. The Student Simulator can mimic this type of Students
using a VSSA scheme.

– Slow Student. Such a Student can be implemented using a FSSA, or a VSSA
with a lower value of λ.

The details of this modeling process is explained in [1,12]. The students them-
selves work collectively in a Classroom, as explained in [14], the details of which
are omitted here.

Modeling the Choices: The Tutorial-like system uses the Socratic model of
teaching by presenting multiple-choice questions to the Students. The Student
selects an option from the set of available actions α, in which αi is the action
corresponding to selecting choice ‘i’ in the multiple-choice question.

Modeling the Rewards/Penalties: When the Student selects an action αi,
the Environment can either reward (β = 0) or penalize (β = 1) his actions.
This feedback provides the Student the information required to learn from his
actions, and from this feedback loop, the cycle is repeated. The Student can
incrementally learn until his LA, hopefully, converges to the best action, which
is the one which has the minimum penalty probability.

Modeling the Domain with increasing complexity: When the Domain
model is required to increase the complexity of a question, we proposed in [1]
the strategy by which the penalty probabilities of the choices for that question
are reduced by a scale factor, μ. This results in the reduction of the range
of all the penalty probabilities, which makes it more difficult for the Student
to determine the best choice for the question, primarily because the reduced
penalty probabilities tend to cluster together.The details of this modeling process
is explained in detail in [1,13].

Modeling the stochastic Teacher: The Teacher who imparts the domain
knowledge is modeled as an LA Environment, which possesses a set of penalty
probabilities c, in which ci is the penalty probability associated with the fact
that the Environment penalizes choice ‘i’. The Student is unaware of the values
of these penalty probabilities.

The only critical issue that has not been addressed as yet is that of how the
Teacher can assist the Students to learn more complex material via the so-called
hints. This will be addressed and formalized in the next section.

The issue of how the Teacher himself can learn is currently being compiled
for publication.
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3.2 Model for Teachers Who Can Provide Hints

As mentioned earlier, the Teacher, in our Tutorial-like system, is modeled to
use a Socratic-type Domain model. The domain knowledge is represented using
multiple-choice questions, with chapters of contents with increasing complexity.

When the Teacher provides the Students with more complex material, we are
left with the problem of him also possessing the ability to provide them with the
means to deal with this increased complexity. We resolve this by proposing that
he presents them with hints, so that they can improve their learning abilities
and cope with the complexity of the domain knowledge.

Modeling a Teacher with these capabilities, who can teach and also assist the
Students and provide them with hints, can be formally defined as:

{α, β, c, μ ρ, Pinit, σB}, where:

– α = {α1, α2, . . . , αR}, in which
αi is the action corresponding to selecting choice ‘i’ in the question.

– β = {0, 1}, in which
β = 0 implies a Reward for the present action (i.e, choice) chosen by

the Student, and
β = 1 implies a Penalty for the present action (i.e, choice) chosen.

– c = {c1, c2, . . . , cR}, in which
ci is the penalty probability associated with the fact that the Environ-

ment penalizes choice ‘i’.
– μ (0 < μ ≤ 1) is the scaling factor which is used to control the complex-

ity/difficulty of any question. The value of μ=1.0 represents a question with
a “normal” difficulty, while the difficulty increases as μ decreases. μ will also
be referred to as the difficulty factor (or index).

– ρ (0 ≤ ρ < 1) is the hint value, which is used to control the extent of
assistance which the Teacher provides to the Students. The value of ρ=0
represents the scenario when there is no enhanced assistance, while the value
of the hint increases with ρ. ρ is also referred to as the hint factor (or index).

– Pinit is the initial value of the Student’s action probability vector, which
contains the probabilities that the Student assigns to each of his actions.
For the Student’s action probability vector, at each instant t, the Student
Simulator’s LA randomly selects an action α(t) = αi with probability pi(t)
= Pr[α(t) = αi], where

∑r
i=1 pi(t) = 1. It is this vector which is initialized

by Pinit, which, in turn, is related to ρ.
Without any hints from the Teacher, if the Student has R choices (actions)
to choose from, the Student Simulator’s LA, initially, will have an equal
probability for each choice. Therefore, the action probability vector will be:

[ 1R
1
R · · ·]T.

