
Formal Verification of a Cooperative Automatic Repeat Request MAC Protocol

Xin He, Ram Kumar, Liping Mu, Terje Gjøsæter and Frank Y. Li

Dept. of Information and Communication Technology, University of Agder (UiA), N-4898 Grimstad, Norway
{xin.he, liping.mu, ram.kumar, terje.gjosater, frank.li}@uia.no

Abstract

Cooperative communications, in which a relay node helps the source node to deliver its packets to the destination node, are
able to obtain significant benefits in terms of transmission reliability, coverage extension and energy efficiency. A Cooperative
Automatic Repeat reQuest (C-ARQ) MAC protocol has been recently proposed to exploit cooperative diversity at the MAC layer.
In this paper, we validate the integrity and the validity of the C-ARQ protocol using formal methods. The protocol logic is modeled
in SDL and implemented in PROMELA. The functionality of the C-ARQ protocol is verified through simulations and verifications
using SPIN.

Keywords: Cooperative communications, Finite model-checking, Protocol verification, PROMELA

1. Introduction

With the development of advanced radio communication
technologies, wireless networks have been widely accepted as
a last-mile solution to provide ubiquitous access to Internet ser-
vices. Different from wired transmission, broadcast is an inher-
ent feature of wireless transmission, i.e., the information trans-
mitted from a source node can be received not only by the des-
tination node, but also by neighboring nodes surrounding the
source. In traditional wireless networks, such signals received
by the neighboring nodes are treated as interference and many
techniques have been developed to alleviate their impact. How-
ever, such signals actually contain useful information for the
destination node. In fact, if the information can be properly for-
warded by the surrounding node(s), the reception performance
at the destination could be improved. This fact indeed motivates
the application of a new technology, known as cooperative com-
munications [1].

The theory behind cooperative communications has been
studied in depth and significant improvement of system per-
formance has been demonstrated in terms of transmission relia-
bility, network coverage and energy efficiency [2]. Meanwhile,
cooperative Media Access Control (MAC) protocol design for
wireless distributed networks is attracting more and more atten-
tion within the research community [3, 4, 5]. From the MAC
design perspective, three key issues need to be addressed. a)
when to cooperate: Since the quality of wireless channels varies
with time, a source node may not always need help from relay
nodes. Therefore, it is more sensible that cooperation is ini-
tiated only when it is necessary and beneficial. b) whom to
cooperate with: One or more appropriate relay nodes need to
be selected among multiple potential relay nodes in the net-
work. In a distributed network where there is no central con-
troller that can coordinate data transmissions of all relays, relay
selection becomes a challenging task. Without an efficient re-

lay selection scheme, collisions might happen frequently when
several potential relays are contending for channel access at the
same time. c) how to protect cooperative transmissions: The
MAC protocol should be carefully designed to protect all on-
going transmission sequences against potential collisions from
any other nodes in the vicinity.

A novel Cooperative Automatic Repeat reQuest protocol
(C-ARQ) which addresses the aforementioned three issues con-
cerning cooperative transmissions at the MAC layer has been
proposed [6] based on the Distributed Coordination Function
(DCF) scheme for Wireless Local Networks. According to C-
ARQ, cooperative transmission is initiated only when the direct
transmission fails. In this way, unnecessary occupation of chan-
nels by relay nodes and waste of system resources are avoided.
Secondly, the relay nodes are sorted with different backoff time
before data transmission according to instantaneous relay chan-
nel quality, and the relay node with best relay channel quality
will be selected automatically to forward the data packet first.
Finally, the cooperative transmission sequences are specifically
designed to give cooperative retransmissions higher priority for
channel access in order to protect ongoing packet forwarding
by relay nodes.

