
PMG-Pro: A Model-Driven Development

Method of Service-Based Applications

Selo Sulistyo and Andreas Prinz

Faculty of Engineering and Science, University of Agder,
Jon Lilletuns vei 9, N-4879 Grimstad, Norway

{selos,andreas.prinz}@uia.no

Abstract. In the Internet of Things, billions of networked and software-
driven devices will be connected to the Internet. They can communicate
and cooperate with each other to form a composite system. In this paper,
we propose PMG-pro (present, model, generate and provide), a language
independent, bottom-up and model-driven method for the development
of such composite system. We envision that all devices in the Internet
of Things provide their functionalities as services. From a service de-
scription, a service presenter generates source code (i.e., for the service
invocations) and uses an abstract graphical representation to represent
a service. The code is connected to the abstract graphical service repre-
sentation. A service abstractor constructs the abstract graphical repre-
sentations even more abstract in hierarchical service taxonomy. Software
developers use the abstract graphical service presentations to specify new
service-based applications, while the source code is used for the automa-
tion of code generation.

1 Introduction

Today’s Internet technology is mainly built for information sharing. Information
providers, which typically are implemented as servers, provide information in
the form of web pages that can be accessed by internet clients. In the Future
Internet [19], various independent networked computing devices from small de-
vices (mobile devices, embedded systems, etc) to powerful devices (desktops and
servers) may be easily connected to the Internet, in a plug and play manner.
These devices can communicate and cooperate with each other. The Internet of
Things is one of the popular terms illustrating the Future Internet.

From the software developer’s point of view, the ’Thing’ in the Internet of
Things can be seen as all kinds of networked devices that are driven and deliv-
ered by (embedded) software. Considering that the device’s functionalities are
provided as services, we will have billions of services in the Future Internet.
Composing these services is a challenge for the development of service-based
applications. Unfortunately, traditional software engineering approaches are not
fully appropriate for the development of service-based applications. There is an
urgent need for developing comprehensive engineering principles, methodologies
and tools support for the entire software development lifecycle of service-based

I. Ober and I. Ober (Eds.): SDL 2011, LNCS 7083, pp. 138–153, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

PMG-Pro: A Model-Driven Development Method 139

applications [24]. Within the European Community, composing services in the
Internet of Things has been proposed as one of the research agendas during
2010-2015 [1].

Model-driven development (MDD) is considered as a promising approach for
the development of software systems. With this approach, models are used to
specify, design, analyze, and verify software. It is expected that running systems
can be obtained from executable models. One approach is to transform models
into source code conforming to existing programming languages, such as Java and
C++ (i.e., code generation). A more distinct approach is model interpretation.
The transformation approach has several benefits, because the resulting code can
be easily inspected, debugged, optimized and becomes more efficient. In addition,
the generated implementation is easier to understand and can be checked by the
compiler.

However, fully-automated code generation is a difficult task. In the context
of the Model-driven Architecture (MDA) [16], unclear definitions of platform
models and also a big variability of device capabilities and configurations are two
reasons why it is difficult. If a fully-automated code generation can be achieved, it
is restricted only to a specific domain in the context of domain-specific modeling
(DSM). The automation in the DSM is possible because of domain-specificity
where both the modeling languages and code generators fit to the requirements
of a narrowly defined domain. In this paper we propose PMG-pro, a language-
independent, bottom-up and model-driven development method of service-based
applications. To achieve a fully-automated code generation, we adapt the DSM
concepts, where we construct models as a representation of real things.

The remainder of the paper is organized as follows: In Section 2 we present
a development scenario of a service-based application. Then, in Section 3 we
present the PMG-pro method. Based on the scenario, we illustrate the use of
PMG-pro. Section 4 is devoted to related work. Finally, we draw our conclusions
in Section 5.

2 Service-Based Applications: A Scenario

A typical example of an environment containing embedded services is a smart
home where a residential gateway is controlling and managing home devices with
embedded services. A smart home example was also used in [25] and [5]. In this
type of dwelling, it is possible to maintain control of doors and window shutters,
valves, security and surveillance systems, etc. It also includes the control of multi-
media devices that are parts of home entertainment systems. In this scenario,
the smart home is containing the following devices:

1. WeatherModules that provide different data collection services (i.e., air tem-
perature, solar radiation, wind speed, and humidity sensors).

