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Abstract

This paper concerns the use of Prototype Reduction Schemes (PRS) to optimize the computations

involved in typical k-Nearest Neighbor (k-NN) rules. These rules have been successfully used for

decades in statistical Pattern Recognition (PR) applications, and are particularly e�ective for density

estimation, classi�cation, and regression because of the known error bounds that they possess. For

a given data point of unknown identity, the k-NN possesses the phenomenon that it combines the

information about the samples from a priori target classes (values) of selected neighbors to predict

the target class of the tested sample, or to estimate the density function value of the given queried

sample. Recently, an implementation of the k-NN, named as the Locally Linear Reconstruction (LLR)

[2], has been proposed. The salient and brilliant feature of the latter is that by invoking a quadratic

optimization process, it is capable of systematically setting model parameters, such as the number of

neighbors (speci�ed by the parameter, k) and the weights. However, the LLR takes more time than

other conventional methods when it has to be applied to classi�cation tasks. To overcome this problem,

we propose a strategy of using a PRS to e�ciently compute the optimization problem. In this paper,

we demonstrate, �rst of all, that by completely discarding the points not included by the PRS, we can

obtain a reduced set of sample points, using which, in turn, the quadratic optimization problem can

be computed far more expediently. The values of the corresponding indices are comparable to those

obtained with the original training set (i.e., the one which considers all the data points) even though

the computations required to obtain the prototypes and the corresponding classi�cation accuracies are

noticeably less. The proposed method has been tested on arti�cial and real-life data sets, and the

results obtained are very promising, and could have potential in PR applications.
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1 Introduction

1.1 Motivation of the Problem

It is well known that the optimal classi�er is the one that invokes the Bayes decision rule. If the a priori

density functions were easily computable, and the class conditional densities were truly of a classical

well-de�ned nature (for example, of the exponential family), the tasks of training and testing a pattern

recognition/classi�cation system would be trivial. In practice, however, these distributions are far from

ideal, and consequently, the science and art of PR has had to develop various non-parametric methods

for training and testing. The most elementary of these, and yet the most well-developed, constitute the

Nearest Neighbor (NN) family of classi�ers. Some strategies for speeding up the k-NN have been reported

in the literature, e.g., in [6].

The idea behind the NN rules is age-old and is essentially encapsulated in the axiom that the in-

formation about a particular sample point can be gleaned from its nearest neighbors. Traditionally, the

consequent decision rule merely performs a majority decision based on the decision of the closest k neigh-

bors. The beauty of such a scheme is that the decision rule asymptotically attains the accuracy of the

Bayes rule as the number of neighbors, k, is increased. More recently, to yield even more accurate results

(for any given value of k), researchers have proposed that the neighbors need not be assigned equal weights.

Rather, the question is that of modeling every feature point as a convex combination of its k neighbors,

and from this perspective, the crucial question is that of determining the weights that are to be assigned

to these neighbors.

Using the notation of [2], we formalize this as follows. Let {(xi, yi)}ni=1 be the reference set of training

patterns, where xi ∈ Rd is an input vector, and yi is its target class label, where the class into which

the classi�cation is done yields yi ∈ {1, · · · , c} when there are c classes. In the case of regression, yi is a

function value, where yi ∈ R. When a pattern xn+1 is to be tested, (i.e., its class is unknown, but it has to

be assigned to one of the pre-determined classes), its predicted class label, ŷn+1, is calculated by merely

considering the weights, wi, (i = 1, · · · , k, wi ≥ 0,
∑

iwi = 1), assigned to k-NNs of the test pattern, xn+1.

The reader must observe that the crucial step in the above is the assignment of the above-mentioned

corresponding weights. Typically, each neighbor is assigned a weight based on its distance between it and

the test pattern, where a farther neighbor would be associated with a smaller weight (and vice versa),

so that its in�uence on the �nal decision is less predominant1. From the perspective of these weights,

one sees that this version of the k-NN is really a variation of locally weighted learning described in [26],

1Implementation-wise, this is sometimes achieved by using kernel functions, which decrease monotonically as the distance
increases.
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the locality being true because the class is predicted based on training patterns �closest� to the testing

pattern, and the �weighting� nature being a consequence of these weights which rank the contribution

of each neighbor in terms of its relative distance from the test pattern. The k-NN has been used in so-

called �collaborative� �ltering [27], where the system recommends target customers to a marketing agency,

based on what �similar� customers prefer. As reported in [2], it has also been recently applied to �nancial

forecasting, material engineering, image processing, face recognition, and intrusion detection [18], [19].

The most important paper, in this regard, which attempts to enhance this scheme is probably the

one due to Kang and Cho [2], referred to as the Locally Linear Reconstruction (LLR) method. The

fundamental, and rather brilliant idea behind the LLR, though simple, is quite intriguing, and it involves

a quadratic optimization strategy explained presently. The salient feature of this scheme is that by invoking

this optimization, one can systematically determine the model parameters, such as the number of neighbors

(k) and the corresponding weights. However, the LLR, as proposed in [2], is computationally intensive.

To be more speci�c, the premise of the LLR [2] (which is actually akin to the Locally Linear Embedding

(LLE) proposed in [3, 4]) is that if we can adequately describe a test pattern in terms of its local neighbors,

we can also predict the target class, or estimate the function value of the test pattern as well. Thus,

the LLR is able to preserve the locally linear topological properties in the space surrounding the test

pattern. Indeed, it is a scheme by which the weights of the NNs are determined collectively, as opposed to

individually, which is the case when kernel functions are used. This is what the LLR achieves. In addition,

the LLR is expected to be robust to k. Thus, if we are given a su�ciently large value of k, the LLR can

e�ectively identify the pertinent neighbors for reconstructing the test pattern.

The LLR procedure consists of three modules. The �rst step determines the k-NNs of the test pattern.

One determines these by computing an appropriate (dis)similarity index between the patterns, which is,

typically, a distance measure based on the context or characteristics of the data sets. The second step

computes the associated weights of the neighbors, which e�ectively describes the test pattern in terms

of the selected neighbors. Here, since we assume a locally linear topology around the test pattern, the

LLR describes it in the form of a weighted linear combination of its neighbors. To �nd the best linear

combination and its weights, w, we minimize the following reconstruction error:

Err(w) =
1

2

∥∥∥∥∥∥xn+1 −
k∑

j=1

wj x̃j

∥∥∥∥∥∥
2

. (1)

The �nal phase involves predicting the class of the target pattern.

The optimal weight, w, can be computed by minimizing the reconstruction error, Err(w), with two

additional constraints:

(1) wj ≥ 0 for all j, and

(2)
∑

j wj = 1,
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where this minimization problem can be solved by any quadratic programming (QP)2 module. Once the

weight is determined, the last step is to use the selected neighbors and their corresponding weights to

predict the target class so as to achieve the classi�cation or to estimate the function value of the target.

The most computationally intensive step for the LLR scheme, is the above-mentioned optimization

procedure, achieved by a standard QP invocation. Indeed, as demonstrated in Theorem 2 (Computational

complexity for LLR (Classi�cation)) of [2], if n is the number of reference patterns, d is the number of

attributes (features), and k is the number of NNs with d > n, then the computational complexities of

conventional k-NN and LLR with standard QP are O(n log n).

This is where our research comes into the picture: The reason why we would like to intelligently reduce

the number of sample points �n�, is to reduce this prohibitive complexity. More speci�cally, to tackle the

computational burden, we propose a strategy of using a Prototype Reduction Scheme (PRS) to quickly

and e�ciently approximately compute the optimization problem. We formulate this as below.

1.2 Rationale for the Paper

We start with the premise that it is advantageous to compute the above mentioned optimization. As one

sees, the primary drawback of k-NN learning is that there is no simple and formal scheme to determine

the number of neighbors (k), and their associated weights. The number of neighbors is, in practice, often

chosen empirically by cross-validation or by resorting to the opinion of domain experts. Regarding the

weights associated with the neighbors, the rule of thumb so far is: A more distant neighbor gets a smaller

weight. Thus, some kernel functions, which decrease monotonically as the distance increases (such as the

inversion kernel, the exponential kernel and the Gaussian kernel), have been used. However, the literature

states that there is no clear evidence that any of kernel functions is always superior to the others. Rather

any one can outperform another on some particular data sets.