Numerous approaches exist to verify the correctness and
feasibility of a new protocol. One is by experimentation in real-
life scenarios. Another well-known approach is via the use of
formal methods. Model checking is one such method, which
consists of constructing a computer tractable description (for-
mal model) of the protocol and then using a specific automatic
(or semi-automatic) analysis technique to prove or to check the
satisfaction of a given set of critical properties [7, 8]. Model
checking can be used to formally verify finite-state concurrent
systems. Specifications about the system are expressed as tem-
poral logic formulas. Symbolic algorithms are used to traverse
the model defined by the system and check if the specifica-
tion holds or not. Analyzing a protocol with model checking

Preprint submitted to Elsevier Saturday 18th August, 2012

consists of primarily constructing an abstract description, or a
model, of the protocol with the main features that could pro-
duce execution errors. The reliability properties of the protocol
are specified using a property-oriented language. Finally, the
reachability graph is produced including all the execution paths
for the model in order to check whether these paths satisfy the
properties. It has been widely used to formally verify communi-
cation protocols with model checking techniques. Related work
can be found in references [10]−[14].

The goal of this paper is to verify the functionality of the
C-ARQ MAC protocol using formal model checking methods.
To do so, we use the Specification and Description Language
(SDL) to specify and visualize a formal model for the coop-
erative system. Furthermore, Process or Protocol Meta Lan-
guage (PROMELA) is employed along with the Sequential Pro-
gramming in PROMELA (SPIN) model checker to verify the
integrity and validity of the C-ARQ protocol. Different net-
work scenarios are simulated, and verifications are carried out
through never-claims, using the Linear Temporal Logic (LTL)
formula in SPIN.

The remainder of the paper is organized as follows. In
Section 2, the system model and the C-ARQ protocol are ex-
plained in details. In Section 3, we introduce the SPIN model
checker and PROMELA. In further sections, we describe the
SDL model for our protocol (Section 4), and explain the simu-
lation and verification results (Sections 5 and 6) from the SPIN
model checker. The main challenges and difficulties of the
model checking of the proposal is summarized in (Section 7).
Finally, we conclude the paper in Section. 8.

2. C-ARQ Protocol Description

2.1. System Model for Cooperative Transmission

The C-ARQ protocol is based on the Carrier Sense Multiple
Access with Collision Avoidance (CSMA/CA) mechanism in a
single-hop scenario, where the source and the destination can
hear each other, and there is only one node sending packets at
any time. Hence, we use the network in Fig.1 for illustrating
the cooperative protocol procedure [6]. The network consists
of a source node, S, a destination node, D, and several other
randomly distributed potential relay nodes, R1, R2, ... Rn. In

S D
Source Destination

R5R3

Rn

R1

R2

R4

Figure 1: System Model for Cooperative Transmission.

this model, S and D are within the transmission range of each
other. Each packet transmission cycle starts from S, with the

intended destination as D. Other nodes in the network that can
hear both the source node and the destination node and have
correctly decoded the data packets they capture from the direct
link become relay candidates. The cooperative retransmission
is initiated only when the direct transmission fails. The relay
nodes with top relay channel quality will be automatically se-
lected to forward the DATA packet to the destination following
the C-ARQ protocol.

Furthermore, this network model can be easily extended to
a multi-hop scenario, where the single-hop link in our model,
including the relay nodes, acts as a virtual node along the whole
transmission path.

2.2. C-ARQ MAC Protocol Description

The message exchange sequence of the C-ARQ basic ac-
cess scheme is illustrated in Fig.2 [6]. It has four operation
cases, as Case I: direct transmission succeeds; Case II: best-
relay-channel retransmission succeeds; Case III: multi-relay re-
transmission succeeds; and Case IV: the whole cooperative re-
transmission fails. These cases are further elaborated in the fol-
lowing.

Case I: As the first step, the source node, S, sends out a
DATA packet to destination D following the original DCF basic
access scheme [9]. According to the DCF protocol shown in
Fig.2(a), S listens to the channel for a DCF InterFrame Space
(DIFS) interval and then waits for a random backoff time be-
fore transmission in order to avoid possible collision. If the
transmission succeeds, an acknowledgment (ACK) frame will
be returned to the source node after a Short InterFrame Space
(SIFS) interval.