2. Lamps that provide on-off and dimmer services.
3. Media Renderers that provide playing of multimedia services.
4. Virtual devices that provide sending e-mail services.

140 S. Sulistyo and A. Prinz

We consider that all the devices have been implemented their functionalities as
embedded services. Different open and standardized languages and technologies
may have been used to describe the services. For example, Universal Plug and
Play (UPnP) is one of the popular standards for describing embedded services
of home entertainment devices (e.g., media renderer). Other examples are Web
Services Description Language (WSDL) and Device Profile for Web Services
(DPWS). Based on these different embedded services, new applications can be
promoted. In this scenario, a new application is promoted with the following
new functionalities:

– the application is able to send notifications (e-mail) when the air temperature
from the WeatherModule is greater than 50◦C,

– it will play music/songs on the Media renderer when the light is turned on
and the solar radiation is below than 10, and

– the application provides two new UPnP services. The first service is to enable
a user to configure the song to be played for a specific weather condition,
while the second service is to get the configuration information.

3 The PMG-Pro Method

Different approaches can be used for developing the application scenario men-
tioned above, for example bottom-up and top-down development. Since embed-
ded services can be abstract (i.e., models) or concrete (i.e., real implementations
at run-time), the development of service-based applications can use both ap-
proaches. Bottom-up development approaches assume that all abstract services
have concrete services, while in top-down approaches abstract services may be
services that will be implemented in the future. Since we will use existing (i.e.,
implemented) embedded services, we consider that the bottom-up development
approaches are suitable for the development of service-based applications.

With regard to the software production, there are different approaches, which
focus on how to specify, design, implement, test, and deploy software systems.
They can be categorized as implementation- and model-oriented approaches.
The implementation-oriented approach focuses on the implementation. Although
there may exist design descriptions and models, they are not formal and are often
incomplete. In contrast, the model-oriented approach focuses on the descriptions
of the functionality or the properties of the system. These descriptions constitute
more or less formal models of the system and they can be verified, analyzed, and
understood independently of the implementation of the system.

PMG-pro combines bottom-up and model-driven development approaches to
promote a rapid and automatic development of service-based applications. As
it is indicated by the name, PMG-pro (Present, Model, Generate, and provide)
has four steps (i.e., presenting, modeling, generating, and providing). PMG-pro
combines the generating and providing as one step.

The PMG-pro architecture (see Fig. 1) consists of three main parts: the pre-
senter/abstractor that is used at the presenting step, the modeling editor that

PMG-Pro: A Model-Driven Development Method 141

Fig. 1. The PMG-pro Architecture

is used at the modeling step, and the code generator/provider that is used at
the generating/providing step. There is also a library that is used to store the
generated source code and service models at the presenting step. Each service
model (abstract) stored in the library binds to source code (concrete). Within
the DSM context, the generated service model represents a real thing as it has
been implemented (i.e., embedded services). At the modeling step, based on
the stored service models, developers can specify (i.e., produce) new models of
service-based applications using selected the modeling editor. At the generat-
ing step, referring to the library the models of a service-based application is
transformed to source code.

3.1 The Presenting Step

Specifying models of a service-based application is only possible if the models of
the included (i.e., existing) services are in place. The presentation step consists
of a transformation mechanism of service descriptions into graphical representa-
tions and source code. It involves re-engineering or reverse engineering processes.
For example, in the context of Web services, we can use WSDL2Java [8] to re-
engineer (WSDL) service descriptions into source code. The source code is used
as a proxy for service invocations to the concrete services that reside in service
providers. The graphical representation will be used by the developers in order
to be able to work in a model-driven fashion.

From a service description (s), the abstractor/presenter generates a graphi-
cal service model (Ms) conforming to a selected modeling language and source
code (Cs) conforming to a selected programming language. To automate the
transformation process, existing service frameworks and APIs (e.g., the Web
Service framework and API) are used. PMG-pro uses Cyberlink for Java for

142 S. Sulistyo and A. Prinz

the UPnP services [12], WS4d [6] for the DPWS services, and WSDL2Java(Axis)
[8] for the Web services. Obviously, this can be extended for other service frame-
works and APIs.

