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Abstract The two-armed bandit problem is a classical opti-
mization problem where a decision maker sequentially pulls
one of two arms attached to a gambling machine, with each
pull resulting in a random reward. The reward distributions
are unknown, and thus, one must balance between exploiting
existing knowledge about the arms, and obtaining new in-
formation. Bandit problems are particularly fascinating be-
cause a large class of real world problems, including rout-
ing, Quality of Service (QoS) control, game playing, and
resource allocation, can be solved in a decentralized man-
ner when modeled as a system of interacting gambling ma-
chines.

Although computationally intractable in many cases,
Bayesian methods provide a standard for optimal decision
making. This paper proposes a novel scheme for decentral-
ized decision making based on the Goore Game in which
each decision maker is inherently Bayesian in nature, yet
avoids computational intractability by relying simply on up-
dating the hyper parameters of sibling conjugate priors, and
on random sampling from these posteriors. We further report
theoretical results on the variance of the random rewards ex-
perienced by each individual decision maker. Based on these
theoretical results, each decision maker is able to acceler-
ate its own learning by taking advantage of the increasingly
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more reliable feedback that is obtained as exploration gradu-
ally turns into exploitation in bandit problem based learning.

Extensive experiments, involving QoS control in simu-
lated wireless sensor networks, demonstrate that the accel-
erated learning allows us to combine the benefits of conser-
vative learning, which is high accuracy, with the benefits of
hurried learning, which is fast convergence. In this manner,
our scheme outperforms recently proposed Goore Game so-
lution schemes, where one has to trade off accuracy with
speed. As an additional benefit, performance also becomes
more stable. We thus believe that our methodology opens
avenues for improved performance in a number of applica-
tions of bandit based decentralized decision making.

Keywords Bandit problems · Goore Game · Bayesian
learning · Decentralized decision making · Quality of
service control · Wireless sensor networks

1 Introduction

The conflict between exploration and exploitation is a well-
known problem in reinforcement learning, and other areas of
artificial intelligence. The Two-Armed Bandit (TAB) prob-
lem captures the essence of this conflict. In brief, a deci-
sion maker sequentially pulls one of two arms attached to
a gambling machine, with each pull resulting in a random
reward. The reward distributions are unknown, and thus one
must balance between exploiting existing knowledge about
the arms, and obtaining new information.

1.1 Thompson sampling

In [8] we reported a Bayesian technique for solving bandit
like problems, revisiting the Thompson Sampling [21] prin-
ciple pioneered in 1933. This revisit lead to novel schemes
for handling multi-armed, and dynamic (restless) bandit
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problems [9, 13, 14], and empirical results demonstrated
the advantages of these techniques over established top
performers. Furthermore, we provided theoretical results
stating that the original technique is instantaneously self-
correcting and that it converges to only pulling the optimal
arm, with probability as close to unity as desired. In addition
to the theoretical convergence results found in [8], May et al.
recently reported an alternative proof strategy for establish-
ing convergence properties for optimistic Bayesian sampling
[16]. As a further testimony to the renewed importance of
the Thompson Sampling principle, Wang et al. [24] com-
bined so-called sparse sampling with Bayesian exploration,
enabling efficient searching of the arm selection space using
a sparse look-ahead tree. In [4], Dimitrakakis derived opti-
mal decision thresholds for the multi-armed bandit problem,
for both the infinite horizon discounted reward case, and
for the finite horizon undiscounted case. Later on, a mod-
ern Bayesian look at the multi-armed bandit problem was
also taken in [16, 20]. Promising recent application areas for
Thompson Sampling include Bayesian click-through rate
optimization for sponsored search advertising [7] and web
site optimization [6, 20].

1.2 Decentralized decision making and multi-armed
bandits

Multiple interacting bandits problems are particularly fas-
cinating because they can be used to model, and efficiently
solve a large class of real world decentralized decision mak-
ing problems, such as QoS-control in wireless sensor net-
works [15], routing [19], game playing [5], combinatorial
optimization [1, 10], and resource allocation [11, 12]. In
decentralized decision making problems, however, a cer-
tain phenomenon renders current bandit problem based so-
lutions sub-optimal. Specifically, multiple decentralized de-
cision makers are simultaneously exploring a collection of
interacting bandits. This means that the variances of the re-
ward distributions of each bandit problem are governed by
the current level of exploration being manifested in the sys-
tem as a whole. In other words, the variance of the reward
distributions will be fluctuating with the degree of explo-
ration taking place. Thus, initially, when exploration typ-
ically is significant, each decision maker should be corre-
spondingly more conservative or cautious when interpreting
the received rewards. Otherwise, by being too reckless, the
decision maker may be led astray early on, converging to a
sub-optimal decision.