As opposed to this, we seek a strategy by which the associated computational burden can be reduced.

Thus, in this paper, we propose a technique3 for the fast computation of the reconstruction problem,

and in particular, for the various classi�cation applications. We advocate that rather than compute the

reconstruction for the entire data set, the data be �rst reduced into a smaller representative subset using a

PRS [7], [8], and that the reconstruction (classi�cation) be achieved by invoking the corresponding method

on this reduced data set. Thus, by completely discarding the points not included by the PRS, we can obtain

a reduced set of sample points, using which, in turn, one can solve the quadratic optimization problem.

The reader will observe, at once, that this can reduce the computational burden drastically, because the

number of points chosen by the PRS is usually a small fraction of the total number of points found in

the original data set. Our hypothesis, i.e., that the PRS can be e�ectively used to noticeably reduce the

2The details of why this is a QP problem is given in [2] and brie�y explained in Setion 2.1.
3As a prima facie case, to justify the hypothesis of [2], we only consider the two-class problem. Indeed, the e�ective

de�nition and computation of the measures for the multi-class problem are open.
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computations and yet yield almost as accurate results, has been veri�ed by testing on benchmark real-life

and arti�cial data tests, as we shall presently explain.

The geometric aspect of this strategy is the following: Although the reconstructed samples are obtained

by using the prototypes procured by invoking a PRS, these reconstructed points do not individually

�optimally� represent their original counterparts. However, collectively, they are the best locations for the

k-NNs of the points in the training set, which can, in turn, collectively represent the points for testing

purposes too. This is truly an interesting feature.

1.3 Organization for the Paper

The paper is organized as follows. In Section 2, we brie�y summarize the LLR proposed by Kang and

Cho [2]. Thereafter, we provide a brief introduction to the families of PRSs. This leads us (in Section

3) to our proposed strategy to e�ciently compute the optimization by using the PRSs. In Section 4, we

provide experimental results for arti�cial and real-life benchmark data sets. Finally, Section 5 concludes

the paper.

2 An Overview : Locally Linear Reconstruction and Prototype Reduc-

tion Schemes

2.1 Locally Linear Reconstruction

In this section, we explain the LLR [2] for pattern classi�cation and recognition (as also considered for

instance-based learning), and in particular for the k-NN. As mentioned earlier, the main idea behind

the LLR originates from the concept of the Locally Linear Embedding (LLE) [3, 4], which is one of the

widely-used non-linear dimensionality reduction techniques. In the case of the LLR, we attempt to enforce

a general premise in the topological space for the k-NN by arguing that if it is possible to accurately

describe the input vector for a given query by its neighboring reference patterns, it is also possible to

predict (estimate) well the target class (value) of the query with a small error.

To initiate discussions in this regard, we �rst state the notation that we shall use (in a d-dimensional

feature space), after which we shall formally describe the LLR.

• xi is a �query� (the testing point, for example) in the feature space, and is a d× 1 vector.

• x̂i is a re-constructed version of xi, and is also a d× 1 vector.

• yi (or ŷi) is the target (or predicted) class label of xi (or x̂i), and is a scalar.

• Xi
NN is a d× k matrix, and contains the d-dimensional k-NNs of xi.
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• wi,NN is a k × 1 vector. It is the corresponding weight vector obtained from Xi
NN . The matrix W ,

which is the collection of wi,NN 's, is the set of vectors sought for, and wi,j is the set of weights for

xj with regard to the sample point xi. Observe that wi,j will be zero if xj is not a neighbor of xi.

• The matrix N is the neighborhood indicator matrix whose element Ni,j = 0 if xj is not a neighbor

of xi, and is unity otherwise. For ease of notation, N(i) will represent the NNs of xi.

When a query is given, the method �rst selects the k-NNs of the query � the testing sample. Once

these NN patterns have been selected, the set of weights corresponding to the neighbors are determined

by minimizing the LLR error, Err(W ), de�ned as the sum of the errors Ei as follows:

Err(W ) =
1

2

∑
i

Ei (2)

=
1

2

∑
i

∥∥xi − wT
i,NNxj

∥∥2 ,
where every xj in the above equation is a NN of xi, and ∥·∥ implies the 2-norm.

The weights, W , which minimize the reconstruction error, Err(W ), can be obtained by solving the

above minimization problem. Also, since the constraints on the optimization problem di�er depending

on whether the learning task is a classi�cation or regression problem, the corresponding procedures for

solving them are di�erent as well. In particular, for classi�cation tasks, we need to impose two additional

constraints on W , namely, that all the weights must be non-negative, and that the sum of the neighbors'

weights must be unity for every query. Thus,

Err(W ) =
1

2

∑
i

∥∥xi − wT
i,NNxj

∥∥2 (3)

=
1

2

∑
i

(
xi −Xi

NNwi,NN

)T (
xi −Xi

NNwi,NN

)
=

1

2

∑
i

{
xTi xi − 2xTi

[
Xi

NN

]
wi,NN + wT

i,NN

[
Xi

NN

]T [
Xi

NN

]
wi,NN

}
.

By examining Eq. (3), we see that we can obtain the weights for the k-NNs of xi, wi,NN , by solving

the following optimization problem4:

Min Err(wi,NN ) =
1

2
wT
i,NN

[
Xi

NN

]T [
Xi

NN

]
wi,NN − xTi

[
Xi

NN

]
wi,NN , (4)

such that wi,NN ≥ 0,
∑
j

wi,j = 1 ∀i.

4The quadratic programming problem, min 1
2
UTHU + BTU , such that AU ≤ 0, AeqU = beq, and lb ≤ U ≤ ub, (where

H, A, and Aeq are matrices, and B, beq, lb, ub, and U are vectors) de�nes a set of lower and upper bounds on the design
variables, U , so that the solution is in the range lb ≤ U ≤ ub.
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After obtaining the weights assigned to a sample point x̂i, corresponding to the query xi given for

classi�cation, we can calculate the predicted class label of x̂i, ŷi, by a weighted sum of the samples of the

NNs of xi as follows:

ŷi =
∑

j∈N(i)

wi,j yj . (5)

As the reader will observe, although this strategy is expedient, it involves the non-trivial optimization

which is computationally intensive. If we choose such a strategy, this cannot be avoided. But our position is

that it need not be done for all the sample points, but merely for a smaller subset of points which represent

them. Thus, our study involves the e�ectiveness of using PRSs to minimize the above computations for

the entire set of data points.

2.2 Why the LLR works

It is pertinent to query why a LLR works in the �rst place. As argued in [2], primarily, a LLR can be more

robust to the choice of the value of k than if one used kernel functions. In other words, a LLR can reduce the

importance of determining the �optimal� k, because for any given k, it can attain to the optimal weights.

Thus for classi�cation problems, the essential neighbors that are needed for optimal reconstruction can

identi�ed with any given k, and so when k is small, even though the reconstruction error is not small

enough, one can increase k (and optimize the weights) so that the reconstruction error is acceptable. The

e�ect of this is that the set of weights w would be sparse when `k' is large. Additionally, once the value of

k is set, the LLR provides us with a formal procedure to assign the weights to the neighbors � unlike the

conventional heuristic approaches. Finally, we observe that whenever we reconstruct a test pattern, a NN

philosophy advocates that we only consider some of the neighboring patterns, and not all the reference

patterns. Thus, the NN paradigm implicitly states that we are e�ectively relying on the local (and not

global) topology of the feature space. It is clearly plausible that a LLR can improve the classi�cation and

regression performance of a k-NN learning because it not only considers the similarity between patterns

(as kernel functions do), but also incorporates the local topology.