Case II: As mentioned earlier, if and only if the data packet
is received erroneously at D, the cooperative phase will be ini-
tiated. The error-check can be performed by means of Cyclic
Redundancy Check (CRC). As shown in Fig.2(b), D broadcasts
a Call For Cooperation (CFC) packet after SIFS to invite other
nodes in the network to operate as relay nodes and at the same
time provides them with the opportunity of measuring their re-
spective relay channel quality. The CFC frame adopts a similar
format as the ACK frame but with a broadcast address in its ad-
dress field. It is transmitted at the basic data rate in order to in-
vite as many relay nodes as possible. Having received both the
CFC packet and the DATA packet correctly, each relay candi-
date will measure the signal strength of its received CFC packet,
and if the Signal-to-Noise Ratio (SNR) exceeds SNRlow, the
relay candidate will start its timer according to Eq. (1) [6].

Ti =

⌊
SNRlow

SNRi

DIFS − SIFS

slottime

⌋
, i = 1, 2 · · ·n (1)

where Ti is the backoff time at relay node Ri, defined as an
integer in number of microseconds; SNRi is the SNR value
in dB of the received packet from D measured at Ri; SNRlow

is the threshold of SNRi for Ri to participate in cooperative
retransmission; and n is the number of relay nodes in the net-
work. The upper bound of the backoff time for relay candidates
is DIFS − SIFS in order to prioritize the relay nodes for co-
operative retransmissions among other contending nodes in the

2

DIFS
S

D

DIFS
 Bf DATA

SIFS
ACK

(a) Case I: Direct Transmission Succeeds.

DIFS
S

D

DIFS
 Bf DATA

Rb
DATA

Ri
DATA

SIFSSIFS
CFC

SIFS

SIFS

ACK2

SIFS

DIFS

Tb

Ti

ACK3

(b) Case II: Best-relay-channel Retransmission Succeeds.

DIFS
S

D

DIFS
 Bf DATA

Rb
DATA

Rs
DATA

SIFSSIFS
CFC

SIFS

SIFS

SIFS

DIFS

Ts-Tb

SIFS

Ri Ti

SIFS

Ti-Tb

SIFS
DATA

Ti-Ts

SIFS ...

...
DIFS DIFS DIFS ...

SIFS
ACK2

SIFS
ACK3

Ts

Tb

ACK2

ACK3

(c) Case III: Multi-relay Cooperation Succeeds.

DIFS
S

D

DIFS
 Bf DATA

Rb
DATA

Rs
DATA

SIFS
CFC

SIFS

SIFS

DIFS

SIFS

Rt

SIFS SIFS SIFS ...

...DIFS DIFS

DATA
SIFS

...

 Bf DATA

Ts -Tb

Tt -Tb Tt -Ts Tt -Tt-1Tt

Ts

Tb

(d) Case IV: Cooperative Retransmission Fails.

Figure 2: C-ARQ Basic Access Scheme.

network. The granularity of Ti is specified to be slottime of the
system in order to cover the propagation delay in the network.

According to Eq.(1), the relay node with the best relay chan-
nel quality, Rb, which observes the strongest received signal
and thus has the shortest backoff time Tb, will first get access to
the channel and forward its received packet to the destination.
When the other relay candidates hear the packet sent by Rb,
they will freeze their timer and keep on listening to the channel.
More details about the automatic relay selection scheme can be
found in [6].

Moreover, the granularity of the back-off time, Ti, can be
adjusted according to specific network scenarios. For exam-
ple, the granularity can be refined to 1 us, which is enough to
distinguish signals sent from two stations that are 300 meters

away from each other. In our description, we use slottime as
the granularity in order to keep the legacy of the 802.11 stan-
dard. In this case, there is only two slottime between DIFS and
SIFS, which means three backoff duration, can be allocated to
different relays, i.e. 0, 1 or 2 slottime. This scheme works
well on a sparse network with less than 10 relay nodes [15].
However, the performance will be degraded due to high colli-
sion probabilities among relays in a dense network. Hence, an
optimization scheme has been proposed in another follow-up
work [16], aiming at minimizing the relay collision probability
in a dense network by optimizing the backoff time allocation
scheme. Significant throughput enhancement has been shown
by both analysis and simulations when the proposed optimal
relay scheme is applied.