The traditional approach to dealing with the above de-
scribed fluctuation of reward distribution variance is to make
learning sufficiently conservative. The purpose is to mini-
mize the chance of each decision maker converging prema-
turely. Obviously, the disadvantages of this approach is the
corresponding loss in learning speed caused by being too
conservative also when exploration calms down. A recent

approach deals with this problem indirectly by incorporat-
ing a Kalman filter into the decision making [9], allowing
each decision maker to track changing reward distributions.
Thus, too reckless learning initially is offset by the “forget-
ting” mechanism of the Kalman filter. This means that pre-
mature convergence is hindered. Yet, this tracking of chang-
ing reward distributions also means that exploration never
stops. The decision makers will, as a result, never converge
to a single optimal decision.

1.3 Paper contributions and organization

In this paper, we propose a novel scheme for solving one
particular class of decentralized decision making problems,
namely, the Goore Game (GG) [22]. The GG has applica-
tions within QoS control in wireless sensor networks, and
we described both the GG and recent applications in Sect. 2.
We then proceed to introduce a scheme for Accelerated De-
centralized Learning in Two-Armed Bandit Based Decision
Making (ADL-TAB) in Sect. 3. The ADL-TAB scheme di-
rectly and specifically addresses fluctuating reward distribu-
tion variances. To achieve this, we derive theoretical results
that characterize the variance of the random rewards expe-
rienced by each individual decision maker. Based on these
theoretical results, each decision maker is able to accelerate
its own learning as follows. When a decision maker chooses
which arm to pull, it also submits a measurement of its de-
gree of exploration, which we refer to as arm selection vari-
ance. In turn, along with the random reward it receives from
the arm pull, it also receives a signal that reflects the cur-
rent aggregated level of exploration being manifested in the
system. Using this signal, each decision maker accelerates
learning by taking advantage of the increasingly more reli-
able feedback that can be obtained when exploration gradu-
ally turns into exploitation. In Sect. 4, we demonstrate em-
pirically that the accelerated learning allows us to combine
the benefits of conservative learning, which is high accu-
racy, with the benefits of hurried learning, which is fast con-
vergence. We also achieve significant performance benefits
when applying ADL-TAB to QoS control in wireless sensor
networks that are dynamically changing through a stochastic
sensor birth-death process. In brief, our scheme clearly out-
performs recently proposed Goore Game solution schemes,
where one has to trade off accuracy with speed. Finally,
in Sect. 5, we conclude and provide pointers to further re-
search.

2 The Goore Game (GG)

The GG is one of the most fascinating games studied in the
field of artificial intelligence, and our presentation here is
based on the exposition found in [18]. We describe the GG
using the following informal formulation given in [17]:
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Imagine a large room containing N cubicles and
a raised platform. One person (voter) sits in each cu-
bicle and a Referee stands on the platform. The Ref-
eree conducts a series of voting rounds as follows. On
each round the voters vote “Yes” or “No” (the issue is
unimportant) simultaneously and independently (they
do not see each other) and the Referee counts the frac-
tion, λ, of “Yes” votes. The Referee has a uni-modal
performance criterion G(λ), which is optimized when
the fraction of “Yes” votes is exactly λ∗. The current
voting round ends with the Referee awarding a dol-
lar with probability G(λ) and assessing a dollar with
probability 1 −G(λ) to every voter independently. On
the basis of their individual gains and losses, the vot-
ers then decide, again independently, how to cast their
votes on the next round.

The game has many interesting and fascinating features
which render it both non-trivial and intriguing. These are
listed below:

1. The game is a non-trivial non-zero-sum game.
2. Unlike the games traditionally studied in the AI litera-

ture (like Chess, Checkers, Lights-Out, etc.) the game is
essentially a distributed game.

3. The players of the game are ignorant of all of the pa-
rameters of the game. All they know is that they have to
make a choice, for which they are either rewarded or pe-
nalized. They have no clue as to how many other players
there are, how they are playing, or even of how/why they
are rewarded/penalized.

4. The stochastic function used to reward or penalize the
players can be completely arbitrary, as long as it is uni-
modal.

The literature concerning the GG is sparse. It was ini-
tially studied in the general learning domain, and, as far
as we know, was for a long time merely considered as an
interesting pathological game. Recently, however, the GG
has found important applications within two main areas,
namely, Quality of Service (QoS) control in wireless sen-
sor networks [3] and within cooperative mobile robotics, as
summarized in [2].