2.3 Prototype Reduction Schemes: State-of-the-Art

In non-parametric pattern classi�cation which uses the NN or the k−NN rule, each class is described using

a set of sample prototypes, and the class of an unknown vector is decided based on the identity of the

closest neighbor(s) which are found among all the prototypes. To reduce the number of training vectors,

various PRSs have been reported in the literature - two excellent surveys are found in [7], [8]. Rather

than embark on yet another survey of the �eld, we mention here a few representative methods of the

�zillions� that have been reported. One of the �rst of its kind is the Condensed Nearest Neighbor (CNN)

rule [9]. The reduced set produced by the CNN, however, customarily includes �interior� samples, which
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can be completely eliminated, without altering the performance of the resultant classi�er. Accordingly,

other methods have been proposed successively, such as the Reduced Nearest Neighbor (RNN) rule, the

Prototypes for Nearest Neighbor (PNN) classi�ers [10], the Selective Nearest Neighbor (SNN) rule, [12],

two modi�cations of the CNN [13], the Edited Nearest Neighbor (ENN) rule [11], and the non-parametric

data reduction method [16]. Besides these, in [14], the Vector Quantization (VQ) and the Bootstrap

techniques have also been reported as being extremely e�ective approaches to data reduction. Recently,

Support Vector Machines (SVM) [17] have proven to possess the capability of extracting vectors that

support the boundary between any two classes. Thus, they have also been used to satisfactorily represent

the global distribution structure. A brief description of the three PRSs which we shall use follows.

2.3.1 The CNN

The CNN has been suggested as a rule that retains the basic approach of the NN philosophy to determine

a consistent subset of the original sample set. However, this technique, in general, will not lead to a

minimal consistent sample set, which is a set that contains a minimum number of samples that is able to

correctly classify all the remaining samples in the given set.

Initially, the �rst pattern of the original training set T is copied to TCNN . Then, the second pattern

of T is classi�ed by considering TCNN as the reference set. If that pattern is correctly classi�ed, it is

moved to the set of patterns to be removed. Otherwise, it is moved to the reference set. This procedure is

repeated for all the patterns of T . Once all the patterns have been considered for such a veri�cation phase,

the same procedure is repeated for the set R, which contains the patterns to be removed. This phase will

be repeated until either the set R becomes empty (i.e. the reference set is equivalent to the original set),

or no more patterns are left in R which have any e�ect on the classi�cation. Once this pre-processing has

been achieved, TCNN will be the reference set for the NN rule. The patterns that are moved to R will be

discarded.

2.3.2 The PNN

The PNN algorithm [10], can be described as follows: Given a training set T , the algorithm starts with

every point in T as a prototype. We now de�ne two auxiliary sets A and B. Initially, set A is empty and

set B is equal to T , where every prototype (data sample) has an associated weight of unity. The algorithm

selects an arbitrary point in B and initially assigns it to A. After this, the two closest prototypes p in

A and q in B of the same class are merged, successively, into a new prototype, p∗. This is done only if

the merging will not degrade the classi�cation of the patterns in T , where p∗ is the weighted average of

p and q. For example, if p and q are associated with weights Wp and Wq, respectively, p
∗ is de�ned as

(Wpp +Wqq)/(Wp +Wq), and is assigned a weight, Wp +Wq. After determining the new value of p∗, p

from A and q from B are deleted, and p∗ is included into A. Thereafter, the procedure is repeated until
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a static condition attains.

If either p and q are not of the same class, or if merging is unsuccessful, q is moved from B to A, and

the procedure is repeated. When B becomes empty, the entire procedure is repeated by letting B be the

�nal A obtained from the previous cycle, and by resetting A to be the empty set, until no new merged

prototypes are obtained. The �nal prototypes in A are then used in a NN classi�er. The bottom-up nature

of this method is crucial to its convergence.

2.3.3 The HYB

In designing NN classi�ers, however, it seems to be intuitively true that prototypes near the separating

boundary between the classes play more important roles than those which are more interior in the feature

space. Thus, in creating or selecting prototypes, vectors near the boundaries between the classes have to

be considered to be more signi�cant, and the created prototypes need to be moved (or adjusted) towards

the classi�cation boundaries so as to yield a higher performance. Based on this philosophy, Kim and

Oommen [20], [22] proposed a new hybrid approach (HYB) that involved two distinct phases, namely,

those of selecting and adjusting [20], [21]. In the �rst phase, initial prototypes are selected or created

by any of the conventional reduction methods mentioned earlier. After this selection/creation phase, the

technique in [20], [21] suggests a second phase in which the proposed reduced prototypes are migrated

to their �optimal� positions by adjusting them by invoking an LVQ3-type learning scheme. The relative

advantages of the scheme in [20], [21] have been demonstrated on both arti�cial and real-life data sets.

2.3.4 A PRS for �Large� Datasets

To overcome the computational burden for �large� datasets, Kim and Oommen also proposed a recursive

HYB mechanism in [22]. In [22], the data set is sub-divided recursively into smaller subsets to �lter out

the �useless� internal points. Subsequently, a conventional PRS (i.e., HYB) processes the smaller subsets

of data points that e�ectively sample the entire space to yield subsets of prototypes � one set of prototypes

for each subset. The prototypes, which result from each subset, are then coalesced, and processed again

by the PRS to yield more re�ned prototypes. In this manner, prototypes which are in the interior of

the Voronoi boundaries, and are thus ine�ective in the classi�cation, are eliminated at the subsequent

invocations of the PRS. Thus, the processing time of the PRS is noticeably reduced.

Finally, we conclude this section by remarking that as researchers who have published extensively in

this �eld [20, 21, 22, 23, 24], from our prior experience, we believe that it would be fair to say that of

the �zillions� of PRSs available, the HYB [20] is the most e�cient one for �small� datasets, and that the

Recursive method described in [22] is the best for �large� data sets. This is when we use the computational

time and the accuracy as a metric. The criteria here are, however, slightly di�erent. In this present

situation, we are looking for a scheme which yields the LLR approximations and yet the best possible
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accuracies, and for which the time (which can be considered to be preprocessing) is not so crucial. In this

light, we believe that as an overall conclusion, we can say that the HYB seems to be particularly poor for

almost all the arti�cial data sets for which the PNN and CNN are almost comparable. On the other hand,

the HYB seems to be the most superior scheme for the real-life data sets, sometimes yielding an accuracy

superior to that obtained by the LLR-processed entire data set.

2.3.5 More Recent Applications and Comparisons of PRSs

Changing now the emphasis, we observe that with regard to designing classi�ers, PRSs can be employed

as a pre-processing module to reduce the data set into a smaller representative subset, and they have thus

been reported to optimize the design of KNS classi�ers in [23], [24]. The details of these are omitted here

as they are irrelevant.

This overview of the state-of-the-art of PRSs should be su�cient to help us proceed in formulating our

solution to the problem at hand.

3 Schema for the Proposed Solution

Our goal is to �quickly� �nd out the class of a query point in the input feature space after reconstructing

an approximated version of the corresponding sample using its NNs. However, rather than reconstruct

the approximated data sample using the entire training set, we advocate that the data be �rst reduced

into a smaller representative subset using a PRS, and that the data point be estimated by invoking a

reconstruction scheme on this reduced data set. Clearly, one is interested in the classi�cation accuracy of

the consequent k−NN classi�er.

The proposed scheme can be formalized as follows:

Algorithm 1 PRS_LLR

Input: The training set, T1, and test set, T2.
Output: Testing by utilizing a fast reconstruction of the approximated query point using a reduced

data set rather than the entire training set.
Assumption 1: The algorithm has access to a PRS, such as the CNN, PNN, or HYB (see [20], [21]).
Assumption 2: The algorithm has access to the LLR algorithm mentioned previously [2].
Method:
Step 1: Select the representative set, Y , from the training set T1 by resorting to a PRS.
Step 2: Find the closest neighbors, Xi

NN , for a query xi ∈ T2 from Y , rather than from T1.
Step 3: Compute corresponding weight vector, wi,NN , using the LLR algorithm and a k1-NN rule.
Step 4: Approximate the predicted class label, ŷi, with LLR using Y , wi,NN , and a k2-NN rule.