Depending on the selected modeling language, different graphical representa-
tions (i.e., notations) can be used to represent the existing services. UML classes,
CORBA components, Participants in SoaML, or SCA components are among
them. However, it must be noted that within the context of domain-specific
modeling (DSM), a graphical representation must relate to a real thing which in
this case is the implementation of the service. Therefore, it is important to keep
the relation (bindings) between graphical representations (i.e. service models)
and source code (i.e. implementation for the service invocations). Fig. 2 shows
the relation between a service description, its model, and source code.

Fig. 2. The relation between a service description, its model and source code

Different service frameworks and APIs have been developed using different
programming languages and run on different platforms, helping developers to
implement services. For example, in the Web services context there are Apache
Axis (Java and C++), appRain (PHP), .NET Framework (C#, VB and .NET),
etc. Therefore, a graphical representation of a service may have several imple-
mentations (i.e., source code). This source code may also use different program-
ming languages and may run on different platforms. Thus, the 1..1 relation
(model-source code) in Fig. 2 can be a 1..* relation.

A Common Service Model. Different standards and technologies may be
used to describe services, although they have similar functionalities. In PMG-
pro, from a service description pair of source code and graphical representation
is generated. For similar services, there will be a common service model. An
example of a common service model is shown in Fig. 3. The figure shows three
different services that provide similar functionalities, but they use different stan-
dards and technologies for describing their services. The UPnP Lamp service and
the UPnP Light use UPnP schema to describe services while the DPWS Lamp
uses DPWS to describe the service. However, all lamp services provide func-
tionalities to switch ON-OFF the light even though they use different operation
names. From these different service models a common model for the Lamp ser-
vices which has ON and OFF functionalities can be constructed.

PMG-Pro: A Model-Driven Development Method 143

Fig. 3. A platform independent service models and its code

Listing 1.1. Lamp Code
pub l i c c l a s s Lamp {
. . .
pub l i c void Lamp(){
UPnP Lamp upnp lamp= new UPnP Lamp () ;
UPnP Light upnp l ight=new UPnP Light () ;
DPWS Lamp dpws lamp = new DPWS Lamp() ;
}

pub l i c void ON (S t r i ng s e l e c t e dS e r v i c e){
i f (s e l e c t e d S e r v i c e . equa l s IgnoreCase (”UPnP Lamp”)) {

upnp lamp . SetTarget (t rue) ;
} e l s e i f (s e l e c t ed S e r v i c e . equa l s IgnoreCase (”UPnP Light ”)) {

upnp l ight .ON() ;
} e l s e i f (s e l e c t e d S e r v i c e . equa l s IgnoreCase (”DPWS Lamp”)) {

dpws lamp . SwitchON() ;
}

pub l i c void OFF (S t r i ng s e l e c t e dS e r v i c e){
i f (s e l e c t ed S e r v i c e . equa l s IgnoreCase (”UPnP Lamp”)) {

upnp lamp . se tTarget (f a l s e) ;

.
}

144 S. Sulistyo and A. Prinz

A common service model can be seen as a platform-independent model. In
PMG-pro, a common service model binds also to source code or a script. The
script provides information about what possible source code can be used at the
code generation step. Listing 1.1 code above illustrates an example of source
code of the common service model for the Lamp service. This is just an example
to illustrate the idea of platform-independent service models. The use of scripts
will facilitate the realization of the idea. Moreover, at the moment, the example
is a manual implementation of an old feature provided by object languages, the
polymorphism.

Service Taxonomy and Ontology. In general, taxonomy can be defined as a
classification of things, as well as the principles underlying such a classification.
A hierarchical taxonomy is a tree structure of classifications for a given set of
things. On the other hand, ontology is a data model that represents a set of
concepts within a domain and the relationships among the concepts. A common
service ontology and taxonomy enables us to identify the common characteristics
of services that fall into a particular category. In the context of service-oriented
architectures (SOA), the service taxonomy introduced in [4] is an example service
categorization. In [4], services are categorized as Bus Services (Communication
Services and Utility Services) and Application Services (Entity Services, Capa-
bility Services and Activity Services, and Process Services).

