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Abstract. Recently, Oommen and Rueda [11] presented a strategy by
which the parameters of a binomial/multinomial distribution can be es-
timated when the underlying distribution is nonstationary. The method
has been referred to as the Stochastic Learning Weak Estimator (SLWE),
and is based on the principles of continuous stochastic Learning Au-
tomata (LA). In this paper, we consider a new family of stochastic
discretized weak estimators pertinent to tracking time-varying binomial
distributions. As opposed to the SLWE, our proposed estimator is dis-
cretized, i.e., the estimate can assume only a finite number of values. It
is well known in the field of LA that discretized schemes achieve faster
convergence speed than their corresponding continuous counterparts. By
virtue of discretization, our estimator realizes extremely fast adjustments
of the running estimates by jumps, and it is thus able to robustly, and
very quickly, track changes in the parameters of the distribution after a
switch has occurred in the environment. The design principle of our strat-
egy is based on a solution, pioneered by Oommen [7], for the Stochastic
Search on the Line (SSL) problem. The SSL solution proposed in [7],
assumes the existence of an Oracle which informs the LA whether to go
“right” or “left”. In our application domain, in order to achieve efficient
estimation, we have to first infer (or rather simulate) such an Oracle.
In order to overcome this difficulty, we rather intelligently construct an
“Artificial Oracle” that suggests whether we are to increase the current
estimate or to decrease it. The paper briefly reports conclusive experi-
mental results that demonstrate the ability of the proposed estimator to
cope with non-stationary environments with a high adaptation rate, and
with an accuracy that depends on its resolution. The results which we
present are, to the best of our knowledge, the first reported results that
resolve the problem of discretized weak estimation using a SSL-based
solution.
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1 Introduction

Theproblemof estimating the parameters of a distribution,when these parameters
changewith time, is far from trivial. The reasonwhy the problem is intrinsically dif-
ficult is because “traditional” estimation methods rely on the long term properties
of the estimation process to conclude on the quality of the estimate. Consequently,
they attempt to obtain convergence properties that are as “strong” as possible.

Estimators generally fall into various categories including the Maximum Like-
lihood Estimates (MLE) and the Bayesian family of estimates. Estimates from
these families are well-known for having good computational and statistical prop-
erties. However, the basic premise for establishing the quality of estimates, in-
cluding these, is based on the assumption that the parameters being estimated
do not change with time, i.e, the distribution is assumed to be stationary. Thus,
as mentioned above, it is desirable that the estimate converges to the true un-
derlying parameter with probability 1, as the number of samples increases.

As argued in [11], there are numerous real-life problems in which the environ-
ment is non-stationary, and the parameter being estimated changes with time.
Once can, for example, be dealing with an ensemble of biased dice, which leads
to a multinomially distributed random variable where the parameter (the vector
of probabilities for choosing the possible sides) is switched, perhaps, periodically,
to possibly a new random value. Such a scenario demonstrates the behavior of a
non-stationary environment. Thus, in this case, the goal of an estimator scheme
would be to estimate the parameter, and to be able to adapt to any changes
occurring in the environment. In other words, the algorithm must be able to
detect the changes and estimate the new parameter after a switch has occurred
in the environment. If one uses strong estimators (i.e., estimators that converge
w.p. 1), it is impossible for the learned parameter to change rapidly from the
value to which it has converged, resulting in poor time-varying estimates.

As opposed to the traditional MLE and Bayesian estimators, Oommen and
Rueda, in [11], used the principles of continuous stochastic Learning Automata
(LA) to propose a Stochastic Learning Weak Estimator (SLWE). Their scheme
yielded a weak estimator which could learn the parameters of a binomial or
multinomial distribution when the underlying distribution is nonstationary. As
opposed to their scheme, in this paper, we propose a discretized algorithm. How-
ever, rather than merely utilize the process of discretization by “uniformly slic-
ing” the parameter space, we propose a novel discretized weak estimator in which
the principle of inferring how the updates are to be made, is itself based on a
meta-learning strategy, explained, in detail, below. Our new estimator can be
shown to converge to the true value fairly quickly, and to “unlearn” what it has
learned so far to adapt to the new, “switched” environment. Further, as in the
case of the SLWE, the convergence of the estimate is weak, i.e., with regard to
the first and second moments.

The principle with which we design the estimator, referred to to as the
Stochastic Search on the Line Based Discretized Weak Estimator (SSLDE), is
based on the solution to the Stochastic Search on the Line (SSL) problem, pio-
neered by Oommen in [7].
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It is pertinent to mention that the SSL solution presented in [7] is not directly
relevant to the problem currently studied. The reason for this is the following:
The method proposed in [7] explicitly assumes the existence of an Oracle which
informs the learning mechanism whether to go “right” or “left”. Such an Oracle
is non-existent in the estimation problem. In our application domain, in order to
resolve this paradox for estimation, we have to first infer (or rather simulate) such
an Oracle. Thus, to overcome this difficulty, we first intelligently construct an
“Artificial Oracle” that suggests whether we are to increase the current estimate
or to decrease it.