The GG has found applications within the field of wire-
less sensor networks, as explained briefly here. Consider a
base station that collects data from a sensor network. The
sensors of the network are battery driven and have been
dropped from the air, leaving some of them non-functioning.
The functioning sensors can either be switched on or off, and
since they are battery-driven, it is expedient that they should
be turned off whenever possible. The base station, on the
other hand, has been set to maintain a certain resolution (i.e.,
QoS), and therefore requires that Q sensors are switched on.
Unfortunately, it does not know the number of functioning
sensors, and it is only able to contact them by means of a

broadcast, leaving it unable to address them individually.
This leaves us with the following challenge: How can the
base station turn on exactly Q sensors, only by means of its
limited broadcast capability?

Iyer et al. [15] proposed a scheme where the base station
provided broadcasted QoS feedback to the sensors of the
network. Using this model, the above problem was solved by
modeling it as a GG [23]. From the GG perspective, a sensor
is seen as a voter that chooses between transmitting data or
remaining idle in order to preserve energy. Thus, in essence,
each sensor takes the role of a GG player that either votes
“On” or “Off”, and acts accordingly. The base station, on the
other hand, is seen as the GG Referee with a uni-modal per-
formance function G(·) whose maximum is found at Q nor-
malized by the total number of sensors available. The “trick”
is to let the base station (1) count the number of sensors that
have turned on, and (2) use the broadcast mechanism to dis-
tribute, among the sensors, the corresponding reward based
on the probability obtained from G(·). The application of
the GG solution to the field of sensor networks is thus both
straightforward and obvious.

Furthermore, Tung and Kleinrock [23] have demon-
strated how the GG can be used for coordinating groups of
mobile robots (also called “mobots”) that have a restricted
ability to communicate. The main example application de-
scribed in [23] consists of a fixed number of mobots that can
either (1) collect pieces of ore from a landscape, or (2) sort
already collected ore pieces. The individual mobots vary
with respect to how fast they collect and how fast they sort
these pieces of ore. In this context, the GG is used to make
sure that the mobots choose their action so as to maximize
the throughput of the overall collection and sorting system.

Other possible cooperative robotics applications include
controlling a moving platform and guarding a specified
perimeter [2]. In all of these cases, the solution to the prob-
lem in question would essentially utilize the solution to the
GG in a plug-and-play manner.

3 Accelerated decentralized learning in two-armed
bandit based decision making (ADL-TAB)

This paper proposes a novel scheme for decentralized de-
cision making in which each decision maker is inherently
Bayesian in nature, yet avoids computational intractability
by relying simply on updating the hyper parameters of sib-
ling conjugate priors, and on random sampling from these
posteriors. Based on the sibling conjugate priors, we also
measure the current degree of exploration and exploitation
being manifested in the system as a whole. This allows each
decision maker to accelerate its learning by taking advan-
tage of the increasingly more reliable feedback that can be
obtained when exploration gradually turns into exploitation.
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3.1 Bayesian sampling for two-armed normal bandits
(BS-TANB)

At the heart of our decentralized decision making scheme,
we find a Bayesian Sampling approach to Two-Armed Nor-
mal Bandits (BS-TANB) problems. A unique feature of BS-
TANB is its computational simplicity, achieved by relying
implicitly on Bayesian reasoning principles. Possessing a
bell-shaped probability density function with mean μ and
standard deviation σ

f (x;μ,σ) = 1√
2πσ

e
− 1

2 (
(x−μ)2

σ2 )

the normal distribution, N(μ,σ), is central to BS-TANB.
Essentially, BS-TANB uses the normal distribution for two
purposes. First of all, it is used to provide a Bayesian esti-
mate of the reward expectation associated with each of the
available bandit arms. Secondly, a pertinent feature of BS-
TANB is that it uses the normal distribution as the basis for a
randomized arm selection mechanism. The following algo-
rithm contains the essence of BS-TANB (see [9] for further
details).

Algorithm: BS-TANB
Input: Observation noise σ 2

ob.
Initialization: μ0[1] = μ1[1] = A; σ0[1] = σ1[1] = B;
# Typically, A can be set to 0, with B being sufficiently large.
Method:
For t = 1,2, . . . Do

1. For each Arm, j ∈ {0,1}, draw a value xj randomly from
the associated normal distribution, N(μj [t], σj [t]).

2. Pull the Arm i whose drawn value xi is the largest one:

α[t] = i = arg max
j∈{0,1}

xj .