Fig. 4. Taxonomy of service models

In PMG-pro, the hierarchy of service models is stored (at the moment man-
ually) in the service library. For automatic generation of the hierarchy the ser-
vice description must contain enough information for the service categorization.

PMG-Pro: A Model-Driven Development Method 145

Categorization enables with the manageability of services, which can help with
the discoverability for code generation.

Fig. 4 shows an example of service taxonomy in a smart home domain, where
different implementations of MediaRenderer services (e.g. UPnP and DPWS)
are categorized under the MediaRenderer services, Entertainment Services,
and Smart home services, respectively. All MediaRenderer services at level 0
of the hierarchy have graphical representation (with <<PSM>> stereotype) and
source code (with <<code>> stereotype). MediaRenderer services at level 1 of
the hierarchy are defined as a common model to represent all media renderer
services at level 0. Accordingly, the Lamp services have a similar hierarchy. It
should be noted that all the service models at any level of the hierarchy finally
relate to source code.

At level 1 and above, there is a similar relation between model and code.
The service models at level 1 and above are platform-independent models and
denoted with <<PIM_level_n>>. At a very high level of the hierarchy it would
be kind of a script that contains information about possible target platforms
that can be used in the code generation step.

An Example: Arctis Building Blocks. In this case study we use Arctis.
Arctis [13] is a modeling editor that uses a building block as a basic entity. Ob-
viously, different modeling editor and tools can be used. For this purpose, we
have developed a service abstractor/presenter that is able to transform UPnP
service descriptions into Arctis building blocks and its connected source code
(Java class). An Arctis building block is considered as an encapsulation of ac-
tivities which can be accessed through its ports. In this case, one building block
can be used to represents several services.

Table 1. Transformation rules between UPnP and Arctis Building Block

UPnP Arctis Building Block

Device name Building block name

Action Parameter input

Action argument Parameter type (input)

State variable Parameter output

Type of state variable Parameter type

A UPnP device has two kinds of descriptions; device description and service
description. A UPnP device can have several services that are in a UPnP service
description called Actions. To automate this step we use transformation rules.
Table 1 shows transformation rules to transform different properties in a UPnP
service description into properties in an Arctis building block. To construct the
transformation rules, both Arctis and UPnP meta-models are required. However,
the rules are very simple. For example, to present the name of the building
block, we use the name of the UPnP device. Obviously, other XML-based service
descriptions (e.g., WSDL, DPWS) will use a similar process.

146 S. Sulistyo and A. Prinz

In Fig. 5, three building blocks (i.e., WeatherModule, Lamp and MediaRen-
derer) representing services are shown. Each of these building blocks has source
code (a Java class for service invocations). Obviously, other programming lan-
guages can also be used. After all service descriptions are transformed into graph-
ical service models the modeling step can be started.

3.2 The Modeling Step

In software development, models are used to describe the structures and the
behaviors of the software systems. The structure specifies what the instances of
the model are; it identifies the meaningful components of the model construct
and relates them to each other. The behavioral model emphasizes the dynamic
behavior of a system, which can essentially be expressed in three different types
of behavioral models; interaction diagrams, activity diagrams, and state machine
diagrams. We use interaction diagrams to specify in which manner the instances
of model elements interact with each other(roles).

Even though for model-driven development, state-machine diagrams are con-
sidered as the most executable models, we are still interested in using UML
activity diagram and collaboration diagram. The reason is that from activity
diagrams we can generate state machine diagrams [14]. The UML activity dia-
grams are used mostly to model data/object flow systems that are a common
pattern in models. The activity diagram is also good to model the behavior of
systems which do not heavily depend on external events.

PMG-pro is a language-independent method. It is possible to use different
existing modeling languages and different modeling editors. This is done by
developing and implementing different service abstractors/presenters. The re-
quirement is that the presenter must generate notations (i.e., abstract service
models) that conform to the chosen modeling languages. Using the abstract ser-
vice models (Ms1,Ms2, ...,Msk), a service-based application can be expressed
in a composition function f{Ms1,Ms2, ...,Msk}, where s1..sk are the included
services in the service-based application.

