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Abstract. The success of Learning Automata (LA)-based estimator algorithms
over the classical, Linear Reward-Inaction (LRI)-like schemes, can be explained
by their ability to pursue the actions with the highest reward probability estimates.
Without access to reward probability estimates, it makes sense for schemes like
the LRI to first make large exploring steps, and then to gradually turn exploration
into exploitation by making progressively smaller learning steps. However, this
behavior becomes counter-intuitive when pursuing actions based on their esti-
mated reward probabilities. Learning should then ideally proceed in progressively
larger steps, as the reward probability estimates turn more accurate. This paper
introduces a new estimator algorithm, the Discretized Bayesian Pursuit Algorithm
(DBPA), that achieves this. The DBPA is implemented by linearly discretizing the
action probability space of the Bayesian Pursuit Algorithm (BPA) [1]. The key
innovation is that the linear discrete updating rules mitigate the counter-intuitive
behavior of the corresponding linear continuous updating rules, by augmenting
them with the reward probability estimates. Extensive experimental results show
the superiority of DBPA over previous estimator algorithms. Indeed, the DBPA
is probably the fastest reported LA to date.

Keywords: Learning Automata, Pursuit Schemes, Bayesian Reasoning, Estima-
tor Algorithms, Discretized Learning.

1 Introduction

Learning Automata (LA) have been widely studied as a “bare bones” model of rein-
forcement learning. The fastest LA algorithms to date are members of the family of
estimator algorithms, initially pioneered by the Pursuit Algorithm (PA) [2], and more
recently by the Bayesian Pursuit Algorithm (BPA) [1]. Both PA and BPA pursue the ac-
tion currently perceived to be the optimal one. The main difference lies in the strategy
used in inferring which action is to be considered “optimal”. Whereas the PA maintains
Maximum Likelihood (ML) estimates to decide which action is currently the best, the
BPA utilizes a Bayesian method to achieve a superior estimation. By providing opti-
mistic reward probability estimates, the latter estimation approach leads learning in a
relatively “more correct” direction, thus making the learning converge faster. In this pa-
per, we present a new algorithm – the Discretized Bayesian Pursuit Algorithm (DBPA),
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which is implemented by linearly discretizing the action probability space of the BPA.
To the best of our knowledge, DBPA is the fastest reported LA to date.

1.1 Learning Automata and Their Applications

A Learning Automaton (LA) is an adaptive decision-making unit that learns the best ac-
tion out of a set of actions, offered by an environment. At each iteration, the LA chooses
one action, which is either rewarded or penalized by the environment as a response. The
response, in turn, affects which action the LA chooses in the next iteration. The optimal
action is defined as the one with the highest probability of being rewarded.

The beauty of an LA is that it learns the optimal action through interaction with the
environment, without any prior knowledge about it. The environment can be treated as
a “black box”. Indeed, independent of the intricacies exhibited by the behavior of the
environment, the LA, considering only the responses it receives, learns to choose the
best action, and adapts itself to the environment.

Learning criteria for evaluating an LA involve two basic aspects. The first of these
is its accuracy, i.e., to what degree the LA is able to adapt itself to the optimal action.
The other is its rate of convergence, i.e., how much time it takes for the LA to con-
verge. In the pursuit of designing accurate and fast LA, a number of algorithms have
been both proposed and studied. Initial LA, which had time invariant transition and de-
cision functions are considered to be Fixed Structure Stochastic Automata (FSSA). The
Tsetlin, Krylov and Krinsky automata [3] are the most notable examples of this type.
Later, Variable Structure Stochastic Automata (VSSA) were developed, which can be
completely characterized by the function that updates the probability of choosing the ac-
tions [3]. Earlier representatives of this type include the Linear Reward-Penalty (LR−P)
scheme, the Linear Reward-Inaction (LR−I) scheme and Linear Inaction-Penalty (LI−P)
scheme [3]. Of these, the LR−I scheme is the most accurate and the fastest, as it favors
rewards over penalties. Thathachar and Sastry [2] were the first to introduce the con-
cept of Pursuit Algorithms (PA), initiating the research on estimator algorithms. As an
estimator algorithm, the PA utilizes the Maximum Likelihood (ML) method for esti-
mating the reward probabilities. More recently, in [4], Granmo presented the Bayesian
Learning Automata (BLA), which uses Bayesian reward probability estimation, and
subsequently bases its exploration on the Thompson sampling principle [5]. Inspired
by the performance benefits of the BLA and the PA, the Bayesian Pursuit Algorithm
(BPA) was proposed in [1], following the concept of pursuing the currently-estimated
best action, while utilizing Bayesian principles in the estimation itself. In the majority of
environments in which LA were tested, the BPA outperformed its previous competitors.