3. Receive a reward r̃i from pulling Arm i, and update pa-
rameters as follows:

• Arm i:

μi[t + 1] = σ 2
i [t] · r̃i + σ 2

ob · μi[t]
σ 2

i [t] + σ 2
ob

σ 2
i [t + 1] = σ 2

i [t]σ 2
ob

σ 2
i [t] + σ 2

ob

• Arm j �= i:

μj [t + 1] = μj [t]
σ 2

j [t + 1] = σ 2
j [t]

End

As seen from the above BS-TANB algorithm, t is a dis-
crete time index and the parameters φt = 〈(μ0[t], σ0[t]),

(μ1[t], σ1[t])〉 form an infinite 4-dimensional continuous
state space, with each pair (μi[t], σi[t]) giving the prior
distribution of the unknown reward ri associated with Arm
i. Within Φ the BS-TANB navigates by transforming each
prior distribution into a posterior distribution, based on the
rewards r̃i obtained from selecting Arm i, α[t] = i, as well
as the observation noise, σ 2

ob , given as an input parameter
to the algorithm. Essentially, the algorithm uses observation
noise, σ 2

ob , to determine how much emphasis to put on the
reward r̃i , which is a crucial property that we will now take
advantage of.

In the interest of notational simplicity, let Arm 1, α[t] = 1,
be the arm under investigation. Then, for any parameter con-
figuration φt ∈ Φ we can state, using a generic notation,1

that the probability of selecting Arm 1, α[t] = 1, is equal
to the probability P(X1 > X0|φt )—the probability that a
randomly drawn value x1 ∈ X1 is greater than the other ran-
domly drawn value x0 ∈ X0 at time step t . Since the as-
sociated stochastic variables X0 and X1 are normally dis-
tributed, with parameters (μ0[t], σ0[t]) and (μ1[t], σ1[t]),
respectively, we have that:

P
(
α[t] = 1

) = P
(
X1 ≥ X0|φt

)

=
∫ 0

−∞
f

(
x;μ0[t] − μ1[t],

√
σ 2

0 [t] + σ 2
1 [t]

)

(1)

In the following, we will let p[t] denote this latter probabil-
ity.

3.2 BS-TANB based decentralized decision making

The overall decentralized decision making scheme that we
propose is illustrated in Fig. 1. On each round t , the n de-
cision makers Vq ∈ {V1, . . . , Vn} choose one of two arms,
αq [t] = i ∈ {0,1}, simultaneously and independently (they
do not see each other), with αq [t] = 0 referring to a “No”-
vote and αq [t] = 1 referring to a “Yes”-vote.

Let pq [t] = P(αq [t] = 1) be the probability that decision
maker Vq casts a “Yes” vote on round t . Then 1 − pq [t] is
the probability that Vq casts a “No” vote, and each voting
αq [t] can be seen as a Bernoulli trial in which a “Yes” vote
is a success and a “No” vote is a failure. Note that the con-
crete instantiation of the arm selection probability pq [t] is
governed by the learning scheme applied, which in our case
is BS-TANB.

Definition 1 (Arm Selection Variance) In a two-armed ban-
dit problem where the current arm selection probability is p,
we define Arm Selection Variance, σ 2, to be the variance,

1By this we mean that P is not a fixed function. Rather, it denotes the
probability function for a random variable, given as an argument to P .
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Fig. 1 Decentralized decision making with accelerated learning

p(1 − p), of the outcome of the corresponding Bernoulli
trial.

As seen in Fig. 1, in addition to casting a vote αq [t],
each decision maker Vq also submits its present Arm Se-
lection Variance, σ 2

q [t], in order to signal its level of explo-
ration. Thus, as in the traditional Goore Game setup, a Ref-
eree calculates the fraction, λ[t], of “Yes” votes. In addi-
tion, it now also calculates the variance σ 2

A[t] of the to-
tal number of “Yes” votes, which simply is the sum of the
variances of the independently cast votes (cf. Bienayme for-
mula): σ 2

A[t] = ∑n
q=1 σ 2

q [t]. Note that in practice, such as in
QoS control in wireless sensor networks [15], this operation
is conducted by the so-called base station of the network.

The Referee has a uni-modal normally distributed perfor-
mance criterion G(λ[t];μG,σG), where μG is the mean and
σ 2

G is the variance, which is thus optimized when the fraction
of “Yes” votes is exactly μG, λ[t] = μG. The current voting
round ends with the Referee awarding a reward r̃i to each
voter, with the reward being of magnitude G(λ[t];μG,σG).
Additionally, white noise N(0, σW ) is independently added
to the reward received by each voter.

On the basis of their individual gains, the voters then de-
cide, again independently how to cast their votes on the next
round.