To demostrate the language-independent feature, we have developed proto-
types (i.e., service abstractor/presenter) that supports Arctis [13] and Rational
Rose [20]. Using Arctis, behaviors of a service-based application are modeled
using collaboration activity diagrams while using UML (Rational Rose), the be-
haviors are modeled using sequence diagrams. Obviously, the semantics of the
language follows the chosen modeling languages.

An Example: Collaboration Activities in Arctis. Using the service tax-
onomy (see Fig. 4), it would be possible for the modelers to model new service-
based applications using service models at any level of hierarchy. The higher the
level of hierarchy the more platform-independent the models would be. By high-
level models, we mean models of service-based applications that are built using
platform-independent service models at level 1 and above of the hierarchy in the
service taxonomy. From high-level models of service-based applications different

PMG-Pro: A Model-Driven Development Method 147

source code can be generated. Obviously, it will be limited by the number of
source code binds to the service models that are stored in the service library.

Using Arctis, a service-based application can be specified as a building block
diagram. The behavior of the new service-based application is defined by interac-
tions between building blocks, which are in this case defined using activity nodes
defined in UML 2.0. Accordingly, the semantic follows the semantic of UML 2.0
activity diagrams. Fig. 5 shows an Arctis model of the service-based application
defined in the scenario. There are four building blocks that represent different
existing services mentioned in the scenario. In this model, the service models are
taken from the level 1 of the service hierarchy (see Fig. 4). This means that they
may have several different implementations.

Fig. 5. The Arctis model of the new application

In Arctis, a service-based application can be, again, encapsulated and pre-
sented as a new building block. This allows us to model the new provided ser-
vices defined in the scenario. As defined in the scenario the new service-based
application will provide two new services (i.e., SettingService and GetConfigu-
ration Service). In Arctis, this can be specified by defining new parameters (i.e.,
ports). Obviously, this new building block can be used to build a new building
block diagram as new specification of a software system. This is the way how an
incremental development of a large application can be done in Arctis.

148 S. Sulistyo and A. Prinz

3.3 The Automated Code Generation Step

For model execution, we use code generation approaches instead of model in-
terpretations. For this, we did not use any transformation language to generate
code, but a Java program to transform models into texts (i.e., source code). At
the moment, the program can only read collaboration activity diagrams (i.e.,
Arctis diagrams) and sequence diagrams (i.e., UML sequence diagrams). The
potential code generation from activity diagrams was studied in [3] and [7]. For
a tool, Enterprise Architect from Sparx Systems [21] is an example for modeling
tools that support code generation from activity diagrams.

The code generation process of a service-based application can be expressed as
a generation function g[f {Ms1,Ms2, ..,Msk} ,Cs1..sk, dev info] ⇒ code, where
f {Ms1,Ms2, ..,Msk} is the model of the service-based application, s1, s2 .. sk
are the included services, Cs1..sk are the connected code of the used service mod-
els (Ms1..sk), and dev info is the given device information (i.e., the capability
and configuration information).

Configuration and Capability Matching. In the context of MDA, differ-
ent target platforms require different tailored code. In the context of embedded
systems, the terms of device capability and configuration are often used instead
of platforms. Device capability and configuration introduce problems for code
generation even within the same device capability. For example, it can occur the
development of mobile applications. In this case, it can happen that a working
source code for one specific mobile phone will not work on another one of the
same type. For instance, this can be caused by a difference in the user configu-
rations (e.g. memory size) or/and in the device capabilities (e.g., the resolution
of camera).

Services in a service-based application environment are considered being pro-
vided by third parties; therefore they can easily come and go. It would be very
possible that included services are not available when a service-based applica-
tion is implemented, deployed, and run. To solve the problem, two solutions are
possible. The first is to generate code for possible aggregated services in the on-
tology. All possible device configurations would also support run-time adaptation
in case of services are removed or new services appear.

The second possible solution is to generate code only for the present (specific)
services. This solution requires information about what devices are available at
runtime. This means code cannot be generated before the platform is used, which
essentially means on-demand code generation.