As shown in Fig.2(b), after the direct transmission fails, S
keeps listening to the channel for the next data transmission.
If there are no relay nodes in the network that satisfy the re-
lay selection criterion, S will obtain the channel access after
DIFS and a random backoff time. If D decodes the packet cor-
rectly after the best-relay-channel retransmission, D will return
an ACK2 packet, which is relayed afterwards as ACK3 by Rb to
S in order to guarantee a reliable ACK transmission. All the re-
lay nodes will reset their timer and discard the packets they have
received after they detect the ACK2 packet sent by D. Thus, the
cooperative retransmission phase is completed.

Case III: Cooperative retransmission failure can be caused
either by collisions among two or more relay nodes with the
same backoff time Tb or by data corruption on the transmis-
sion channel. In this case, no ACK2 packet is sensed from the
channel, and the other relay nodes will reactivate their timers
simultaneously after the ACK timeout, as shown in Fig. 2(c).
Following the same procedure as the best-relay-channel retrans-
mission, the timer of the relay node with the second-best-relay-
channel Rs will expire first this time and Rs will forward the
packet prior to the other relays. An ACK packet will be returned
if the second-best-relay-channel retransmission succeeds. The
same as in Case II, other relay nodes will freeze their timers
during the second-best-relay-channel retransmission and reac-
tivate them after ACK2 timeout. As shown in Fig.2(c), the relay
nodes will participate in data retransmission consecutively one
after another until D decodes the packet successfully and re-
sponds with an ACK2 packet. Whenever the ACK2 packet is
detected, the remaining relay candidates will reset their timers
and discard their received packets, and the cooperative trans-
mission cycle is thus completed.

Case IV: If the cooperation of all relay nodes still does
not lead to successful data reception at D, or if the number of
retransmission attempt reaches the retry limit, the cooperative
transmission fails. As shown in Fig. 2(d), the source node will
then obtain channel access again for another round of packet
transmission, following the same procedure as described above.

3. SPIN and PROMELA

The terminology for mathematical demonstration of the cor-
rectness of a system is formal verification [7] and can be accom-
plished using the SPIN model checker [17]. SPIN is a general

3

tool for formal verification of distributed software systems. It
can be used as a simulator for rapid prototyping with random,
guided, or interactive simulations, and it can also be used as
an exhaustive verifier proving the validity of user specified cor-
rectness requirements.

Models that are analyzed in SPIN must be specified in an
internal specification language called PROMELA [7], a verifi-
cation modeling language providing a way for making abstrac-
tions of distributed systems. It attempts to abstract as much as
possible from internal sequential computations, focusing on the
expression of only essential properties of modeled systems in
order to verify whether the process interactions are correct or
not. In PROMELA we can specify all essential features of dis-
tributed asynchronous systems such as the behavior of nodes or
processes (abbreviated as CFSMs), communication channels,
and utilize global variables to define the environment in which
the processes run. PROMELA allows the dynamic creation
of concurrent processes communicating via message channels.
Based on a system model specified in PROMELA, SPIN can
perform random simulations of the system execution or efficient
on-the-fly verification of the system correctness properties [11].

Correctness claims can be specified in the syntax of stan-
dard LTL, a model temporal logic with modalities referring to
time. Using LTL one can express properties of paths in a com-
putation tree. There are mainly two types of properties that can
be expressed in LTL: safety properties (something bad never
happens) and liveness properties (something good keeps hap-
pening). SPIN does exhaustive search and produces fast pro-
grams (called validators), and can be used in different modes.
For small to medium size models, the validators can be used
with an exhaustive state space. The result of all validations per-
formed in this mode is equivalent to an exhaustive proof of cor-
rectness, for the correctness requirements that were specified.
For larger systems, the validators can also be used in supertrace
mode, with the bit state space technique. In these cases the val-
idations can be performed using much less memory, and still
retain excellent coverage of the state space [18].