3.3 Measuring fluctuating observation noise in Goore
Games

In order to develop a decentralized BS-TANB based scheme
for solving the above problem, whose accuracy does not
rely merely on conservative learning, it is crucial that we
are able to determine the observation noise, σ 2

ob , needed by
BS-TANB for its Bayesian computations.

From the perspective of voter Vq , let Yq = ∑
r �=q αr [t] be

the total number of “Yes” votes found among the n−1 votes
cast by the other voters (r �= q). According to our Bayesian
bandit scheme, each voter Vq , at any given iteration t of
the game, cast its vote according to a Bernoulli distribution
with success probability pq [t] = P(αq [t] = 1) = P(X1 >

X0|φt
q) — the probability of voting “Yes”. Furthermore, ini-

tially, all voters vote “Yes” with probability pq [1] = 0.5,
and based on Bayesian computations, gradually shift their

probability of voting “Yes” towards either 0 or 1, as learn-
ing proceeds. This leads us to design a solution for the
case where Yq is a sum of independent random variables
of similar magnitude, in other words, where Yq is approx-
imately normally distributed for large n, Yq ∼ N(μ

q
F ,σ

q
F ).

Since each term in the summation is Bernoulli distributed,
the mean of the sum becomes μ

q
F = ∑

r �=q pr [t] while the

variance becomes σ
q
F

2 = ∑
r �=q pr [t](1 − pr [t]). The above

entails that each voter, Vq , essentially decides whether to
add an additional “Yes” vote or not to a random sum of yes
votes, Yq ∼ N(μ

q
F ,σ

q
F ). That is, the reward that voter Vq

receives when he votes either “Yes” (αq [t] = 1) or “No”

(αq [t] = 0), becomes a function G(
Yq+αq [t]

n
) governed by

the random variable Yq ∼ N(μ
q
F ,σ

q
F ) as well as the deci-

sion αq of voter Vq .

Thus E[G(
Yq+αq [t]

n
)] is the expected reward received by

voter Vq when pulling arm αq [t] and Var[G(
Yq+αq [t]

n
)] is the

variance of the reward, which we will refer to as observation
noise, σob .

Lemma 1 Let X be a normally distributed random variable,
X ∼ N(μF ,σF ). The expected value E[G(X)] of a deter-
ministic function G(X) ∼ N(μG,σG) of X then becomes:

E
[
G(X)

] = 1
√

2π(σ 2
G + σ 2

F )

e
− (μG−μF )2

2(σ2
G

+σ2
F

) (2)

Proof

E
[
G(X)

] =
∫ ∞

−∞
G(x)f (x;μF ,σF )dx

=
∫

1

2πσf σg

e
−(

(x−μF )2

2σ2
F

+ (x−μG)2

2σ2
G

)

dx

=
∫ ∞

−∞
eγ

2πσf σg

e
−(

(x−μFG)2

2σ2
FG

)

dx (3)

with

γ = − (μG − μF )2

2(σ 2
G + σ 2

F )
(4)

μFG = μF σ 2
G + μGσ 2

F

σ 2
F + σ 2

G

(5)

σFG =
√

σ 2
F σ 2

G

σ 2
F + σ 2

G

(6)
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The integral of the resulting Gaussian then becomes:

∫ ∞

−∞
eγ

2πσF σG

e
−(

(x−μFG)2

2σ2
FG

)

dx

= eγ

√
2πσF σG

√
σ 2

F σ 2
G

σ 2
F + σ 2

G

= 1
√

2π(σ 2
F + σ 2

G)

e
− (μG−μF )2

2(σ2
G

+σ2
F

) (7)

�

Lemma 2 A deterministic function G(X) ∼ N(μG,σG) of
a normally distributed random variable, X ∼ N(μF ,σF ),
has the variance:

Var
[
G(X)

] = e
− (μG−μF )2

σ2
G

+2σ2
F

2πσG

√
σ 2

G + 2σ 2
F

− e
− (μG−μF )2

σ2
G

+σ2
F

2π(σ 2
G + σ 2

F )
(8)

Proof

Var
[
G(X)

] = E
[
G(X)2] − (

E
[
G(X)

])2 (9)

(
E

[
G(X)

])2 = e
− (μG−μF )2

σ2
G

+σ2
F

2π(σ 2
G + σ 2

F )
(10)

E
[
G(X)2]

=
∫ ∞

−∞
G(x)2f (x)dx

=
∫ ∞

−∞

(
1√

2πσG

e
− 1

2 (
(x−μG)2

σ2
G

)
)2 1√

2πσF

e
− 1

2 (
(x−μF )2

σ2
F

)

dx

=
∫ ∞

−∞
eγ

2
3
2 π

3
2 σF σ 2

G

e
−(

(x−μ
FG2 )2

2σ2
FG2

)

dx (11)

with

γ = − (μG − μF )2

σ 2
G + 2σ 2

F

(12)