An Example: From Arctis models to Code. To illustrate the code genera-
tion in PMG-pro, we use the Java programming language. To generate code from
the structure the block diagram and building blocks are used. From a building
block diagram the main application (class) is generated. The name of the class
is defined using the name of the building block diagram.

PMG-Pro: A Model-Driven Development Method 149

From each building block, one object is instantiated. Since the building blocks
in this scenario are platform independent, the objects to be instantiated are
depending on the platform selection. Listing 1.2 shows an example of the gen-
erated code when the UPnP platform is selected at the generating step. Only
classes that implement UPnP services are instantiated. Get and Set methods
are generated for all the introduced variables.

Listing 1.2. New Composite Service

pub l i c c l a s s New Composite Service {

pr i va t e UPnP MediaRenderer c0 ;
p r i va t e SendMail c1 ;
p r i va t e UPnPWeatherModule c2 ;
p r i va t e UPnP Lamp c3 ;
MusicTrackNumber in t ;
SensorTresholdAT double ;
SensorTresholdSR double ;

pub l i c New Composite Service () {
// main behav ior

}

pub l i c void setMusicTrackNumber (i n t number){
t h i s . MusicTrackNumber=number ;

}

pub l i c void setSensorTresholdAT(double sensorTresholdAT){
t h i s . SensorTresholdAT=sensorTresholdAT ;

}

pub l i c void setSensorTresholdSR (double sensorTresholdSR){
t h i s . SensorTresholdSR=sensorTresholdSR ;

}

pub l i c i n t getMusicTrackNumber (){
re turn t h i s . MusicTrackNumber ;
}

.

pub l i c s t a t i c void main (S t r i ng [] orgs){
new New Composite Service () ;

}
}

Code from the behavior parts is taken from the activity nodes. For this we
adapt the generation method presented in [3]. With regard to their method,
an Arctis building block can be considered as an entity that executes an exter-
nal action. For example, for the decision node (i.e., the decision node with the
airtemperature input) the following code is produces.

150 S. Sulistyo and A. Prinz

Listing 1.3. An example of code for the behavior part

i f (c2 . a i r temperature >= SensorTresholdAT) {
c2 . msgg=SetMessage () ;

}
e l s e

break ;

For the scenario example, two new services are provided as UPnP services.
For this, UPnP code must be added. We have implemented a code generator to
generate code for the application scenario. Fig. 6 is a screenshot of the running
UPnP services. We use deviceSpy software provided by Intel Tool for UPnP
technology [11]. It can be seen that the new application (composite service)
provides two UPnP services: GetConfiguration() and SettingService().

Fig. 6. The new composite service at run-time

4 Related Work

Service composition is gaining importance, as it can produce composite ser-
vices with features not present in the individual basic services. Several research
projects for promoting tools and methods have been conducted, for example the
SeCSE project [22]. One of the SeCSE goals is to create methods, tools, and
techniques to enable service integrators to develop service-centric applications.
The SODIUM [23] project focuses on the need for standards-based integration
of heterogeneous services. One thing that makes PMG-pro different from the
projects mentioned above is that, while they proposed new modeling languages
for the development of service-based applications, PMG-pro uses existing tech-
nologies (e.g., modeling languages). PMG-pro focuses on an automated abstrac-
tion/presentation of existing services. Depending on the abstractor/presenter,

PMG-Pro: A Model-Driven Development Method 151

any graphical presentation conforming to a modeling language can be used to
present a service. We construct platform information by maintaining the relation
between service models and their code (i.e., their real implementations).

The fact that different perspectives may have different definitions of a service,
the definition of service composition may also be different. PMG-pro considers
that a service is just a kind of software component model that has evolved from
the older software component models (i.e., modules, objects, and components).
Here, we use a definition of software component models, which is different from
the definition of standardized component models such as CORBA and DCOM.
With this definition, a services composition can be done in a similar way as a
composition of software units that normally is done at design-time using bottom-
up approaches. Thus, PMG-pro focuses on design-time compositions. However,
the PMG-pro method can be extended to support run-time compositions. Using
the PMG-pro method it would be possible to generate graphical service repre-
sentation that can be used by end-users (i.e., run-time composition). In the ISIS
project for example [26], ICE, an end-user composition, has been developed. A
service in ICE is presented as a puzzle with either one input (trigger) or one
output (action). By developing a service abstractor/presenter, ICE puzzles for
end-users and source code for implementing service invocations can be gener-
ated. The ICE puzzles then can be used by end-users to model the composition
(at run-time) while the source code is used by ICE to execute the composition.