LA have found applications in a variety of fields. They have been used in game
playing [6,7], parameter optimization [8,9], vehicle path control [10], channel selection
in cognitive radio networks [11], assigning capacities in prioritized networks [12], and
resource allocation [13]. LA have also been used in natural language processing, string
taxonomy [14], graph patitioning [15], and map learning [16].

1.2 Contributions and Paper Organization

In this paper, we propose a new LA algorithm, namely, the Discretized Bayesian Pur-
suit Algorithm (DBPA). Firstly, the DBPA maintains an action probability vector for
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selecting actions. Secondly, it follows the concept of pursuing the action currently in-
ferred to be the “best” . Thirdly, at any time instant, the DBPA uses Bayesian estimates
to infer which action is the best. Finally, the DBPA updates its action probability vector
according to linear discretized rules. In DBPA, the combination of Bayesian estimation
for reward probabilities augmented with linear discretized updates makes learning con-
verge approximately 20% faster than the previously-recorded algorithms including the
BPA, as our extensive experimental results demonstrate.

As opposed to our previous paper on the BPA [1], this present paper also analyzes
the performance of the BPA in a stricter and more challenging manner, namely, by com-
paring the performance of the BPA and the PA under their individual optimal learning
rates. The advantage of the BPA over the PA thus becomes more evident and persuasive.

The key innovation of this paper is that it points out the incongruity existing in con-
tinuous estimator algorithms. Typically, in estimator algorithms, since the estimation of
the reward probability is less accurate initially, large changes in the action probabili-
ties at the beginning should be considered as unwise, and almost reckless. Besides, it
is also counter-intuitive and unnecessary to reduce the size of the learning steps as the
learning proceeds, since as this happens, the reward probability estimates also get more
accurate. Unfortunately, continuous estimator algorithms, utilizing linear continuous
updating rules for the action probabilities, operate exactly in this manner. The DBPA,
on the other hand, uses linear discretized updating rules to mitigate this incongruity.

The paper is organized as follows. In Section 2, we give an overview of the PA,
DPA and BPA, as they are the most related algorithms from the family of estimator
algorithms. In Section 3, we analyze the incongruity existing in continuous estimator
algorithms, and then present the new LA algorithm - the Discretized Bayesian Pursuit
- by discretizing the probability space of the BPA. Section 4 provides extensive exper-
imental results showing the advantages of the DBPA over the BPA, and demonstrates
that the BPA is truly superior to PA under their individual optimal learning rates. Finally,
Section 5, reports opportunities for further research and submits concluding remarks.

2 Related Work

In this section, we briefly review three typical algorithms from the family of estima-
tor algorithms, namely, the Pursuit Algorithm (PA), the Discretized Pursuit Algorithm
(DPA), and the Bayesian Pursuit Algorithm (BPA).

The PA, DPA and BPA share a common “pursuit” paradigm of learning – in each it-
eration, they pursue the action currently perceived to be optimal. Firstly, they maintain
an action selection probability vector P = [p1, p2, ..., pr], with ∑r

i=1 pi = 1 and r being
the number of actions. The question of which action is to be selected is decided by
sampling from P, which is, initially, uniform. Secondly, they maintain a reward prob-
ability estimate vector D̂ = [d̂1, d̂2, ..., d̂r], with d̂i (i = 1,2, ...,r) being the estimate of
the reward probability for Action i. D̂ is updated each time an action is selected and
a response of either a reward or a penalty is received. At each iteration, the LA treats
the action currently possessing the highest reward probability estimate d̂ as the opti-
mal one. Finally, based on the inference of the optimal-action and the response from
the environment, these LA update the action probability vector P according to a Linear
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Reward-Inaction rule [3]. The result is that the action selection probability of the op-
timal action increases and the other action probabilities decrease. The updated action
selection probabilities, P, thus come into effect in the next round of action selection.
Subtle differences between the PA, DPA and BPA result in fine performance benefits.