However, when the Teacher provides a hint to the Student, we propose that
these initial values change as per the value of the hint, ρ, as follows:

• For action ‘j’ to which the Teacher provides the advantageous hints to
the Student:

pj = pj + ρ.(R−1
R ).
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• For all other actions ‘i’, where i �= j:

pi = pi - Δ, where Δ = 1
R−1

( ρ(R−1)
R

)
= ρ

R .
– σB is the probability that the Teacher will provide a hint to the Student

indicating the identity of the Best action.
All of these concepts are explained in the following example.

3.3 Example of Teachers Who Can Provide Hints

Consider the case when the domain knowledge is represented by a 4-action En-
vironment, in which the penalty probabilities are represented by:

c = {0.3 0.1 0.7 0.5}
Note that in this Environment, the correct action is α2, which possesses the

minimum penalty probability. The initial values for the Student’s action proba-
bility vector without any hints from the Teacher is:

P(0)= [0.25 0.25 0.25 0.25]T.
If the Teacher wants to convey the information that he strategically believe

that α2 is the superior action, he provides the Students with a hint ρ, which has
a value of, say, 0.4.

In this case, the action probability vector could be one of the following 4
options:

P(0)= [0.55 0.15 0.15 0.15]T.

P(0)= [0.15 0.55 0.15 0.15]T.

P(0)= [0.15 0.15 0.55 0.15]T.

P(0)= [0.15 0.15 0.15 0.55]T.

The probability that the Student will receive the hint in favor of α2 is σB , while
the probability that the Student will receive it for any other action is

(
1− σB

R−1

)
. If,

for instance, σB is selected to be equal to pB, then, in this example, the probability
that the Student will receive the hint in favor of α2 is 0.55, while the probability
that he will receive it in favor of any other action is 0.15.

4 Experimental Results

In this section, we present the experimental results obtained by testing our
Teacher model that provides hints to the Students. The results were obtained
by performing numerous experiments to simulate the interaction between the
Teacher and the Student Simulators, and the strategy by which the Teacher can
affect the learning of the Students.

The teaching Environment contained multiple-choice questions which repre-
sented the teaching material that needs to be taught to the Students. The simu-
lations were performed against different benchmark Environments, two 4-action
Environments, and two 10-action Environments. In these simulations, an algo-
rithm was considered to have converged if the probability of choosing an action
was greater than or equal to a threshold T (0 < T ≤ 1). Moreover, an automa-
ton was considered to converge correctly if it converged to the action with the
highest probability of being rewarded.
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As mentioned earlier, three types of Students have been used in the sim-
ulations, who communicated with the Teacher to learn the subject matter as
follows:

– Fast learning Students. To mimic this type of Students, the Student Simula-
tor used a Pursuit PLRI scheme, with λ being in the range 0.0041 to 0.0127.
The action probability vector for this scheme was updated only if the Stu-
dent Simulator’s LA obtained a reward. The estimate vector, however, for
the reward probabilities was always updated.

– Normal learning Students. To simulate Students of this type, the Student
Simulators used VSSA. In particular, it utilized the LRI scheme with λ being
in the range 0.0182 to 0.0192.

– Below-Normal learning Students (“Slow Learners”). The Student Simulators
also used VSSA to simulate learners of this type. Again, our model used the
LRI scheme, but with a lower value of λ, which was between 0.0142 to 0.0152.

4.1 Teaching Domain Model with Increasing Difficulty, with hints

The Domain model in the simulations used domain knowledge with increasing
difficulty. The simulations first used domain knowledge with no enhanced dif-
ficulty (μ=1.0). Thereafter, it used a more difficult domain, obtained by lower
values of μ. In particular, we report the results for μ=0.8, 0.6, and 0.4.

For each level of difficulty in the Domain model, the Teacher communicated
with the Students to teach them the learning material. The Teacher presented
the domain knowledge to the Students in the following steps:

– First, he provided the knowledge to the Students with no enhanced assis-
tance.

– Thereafter, he started providing assistance to the Students, with a hint factor
of ρ.

– The value of the hint factor ρ ranged from 0.1 (for marginal hints), and
increased to 0.8 to allow maximal assistance.