The analytic results derived and the empirical results obtained demonstrate
that the SSLDE estimator is able to cope with non-stationary environments with
a high adaptation rate and accuracy, that, as one can expect, is dependent on
the choice of the resolution parameter.

With regard to their applicability, apart from the problem being of importance
in its own right, weak estimators admit a growing list of applications in various
areas such as intrusion detection systems in computer networks [15], spam filter-
ing [19], ubiquitous computing [6], fault tolerant routing [10], adaptive encoding
[12], and topic detection and tracking in multilingual online discussions [14].
We ourselves are also considering the application of such estimators in mobile
adaptive architectures.

2 State-of-the-Art

Traditionally available methods that cope with non-stationary distributions re-
sort to the so-called sliding window approach, which is a limited-time variant
of the well-known MLE scheme. The latter model is useful for discounting stale
data in the stream of observations. Since the data samples arrive continuously,
only the most recent observations are used to compute the current estimates.
Thus, the data elements occurring outside the “current window” is forgotten
and replaced by the new data. The problem with using sliding windows is the
following: If the time window is too small the corresponding estimates tend to
be poor. As opposed to this, if time window is too large, the estimates prior
to the change of the parameter have too much influence on the new estimates.
Moreover, the observations during the entire window width must be maintained
and updated during the process of estimation.

Apart from the sliding window approach, many other methods have been
proposed, which deal with the problem of detecting change points during es-
timation. In general, there are two major competitive sequential change-point
detection algorithms: Page’s Cumulative Sum (CUSUM) [2] detection proce-
dure and the Shiryaev-Roberts-Pollak detection procedure. In [13], Shiryayev
used a Bayesian approach to detect changes in the parameters of the distribu-
tion, where the change points were assumed to obey a geometric distribution.
CUMSUM is motivated by a maximum likelihood ratio test for the hypotheses
that a change occurred. Both approaches utilize the log-likelihood ratio for the
hypotheses that the change occurred at the point, and that there is no change.
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Inherent limitations of CUMSUM and the Shiryaev-Roberts-Pollak approaches
for on-line implementation are the demanding computational and memory re-
quirements. In contrast to the CUMSU and the Shiryaev−Roberts−Pollak ap-
proaches, our SSLDE avoids the intensive computations of ratios, and does not
invoke hypothesis testing.

A description of the state-of-the-art would not be complete without mention-
ing the SLWE work of Oommen and Rueda [11] (cited above) which is based
on the principles of continuous stochastic Learning Automata (LA). As opposed
to this, our scheme resorts to discretizing the probability space [1,5,9,16], and
performing a controlled random walk on this discretized space. It is well known
in the field of LA that discretized schemes achieve faster convergence speed than
continuous schemes [1,8]. By virtue of discretization, our estimator realizes fast
adjustments of the running estimates by jumps, and it is thus able to robustly
track changes in the parameters of the distribution after a switch has occurred
in the environment.

A brief history of the science of discretization in the field of LA is not out
of place. The concept of discretizing the probability space was pioneered by
Thathachar and Oommen in their study on Reward-Inaction LA [16], and since
then that it has catalyzed a significant research in the design of discretized LA
[1,5,9,3,4]. Recently, there has been an upsurge of research interest in solving
resource allocation problems based on novel discretized LA [3,4]. In [3,4], the
authors proposed a solution to the class of Stochastic Nonlinear Fractional Knap-
sack problems where resources had to be allocated based on incomplete and noisy
information. The latter solution was applied to resolve the web-polling problem,
and to the problem of determining the optimal size required for estimation.

In a previous research work, the authors of this current work also devised
a discretized weak estimator that is able to cope with non-stationary binomial
and multinomial distributions. That estimate, referred to as the Stochastic Dis-
cretized Weak Estimator, has been analyzed and descibed elsewhere [17], and
space does not permit us to submit a comprehensive comparison here. In all
brevity, we mention that the latter scheme can be seen to be a more “fidel”
counterpart of the continuous SLWE [11] since, in both algorithms (SLWE and
SDWE), the mean of the final estimate is independent of the scheme’s learning
parameter.

We now proceed to present the new estimator, i.e., the Stochastic Search on
the Line Based Discretized Weak Estimator (SSLDE).

3 The Estimator for Binomial Distributions

We assume that we are estimating the parameters of a binomial distribution.
This distribution is characterized by two parameters, namely the number of
trials and the parameter characterizing each Bernoulli trial. We assume that the
number of observations is the number of trials. We seek to estimate the Bernoulli
parameter for each trial.