4. Abstraction and Modeling

We use the SDL language to specify and visualize a formal
model for the above presented protocol. SDL can provide us
with unambiguous specification and description of the behavior
of our system. While it is possible to specify a more generic
model for any node (irrespective of its function being Sender,
Destination or Relay), we have modeled the behavior separately
for better understanding and ease of use. Without losing gener-
ality, two relay nodes (Relay R and Relay H) are adopted in our
model besides the source node (S) and the destination (D) to
illustrate the cooperative procedure. Our model is implemented
based on several necessary assumptions:

• All nodes which are involved in cooperative transmis-
sions can hear each other.

• The receiving nodes can always receive the DATA packet
from the channel, no matter it is decoded as correct or
not.

• The ACK and CFC packets are always received correctly.

• Between the two relay nodes, R represents the relay node
with better relay channel condition hence is chosen to
retransmit first.

The reasons for the above strong assumptions are listed in
the following. This novel C-ARQ protocol targets at typical
wireless local network scenarios where the involved nodes are
one-hop away from each other. It can be an infrastructure net-
work or one-hop neighborhood in an ad hoc network. In an in-
frastructure work like the current WiFi networks, the nodes are
typically densely distributed. The distance between the source
and the destination node is usually quite short. In an ad hoc
network, a routing protocol will find out the next hop destina-
tion. This cooperative scheme will be implemented between
the sender and its next hop destination. Therefore, we have the
assumption that all the nodes can hear each other and that the
ACK and CFC packets will be decoded correctly due to their
small packet lengths.

On the other hand, there exist problems like collisions of
packets that would cause packet loss in reality. Those problems
are inherited from traditional wireless local networks. However,
cooperative communications have no contributions towards these
problems. This paper focuses on the benefits that cooperative
communications can bring in. Therefore, the existing mecha-
nisms like the back-off procedure and the RTS/CTS handshak-
ing procedure, which are introduced to solve the collisions and
hidden terminals problems, are not included in our modeling.
One reason is that it will for sure dramatically increase the com-
plexity, and another reason is that it might also blur the focus of
this study. Given the above considerations, the strict assump-
tions are made here to simplify the modeling and focus on the
cooperative retransmission part of the scheme.

4.1. SDL Model for C-ARQ

The SDL models designed for the sender, S, the destination,
D, the optimal relay, R, and second relay H according to the C-
ARQ protocol, are shown is Figs. 3 − 6 respectively.

In our models, several virtual signals, such as RTimeout,
HTimeout, ACK2Timeout and ACK3Timeout, are designed to
be transmitted between processes in order to model the timeout
function of the nodes in reality, in addition to the normal pack-
ets the nodes receive from the wireless channel, e.g., DATA and
ACK packets. All these signals are sent in a broadcast way,
and all the other nodes in the network will receive and process
the signals according to their own state machines. Note that
the backoff procedure in the original DCF scheme is simplified
in our model because of its independence from the cooperative
protocol.

4.2. PROMELA Implementation

For the simplified system model with one Sender, one Des-
tination and two Relays (R and H), we implemented four sepa-
rate processes in the same environment in PROMELA, one for
each node. While it is possible to implement the system as in-
stances of a single generic node which performs various roles,

4

Idle

ACK CFC

Idle

DATAR RTimeout

DATAH HTimeout

ACK2 ACK2Timeout

ACK3

ACK2

Wait for D(1)

Wait for R(1)

Wait for R(2)

Wait for D(3)

ACK3

Idle

ACK2Timeout

ACK3Timeout

Sender S

Idle

Wait for D(2)

Wait for H(1)

Wait for H(2) Wait for H(3)

DATA

Data to send

Figure 3: Formal SDL Model for C-ARQ: Sender.