Pursuit Algorithm: The PA utilizes the Maximum Likelihood (ML) method to estimate
the reward probability of each action. The ML reward probability estimate d̂i can be
calculated as d̂i = Wi

Zi
, with Zi being the number of times Action i has been selected, and

Wi the number of times Action i has been rewarded.
The PA updates the action probabilities according to the linear continuous rules:

– If selecting an action results in a reward:
p j = (1−λ)× p j , j �= i
pi = 1− ∑

j �=i
p j, where i is the index of the action with the largest element in D̂.

– If selecting an action results in a penalty: ∀ j, p j = p j .

Discretized Pursuit Algorithm: The DPA is implemented by following the paradigm
of the PA with the action probability space being discretized. If we denote the distance
between two neighbor states as δ, the DPA updates the {pi} as per the discretized rules:

– If selecting an action results in a reward:
p j = max{p j −δ,0}, j �= i
pi = 1− ∑

j �=i
p j, where i is the index of the action with the greatest element in D̂.

– If selecting an action results in a penalty: ∀ j, p j = p j .

Bayesian Pursuit Algorithm: The BPA also follows the paradigm of a general PA.
However, as opposed to using the ML estimates as in the PA, the BPA utilizes Bayesian
estimates for reward probability estimation. The Bayesian estimation is based on the
Beta Distribution, which is the conjugate prior for the Bernoulli distribution. A 95%
percentile value of the posterior is chosen as the appropriate estimate. The latter is
calculated by means of the respective cumulative distribution F(xi;a,b):

F(xi;a,b) =
∫ xi

0 va−1 (1−v)b−1 dv
∫ 1

0 ua−1(1−u)b−1 du
, xi ∈ [0,1]. (1)

where a and b are two positive parameters determining the shape of Beta Distribution.
By virtue of the Beta Distribution, the Bayesian estimation is implemented in a com-

putationally simple way.

3 Discretized Bayesian Pursuit Algorithm

The initial motivation for discretizing LA was to increase their rate of convergence and
to avoid the need for generating real numbers with arbitrary precision [17]. In continu-
ous algorithms, since the action probability is updated by multiplying a constant 1−λ,
the probability of selecting the optimal action can only be approached asymptotically to
unity, but never be actually attained. However, in discrete algorithms, a minimum step
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size is obtained by discretizing the probability space, and the updating of the action
selection probabilities is achieved by subtracting or adding one or a multiple of the step
size. If the automaton is close to the end state, the probability of the optimal action will
be increased directly to unity with a few more favorable responses.

In this paper, we state another important reason for discretizing estimator algorithms.
As can be readily understood, in the early learning period, the reward probabilities will
be inaccurate due to the small number of samples available. As learning proceeds, how-
ever, the number of samples increases, and hence the reward probability estimates be-
come progressively more accurate. Thus, it is unwise to make large action selection
probability changes initially, and correspondingly counter-intuitive to update the action
selection probabilities with smaller and smaller increments, as more samples are ob-
tained. Unfortunately, in continuous algorithms, action selection probabilities are up-
dated exactly in this non-intuitive manner. Indeed, the size of the update increments
varies with the action selection probability vector itself, tending to be greater earlier
on, and smaller as the learning progresses. In other words, when the estimation of the
reward probabilities cannot reliably discriminate between the actions, “large” changes
are made to the action selection probabilities, causing the algorithm to be affected by a
“gravitational” pull towards an inferior action. This is tacitly caused by the action selec-
tion mechanism, since large action selection probabilities translate into biases towards
the corresponding actions. The LA can thus either fail to converge to the best action or
invest effort into pursuing an incorrect action, leading to a reduced convergence rate.