For the composition of service component models (i.e., software units), com-
position techniques, and composition languages are required [2]. For the com-
position languages, there is no particular language that is supposed to be a
language for the service compositions. In Web service context, the Web Service
Business Process Execution Language (WS-BPEL) [18] and the Web Services
Choreography Description Language (WS-CDL) [9] can be considered as a com-
position language. Within the OMG context, the Service-oriented architecture
Modeling Language (SoaML) [17] is another example of composition languages.
Also in the Web services context, services orchestration and choreography are
well-known service composition techniques. In the context of Service Component
Architecture (SCA) [10], wiring can also be considered as a type of composition
techniques. For this reason, PMG-pro is language-independent. To show this fea-
ture, we support Arctis [13] by developing a presenter to present sevices using
building blocks. We also have developed a service presenter to present sevices
using UML classes in Rational Rose 2000.

Presenting software functionality into abstract graphical representation has
also been studied by other researchers. For example, in [15] UML is used to
model Web services. The main contributions of their method are conversion
rules between UML and web services described by WSDL. However, their work
focused only on Web services and did not think about how automated code
generation can be achieved. In [27], software components are visualized using
graphical notations that developers can easily understand. They use a picture of

152 S. Sulistyo and A. Prinz

a real device to present a software component. The integration is done by simply
connecting components graphically. Obviously, the approach is only applicable
for a specific domain. In contrast, PMG-pro is domain-independent.

5 Conclusion

In this paper, we propose PMG-pro, a language independent, bottom-up, and
model-driven method for the development of service-based applications. To en-
able the auotmation, the method adapts the concept of domain-specific lan-
guages. Based on the existing service frameworks, APIs, and service descriptions,
a service presenter and service abstractor captures platform knowledge statically
and presents services using abstract graphical representations. Different nota-
tions conforming to modeling languages can be used to represent the services.
Each of the generated abstract service model is connected to the code for the
service invocations. We use these pairs of code - abstract graphical as a platform-
specific model. Ontology is used to construct more abstract the platform models.
Service developers can use the abstract graphical service representation to model
new service-based applications.

For the code generation, information about the actual targeted platform is
required. We have shown two ways of using the constructed platform models.
Firstly, based on the information of the targeted platform, the code generator
uses the platform models to generate code tailored for the selected target plat-
form. Alternatively, the generated code includes code that contains a detection
mechanism to do necessary adaption at run-time. The fully automated code
generation is possible, since the service models are connected to code for imple-
menting the service invocations. Just like in domain-specific languages (DSM),
the service models are constructed using concepts that represent real things in
the application domain.

References

1. Rezafard, A., Vilmos, A., et al.: Internet of things: Strategic research roadmap
(2009)

2. Assmann, U.: Invasive software composition. Springer, Heidelberg (2003)

3. Bhattacharjee, A.K., Shyamasundar, R.K.: Validated code generation for activity
diagrams. In: Chakraborty, G. (ed.) ICDCIT 2005. LNCS, vol. 3816, pp. 508–521.
Springer, Heidelberg (2005)

4. Cohen, S.: Ontology and taxonomy of services in a service-oriented architecture.
MSDN Libary Infrastructure Architectures 11(11) (2007)

5. Coyle, L., Neely, S., Stevenson, G., Sullivan, M., Dobson, S., Nixon, P.: Sen-
sor fusion-based middleware for smart homes. International Journal of Assistive
Robotics and Mechatronics 8(2), 53–60 (2007)

6. Zeeb, E., Bobek, A., et al.: WS4D: SOA-Toolkits making embedded systems ready
for web services. In: Proceedings of Second International Workshop on Open Source
Software and Product Lines. ITEA, Limerick (2007)