Idle

Idle

RTimeout

DATAH HTimeout

DATA

Idle

Wait for R

Idle Idle

Destination D

Wait for H

ACK2 ACK2Timeout

CRCDH

DATAR

Idle

ACK2 ACK2Timeout

CRCDR

CRCDS

ACK CFC

Y N

Y N

Y N

Figure 4: Formal SDL Model for C-ARQ: Destination.

we find it clearer to represent it this way without the loss of
protocol logic. In the real world, the messages are exchanged in
the wireless channel where every node can receive the messages
sent by every other node within its transmission range. For fine
grained control over our operating environment, the broadcast

Idle

ACK CFC

Idle

DATA

Wait for D(1)

Relay R

CRCRS

Wait for D(2)

RTimeout

Idle

ACK CFC

Idle

Idle

Wait for D(3)

DATAR

ACK2 ACK2Timeout

ACK3

Idle

N Y

Figure 5: Formal SDL Model for C-ARQ: RelayR.

Idle

ACK CFC

Idle

DATA

Wait for D(1)

Relay H

CRCHS

Wait for D(2)

ACK CFC

Idle

Idle

Wait for D(4)

ACK2Timeout ACK2

Wait for R(1)

Idle

Wait for D(3)

ACK2 ACK2Timeout

Idle

Idle

RTimeout

HTimeout

Wait for R(2)

RTimeout

Idle

Wait for D(5)

DATAH

ACK2Timeout ACK2

ACK3Timeout

Idle

ACK3

HTimeout

N Y

DATAR DATAR

Figure 6: Formal SDL Model for C-ARQ: RelayH.

concept is implemented as six point-to-point synchronous chan-
nels between various nodes (see Code:Channels below). In this
way, we have control over which message needs to be sent and
to which node easily, through the corresponding channel.

Code:Channels
chan StoD = [0] of {mtype, bool};
chan StoR = [0] of {mtype, bool};
chan RtoD = [0] of {mtype, bool};
chan RtoH = [0] of {mtype, bool};
chan StoH = [0] of {mtype, bool};
chan HtoD = [0] of {mtype, bool};

Since the protocol requires information about the correct-
ness of the received DATA packet at various nodes, we de-
fine CRC at various nodes as local variables as indicated below

5

(Code:CRC variables):
Code:CRC variables

At Sender S: bool CRCDS, CRCRS, CRCHS;
/*Sent to D, R and H*/

At Relay R: bool CRCDR;/*CRC sent to D*/
At Relay H: bool CRCDH;/*CRC sent to D*/

The various conditions of the channel are simulated by set-
ting various CRC variables as True or False between each trans-
mission pair. The variable configuration and simulation results
achieved are described later in Section 5. Different CRC values
are set using a random function at its corresponding receiver,
which determines the received CRC value to be true or false
randomly during each iteration. The random CRC code at the
relay, R, from the direct transmission is taken as an example
and shown in (Code:RandomCRC). Coupled with the infinite
packets being sent at the source node, the simulation covers all
the possibilities that arise from various permutations of the dif-
ferent CRC values. 1

Code:RandomCRC
/*Random CRC at relay R*/
StoR?tmpRS,tmpCRCRS;

if
::tmpRS==data ->

do
:: tmpCRCRS=true; break
:: tmpCRCRS=false; break

od;
......

Code: Reception at Destination
StoD?tmpDS,tmpCRCD;
if
::tmpDS==DATA ->
if
::tmpCRCD==true ->
atomic {StoD!ACK,true; RtoD!ACK,true;

HtoD!ACK,true;}
/*Correct Data received*/

::tmpCRCD==false ->
atomic {StoD!CFC,true; RtoD!CFC,true;

HtoD!CFC,true;}
RtoD?tmpDR,tmpCRCRD;

/*Corrupted Data; call for help*/
if
::tmpDR==RTimeout ->
HtoD?tmpDH,tmpCRCDH;
/*Relay R failed; Wait for Relay H*/

.....

The receiver will respond following the C-ARQ protocol
based on the CRC checking results of the received DATA packet.

1Note that this channel configuration method is only used here for protocol
verification. Wireless channels in reality are subject to time correlated fading
and hence the CRC values cannot be randomly set up in every data transmission
iteration. More sophisticated and realistic channel models may be investigated
for more comprehensive protocol performance evaluation.

For instance, when the destination D receives DATA from the
direct channel, according to the result of CRC checking, ACK
or CFC will be sent out to the channel respectively.