Let X be a binomially distributed random variable, which takes on the value
either “1” or “2”. We choose to use these values instead of the more common
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used notation “0” or “1” to make the notation consistent when we consider the
multinomial case. It is assumed that the distribution of X is characterized by
the parameter vector S = [s1, s2]T. In other words,

X = “1” with probability s1

X = “2” with probability s2, where s1 + s2 = 1.
Let x(t) be a concrete realization of X at time ‘t’. We intend to estimate

S, i.e, si for i = 1, 2. We achieve this by maintaining a running estimate of
P (t) = [p1(t), p2(t)]T of S where pi(t) represents the estimate of si at time
t, for i = 1, 2. Our proposed SSLDE works in a discretized manner. In fact,
we enforce the condition that pi(t) takes values from a finite set, i.e, pi(t) ∈
{0, 1

N , 2
N , . . . , N−1

N , 1}, where N is a user-defined integer parameter. N is called
the “resolution” parameter and determines the stepsize Δ (Δ = 1

N ) relevant to
the updating of the estimates. A larger value of N will ultimately imply a more
accurate convergence to the unknown parameter S. However, a smaller value of
N will hasten the convergence rate, but will forfeit some accuracy. Initially, we
assign p1(0) = p2(0) = N

2 , where N is assumed to be an even integer. Let r1(t)
be the state index of the estimator, implying that p1(t) = r1(t)

N . Thereafter, the
value of r1(n), is updated as follows, depending on whether r1(t) is greater or
less than N

2 :

– Case 1: r1(t) ≥ N
2

If x(t) = “1” and rand() ≤ N
2r1(t)

and r1(t) < N

r1(t) := r1(t) + 1 (1)

Else If r1(t) > 0

r1(t) := r1(t) − 1 (2)

Else

r1(t) := r1(t) (3)

– Case 2: r1(t) < N
2

If x(t) = “2” and rand() ≤ N
2(N−r1(t))

and r1(t) > 0

r1(t + 1) := r1(t) − 1 (4)

Else If r1(t) < N

r1(t) := r1(t) + 1 (5)

Else

r1(t) := r1(t), (6)

where p2(t+1) = 1−p1(t+1) and rand() is a uniform random number generator
function. In the interest of simplicity, we omit the time index t, whenever there
is no confusion, and thus, P implies P (t).

The main theorem that we present concerns the convergence of the vector
P which estimates S as per Equations (1 - 6). We claim that the mean of P
converges exactly to S as N goes to infinity. In the interest of brevity, this proof
is omitted here.
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Theorem 1. Let X be a binomially distributed random variable, and P (t) be
the estimate of S at time t obtained by Equations (1 - 6). Then:

LimN→∞E[P (∞)] → S.

The proof of this result is quite involved and can be found in [18]. ��
Remarks: A few remarks regarding our method for updating the estimates are
not out of place. Indeed:

– First of all, it is pertinent to mention that although the rationale for updating
is similar to that of the SSL algorithm [7], there are some fundamental
differences. Unlike the latter, which explicitly assumes the existence of an
“Oracle”, in this case, our scheme simulates such an entity.

– Secondly, at this juncture, we emphasize that unlike the work of [7], the
probability that the Oracle suggests the move in the correct direction, is
not constant over the states of the estimator’s state space. This is quite a
significant difference, which basically reduces our model to a Markov Chain
with state-dependent transition probabilities.

– The crucial issue is that by means of a random number generator function,
we, hopefully elegantly, construct an Artificial Oracle that is informative
as per the definition of [7], i.e, the Artificial Oracle’s suggestions to either
increase or decrease the estimate are correct with a probability always larger
than 0.5. In that sense, whenever p1(t) is less than s1, the Oracle directs the
scheme to increase p1(t) with a probability greater than 0.5, and vice versa.
The converse is true whenever p1(t) is greater than s1.

– The main difference between our estimator and the SDWE, presented in [17],
is that in the latter, the mean of the final estimate is independent of the
scheme’s learning coefficient, N . Consequently, we can say that the SDWE
is a more fidel counterpart version of the SLWE, where the mean does not
depend on its parameter, λ, as well. Moreover, in the case of the SDWE, at
the internal states (i.e. 0 < r1 < N), there is a non zero probability that
the estimate remains unchanged at the next time instant. As opposed to
this, in our present updating scheme, the machine never stays at the same
state at the next time instant, except at the end states. Therefore, it can be
better characterized to be true to the essence of the SSL problem where the
environment directs the LA to move to the right or to the left, and never
directs it to stay at the same position.