PMG-Pro: A Model-Driven Development Method 153

7. Eshuis, R., Wieringa, R.: A formal semantics for uml activity diagrams - formalising
workflow models (2001)

8. Goodwill, J.: Apache Axis Live: A Web Services Tutorial, Sourcebeat (December
2004)

9. Diaz, G., Pardo, J.-J., Cambronero, M.-E., Valero, V., Cuartero, F.: Automatic
translation of ws-cdl choreographies to timed automata. In: Bravetti, M., Kloul,
L., Tennenholtz, M. (eds.) EPEW/WS-EM 2005. LNCS, vol. 3670, pp. 230–242.
Springer, Heidelberg (2005)

10. IBM. Service component architecture (November 2006),
http://www.ibm.com/developerworks/library/specification/ws-sca/

11. Jeronimo, M., Weast, J.: UPnP Design by Example: A Software Developer’s Guide
to Universal Plug and Play. Intel Press, Hillsboro (2003)

12. Konno, S.: Cyberlink for java programming guide v.1.3 (2005)
13. Kræmer, F.A.: Arctis and Ramses: Tool suites for rapid service engineering. In:

Proceedings of NIK 2007 (Norsk informatikkonferanse). Tapir Akademisk Forlag,
Oslo (2007)

14. Kræmer, F.A.: Engineering Reactive Systems: A Compositional and Model-Driven
Method Based on Collaborative Building Blocks. PhD thesis, Norwegian University
of Science and Technology, Trondheim (August 2008)

15. Grønmo, R., Skogan, D., Solheim, I., Oldevik, J.: Model-Driven web services devel-
opment. In: Proceedings of International Conference on e-Technology, e-Commerce,
and e-Services, pp. 42–45. IEEE Computer Society, USA (2004)

16. OMG. Model driven architecture guide, version 1.0.1, omg/03-06-01 (June 2003)
17. OMG. Service oriented architecture modeling language (SoaML): Specification for

the UML profile and metamodel for services, UPMS (2009)
18. Ouyang, C., Verbeek, E., van der Aalst, W.M.P., Breutel, S., Dumas, M., ter

Hofstede, A.H.M.: Formal semantics and analysis of control flow in WS-BPEL.
Science of Computer Programming 67(2-3), 162–198 (2007)

19. Papadimitriou, D.: Future internet: The cross-etp vision document. Technical Re-
port Version 1.0, European Future Internet Assembly, FIA (2009)

20. Quatrani, T.: Visual modeling with Rational Rose 2000 and UML, 2nd edn.
Addison-Wesley Longman Ltd., Essex (2000)

21. Sparx Systems. Enterprise architect,
http://www.sparxsystems.com/products/ea/index.html

22. The SeCSE Team: Designing and deploying service-centric systems: the secse way.
In: Proceedings of the Service Oriented Computing: a look at the Inside (SOC
@Inside 20 (2007)

23. Topouzidou, S.: Service oriented development in a unified framework (sodium).
Deliverable CD-JRA-1.1.2, SODIUM Consortium (May 2007)

24. van den Heuvel, W.-J., Zimmermann, O., et al.: Software service engineering:
Tenets and challenges. In: Proceedings of the 2009 ICSE Workshop on Principles of
Engineering Service Oriented Systems, PESOS 2009, pp. 26–33. IEEE Computer
Society, Washington, DC (2009)

25. Wu, C.-L., Liao, C.-F., Fu, L.-C.: Service-oriented smart-home architecture based
on OSGi and mobile-agent technology. IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, 193–205 (2007)

26. Su, X., Svendsen, R., et al.: Description of the ISIS Ecosystem Towards an In-
tegrated Solution to Internet of Things. Telenor Group Corporate Development
(2010)

27. Yermashov, K.: Software Composition with Templates. PhD Thesis, De Montfort
University, UK (2008)

http://www.ibm.com/developerworks/library/specification/ws-sca/
http://www.sparxsystems.com/products/ea/index.html

	PMG-Pro: A Model-Driven Development Method of Service-Based Applications
	Introduction
	Service-Based Applications: A Scenario
	The PMG-Pro Method
	The Presenting Step
	The Modeling Step
	The Automated Code Generation Step

	Related Work
	Conclusion
	References