μFG2 = μF σ 2
G + 2μGσ 2

F

σ 2
G + 2σ 2

F

(13)

σFG2 =
√

σ 2
F σ 2

G

σ 2
G + 2σ 2

F

(14)

The integral of the resulting Gaussian then becomes:

∫ ∞

−∞
eγ

2
3
2 π

3
2 σF σ 2

G

e
−(

(x−μFG)2

2σ2
FG

)

dx

= e
− (μG−μF )2

σ2
G

+2σ2
F

2πσG

√
σ 2

G + 2σ 2
F

(15)

�

Figure 2 depicts the intricate behavior of Var[G(X)]
when seen as a function of μF and σF , and when μG = 0.4
and σG = 0.2. Since both the mean of G, μG, and the mean
of F , μF , generally are unknown, the latter equation cannot
be used directly to guide the bandit based learning. Instead,
we consider the maxima of Var[G(X)] with μF ∈ (0,1) be-
ing the free variable. By considering the maxima, learning
accuracy is prioritized, at the potential cost of reduced learn-
ing speed. In the following, we will see that the maximiza-
tion eliminates both μF and μG from the equation.

Theorem 1 The maximum of the variance Var[G(X)] with
respect to μF ∈ (0,1), for the function G(X) ∼ N(μG,σG),
with X ∼ N(μF ,σF ), is:

max
μF ∈(0,1)

Var
[
G(X)

]

= σ 2
F

(
σ 2

G + σ 2
F

)2

× e

σ2
G

(log(σF (σ4
G

+2σ2
F

σ2
G

+σ4
F

)σG)−log(σF σ2
G

(σ2
G

+2σ2
F

)
3
2 ))

σ2
F

2πσ 2
G(σ 2

G + 2σ 2
F )3

(16)

Proof We find maxima and minima for Var[G(X)] with re-
spect to μF by solving the following equation:

∂ Var[G(X)]
∂μF

= 0 ⇐⇒ (17)

(μG − μF )e
− (μG−μF )2

σ2
G

+2σ2
F

πσG(σ 2
G + 2σ 2

F )
3
2

− (μG − μF )e
− (μG−μF )2

σ2
G

+σ2
F

π(σ 2
G + σ 2

F )2
= 0 (18)

The above equation has four solutions, with two symmetric
maxima in the region of interest μF ∈ (0,1), as illustrated
in Fig. 2. The first maximum is:

μF =
{√

σ 4
G + 3σ 2

F σ 2
G + 2σ 4

F

×

√√
√√

log

(
√

σ 2
G + 2σ 2

F (σ 3
G + 2σ 2

F σG)

σ 4
G + 2σ 2

F σ 2
G + σ 4

F

)

+ μG σF

}

σ−1
F (19)
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Fig. 2 The variance of G(X),
Var[G(X)], for μG = 0.4 and
σG = 0.2. The axes depicts the
mean μF and the standard
deviation σF , respectively

while the second maximum is:

μF =
{

μG σF −
√

σ 4
G + 3σ 2

F σ 2
G + 2σ 4

F

×

√√√√
log

(
√

σ 2
G + 2σ 2

F (σ 3
G + 2σ 2

F σG)

σ 4
G + 2σ 2

F σ 2
G + σ 4

F

)}

σ−1
F (20)

By substituting either Eq. (19) or Eq. (20) into Eq. (8)
and simplifying, we see that both μF and μG have been
eliminated from the equation, which completes the proof:

max
μF ∈(0,1)

Var
[
G(X)

]

= σ 2
F

(
σ 2

G + σ 2
F

)2

× e

σ2
G

(log(σ4
G

+2σ2
F

σ2
G

+σ4
F

))−log(σG (σ2
G

+2σ2
F

)
3
2 )

σ2
F

2π σ 2
G (σ 2

G + 2σ 2
F )3

(21)

�

A crucial consequence of the results presented in this
section is that since σF in the above equation can be ap-
proximated based on the feedback σA from the Referee (see
Fig. 1), we can find the worst case observation noise based
on Theorem 1. Thus, we have found a closed form formula
for worst case observation noise, σob , that each voter can
apply adaptively in its Bayesian computations!

4 Empirical results

In this section we evaluate the ADL-TAB scheme by com-
paring it with the currently best performing algorithm—the
family of Bayesian techniques reported in [8]. Based on
our comparison with these “reference” algorithms, it should

be quite straightforward to also relate the ADL-TAB per-
formance results to the performance of other similar algo-
rithms. We first use artificial data and then data from a sim-
ulated sensor network.