– When the Teacher provided a hint to the Student, it affected the Student
Simulator’s initial action probability vector, as defined earlier in Section 3.2.

– The probability that the Teacher would provide a hint to the Student (in-
dicating the identity of the Best action), σB, increased with the values of ρ.
In our simulations, for simplicity, σB was always set to be equal to pB (the
initial probability of selecting the Best action in the corresponding action
probability vector).

4.2 Results Using 4-Action and 10 Action Environments

The simulation experiments were performed using two sets of benchmark En-
vironments, two 4-action Environments (E4,A and E4,B), and two 10-action

Environments (E10,A and E10,B). While the 4-action Environment represents

a multiple-choice question with 4 options, the 10-action Environment represents
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a more difficult multiple-choice question with 10 options. The three different
types of Students were assigned to learn the responses for the questions, and to
determine the best choice for each question, which is the one that possesses the
minimum penalty probability.
For the different types of the Student Simulators, the λ for E4,A and E10,A
were:

– 0.0127 for the Fast learning Student.
– 0.0192 for the Normal learning Student.
– 0.0142 for the Below-Normal learning Student.

Also, for E4,B and E10,B, the λ of the Student Simulators LA were set to be:

– 0.0041 for the Fast learning Student.
– 0.0182 for the Normal learning Student.
– 0.0152 for the Below-Normal learning Student.

For the 4-action Environments, the two settings for the reward probabilities
were:

E4,A = {0.7 0.5 0.3 0.2} and

E4,B = {0.1 0.45 0.84 0.76}.
Similarly, for the 10-action Environments, the reward probabilities were:

E10,A = {0.7 0.5 0.3 0.2 0.4 0.5 0.4 0.3 0.5 0.2} and

E10,B = {0.1 0.45 0.84 0.76 0.2 0.4 0.6 0.7 0.5 0.3}.
The results of these simulations are tabulated in Tables 1-4 for Environments
E4,A, E4,B, E10,A, and E10,B respectively.

E4,A Environment. The results for the E4,A Environment are given in Table

1. The results show that when the Teacher provided hints to Normal and Below-
Normal Students, their learning improved significantly. For example, in a domain
characterized by the difficulty factor μ = 0.8, the learning of a Normal Student
improved by 58% when the Teacher provided hints with ρ = 0.8, compared with
the learning without any hints, as the number of iterations required for learning
decreased from 1,273 to 541. Similarly, if μ = 0.6, a Below-Normal Student
improved his learning when the Teacher provided hints with ρ = 0.8, by 47% as
the Student learned the material in 1,107 iterations instead of 2,086 iterations.

Although, in general, the rate of learning improved for Normal and Below-
Normal Students with the increase of ρ, the improvement was marginal with
small ρ, and significant when ρ ¿ 0.3. This can be attributed to the fact that,
in our experiments, σB was selected to be equal to pB. With smaller ρ, σB was
also small.

However, Fast Students showed less advantage in their learning when the
Teacher provided them with hints. For example, in a domain with μ = 0.4, while
the number of iterations required for learning without any hints was 479, it
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decreased to 388 when the Teacher provided hints with ρ = 0.8, which represents
only a 19% learning improvement.

The results of the E4,A Environment simulations are depicted graphically in

Figure 2. For a domain knowledge with increasing complexity that ranges from
μ=1.0 (no enhanced difficulty) until μ = 0.4, we see that, in general, the number
of iterations needed for learning decreased with the increase of ρ. This, of course,
is also intuitively appealing.

E4,B Environment. Although the E4,B Environment was more difficult than

the E4,A Environment, the results obtained for it were similar to the latter.

Normal and Below-Normal Students showed a noticeable improvement when
provided with hints from the Teacher, while the learning gain for Fast Students
was marginal. The results for the E4,B Environment are given in Table 2.

For example, in a Domain with a difficulty index μ = 0.8, the learning of the
Normal Student improved to require only 761 iterations when the hint factor ρ
was 0.8, instead of 2,330 iteration when no hints were provided. This represents
a 67% improvement. The learning for Normal Students even exceeds that of
Fast Students when ρ was large (more than 0.7). Similarly, in an Environment
with μ = 0.6, the Below-Normal Student improved his skills by learning in 1,218
iterations (for ρ = 0.8), instead of 3,517 iterations, which was the time required
for learning without any enhanced assistance. This implies a 65% improvement
in the learning.