Discretized LA are characterized by their discrete action probability space. They are
linear if the probability values are spaced equally in the interval [0,1], otherwise, they
are called nonlinear [18,19]. In this paper, we study linear discrete algorithms, where the
equally divided state space indicates that the change of action selection probabilities is a
fixed value. When one compares the “large-to-small” changes in continuous algorithms,
the fixed-value of the changes in discrete algorithms are more reasonable as per the
accuracy of estimating the reward probabilities.

With the above reasoning in mind, we improve the latest estimator algorithm – the
Bayesian Pursuit Algorithm – by discretizing its action probability space. The new al-
gorithm, given below, is the Discretized Bayesian Pursuit Algorithm (DBPA).

Algorithm: DBPA
Parameters:
α: The action selected by LA.
pi: The ith element of the action selection probability vector, P.
ai,bi: The two positive parameters of the Beta distribution for Action i.
d̂i: The ith element of the Bayesian estimates vector D̂, given by the 95% upper bound of the
cumulative distribution function of the corresponding Beta distribution.
m: The index of the maximal component of the reward probability estimates vector D̂.
R: The response from the environment, where R = 0 (reward) or R = 1 (penalty).
δ: The minimum step size.

Initialization:
1. pi(t) = 1/r, where r is the number of actions.
2. Set ai = bi = 1. Initialize ai and bi, by doing Step 1 and Step 2 in “Method” below a small
number of times. (i.e., in this paper 10∗ r times).
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Method:
For t:=1 to N Do

1. Pick α(t) randomly as per the action selection probability vector P(t). Suppose α(t) = αi.
2. Based on the Bayesian nature of the conjugate distributions, update ai(t) and bi(t) according

to the response from the environment:
If R(t) = 0 Then ai(t) = ai(t −1)+1;bi(t) = bi(t −1);
Else ai(t) = ai(t −1);bi(t) = bi(t −1)+1;

3. Identify the upper 95% reward probability bound of d̂i(t) for each action i as:
∫ d̂i(t)

0 v(ai−1)(1−v)(bi−1)dv
∫ 1

0 u(ai−1)(1−u)(bi−1)du
= 0.95

4. Update the action selection probability vector P(t + 1) according to the following linear
discretized rule:
If R(t) = 0 Then
p j(t +1) = max{p j(t)−δ,0}, j �= m
pm(t +1) = 1− ∑

j �=m
p j(t +1).

Else
P(t +1) = P(t).

End Algorithm: DBPA

Briefly speaking, the DBPA maintains an action probability vector P for selecting ac-
tions, runs Bayesian reward probability estimates to determine the current best action,
and updates the action probabilities as per linear discretized rules. The combination of
Bayesian estimation and linear discretized updating rules allow the LA to converge in a
relatively more correct direction, and thus, achieve a higher rate of convergence.

4 Experimental Results and Analysis

In this section, we evaluate the computational efficiency of the DBPA by comparing it
with the latest estimator algorithm, the BPA, as well as the PA and the DPA mentioned
in Section 2. The computational efficiency is characterized by the rate of convergence,
i.e., the average number of iterations it takes for an algorithm to converge to the op-
timal action. Extensive experiments have been conducted based on the experimental
configurations listed in Table 1.

4.1 Experiment Design

In the experiments considered, Configurations 1, 4 and 7 form the simplest environ-
ments, possessing a low reward variance and a large difference between the reward
probabilities of the actions. By reducing the differences between the actions, we in-
crease the learning difficulty of the environment. Configurations 2, 5 and 8 achieve this
task. The challenge of Configurations 3, 6 and 9 is their high variance combined with
the small differences between the actions.

In order to evaluate the algorithms under fair conditions, the experiments were de-
signed by considering the following:

1. To keep the conditions identical, each algorithm sampled all actions ten times each in order
to initialize the estimate vector. These extra iterations are also included in the results.