4.1 Artificial data

We have conducted numerous experiments using various
reward distributions, including a wide range of G(λ)-
functions and a wide range of voters, under varying degrees
of observation noise. The full range of empirical results all
show the same trend, however, we here report performance
on a representative subset of the experiment configurations,
involving the 3, 5, and 10 player Goore Game. Performance
is measured in terms of Regret—the difference between the
sum of rewards expected after N successive rounds of the
GG, and what would have been obtained by always casting
the optimal number of “Yes” votes.

For these experiment configurations, an ensemble of
1000 independent replications with different random num-
ber streams was performed to minimize the variance of the
reported results. In order to investigate the performance of
the schemes under a broad spectrum of environments, we
test the schemes using three different representative G(λ)

functions—one sloped, with optimum close to λ = 0.5, G ∼
N(0.35,0.2), another one also sloped, but with optimum
farther from λ = 0.5, G ∼ N(0.125,0.2), and finally, one
peaked reward function, also with optimum far from λ = 0.5
(thus, being the most challenging one). In Table 1, Regret
is reported after 10, 100, 1000, and 10 000 iterations for
both the new accelerating scheme and the traditional static
scheme.

As seen from the table, for all reported configurations,
our ADL-TAB scheme not only learns faster initially, but
also attains the best regret in the long run. Note that for the
two bottom configurations, we use an augmented σF , σ̂F =
c · σF , with c = 1.5, when the final observation noise σob

is calculated. Indeed, the constant c can be used to handle
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Table 1 Regret after 10, 100,
1000, and 10 000 iterations for
3, 5, and 10 players

Scheme #Players Function 10 100 1000 10 000

Accelerating 3 G ∼ N(0.125,0.1) 11.56 26.72 30.96 33.17

Static 3 G ∼ N(0.125,0.1) 11.63 27.27 34.88 47.20

Accelerating 3 G ∼ N(0.125,0.2) 5.26 8.47 10.35 11.09

Static 3 G ∼ N(0.125,0.2) 5.28 9.53 15.15 25.15

Accelerating 3 G ∼ N(0.375,0.2) 6.62 10.86 11.99 12.63

Static 3 G ∼ N(0.375,0.2) 6.73 12.15 14.36 17.72

Accelerating 5 G ∼ N(0.125,0.1) 18.37 41.60 51.78 61.65

Static 5 G ∼ N(0.125,0.1) 18.28 44.94 58.52 99.49

Accelerating 5 G ∼ N(0.125,0.2) 6.92 12.94 22.99 60.80

Static 5 G ∼ N(0.125,0.2) 7.01 15.39 32.94 69.86

Accelerating 5 G ∼ N(0.375,0.2) 6.12 20.47 22.70 25.75

Static 5 G ∼ N(0.375,0.2) 6.16 24.24 30.11 35.74

Accelerating 10 G ∼ N(0.125,0.1) 32.81 93.82 133.65 443.7

Static 10 G ∼ N(0.125,0.1) 32.84 99.27 143.67 549.8

Accelerating 10 G ∼ N(0.125,0.2) 10.19 19.57 39.58 110.53

Static 10 G ∼ N(0.125,0.2) 10.21 22.57 56.91 167.09

Accelerating 10 G ∼ N(0.375,0.2) 4.40 31.20 113.42 116.65

Static 10 G ∼ N(0.375,0.2) 4.41 32.03 163.40 197.31

Table 2 Performance with σF augmented, σ̂F = c · σF (10 players,
G ∼ N(0.1,0.1), σW = 0.1)

Scheme/c 1.0 1.25 1.5 1.75

Accelerating 1030.0 684.7 444.7 408.7

Static 965.6 624.3 550.4 414.2

the non-stationarity arising as the number of voters grows,
as demonstrated in Table 2.

Since ADL-TAB applies the standard deviation σG of the
reward function G(λ) to find overall observation variance,
it is interesting to see how robust the scheme is to distor-
tion of σG. As summarized in Table 3, setting σG too low is
better than setting it too high in the present setting. Indeed,
performance improves slightly with a lower σG.

Note that the above reported performance gap is reduced
with the level of white noise added to G, as shown in Ta-
ble 4. As the variance of the white noise raises to extreme
values, the white noise dominates the overall observation
noise, rendering the variance introduced by the voters in-
significant. However, for realistic degrees of white noise, as
also seen from the table, ADL-TAB clearly outperforms the
static BS-TANB scheme.

Thus, based on our empirical results on artificial data,
we conclude that ADL-TAB is the superior choice for the
GG, both when σG is known or slightly distorted, providing
significantly better performance in all experiment configu-
rations.