As before, the gain for Fast Students was minimal. For example, when μ = 0.4,
a Fast Student improved his learning by only 12% when the Teacher provided
hints with ρ = 0.8. The number of iterations decreased from 1,379 (with no
hints) to 1,213.

The results for the E4,B Environment simulations are shown graphically in

Figure 3. The figure shows the improvement in the Student learning with the
increase of ρ for different values of μ, the complexity of the Domain model. The
reader must observe the reverse proportionality relationship between the hint
index ρ, and the number of iterations needed for the learning for the different
types of Students.

E10,A Environment. In the intent of completeness, we now briefly report

the results for a single 10-action Environment, E10,A, which represents a more

difficult Environment than the 4-action Environment. The simulation results
obtained for this Environment are essentially similar to the ones obtained for the
4-action Environments. The gains for the Normal and Below-Normal Students
were substantial, while the gains for Fast Students were marginal. The results
for the E10,A Environment are given in Table 3.

We mention a few specific examples here. In a domain knowledge with a dif-
ficulty index μ = 0.6, the Normal Student improved his abilities by learning
the domain knowledge in 818 iterations (with ρ = 0.7), as opposed to 1,960
iterations, with no enhanced assistance from the Teacher. This represents a
58% improvement in the learning. Also, for the Below-Normal Student in an
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Table 1. Convergence of the Student Simulators when they are learning in the bench-
mark E4,A Environment with increasing Difficulty Indices, and increasing Hint In-

dices. In all these cases, σB was assigned the same value as pB (as per the notation of
Section 3.3).

μ ρ pB = σB No. iterations for No. iterations for No. iterations for

(diffic. fact.) (hint) Fast Learner Normal Learner Below Norm. Learner

to converge to converge to converge

0.0 0.250 560 941 1,383

0.1 0.325 548 978 1,375

0.2 0.400 550 990 1,459

0.3 0.475 549 982 1,348

1.0 0.4 0.550 534 829 1,166

0.5 0.625 504 960 1,196

0.6 0.700 478 763 1,077

0.7 0.775 463 629 888

0.8 0.850 396 516 653

0.0 0.250 532 1,273 1,645

0.1 0.325 504 1,161 1,608

0.2 0.400 521 1,104 1,674

0.3 0.475 489 1,267 1,547

0.8 0.4 0.550 493 1,052 1,536

0.5 0.625 480 952 1,295

0.6 0.700 456 916 1,106

0.7 0.700 428 772 1,053

0.8 0.850 371 541 861

0.0 0.250 500 1,427 2,086

0.1 0.325 483 1,562 2,196

0.2 0.400 487 1,438 1,870

0.3 0.475 474 1,418 1,971

0.6 0.4 0.550 468 1,357 1,818

0.5 0.625 441 1,188 1,732

0.6 0.700 457 1,062 1,571

0.7 0.775 447 932 1,383

0.8 0.850 390 801 1,107

0.0 0.250 479 1,996 2,792

0.1 0.325 472 1,854 3,138

0.2 0.400 475 2,032 3,074

0.3 0.475 465 1,886 2,781

0.4 0.4 0.550 476 1,728 2,560

0.5 0.625 450 1,708 2,176

0.6 0.700 444 1,514 1,760

0.7 0.775 436 1,145 1,685

0.8 0.850 388 894 1,135

Reward probabilities for E4,A Environment are:

E4,A : 0.7 0.5 0.3 0.2
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Fig. 2. The effect of increasing the Hint Index provided by the Teacher on Students
learning for Environments derived from E4,A by varying the Difficulty Indices
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Table 2. Convergence of the Student Simulators when they are learning in the bench-
mark E4,B Environment with increasing Difficulty Indices, and increasing Hint In-

dices. In all these cases, σB was assigned the same value as pB (as per the notation of
Section 3.3).