End Algorithm PRS_LLR

Figure 1 shows the schematic diagram of the process used for evaluating the proposed method.

We would like to emphasize that there are a few fundamental di�erences between what we propose

and the original LLR method proposed in [2]. First of all, we observe that the computation of the LLR
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Figure 1: The schematic diagram of the process used for evaluating the proposed method. Here, a PRS is
performed in a �o�-line� mode. The details of the �gure are discussed in the text.

weights does not involve the entire training set T , but a representative set, Y , derived from it using a PRS.

Secondly, we note that the weights that are computed for the LLR involve a NN rule, using k1 neighbors,

where the latter is the pre-determined degree of the NN classi�er used for the training phase. But once

the reconstructed point is obtained, we now have the freedom of testing it using the most suitable NN

classi�er, which may not necessarily be a k1-NN classi�er. Indeed, as in any PR problem, given a training

set, the practitioner has the freedom to choose the best NN classi�er that suits his application. In the

same vein, in our case, we choose the best �Testing� NN classi�er (a k2-NN classi�er) for the application

domain, using the modi�ed �Training� set, Y , and the modi�ed testing sample, X̂i. It turns out that

usually, k2 is quite distinct from k1.

The reader should observe that we could have, indeed, used any one of a host of PRS schemes to achieve

what we did5. Most of the PRSs involve a certain amount of computational time to obtain (select/create)

the prototypes. The work of [21] gives an entire overview of the state of the art of PRSs. The issue here

is not merely the reduction in the computational time for obtaining the prototypes, but the reduction in

time that one could glean by using the reduced set of points for the LLR itself. In this regard we mention

that, in particular, the recursive scheme proposed for large data sets [22] would be very bene�cial, because,

for such large sets, the computational time for the LLR could be prohibitive. Unfortunately, we have not

included the corresponding experimental results or such datasets, because the computation of the LLR for

these �very large datasets� is, understandably, infeasible

We shall now demonstrate the power of Algorithm PRS_LLR.

5Bezdek et al [7], who composed the second and more recent survey of the �eld, reported that there are �zillions!� of
methods for �nding prototypes (see page 1459 of [7]).
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4 Experimental Set-Up, Results and Evaluation

4.1 Experimental Data

The proposed scheme has been tested and compared with the conventional LLR method reported in the

literature. This was done by performing experiments on a number of data sets, as summarized in Table

1. In each case, the sample vectors of each data set were divided into two subsets of equal size T1 and

T2 (typically, used for training and validation, alternatively). The computation was done on each subset

and subsequently averaged. Figure 1 shows the schematic diagram of the process used for evaluating the

proposed method.

Table 1: The arti�cial and real-life data sets used in the experiments to evaluate the e�ectiveness of
computing the LLR from the original data set and their reduced prototypes. The sample vectors of each
data set are �randomly� divided into two subsets (T1; T2) of equal size (typically, used for training and
validation). The division and computation (i.e., training and validation) were repeated �ten� times on
each subset and subsequently averaged.

Data type Datasets # of samples (T1; T2) # of features # of classes

Non_n1 100 (50; 50) 8 2
Arti�cial Non_n2 1,000 (500; 500) 8 2
data Non_l1 100 (50; 50) 2 2

Non_l2 1,000 (500; 500) 2 2

Iris2 100 (50; 50) 4 2
Real-life Ionos 351 (176; 175) 34 2
data Sonar 208 (105; 104) 60 2

Arrhy 452 (226; 226) 279 16

The Prototypes Obtained: Table 2 shows a comparison of the numbers of prototype vectors extracted

(or selected) from the arti�cial and real-life data sets, namely, �Non_n1�, �Non_n2�, �Non_l1�, �Non_l2�,

�Iris2�, �Ionos�, �Sonar�, and �Arrhy�, respectively, using the CNN, PNN, and HYB methods. The ten

values for each data set are the numbers of prototype vectors extracted from the randomly divided training

subsets, T1's, respectively. The reader should observe that both Figure 1 and Table 2 report the proposed

scheme as implemented using the PRS_LLR algorithm, which has been run for 10 times. By averaging

the corresponding results, we were able to obtain the mean accuracy and standard deviation, which are

the respective reported quantities.

From Table 2, for example, we can see that ten numbers of the prototype vectors selected with the

CNN method for �Non_n1� dataset are 4, 11, 10, 9, 10, 10, 10, 7, 8, 4, respectively. Each of them is consid-

erably smaller than the size of the original data set (50 for Non_n1). Using the selected vectors as a

representative of the training data set, we can reduce the cardinality of the dataset (and the consequential

computations) without noticeably degrading the performance. The reduction of the classi�cation process-

ing time follows as a natural consequence. As an observation, we also mention that the reduction rate

increased dramatically as the size of the data sets was increased.
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Table 2: The number of prototype vectors extracted (or selected) from experimental data sets using the
CNN, PNN, and HYB methods. The ten values for each data set are the numbers of prototype vectors
obtained from the randomly-divided training subsets, T1's, respectively.

Data Data Data Selection Number of the selected prototypes
types names sizes methods Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set10

CNN 4 11 10 9 10 10 10 7 8 4
Non_n1 50 PNN 4 7 9 6 9 8 10 6 7 4

HYB 2 6 8 4 7 8 8 4 6 2
CNN 54 52 53 68 65 57 60 64 68 65

Arti�cial Non_n2 500 PNN 48 43 313 280 324 53 281 60 324 57
data HYB 56 49 50 73 63 54 69 61 58 63

CNN 15 13 12 14 13 12 16 16 19 16
Non_l1 50 PNN 13 12 11 11 12 15 15 16 17 14

HYB 7 6 6 10 9 9 10 9 10 9
CNN 121 99 105 103 113 118 100 98 89 92

Non_l2 500 PNN 113 96 94 90 93 107 90 87 78 92
HYB 69 59 58 62 62 68 58 53 45 56

CNN 11 12 14 16 13 15 18 14 14 8
Iris2 50 PNN 7 10 12 14 11 11 11 11 11 6

HYB 5 6 5 7 5 6 9 6 8 4
CNN 51 42 40 43 45 52 48 45 45 39

Real-life Ionos 176 PNN 40 26 30 45 42 41 49 32 29 38
data HYB 42 50 43 43 39 51 52 46 41 40

CNN 32 45 46 49 42 41 51 47 45 41
Sonar 105 PNN 31 31 32 34 25 27 34 30 32 32

HYB 45 46 56 47 51 49 54 48 54 50
CNN 38 30 21 23 25 23 24 26 23 26

Arrhy 227 PNN 9 7 9 7 6 4 8 8 7 9
HYB 54 59 60 59 55 54 56 54 52 49
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Table 3: A comparison of the classi�cation accuracies (and ± standard deviations) of knnc (where the
cardinal numbers of the nearest neighbors, k2's, are 1, 3, 5, 7, 9, 11, and 13 sample points) obtained from
the arti�cial data sets, namely, �Non_n1�, �Non_n2�, �Non_l1�, and �Non_l2�, respectively, using the
WHL, CNN, PNN, and HYB methods.