4 Experimental Results

In this section, we evaluate the new family of discretzied estimators in non-
stationary environments as well as in stationary environments. In the interest
of brevity, we merely cite a few specific experimental results that highlight the
salient properties of our approach.
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4.1 Optimality Property

In this set of experiments, we experimentally verify the asymptotic optimality
property of the estimator, as stated in Theorem 1. The results obtained have
been recorded in Table 1, which summarizes the performance of the estimator,
for a wide range of resolution parameters, N , and for two different values of
s1, namely s1 = 0.352 and s1 = 0.827. The resulting performance is reported
in terms of the asymptotic true value of E[p1(∞)], where E[p1(∞)] is obtained
using a single run experiment consisting of 107 iterations.

Note that an alternative manner to compute the true value of E[p1(∞)] re-
quires using its closed form expression. The reader will observe that by using a
significant number of iterations (in our case, 107 iterations) the computations
render the difference between the theoretical and experimental value of E[p1(∞)]
unobservable.

The experimental results confirm that the optimality property is valid. Indeed,
E[p1(∞)] consistently approaches s1 as we increase the resolution. For example,
for a resolution N equal to 1, 000, the final terminal value represents an error
less than 0.002%.

Table 1. The true value of E[p1(∞)] for various values of the resolution parameter,
N , and for two different values of s1

N s1 = 0.352 s1 = 0.827

6 0.32 0.764

10 0.3371 0.798

60 0.3424 0.830

100 0.3472 0.8311

200 0.3496 0.8291

400 0.3503 0.8279

1000 0.3511 0.8277

4.2 Rate of Convergence

This set of experiments were conducted so that we could better understand
the transient behavior of the chain associated with the estimator, and to thus
perceive the rate of convergence of p1 for different resolution configurations. To
accomplish this, we fixed s1 to be 0.9123, while we increased the memory N
from N = 6 to N = 40. The quantity p1 was then estimated by averaging it
over 1, 000 experiments. In order to understand the effect of the resolution on
the rate of convergence, we report the number of iterations required to reach a
value that is 95% of the terminal value of E[p1(∞)].

From Figure 1(a), we see that it took only 5 time instants for the algorithm to
reach 95% of E[p1(∞)] for a resolution N = 6. This, we believe, is remarkable.
Further, from Figure 1(b), we see that 95% of E[p1(∞)] was attained within 17
iterations when we set N to have the value 20. Similarly, for the results depicted
in Figure 1(c), we chose N to be 30, where we see that it took only 25 time
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instants to converge to 95% of E[p1(∞)]. Finally, in Figure 1(d), when we set N
to 40, we record the required number of iterations was as low as 35! We believe
that these outstanding results speak for themselves.

Observe that as we increased the memory, the estimator spent more time to
converge to the optimal value of E[p1(∞)], which, of course, is understandable.
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Fig. 1. This figure depicts the transient behavior of the chain as a function of time,
where we plot (a) p1(t) for a memory size N = 6, (b) p1(t) for a memory size N = 20,
(c) p1(t) for a memory size N = 30, and (d) p1(t) for a memory size N = 40

4.3 Performance in Dynamic Environments

In this experiment, we were interested in understanding the characteristics of
the estimator when interacting with a non-stationary environment (i.e., when s1

changed with time). To do this, we modeled a non-stationary environment by
altering the parameter of the binomial distribution, s1, at every 100th time slot.

In particular, the parameter s1 that we used in the experiments was drawn se-
quentially every 100th time instant from the vector R = [0.35, 0.8, 0.2, 0.5, 0.86].
To be more specific, between time instants 0 and 100, s1 was equal to 0.35,
between instants 100 and 200, s1 was equal to 0.8, and so on. In Figure 2(a),
we have plotted the average value of p1 over the set of experiments using a con-
tinuous line, and the target parameter s1 using a discontinuous (dashed) line,
when N = 10. Similarly, in Figure 2(b), we have reported the results of achieving
the same (as in Figure 2(a)), except that, in this case, the resolution parameter
was set as N = 40. From Figures 2(a) and 2(b), we observe that the instanta-
neous value of p1 were well able to track the target distribution (drawn using the
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Fig. 2. Ability of the scheme to track the target distribution with (a) N = 10, and
with (b) N = 40

discontinuous line) in a near-optimal manner, which we believe is quite fascinat-
ing! The use of this strategy to achieve time-varying testing, is obvious!

5 Conclusion

In this paper, we have presented a novel estimator, referred to as the Stochastic
Search on the Line Based Discretized Weak Estimator (SSLDE), that is suitable
for estimation in non-stationary environments. The design and foundations moti-
vating the SSLDE are based on the principles of the pioneering solution of Oom-
men to the Stochastic Search on the Line problem [7]. By virtue of the SSLDE,
we have shown that discretizing the probability space offers a new promising
approach for the design of weak estimators. In fact, comprehensive simulation
results demonstrate that the new estimator is able to cope with non-stationary
environments with both a high adaptation rate and accuracy. To the best of our
knowledge, this paper represents the first reported results that resolve discretized
weak estimation using a SSL-based solution. The generalization of the scheme
to handle multinomial distributions is currently being investigated.
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