μ ρ pB = σB No. iterations for No. iterations for No. iterations for

(diffic. fact.) (hint) Fast Learner Normal Learner Below Norm. Learner

to converge to converge to converge

0.0 0.250 1,466 2,103 2,699

0.1 0.325 1,472 1,979 2,780

0.2 0.400 1,484 2,005 2,500

0.3 0.475 1,449 1,880 2,269

1.0 0.4 0.550 1,403 1,622 2,137

0.5 0.625 1,326 1,379 1,997

0.6 0.700 1,281 1,427 1,666

0.7 0.775 1,188 1,109 1,416

0.8 0.850 1,130 762 1,076

0.0 0.250 1,406 2,330 2,826

0.1 0.325 1,419 2,556 3,162

0.2 0.400 1,356 2,333 2,954

0.3 0.475 1,346 2,259 2,585

0.8 0.4 0.550 1,335 2,452 2,738

0.5 0.625 1,348 1,723 2,209

0.6 0.700 1,259 1,711 1,896

0.7 0.700 1,185 1,291 1,650

0.8 0.850 1,259 761 1,397

0.0 0.250 1,450 2,728 3,517

0.1 0.325 1,352 2,872 3,717

0.2 0.400 1,347 2,740 3,560

0.3 0.475 1,328 2,671 3,528

0.6 0.4 0.550 1,303 2,039 3,103

0.5 0.625 1,336 1,902 2,843

0.6 0.700 1,293 1,522 2,304

0.7 0.775 1,166 1,412 2,003

0.8 0.850 1,153 838 1,218

0.0 0.250 1,379 2,869 4,061

0.1 0.325 1,477 3,275 4,125

0.2 0.400 1,383 3,579 3,838

0.3 0.475 1,282 2,837 3,646

0.4 0.4 0.550 1,325 3,386 3,925

0.5 0.625 1,338 1,932 2,767

0.6 0.700 1,299 1,847 2,541

0.7 0.775 1,311 1,391 2,203

0.8 0.850 1,213 1,017 1,403

Reward probabilities for E4,B Environment are:

E4,B : 0.1 0.45 0.84 0.76
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Fig. 3. The effect of increasing the Hint Index provided by the Teacher on Students
learning for Environments derived from E4,B by varying the Difficulty Indices
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Table 3. Convergence of the Student Simulators when they are learning in the bench-
mark E10,A Environment with increasing Difficulty Indices, and increasing Hint In-

dices. In all these cases, σB was assigned the same value as pB (as per the notation of
Section 3.3).

μ ρ pB = σB No. iterations for No. iterations for No. iterations for

(diffic. fact.) (hint) Fast Learner Normal Learner Below Norm. Learner

to converge to converge to converge

0.0 0.10 633 1,367 1,802

0.1 0.19 640 1,307 1,796

0.2 0.28 619 1,221 1,799

0.3 0.37 625 1,214 1,667

1.0 0.4 0.46 628 1,126 1,643

0.5 0.55 576 1,061 1,488

0.6 0.64 571 9,55 1,275

0.7 0.73 560 830 1,199

0.8 0.82 501 597 842

0.0 0.10 574 1,525 2,219

0.1 0.19 615 1,510 2,184

0.2 0.28 607 1,458 2,200

0.3 0.37 575 1,424 2,147

0.8 0.4 0.46 607 1,302 1,738

0.5 0.55 572 1,233 1,767

0.6 0.64 556 1,030 1,469

0.7 0.73 545 1,035 1,152

0.8 0.82 522 660 890

0.0 0.10 613 1,960 2,722

0.1 0.19 595 1,957 2,820

0.2 0.28 608 1,824 2,757

0.3 0.37 596 1,777 2,726

0.6 0.4 0.46 570 1,692 2,289

0.5 0.55 615 1,471 2,279

0.6 0.64 590 1,253 1,633

0.7 0.73 549 818 1,484

0.8 0.82 578 691 1,181

0.0 0.10 627 2,827 3,813

0.1 0.19 649 2,591 3,873

0.2 0.28 622 2,250 3,685

0.3 0.37 651 2,148 3,558

0.4 0.4 0.46 631 1,998 2,955

0.5 0.55 640 1,739 2,864

0.6 0.64 617 1,530 2,333

0.7 0.73 620 1,345 1,691

0.8 0.82 591 660 1,256

Reward probabilities for E10,A Environment are:

E10,A : 0.7 0.5 0.3 0.2 0.4 0.5 0.4 0.3 0.5 0.2
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Fig. 4. The effect of increasing the Hint Index provided by the Teacher on Students
learning for Environments derived from E10,A by varying the Difficulty Indices
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Table 4. Convergence of the Student Simulators when they are learning in the bench-
mark E10,B Environment with increasing Difficulty Indices, and increasing Hint In-

dices. In all these cases, σB was assigned the same value as pB (as per the notation of
Section 3.3).