Datasets PRS NN: k2=1 NN: k2=3 NN: k2=5 NN: k2=7 NN: k2=9 NN: k2=11 NN: k2=13

WHL 93.60 96.80 95.20 95.00 95.20 95.00 94.60
±2.45 ±1.93 ±2.52 ±2.70 ±2.69 ±3.16 ±3.13

Non_n1 CNN 93.60 94.00 74.40 57.40 42.40 5.00 −
±2.45 ±4.98 ±39.29 ±36.62 ±40.39 ±15.81 −

PNN 93.40 94.00 70.20 42.40 19.80 − −
±2.83 ±2.82 ±39.53 ±40.29 ±34.45 − −

HYB 96.00 76.00 58.00 34.40 − − −
±2.30 ±40.16 ±49.93 ±46.52 − − −

WHL 93.32 93.98 94.18 94.40 94.44 94.74 94.78
±0.82 ±0.59 ±1.20 ±0.93 ±0.86 ±1.02 ±0.98

Non_n2 CNN 93.08 93.80 94.20 94.72 94.76 94.74 94.72
±0.73 ±0.64 ±0.63 ±0.80 ±0.81 ±0.82 ±0.75

PNN 92.90 94.02 94.32 94.60 94.58 94.64 94.70
±0.99 ±0.80 ±0.80 ±0.64 ±0.69 ±0.75 ±0.84

HYB 91.16 87.98 81.62 72.00 59.80 31.54 21.80
±1.74 ±2.40 ±5.30 ±7.07 ±16.67 ±20.76 ±17.23

WHL 89.00 87.60 84.20 80.80 76.80 75.00 70.80
±2.86 ±3.23 ±6.21 ±5.18 ±6.87 ±8.34 ±9.34

Non_l1 CNN 87.00 77.00 65.20 56.80 57.20 57.00 45.20
±3.43 ±9.94 ±7.49 ±7.95 ±7.95 ±8.44 24.91

PNN 85.20 74.00 61.20 57.00 61.40 56.20 32.00
±3.55 ±6.03 ±7.25 ±9.34 ±9.33 ±8.24 ±29.30

HYB 80.60 68.00 55.80 45.60 37.00 − −
±9.24 ±8.43 ±9.99 ±25.02 ±26.26 − −

WHL 89.50 90.84 91.26 91.52 91.38 91.56 91.22
±0.62 ±0.77 ±0.55 ±0.52 ±0.95 ±1.01 ±0.98

Non_l2 CNN 88.42 86.20 85.80 85.16 84.40 84.96 82.82
±0.70 ±4.23 ±3.55 ±3.71 ±4.51 ±3.82 ±4.63

PNN 87.32 84.94 85.82 85.54 84.42 82.90 81.18
±0.54 ±2.58 ±3.18 ±3.68 ±3.86 ±3.40 ±4.87

HYB 89.30 85.62 77.50 69.84 66.28 63.26 61.52
±1.22 ±1.45 ±3.16 ±3.78 ±3.82 ±2.89 ±4.95

The Classi�cation Accuracies Obtained with Non_LLR: Prior to presenting the experimental

results obtained with the formal PRS_LLR algorithm, in order to illustrate the functioning of the combi-

nation the PRS and LLR processes, we present a comparison of the classi�cation accuracies of a k-nearest

neighbor classi�er (knnc, which is implemented with PRTools [28]) designed with the prototypes of Table

2, not T1, and evaluated with the testing data sets T2. Table 3 and Table 4 show the classi�cation ac-

curacies (and ± standard deviations) of knnc (where the cardinal numbers of the nearest neighbors, k2's,

are 1, 3, 5, 7, 9, 11, and 13 sample points) obtained from the arti�cial and real-life data sets, respectively.

Here, the number of nearest neighbors used to decide the class label is referred to as k2. So, when the

number of prototype vectors is smaller than k2, the classi�cation was not done, and indicated by a �−� in

the tables.

From Tables 3 and 4, we can see that the classi�cation accuracies of the WHL method (i.e., with
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Table 4: A comparison of the classi�cation accuracies (and ± standard deviations) of knnc (where the
cardinal numbers of the nearest neighbors, k2's, are 1, 3, 5, 7, 9, 11, and 13 sample points) obtained from
the real-life data sets, namely, �Iris2�, �Ionos�, �Sonar�, and �Arrhy�, respectively, using the WHL, CNN,
PNN, and HYB methods.

Datasets PRS NN: k2=1 NN: k2=3 NN: k2=5 NN: k2=7 NN: k2=9 NN: k2=11 NN: k2=13

WHL 92.60 92.40 92.60 94.00 93.80 93.20 92.20
±1.64 ±2.27 ±2.31 ±2.10 ±2.39 ±3.55 ±2.89

Iris2 CNN 90.20 87.20 82.20 76.40 66.00 62.80 45.60
±2.89 ±4.13 ±11.21 ±16.46 ±26.93 ±26.93 ±33.68

PNN 90.80 85.00 82.00 68.20 59.00 39.40 5.00
±2.52 ±6.61 ±7.30 ±27.07 ±31.78 ±28.62 ±15.81

HYB 91.40 80.20 54.80 20.40 5.00 − −
±1.89 ±11.67 ±24.76 ±33.66 ±15.81 − −

WHL 86.19 84.54 83.52 83.01 83.06 82.67 81.30
±2.10 ±1.87 ±2.25 ±1.63 ±1.83 ±1.99 ±2.63

Ionos CNN 86.07 81.81 79.82 72.44 65.90 58.35 54.09
±1.82 ±5.79 ±3.20 ±6.10 ±10.86 ±13.27 ±15.11

PNN 87.55 79.60 73.06 64.60 58.92 53.40 44.37
±1.90 ±6.66 ±14.08 ±18.93 ±20.37 ±16.74 ±11.24

HYB 84.94 84.14 73.63 68.86 64.20 61.98 60.73
±1.17 ±1.45 ±5.03 ±4.95 ±7.18 ±6.05 ±6.00

WHL 78.25 74.36 70.29 66.89 67.96 67.08 65.72
±4.37 ±5.68 ±3.77 ±4.74 ±5.94 ±4.65 ±3.33

Sonar CNN 76.11 65.43 65.92 63.88 61.94 60.00 60.29
±5.16 ±5.24 ±5.20 ±4.31 ±5.23 ±3.50 ±6.01

PNN 75.24 62.23 58.15 59.22 60.67 57.28 57.28
±3.46 ±6.85 ±4.27 ±3.48 ±4.58 ±3.93 ±3.63

HYB 68.8350 67.96 59.90 58.64 57.08 58.73 58.34
±4.4243 ±4.31 ±6.14 ±5.84 ±6.33 ±7.50 ±5.79

WHL 97.68 97.82 98.08 98.04 98.40 98.31 98.26
±0.65 ±0.84 ±0.59 ±0.66 ±0.76 ±0.62 ±0.53

Arrhy CNN 95.33 94.08 88.35 84.53 78.31 72.80 66.35
±1.42 ±3.59 ±10.56 ±14.07 ±14.53 ±15.59 ±13.27

PNN 97.73 71.64 53.91 38.97 13.73 − −
±0.60 ±14.34 ±21.21 ±21.11 ±22.11 − −

HYB 94.84 94.88 78.53 68.80 60.53 57.51 56.62
±2.26 ±1.74 ±14.08 ±13.20 ±6.12 ±4.89 ±4.04
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knnc designed with the entire data set T1) and the CNN, PNN, HYB methods (i.e., knnc designed with

the corresponding prototypes) are almost the same when k2 = 1. However, especially, for Non_n1 and

Non_l1, when k2 increases, the classi�cation accuracies of the both methods are di�erent.

From Tables 3 and 4, it should also be observed that the classi�cation accuracies of the HYB method

are lower than those obtained by the CNN and PNN methods. The reasons for this observation can

be explained as follows: First of all, in this experiment, to make things easy, among the HYB's four

parameters6, such as α, β, w, and η, we varied only the parameter w (i.e., the window length). The other

parameters were �xed as constants. Further, the HYB consists of two steps: (1) Determining the support

vectors (SVs) from T1 using the SVM algorithm, and (2) adjusting the SVs using a LVQ3 algorithm. In

this experiment, we utilized a polynomial kernel function of degree 1 for the SV-determination step (the

svm-train given in [29] was employed), and a 1-nearest neighbor rule was used in the adjusting step of

LVQ3. It was very interesting to observe that in Tables 3 and 4, the classi�cation accuracy of the HYB

decreased sharply as k2 increased. Finally, in this experiment, the classi�cation was performed by repeated

the testing with �ten� subsets of T1 for each data set. We computed the SVs from the individual �ten�

subsets, but adjusted them (SVs) by modifying three of the four parameters determined by the use of a

single subset.

The classi�cation accuracies of Tables 3 and 4 will be compared with those of the PRS_LLR algorithms

in subsequent sections.