5. Simulation Results

Message generation procedures are simulated in SPIN for
all the different cases of the C-ARQ protocol, as described in
Section 2. From the simulation results, we can claim that the
protocol works exactly as how it is described for all the given
cases. The vertical lines in the simulation message sequence
charts in this section indicate the Sender, Destination, Relay R
(preferred relay) and Relay H respectively.

Case I: CRCDS = true.

The direct transmission succeeded without need for re-
transmissions from relays.

Case II: CRCDS = false; CRCRS = true; CRCDR = true.

Relay node R which has decoded the DATA packet cor-
rectly forward its DATA packet to the destination suc-
cessfully after the direct transmission fails.

Case III: CRCDS = false; CRCRS = true; CRCDR = false;
CRCHS = true; CRCDH = true.

After the optimal relay retransmission fails, the second
relay node, H, which also decoded the packet success-
fully, forward the packet successfully to D.

Case IV: CRCDS = false; (CRCRS = true; CRCDR = false;
CRCHS = true; CRCDH = false) OR (CRCRS = true;
CRCDR = false; CRCHS = false) OR (CRCRS = false;
CRCHS = false).

There are three occasions that may cause the failure of
the cooperative retransmission after the direct transmis-
sion fails: (a) Both R and H have participated forward-
ing and both packets are corrupted on the relay channels;
(b) Only one relay is qualified to participate and the data
packet is corrupted; (c) Neither of the two relays have
decoded the packet successfully. Hence, no cooperative
retransmission happens. In all the three scenarios, the
source node S starts to resend the packet after the whole
cooperative retransmission procedure fails.

6. Verification using SPIN

6.1. Invalid End-States

In PROMELA, valid end-states are those system states in
which every process instance has either reached the end of their
defining program body or is blocked at a statement that has a
label starting with the prefix end. Valid end-states also require
channels to be empty. All other states are invalid end-states.
In all of our verification operations, no invalid end-states were
found.

6

Sender:0

1

Destination:1

1

1!data,1

2

RelayR:2

2

2!data,0

4

RelayH:3

4

3!data,0

9

9
1!ack,1

11

11
4!ack,1

13

13
5!ack,1

25

25

25

25

Figure 7: Simulation Result for Case I: Direct Transmission Succeeds.

Sender:0

1

Destination:1

1

1!data,0

2

RelayR:2

2

2!data,1

4

RelayH:3

4

3!data,0

9

9
1!cfc,1

11

11
4!cfc,1

13

13
5!cfc,1

16

16
4!dataR,1

18

18
6!dataR,1

19

19
2!dataR,1

22

22
4!ack2,1

25

25
5!ack2,1

27

27
1!ack2,1

29

29
2!ack3,1

36

36

36

36

Figure 8: Simulation Result for Case II: Direct Transmission Fails; First Coop-
erative Retransmission Succeeds.

6.2. Never Claims
A straightforward verification of the protocol requirements

can be modeled as never-claims using PROMELA. We formal-
ize tasks that are claimed to be performed by the system using
the LTL logic. SPIN can either prove or disprove those claims
quickly.

In our model, we define the requirement for the C-ARQ
protocol as: If there exists a good data transmission link, either
a source-destination link or a source-relay-destination link, the
DATA packet should be successfully delivered from source to

Sender:0

1

Destination:1

1

1!data,0

2

RelayR:2

2

2!data,1

4

RelayH:3

4

3!data,1

9

9
1!cfc,1

11

11
4!cfc,1

13

13
5!cfc,1

16

16
4!dataR,0

18

18
6!dataR,0

19

19
2!dataR,0

22

22
4!ack2Timeout,1

25

25
5!ack2Timeout,1

27

27
1!ack2Timeout,1

30

30
5!dataH,1

31

31
3!dataH,1

35

35
5!ack2,1

37

37
1!ack2,1

39

39
3!ack3,1

47

47

47

Figure 9: Simulation Result for Case III: Direct Transmission Fails; First Co-
operative Retransmission Fails; Second Cooperative Retransmission Succeeds.

destination and the ACK packet should be returned to the source.
We formulate the LTL logic for this statement using SDChan-
nel, SRChannel, RDChannel, SHChannel, HDChannel and Trans-
mission as global mtype variables (See LTL for Never Claim be-
low). They are introduced to indicate whether the correspond-
ing channel condition is good (no data corruption) or not and
whether the date transmission is successful or not.