μ ρ pB = σB No. iterations for No. iterations for No. iterations for

(diffic. fact.) (hint) Fast Learner Normal Learner Below Norm. Learner

to converge to converge to converge

0.0 0.10 1,615 2,198 2,748

0.1 0.19 1,606 2,291 2,775

0.2 0.28 1,585 2,157 2,554

0.3 0.37 1,558 2,065 2,359

1.0 0.4 0.46 1,517 1,674 2,126

0.5 0.55 1,497 1,454 2,104

0.6 0.64 1,459 1,280 1,848

0.7 0.73 1,396 942 1,473

0.8 0.82 1,319 504 1,069

0.0 0.10 1,610 2,589 3,372

0.1 0.19 1,545 2,448 2,857

0.2 0.28 1,576 2,299 2,763

0.3 0.37 1,512 2,121 2,733

0.8 0.4 0.46 1,510 1,833 2,699

0.5 0.55 1,477 1,718 2,293

0.6 0.64 1,448 1,219 1,391

0.7 0.73 1,404 914 1,345

0.8 0.82 1,252 736 883

0.0 0.10 1,583 3,280 3,857

0.1 0.19 1,480 3,213 3,455

0.2 0.28 1,550 2,441 3,656

0.3 0.37 1,524 2,245 3,068

0.6 0.4 0.46 1,503 1,893 2,772

0.5 0.55 1,453 2,038 2,562

0.6 0.64 1,407 1,637 2,068

0.7 0.73 1,392 1,055 1,396

0.8 0.82 1,351 843 1,101

0.0 0.10 1,640 3,935 5,024

0.1 0.19 1,576 3,161 4,784

0.2 0.28 1,569 3,137 4,237

0.3 0.37 1,522 2,995 3,715

0.4 0.4 0.46 1,595 2,397 2,889

0.5 0.55 1,520 2,087 2,821

0.6 0.64 1,559 1,629 2,348

0.7 0.73 1,407 1,399 2,210

0.8 0.82 1,330 1,083 1,252

Reward probabilities for E10,B Environment are:

E10,B : 0.1 0.45 0.84 0.76 0.2 0.4 0.6 0.7 0.5 0.3
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Fig. 5. The effect of increasing the Hint Index provided by the Teacher on Students
learning for Environments derived from E10,B by varying the Difficulty Indices
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Environment with the difficulty index μ = 0.4, the Student learned the material
in 1,691 iterations when the hint factor ρ was 0.7, compared to 3,813 iterations
when there were no hints. This is a 55% improvement in the learning.

For Fast Students, the improvement in the learning was again marginal. For
example, in an Environment with difficulty index μ = 0.4, the improvement in
learning attained only 6% when the Teacher provided hints with ρ = 0.8. The
number of iterations required for the learning decreased from 627 (with no hints
from the Teacher) to 591 iterations.

The results of the E10,A Environment simulations are depicted graphically

in Figure 4. The figure shows that the learning of the Students improved with
the increase of the hint factor ρ. The improvement is apparent for the Normal
and Below-Normal Students, while it is rather insignificant for Fast Students.

Similar results were also observed for the E10,B Environment. The simulation

results of this Environment are tabulated in Table 4 and depicted graphically
in Figure 5. As before, the figure shows the reverse proportionality relationship
between the value of the hint index ρ, and the number of iterations required for
Students to learn the domain knowledge.

5 Conclusion and Future Work

This paper presented a novel paradigm to model the behavior of a Teacher in a
Tutorial-like system. In this model, the Teacher is capable of presenting, to the
Students, a Socratic-type Domain model in the form of multiple-choice question.
As the Domain model is capable of storing domain knowledge with increasing
levels of complexity, the Teacher is able to present these material to the Students.