The Classi�cation Accuracies Obtained with PRS_LLR: In order to illustrate the functioning of

the combination of the PRS and LLR processes, �rst of all, we present a graphical comparison of the

classi�cation accuracies of knnc (where the cardinal numbers of the nearest neighbors, k2's, are 1, 3, 5,

7, 9, 11, and 13 sample points) designed in the feature spaces, reconstructed with the LLR algorithms

(where the cardinal numbers of the nearest neighbors, k1's, are 1, 3, 5, 7, 9, 11, and 13 sample points) for

the arti�cial and real-life databases.

Figures 2, 3, 4, and 5 show the comparison of the classi�cation accuracies (and ± standard deviations)

(%) of the arti�cial databases, such as Non_n1 and Non_l2, and the real-life databases, such as Ionos

and Arrhy, respectively. Here, the classi�ers of knnc were designed in the feature space reconstructed

with a PRS_LLR algorithm for the prototypes extracted from T1, shown in Table 2, and evaluated with

T2. Also, when the number of prototype vectors is smaller than k2 of knnc, the percentage classi�cation

accuracies (given on the vertical axes) are represented as �0� in the �gures.

From the �gures, it can be observed that the two error rates obtained with the WHL method and

the CNN, PNN, and HYB methods are almost the same for the entire range of the values of k2 when k1

has small values. In other words, we can obtain the classi�cation accuracy of WHL by using analogous

classi�ers designed with the small numbers of vectors (i.e., prototypes) extracted from T1 using a PRS.

From Figure 2 (a), (b), (c), and (d) of Non_n1 (whose size is 50), for example, it can be observed

6The reader should kindly recall that the parameters of the HYB are sensitive to the characteristics of training data sets.
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Figure 2: A comparison of the estimated error rates of knnc (where the cardinal numbers of the nearest
neighbors, k2's, are 1, 3, 5, 7, 9, 11, and 13 sample points), built in the feature spaces reconstructed with
the LLR algorithm in which the cardinal numbers of the nearest neighbors, k1's, are 1, 3, 5, 7, 9, 11, and
13 sample points. This is for the arti�cial database, Non_n1: (a) top left, (b) top right, (c) bottom left,
and (d) bottom right. The �gures (a) - (d) are obtained with the WHL, CNN, PNN, and HYB methods
for Non_n1, respectively.
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Figure 3: A comparison of the estimated error rates of knnc (where the cardinal numbers of the nearest
neighbors, k2's, are 1, 3, 5, 7, 9, 11, and 13 sample points), built in the feature spaces reconstructed with
the LLR algorithm in which the cardinal numbers of the nearest neighbors, k1's, are 1, 3, 5, 7, 9, 11, and
13 sample points. This is for the arti�cial database, Non_l2: (a) top left, (b) top right, (c) bottom left,
and (d) bottom right. The �gures (a) - (d) are obtained with the WHL, CNN, PNN, and HYB methods
for Non_l2, respectively.
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Figure 4: A comparison of the estimated error rates of knnc (where the cardinal numbers of the nearest
neighbors, k2's, are 1, 3, 5, 7, 9, 11, and 13 sample points), built in the feature spaces reconstructed with
the LLR algorithm in which the cardinal numbers of the nearest neighbors, k1's, are 1, 3, 5, 7, 9, 11, and
13 sample points. This is for the real-life database, Ionos: (a) top left, (b) top right, (c) bottom left, and
(d) bottom right. The �gures (a) - (d) are obtained with the WHL, CNN, PNN, and HYB methods for
Ionos, respectively.
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Figure 5: A comparison of the estimated error rates of knnc (where the cardinal numbers of the nearest
neighbors, k2's, are 1, 3, 5, 7, 9, 11, and 13 sample points), built in the feature spaces reconstructed with
the LLR algorithm in which the cardinal numbers of the nearest neighbors, k1's, are 1, 3, 5, 7, 9, 11, and
13 sample points. This is for the real-life database, Arrhy: (a) top left, (b) top right, (c) bottom left, and
(d) bottom right. The �gures (a) - (d) are obtained with the WHL, CNN, PNN, and HYB methods for
Arrhy, respectively.
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that the classi�cation accuracies of knnc designed in the reconstructed feature space are almost the same

when k1 = 1, while the accuracies of knnc are di�erent when k1 > 1. However, from Figure 3 (a), (b),

(c), and (d) of Non_l2 (whose cardinality is 500), it can be observed that the classi�cation accuracies of

knnc are almost the same for the entire range of k1. In other words, the curved surfaces of the estimated

error rates for the WHL, CNN, PNN, and HYB methods have almost identical shapes. We can also see

a similar characteristic for the real-life data sets Ionos and Arrhy, as demonstrated in Figures 4 and 5.

In the interest of brevity, a detailed description of these �gures is omitted. The same characteristic can

also be observed for the other databases, such as Non_n2, Non_l1, Iris2, and Sonar. Again, to avoid

repetition, the details of the results for these databases is omitted.

In order to further investigate the characteristics of the two schemes, WHL and PRS_LLR, where the

PRSs are CNN, PNN, and HYB, the experimental results were analyzed as shown in Tables 5 and 6 as

well as Tables 7 and 8.

Tables 5 and 6 show the comparisons of classi�cation accuracies (and± standard deviations) (%) for the

samples locally reconstructed with the arti�cial and real-life data sets and their prototypes extracted with

the CNN, PNN, and HYB methods, respectively. On the other hand, Tables 7 and 8 show the comparisons

of the processing CPU-times (and ± standard deviations) (seconds) required for the computations of

the corresponding processes shown in Tables 5 and 6, respectively. In these tables, the entry �−� for

the Non_n1, Non_l1, Iris2, and Arrhy data sets implies that classi�cation was not performed for the

reconstructed feature space of the k1's values. The advantage of using PRS_LLR is clear and not re-

iterated.

Apart from the results reported above, which demonstrates the advantage of resorting to a PRS prior

to invoking a LLR, the most fascinating result is that for every data set there seems to be a speci�c pair of

values k1 and k2 for which the classi�cation is optimal. In other words, it is best to train the classi�er with

a k1-NN classi�er and test it with a k2-NN classi�er. The interesting point about this is that the value k2

is not equal to k1. Besides, the classi�cation accuracy falls rather drastically if the testing classi�er uses

a k-NN rule, where k > k2. This is de�nitely not obvious or intuitive.

We conclude this section by a note about the analysis of our scheme. Unfortunately, the theoretical

analysis of this claim is open. The reason for this is that even though a �zillion� PRS methods have been

reported (as Bezdek writes), we are not aware of a formal analysis of a single one that has been reported

for more than three decades. The reason for the lack of analysis is probably because the problem could be

inherently NP-hard. If we consider the PRS as a selection mechanism, the PRS reduces to being a scheme

which chooses the bestM of the N test samples, which we believe can be reduced to the graph partitioning

problem. Thus, personally, we believe that such a formal analysis is not possible for all possible datasets,

which is also probably why there is no single PRS which can be crowned to be the best scheme for all

datasets.
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Table 5: A comparison of the classi�cation accuracies (and ± standard deviations) (%) for the samples
locally reconstructed for the arti�cial data sets and their prototypes extracted with the CNN, PNN,
and HYB methods, where each evaluation sample was reconstructed with the k1 nearest neighbors of
cardinalities 1, 3, 5, 7, 9, 11, 13. The number in parenthesis in each entry represents the �order� k2, of
the corresponding �Testing� classi�er, using which the respective accuracy was obtained.