4.2 QoS control in wireless sensor networks

As mentioned in the introduction, the GG can be used for
QoS control in wireless sensor networks. A scenario of par-
ticular interest is randomly deployed networks, whose ap-
plications include environmental monitoring and battlefield
surveillance & reconnaissance [3]. An additional complex-
ity for QoS control under such settings is sensor break down.
Due to the random deployment of sensors, and due to the
nature of typical applications, it is often infeasible to track
down and repair broken sensors. Instead, batches of new
sensors are deployed to replace broken ones, e.g., by air
drop. As a result, the population of sensors are dynamically
changing over time, in a stochastic manner.

To stress the ADL-TAB scheme under particularly chal-
lenging conditions, we have thus simulated the latter kind of
dynamic environments. In brief, the simulated environment
starts out with ten randomly deployed sensors. As in [15],
both the lifetime of each sensor and the rate of deployment
is governed by the same exponential distribution. Therefore
the total number of operative sensors will fluctuate, but re-
main constant on average.

The QoS function used here is G ∼ N(0.375,0.2), which
means that optimally 37.5 % of the sensors should be active
at any given instant. A white noise of σw = 0.3 is applied to
feedback. This configuration was executed for 10 000 hours,
with the average regret for 2000 sample runs summarized in
Table 5 for different birth/death rates.

From the table it is clear that ADL-TAB obtains signifi-
cantly lower regret than the static BS-TANB scheme in these
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Table 3 Performance with
distorted σ̂G given to ADL-TAB
(10 players, G ∼ N(0.125,0.2),
σW = 0.1)

σ̂G 0.85 · σG 0.90 · σG 0.95 · σG 1.0 · σG 1.05 · σG 1.10 · σG 1.15 · σG

Regret 74.4 75.7 90.9 123.5 162.9 194.4 237.5

Table 4 Performance with
varying degrees of white noise
N(0, σW ) (10 players,
G ∼ N(0.375,0.2))

Scheme/σW 0.01 0.05 0.1 0.5 1.0 5.0

Accelerating 56.6 54.8 61.1 123.4 315.8 2012.0

Static 120.5 121.4 121.6 184.4 371.7 2013.3

Table 5 Regret after 10, 100,
1000, and 10 000 hours Scheme Birth/Death Rate 10 100 1000 10 000

Accelerating 100 4.47 31.50 180.43 1055.23

Static 100 4.48 31.45 194.14 3003.87

Accelerating 50 4.47 31.65 195.84 1268.32

Static 50 4.45 31.58 203.19 4734.49

Accelerating 12.5 4.49 32.71 219.34 1270.76

Static 12.5 4.39 32.04 357.60 9589.84

Table 6 Standard deviation of
regret after 10 000 hours Scheme Birth/Death Rate = 100 Birth/Death Rate = 50 Birth/Death Rate = 12.5

Accelerating σ100 = 254.6 σ50 = 229.0 σ12.5 = 206.5

Static σ100 = 1561.5 σ50 = 1628.9 σ12.5 = 1393.7

scenarios too. Indeed, the performance benefit is increasing
with faster replacement of sensors. This can be explained by
the ability of a newly placed sensor, that is governed by the
ADL-TAB scheme, to perceive any learning stability already
established among the operating sensors, which in turn will
allow the sensor to accelerate its transition from exploration
to exploitation.

Another effect worth noting is the stability of ADL-TAB.
That is, the standard deviation of the sample runs for ADL-
TAB after 10 000 iterations is much lower than for the static
scheme, as can be seen from Table 6. This performance ro-
bustness provided by ADL-TAB can be explained by the ac-
celeration that takes place to reduce exploration.

5 Conclusion and further work

In this paper we proposed a novel scheme, ADL-TAB, for
decentralized decision making based on the Goore Game.
Theoretical results concerning the variance of the observa-
tions made by each individual decision maker enabled us to
accelerate learning as exploration turns into exploitation. In-
deed, our empirical results demonstrated that the accelerated
learning improves both learning accuracy and speed, outper-
forming state-of-the-art Goore Game solution schemes, both
when using artificial data and when using data from a wire-
less sensor network simulation.

As further work, we intend to study how the Kalman filter
can be incorporated into ADL-TAB, so that non-stationary
behavior can be modeled and addressed in a principled man-
ner. We are also currently investigating how the present re-
sult can be extended to other classes of decentralized de-
cision making problems. Finally, we believe this avenue of
research can lead to enhancements in application areas such
as decentralized task scheduling, processing pipeline opti-
mization, and resource allocation.
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