2. As each of the four algorithms depends on an external learning rate, the optimal learning rate
has to be found for each algorithm.
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3. In each learning experiment, the LA is considered to have converged if the probability of
selecting an action is greater than or equal to the threshold 0.999. If the LA converges to the
best action, it is considered to have converged correctly.

4. For each algorithm, in each configuration, 750 independent learning experiments were con-
ducted. The optimal learning rate λ or δ is the largest one that achieves 100% accuracy, i.e.,
all the 750 experiments converge correctly.

5. For these configurations, an ensemble of 100 independent replications with different random
number streams was performed to minimize the variance of the optimal learning rate.

6. The algorithms were compared with each other as per their individual optimal learning rates.

Table 1. Bernoulli distributed rewards used in 2-action, 4-action and 10-action configurations

Config./Actions 1 2 3 4 5 6 7 8 9 10
1 0.90 0.60 - - - - - - - -
2 0.90 0.80 - - - - - - - -
3 0.55 0.45 - - - - - - - -
4 0.90 0.60 0.60 0.60 - - - - - -
5 0.90 0.80 0.80 0.80 - - - - - -
6 0.55 0.45 0.45 0.45 - - - - - -
7 0.90 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
8 0.90 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
9 0.55 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

4.2 Experimental Results

Table 2 represents the average number of iterations that each algorithm required to con-
verge to the best action in 2-action, 4-action and 10-action configurations, respectively.

Table 2. The average number of iterations for the LA to converge in different configurations

Conf./Alg. PA DPA BPA DBPA

Conf. 1 76.6040 61.0680 52.7465 54.0889
Conf. 2 891.2050 454.1912 491.1346 361.8910
Conf. 3 1890.3317 929.5736 1007.0200 699.3099
Conf. 4 165.3456 122.4167 110.3835 98.2777
Conf. 5 2110.6593 1042.7655 981.5411 693.5873
Conf. 6 4487.0094 2238.2541 2072.5094 1401.9219
Conf. 7 479.1508 517.0978 465.7514 510.9999
Conf. 8 6138.0661 3601.4218 3248.8014 2711.5099
Conf. 9 13154.1980 7553.5158 5860.3236 4998.4137

As can be seen from the table, in the simplest configurations of Configurations 1, 4
and 7, the discretized algorithms do not necessarily outperform their continuous coun-
terparts. For example, on the average, the DBPA spent 54 steps to converge to the best
action, while the BPA spent only 52 steps. At the same time, it took, on average, 76 steps
for the PA to converge correctly, while only 61 steps it took for the DPA to achieve its
goal. Besides, discrete algorithms get better results than their continuous counterparts
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in 4-action configurations, but in 10-action configurations, continuous algorithms out-
perform the discrete algorithms. This can be explained by the simplicity of the learning
problems associated with the environments. Due to the combination of a low reward
variance and a large difference between the reward probabilities of the actions, both
ML estimates and Bayesian estimates are able to provide good estimates for the re-
ward probabilities. Therefore, the fixed change in the action probabilities in discrete
algorithms yields no evident advantage over the great-to-small changes of action prob-
ability in continuous algorithms, and thus the performance of the discrete algorithms is
similar to that of their continuous counterparts. Thus, by virtue of the simplicity of the
environment, all the four algorithms converge to the best action very quickly.

As a result of the above, our focus is on the relatively more difficult configurations,
namely, Configurations 2, 3, 5, 6, 8 and 9. The results in Table 2 show that the DBPA
is 26% faster than the BPA in Configuration 2, and 31% faster in Configuration 3. For
example, in Configuration 2, the DBPA converges, on the average, in 362 steps, and the
BPA needs 491 steps, on average, to converge, which shows an improvement of 26%.
In Configuration 3, the DBPA requires, on average, 699 steps for convergence while the
BPA requires 1007 steps. The improvement is remarkable, i.e., 31%.

Similarly, the results in Table 2 also present the improvement of the DBPA over the
BPA being up to 29% in Configuration 5, 32% in Configuration 6, 17% in Configuration
8 and 15% in Configuration 9. The superiority of the DBPA to its counterpart is clear!