Datasets PRS NN: k1=1 NN: k1=3 NN: k1=5 NN: k1=7 NN: k1=9 NN: k1=11 NN: k1=13

WHL 93.60 (1) 94.80 (3) 94.20 (5) 94.60 (7) 94.80 (9) 93.00 (11) 94.60 (13)
±2.46 ±2.35 ±1.99 ±2.12 ±2.53 ±2.87 ±2.99

Non_n1 CNN 93.60 (1) 95.00 (3) 73.60 (5) 74.40 (7) 57.60 (9) 9.60 (11) −
±2.46 ±1.70 ±38.86 ±39.31 ±49.63 ±30.36 −

PNN 93.40 (1) 94.20 (3) 73.80 (5) 55.40 (7) 28.00 (9) − −
±2.84 ±3.71 ±38.96 ±47.84 ±45.13 − −

HYB 96.00 (1) 77.40 (3) 58.00 (5) 39.00 (7) − − −
±2.31 ±40.81 ±49.96 ±50.35 − − −

WHL 93.20 (1) 93.34 (3) 93.88 (5) 93.44 (7) 93.78 (9) 93.32 (11) 93.20 (11)
±0.78 ±0.74 ±0.73 ±0.59 ±1.09 ±0.99 ±0.67

Non_n2 CNN 92.98 (1) 93.34 (3) 92.28 (5) 91.96 (7) 91.20 (9) 91.16 (11) 90.86 (13)
±0.75 ±0.86 ±0.83 ±1.36 ±1.72 ±1.42 ±1.64

PNN 92.82 (1) 93.10 (3) 92.60 (5) 92.12 (7) 91.88 (9) 92.02 (11) 91.70 (13)
±0.98 ±1.10 ±1.39 ±1.54 ±1.63 ±1.56 ±1.86

HYB 91.20 (1) 91.28 (3) 90.90 (5) 90.82 (7) 90.70 (9) 90.74 (11) 90.24 (13)
±1.76 ±1.82 ±1.85 ±2.08 ±1.55 ±1.84 ±1.85

WHL 89.00 (1) 89.40 (3) 88.40 (5) 86.80 (7) 86.00(9) 82.40 (11) 82.40 (13)
±2.87 ±3.13 ±3.24 ±4.54 ±4.42 ±3.75 ±6.65

Non_l1 CNN 87.00 (1) 85.80 (3) 84.40 (5) 80.20 (7) 80.00 (9) 78.20 (11) 61.00 (13)
±3.43 ±3.05 ±4.09 ±4.76 ±5.42 ±4.76 ±32.66

PNN 85.20 (1) 84.40 (3) 79.60 (5) 77.40 (7) 76.80 (9) 74.80 (11) 46.00 (13)
±3.55 ±4.40 ±5.06 ±4.99 ±5.35 ±10.42 ±39.90

HYB 80.60 (1) 76.60 (3) 69.00 (5) 54.40 (7) 47.80 (9) − −
±9.24 ±8.85 ±7.32 ±30.53 ±33.60 − −

WHL 89.50 (1) 89.86 (3) 90.08 (5) 90.50 (7) 90.12 (9) 89.80 (9) 90.08 (13)
±0.63 ±0.90 ±0.74 ±1.25 ±1.24 ±0.82 ±1.03

Non_l2 CNN 88.42 (1) 88.80 (3) 88.32 (5) 87.48 (7) 86.88 (9) 86.32 (11) 85.36 (13)
±0.71 ±1.21 ±1.34 ±1.45 ±1.96 ±2.48 ±2.07

PNN 87.32 (1) 87.44 (3) 87.76 (5) 86.80 (7) 86.26 (9) 85.70 (11) 85.04 (13)
±0.54 ±0.82 ±0.74 ±1.29 ±1.07 ±1.59 ±1.72

HYB 89.30 (1) 89.04 (3) 88.64 (5) 87.36 (7) 85.96 (9) 84.28 (11) 82.96 (13)
±1.23 ±0.98 ±1.48 ±1.47 ±2.05 ±2.84 ±3.34
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Table 6: A comparison of the classi�cation accuracies (± standard deviations) (%) for the samples locally
reconstructed for the four real-life data sets and their prototypes extracted with the CNN, PNN, and HYB
methods, where each evaluation sample was reconstructed with the nearest neighbors of cardinalities 1, 3,
5, 7, 9, 11, 13. The number in parenthesis in each entry represents the �order� k2, of the corresponding
�Testing� classi�er, using which the respective accuracy was obtained.

Datasets PRS NN: k1=1 NN: k1=3 NN: k1=5 NN: k1=7 NN: k1=9 NN: k1=11 NN: k1=13

WHL 92.60 (1) 92.60 (3) 92.60 (5) 92.80 (7) 92.60 (9) 93.20 (11) 93.40 (13)
±1.65 ±0.97 ±1.65 ±2.35 ±3.27 ±3.16 ±3.27

Iris2 CNN 90.20 (1) 90.80 (3) 90.20 (5) 90.40 (7) 81.20 (9) 81.40 (11) 63.00 (11)
±2.90 ±2.53 ±5.12 ±4.70 ±28.89 ±29.03 ±43.59

PNN 90.80 (1) 92.00 (3) 91.20 (5) 81.40 (7) 72.40 (9) 63.60 (11) 9.40 (13)
±2.53 ±1.89 ±2.86 ±28.72 ±38.25 ±43.97 ±29.73

HYB 91.40 (1) 92.40 (3) 82.00 (5) 27.60 (7) 8.80 (7) − −
±1.90 ±2.27 ±28.94 ±44.45 ±27.20 − −

WHL 86.19 (1) 86.42 (3) 87.16 (5) 87.67 (7) 87.90 (9) 87.90 (11) 88.07 (13)
±2.11 ±2.13 ±1.94 ±1.78 ±1.74 ±2.06 ±1.65

Ionos CNN 86.08 (1) 87.67 (3) 89.49 (5) 90.28 (7) 89.89 (9) 89.60 (11) 90.34 (13)
±1.82 ±1.74 ±1.40 ±1.90 ±2.29 ±3.43 ±3.44

PNN 87.56 (1) 88.24 (3) 90.34 (5) 91.02 (7) 91.08 (9) 89.94 (11) 90.00 (13)
±1.90 ±2.46 ±1.54 ±1.36 ±1.78 ±2.64 ±2.46

HYB 84.94 (1) 83.47 (3) 80.68 (5) 79.32 (7) 77.67 (9) 76.81 (11) 75.97 (13)
±1.18 ±3.69 ±2.13 ±3.32 ±3.17 ±3.44 ±3.93

WHL 78.25 (1) 78.74 (3) 79.03 (5) 79.32 (7) 80.78 (9) 80.97 (11) 81.17 (13)
±4.37 ±4.47 ±4.49 ±4.71 ±4.71 ±4.07 ±4.39

Sonar CNN 76.12 (1) 76.60 (3) 78.16 (5) 78.84 (7) 79.32 (9) 80.19 (11) 79.61 (13)
±5.16 ±3.53 ±4.63 ±4.99 ±4.91 ±5.48 ±5.14

PNN 75.24 (1) 75.34 (3) 76.99 (5) 76.41 (7) 76.89 (9) 76.70 (11) 76.99 (13)
±3.46 ±6.18 ±4.95 ±4.84 ±4.66 ±4.67 ±5.57

HYB 68.84 (1) 69.51 (3) 68.64 (5) 68.84 (7) 69.13 (9) 69.32 (11) 69.90 (13)
±4.42 ±5.38 ±5.42 ±5.42 ±4.29 ±4.67 ±4.80

WHL 97.69 (1) 98.00 (3) 98.27 (5) 98.36 (7) 98.53 (9) 98.62 (11) 98.53 (13)
±0.66 ±0.84 ±0.82 ±0.63 ±0.79 ±0.74 ±0.89

Arrhy CNN 95.33 (1) 97.16 (3) 96.84 (5) 96.62 (7) 96.71 (9) 96.71 (11) 96.80 (11)
±1.42 ±1.67 ±2.01 ±1.96 ±2.19 ±2.41 ±2.36

PNN 97.73 (1) 98.36 (3) 88.49 (5) 78.98 (7) 29.56 (9) − −
±0.61 ±0.66 ±31.10 ±41.63 ±47.59 − −

HYB 94.84 (1) 94.76 (3) 92.13 (5) 89.96 (7) 87.11 (9) 84.80 (11) 82.40 (13)
±2.27 ±2.21 ±3.03 ±3.80 ±5.33 ±5.78 ±6.47
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Table 7: A comparison of the processing CPU-times (and ± standard deviations) (seconds) required for
the samples locally reconstructed for the arti�cial data sets and their prototypes. Here, the prototypes
were extracted with the CNN, PNN, and HYB methods, respectively. Thereafter, each evaluation sample
was reconstructed with the nearest neighbors of cardinalities 1, 3, 5, 7, 9, 11, 13.