In our proposed model, the Teacher can assist the Students so as to be able to
improve their abilities to learn more complex knowledge. He provides them with
hints via so-called “hint factors” or indices. The value of the hint factor is relative
to the complexity of the domain knowledge that is presented. The main result
obtained is that Normal and Below-Normal Students benefited substantially
from hints provided by the Teacher. However, the benefits to Fast Students
were not so significant. These results seem to fit with our view of how real-life
Students respond to the assistance they receive from the Teacher.

We also foresee a strategy by which the Teacher himself will be able to “learn”
so as to improve his “teaching” skills, and customize his teaching based on
the learning capability of the corresponding Student. This is currently being
investigated.

For a longer-term future goal, we would like to believe that our approach
of providing hints can also be ported for use in real-life “traditional” Tutorial
Systems. By allowing the Teacher model to present hints to real-life Students,
they can, hopefully, be expected to benefit and learn more complex material.
But this clearly, needs much more research, and collaborative involvement with
scientists who work with both cognitive and realistic models of learning and
teaching.
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33. Bettstetter, C., Hartenstein, H., Pérez-Costa, X.: Stochastic properties of the ran-
dom waypoint mobility model. Journal Wireless Networks 10, 555–567 (2004)

34. Rowlingson, B.S., Diggle, P.J.: SPLANCS: spatial point pattern analysis code in
S-Plus. University of Lancaster, North West Regional Research Laboratory (1991)

35. Paola, M.: Digital simulation of wind field velocity. Journal of Wind Engineering
and Industrial Aerodynamics 74-76, 91–109 (1998)

36. Cusumano, J.P., Kimble, B.W.: A stochastic interrogation method for experimental
measurements of global dynamics and basin evolution: Application to a two-well
oscillator. Nonlinear Dynamics 8, 213–235 (1995)

37. Baddeley, A., Turner, R.: Spatstat: An R package for analyzing spatial point pat-
terns. Journal of Statistical Software 12, 1–42 (2005)

38. Vasilakos, A.V., Saltouros, M.P., Atlassis, A.F., Pedrycz, W.: Optimizing QoS
routing in hierarchical ATM networks using computational intelligence techniques.
IEEE Transactions on Systems, Man, and Cybernetics: Part C 33, 297–312 (2003)



62 B.J. Oommen and M.K. Hashem

39. Omar, N., Leite, A.S.: The learning process mediated by intelligent tutoring sys-
tems and conceptual learning. In: International Conference On Engineering Edu-
cation, Rio de Janeiro, p. 20 (1998)

40. Fischetti, E., Gisolfi, A.: From computer-aided instruction to intelligent tutoring
systems. Educational Technology 30(8), 7–17 (1990)

41. Winkels, R., Breuker, J.: What’s in an ITS? a functional decomposition. In: Costa,
E. (ed.) New Directions for Intelligent Tutoring Systems. Spring, Berlin (1990)

42. Self, J.: The defining characteristics of intelligent tutoring systems research: ITSs
care, precisely. International Journal of AI in Education 10, 350–364 (1999)

43. Sanders, J.R.: Presented at the 24th annu. meeting joint committee stand.
educ. eval. (October 1998),
http://www.jcsee.org/wp-content/uploads/2009/08/JCMinutes98.PDF

http://www.jcsee.org/wp-content/uploads/2009/08/JCMinutes98.PDF

	Modeling a Teacher in a Tutorial-like System Using Learning Automata
	Introduction 
	Tutorial-like Systems
	Stochastic Learning Automaton
	Contributions of This Paper

	Intelligent Tutorial and Tutorial-like Systems
	Tutorial-like Systems

	Concept of Teachers Who Provide Hints 
	Learning of Students in a LA Teaching Environment
	Model for Teachers Who Can Provide Hints 
	Example of Teachers Who Can Provide Hints 

	Experimental Results
	Teaching Domain Model with Increasing Difficulty, with hints
	Results Using 4-Action and 10 Action Environments

	Conclusion and Future Work
	References