One can also observe that the DPA is obviously faster than the PA in these configu-
rations. If we denote the advantage of the DPA over PA by Δ1 and the advantage of the
DBPA over the BPA by Δ2, the comparison of Δ1 and Δ2 is shown in Fig. 1(a).
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Fig. 1. The relative improvements of different algorithms

As the reader will observe, Δ1 is consistently greater than Δ2 in these configurations.
The results are consistent with our statement in Section 3: In estimator algorithms, when
the estimation of the reward probabilities is not accurate enough, updating the action
probability in a linear discretized manner will be superior than in a linear continuous
manner. The reason is as follows. As compared with Bayesian estimates, the PA uses the
less accurate ML estimates for the reward probabilities. Therefore, the linear continuous
manner of updating action probabilities in the PA is more likely to lead the learning into
a wrong direction, resulting in postponed correct convergence. The DPA, on the other
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hand, with its linearly discretized action probability space, mitigates the problem caused
by linear continuous action probability updating. However, in the BPA, as the Bayesian
estimates already are able to provide relatively accurate reward probability estimates,
the improvement by discretizing its action probability space becomes less significant.

In order to evaluate the four estimator algorithms in a comprehensive manner, we set
the performance of the PA as a benchmark, and compared their individual performance
to the PA. Fig. 1(b) demonstrates the performance of the algorithms relative to the PA,
where Δ3 and Δ4 represent the advantages of the BPA and the DBPA over the PA.

The result of Δ3 shows clearly that the BPA is superior to the PA, being approxi-
mately 50% faster than the latter. The improvement is by virtue of the superiority of
Bayesian estimation to ML estimation. The results demonstrated in Fig. 1(b) also show
that the DBPA is the best algorithm among the four estimator algorithms, being ap-
proximately 60% faster than the PA. The improvement is due to the combination of
Bayesian estimation and the linearly discretized action probability space.

Based on the experimental results and analysis, we draw the following conclusions:

1. Considering the average number of steps required to attain the same accuracy of convergence
in the listed configurations, the Discretized Bayesian Pursuit Algorithm is the best algorithm
among the four estimator algorithms.

2. By evaluating the performance of the algorithms under their individual optimal learning
rates, the superiority of the Bayesian Pursuit Algorithm over the Pursuit Algorithm is evident
and persuasive.

3. In estimator algorithms, updating the action probabilities in a linear discretized manner is
more reasonable than in a linear continuous manner. The extensive experimental results war-
rant this assertion.

5 Conclusions and Future Work

LA have been studied for decades and a plenitude of algorithms have been proposed,
with the BPA being the most recent and fastest one. Although the BPA is superior to
previous estimator algorithms, its action selection probabilities are updated in a linear
continuous manner, which is counter-intuitive in the light of the demands for initial cau-
tion and later confidence, dictated by the accuracy of the reward probability estimates.

In this paper, we have introduced a new algorithm called the Discretized Bayesian
Pursuit Algorithm (DBPA). The DBPA is implemented by discretizing the action selec-
tion probabilities of the BPA. Since its estimation for reward probabilities is Bayesian,
and since it updates the action selection probabilities in discretized equal-sized steps,
more aligned with the accuracy of estimates, the DBPA is able to achieve an even higher
rate of convergence than the BPA.

This paper also presented a comprehensive comparison between the four estimator
algorithms. Besides, it evaluated the performance of the BPA by comparing it with the
PA under fair and reasonable conditions. The results confirm that while the BPA is
inferior to the DBPA, it is still superior to the PA. Thus, to the best of our knowledge,
the DBPA is the fastest reported LA to date.

A linearly discretized action selection probability space represents an intuitive man-
ner of mitigating the incongruity between linear continuous updating and the mecha-
nisms of reward probability estimation. However, the question of how to mitigate the
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incongruity to the largest extent, making updating rules work consistently with the es-
timation mechanism, remains open. Besides, introducing the state-of-the-art DBPA al-
gorithm to various fields of application also opens promising avenues of research.
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