Datasets PRS NN: k1=1 NN: k1=3 NN: k1=5 NN: k1=7 NN: k1=9 NN: k1=11 NN: k1=13

WHL 1.15 1.19 1.28 1.36 1.47 1.50 1.64
±0.04 ±0.03 ±0.04 ±0.05 ±0.08 ±0.06 ±0.05

Non_n1 CNN 1.01 1.06 0.90 0.93 0.74 0.14 −
±0.07 ±0.09 ±0.47 ±0.49 ±0.64 ±0.44 −

PNN 0.97 1.02 0.89 0.71 0.37 − −
±0.06 ±0.06 ±0.47 ±0.61 ±0.60 − −

HYB 0.94 0.81 0.64 0.45 − − −
±0.07 ±0.43 ±0.55 ±0.58 − − −

WHL 11.91 12.22 13.12 13.96 15.51 16.03 17.31
±0.05 ±0.13 ±0.21 ±0.19 ±0.31 ±0.30 ±0.40

Non_n2 CNN 11.19 11.46 12.33 12.93 13.42 14.07 14.56
±0.03 ±0.13 ±0.24 ±0.32 ±0.17 ±0.33 ±0.32

PNN 11.30 11.64 12.39 13.41 14.29 14.73 15.56
±0.14 ±0.26 ±0.22 ±0.27 ±0.70 ±0.48 ±0.88

HYB 11.21 11.53 12.24 12.96 13.67 14.16 14.91
±0.07 ±0.14 ±0.16 ±0.22 ±0.20 ±0.25 ±0.31

WHL 1.14 1.15 1.20 1.27 1.40 1.51 1.63
±0.01 ±0.00 ±0.02 ±0.03 ±0.05 ±0.07 ±0.09

Non_l1 CNN 1.04 1.06 1.09 1.17 1.23 1.31 1.14
±0.01 ±0.02 ±0.02 ±0.04 ±0.04 ±0.06 ±0.61

PNN 1.04 1.06 1.10 1.18 1.26 1.35 0.91
±0.01 ±0.01 ±0.02 ±0.03 ±0.07 ±0.06 ±0.78

HYB 1.00 1.01 1.07 0.95 0.90 − −
±0.03 ±0.03 ±0.05 ±0.51 ±0.63 − −

WHL 11.65 11.67 12.25 13.51 14.97 16.31 18.06
±0.02 ±0.03 ±0.11 ±0.20 ±0.29 ±0.21 ±0.31

Non_l2 CNN 11.13 11.33 11.90 12.66 13.57 14.34 15.48
±0.06 ±0.06 ±0.06 ±0.12 ±0.24 ±0.37 ±0.47

PNN 11.12 11.26 11.99 12.76 13.91 14.81 16.20
±0.05 ±0.03 ±0.10 ±0.15 ±0.27 ±0.16 ±0.33

HYB 11.14 11.32 11.97 12.72 13.68 14.51 15.75
±0.13 ±0.11 ±0.19 ±0.24 ±0.35 ±0.39 ±0.51
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Table 8: A comparison of the processing CPU-times (and ± standard deviations) (seconds) required for
the samples locally reconstructed for the four real-life data sets and their prototypes. Here, the prototypes
were extracted with the CNN, PNN, and HYB methods, respectively. Thereafter, each evaluation sample
was reconstructed with the nearest neighbors of cardinalities 1, 3, 5, 7, 9, 11, 13.

Datasets PRS NN: k1=1 NN: k1=3 NN: k1=5 NN: k1=7 NN: k1=9 NN: k1=11 NN: k1=13

WHL 1.20 1.22 1.24 1.28 1.33 1.39 1.48
±0.05 ±0.04 ±0.05 ±0.05 ±0.05 ±0.05 ±0.06

Iris2 CNN 1.15 1.18 1.19 1.24 1.16 1.19 0.97
±0.02 ±0.02 ±0.02 ±0.01 ±0.41 ±0.42 ±0.67

PNN 1.15 1.17 1.18 1.10 1.00 0.91 0.14
±0.03 ±0.04 ±0.02 ±0.39 ±0.53 ±0.63 ±0.43

HYB 1.11 1.13 1.05 0.36 0.13 − −
±0.03 ±0.02 ±0.37 ±0.58 ±0.40 − −

WHL 4.27 4.33 4.34 4.42 4.51 4.58 4.71
±0.04 ±0.05 ±0.02 ±0.05 ±0.05 ±0.05 ±0.05

Ionos CNN 4.17 4.22 4.27 4.33 4.44 4.56 4.64
±0.02 ±0.02 ±0.03 ±0.02 ±0.04 ±0.03 ±0.05

PNN 4.18 4.21 4.26 4.33 4.41 4.55 4.66
±0.02 ±0.01 ±0.02 ±0.03 ±0.04 ±0.04 ±0.02

HYB 4.19 4.54 4.39 4.40 4.50 4.65 4.77
±0.03 ±0.60 ±0.17 ±0.10 ±0.19 ±0.17 ±0.22

WHL 2.48 2.50 2.53 2.58 2.60 2.67 2.72
±0.01 ±0.01 ±0.02 ±0.03 ±0.02 ±0.04 ±0.04

Sonar CNN 2.40 2.45 2.49 2.52 2.56 2.61 2.67
±0.01 ±0.02 ±0.02 ±0.03 ±0.02 ±0.02 ±0.02

PNN 2.40 2.47 2.51 2.53 2.59 2.63 2.70
±0.01 ±0.03 ±0.03 ±0.01 ±0.03 ±0.03 ±0.02

HYB 2.42 2.49 2.50 2.54 2.61 2.67 2.74
±0.03 ±0.07 ±0.03 ±0.02 ±0.03 ±0.04 ±0.04

WHL 5.51 5.53 5.58 5.64 5.72 5.82 5.97
±0.03 ±0.02 ±0.02 ±0.05 ±0.02 ±0.05 ±0.02

Arrhy CNN 5.34 5.39 5.41 5.49 5.65 5.74 5.87
±0.04 ±0.03 ±0.01 ±0.04 ±0.05 ±0.02 ±0.03

PNN 5.30 5.39 4.92 4.46 1.71 − −
±0.03 ±0.02 ±1.73 ±2.35 ±2.75 − −

HYB 5.36 5.40 5.48 5.58 5.75 5.84 5.99
±0.03 ±0.02 ±0.04 ±0.02 ±0.04 ±0.03 ±0.05
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5 Conclusions

In this paper, we have considered how we can use the principles of Prototype Reduction Schemes (PRSs)

to optimize the computations involved in the well-known families of k-Nearest Neighbor (k-NN) rules.

Although k-NN rules have been extensively studied, recently, an implementation of the k-NN, named as

the Locally Linear Reconstruction (LLR) [2], which invokes a quadratic optimization process, has been

proposed. The latter method is capable of systematically setting model parameters, such as the number

of neighbors (k) and the weights. Our aim, in this paper, was to optimize the computation time required

for the LLR by using a PRS. We have proposed a strategy of using a PRS to e�ciently compute the

optimization problem. We have demonstrated that by completely discarding the points not included by

the PRS, we can obtain a reduced set of sample points, using which, in turn, the quadratic optimization

problem can be computed. The accuracies of the proposed method is comparable to those obtained with

the original training set (i.e., the one which considers all the data points) even though the computations

required are noticeably less (the proposed method sometimes requiring only about 50% of the time). The

proposed method has been tested on arti�cial and real-life data sets, and the results obtained are quite

promising, and could have potential in PR applications.

An avenue for further research involves developing alternate stochastic learning methods by which the

query sample can be estimated accurately and quickly when only the prototype set is considered. We are

currently investigating how this can be achieved.
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