LTL for Never Claim
[]((psd||(psr && prd)||(psh && phd))

-> <> q)
#define psd (SDChannel==good)
#define psr (SRChannel==good)
#define psh (SHChannel==good)
#define prd (RDChannel==good)
#define phd (HDChannel==good)
#define q (Transmission==good)

The verification results produced by the SPIN tool are de-
picted at the bottom of the Verification output for Never Claim
chart. No errors occurred in the exhaustive verifications, indi-
cating that the claim proposed holds for the C-ARQ protocol.

7

Sender:0

6

Destination:1

6

3!data,0

9

RelayR:2

9

2!data,1

10

RelayH:3

10

1!data,1

12

12
3!cfc,1

18

18
5!cfc,1

19

19
4!cfc,1

23

23
5!dataR,0

25

25
6!dataR,0

26

26
2!dataR,0

29

29
5!ack2Timeout,1

33

33
4!ack2Timeout,1

34

34
3!ack2Timeout,1

37

37
4!dataH,0

39

39
1!dataH,0

41

41
4!ack2Timeout,1

43

43
3!ack2Timeout,1

46

46
1!ack3Timeout,1

50

50

50

50

Figure 10: Simulation Result for Case IVa: Cooperative Retransmission Fails:
Packet Corruption on Both Qualified Relay Channels.

Verification output for Never Claim
warning: for p.o. reduction to be valid
the never claim must be stutter-invariant
(never claims generated from LTL formula
are stutter-invariant)

depth 0: Claim reached state 5 line 336)
depth 50: Claim reached state 9(line 341)
depth 48: Claim reached state 9(line 341)
(Spin Version 5.2.5 -- 17 April 2010)

+ Partial Order Reduction
Full statespace search for:

never claim +
assertion violations +

(if within scope of claim)
acceptance cycles +

(fairness disabled)
invalid end states -

(disabled by never claim)
State-vector 116 byte, depth reached 365,
errors: 0

3739 states, stored (3752 visited)
931 states, matched
4683 transitions (= visited+matched)
0 atomic steps

hash conflicts: 10 (resolved)

Sender:0

1

Destination:1

1

1!data,0

2

RelayR:2

2

2!data,1

4

RelayH:3

4

3!data,0

9

9
1!cfc,1

11

11
4!cfc,1

13

13
5!cfc,1

16

16
4!dataR,0

18

18
6!dataR,0

19

19
2!dataR,0

22

22
4!ack2Timeout,1

25

25
5!ack2Timeout,1

27

27
1!ack2Timeout,1

30

30
3!HTimeout,1

31

31
5!HTimeout,1

39

39

39

39

Figure 11: Simulation Result for Case IVb: Cooperative Retransmission Fails:
Packet Corruption on Single Qualified Relay Channel.

7. Discussions

The main contribution of this work is to verify the correct-
ness of the C-ARQ model using simulations and verifications.
We have demonstrated that C-ARQ as proposed is indeed cor-
rectly executed under various conditions.

To test the protocol using generic descriptions of node in-
stead of specific roles (like sender, receiver or relay) would be
overly complex and inefficient. The model can be simplified to
a large extent by assigning roles to nodes during a single trans-
action where (in time) a node can be a sender or a receiver or
a relay. The roles can be switched at a later transaction, but
our model remains valid since they abstract the roles from the
nodes themselves. This approach also enables us to clearly im-
plement and analyze the role specific functions that are needed
in this protocol.

To represent the correctness condition for the proposed C-
ARQ protocol in LTL is a challenging task. For example, how
do we relate the channel conditions (even with packet loss or
data corruption) and check if the protocol can function in di-
verse channel conditions? We accomplish this by randomizing
channel conditions in simulations and relating the fundamental
conditions to the successful transmission of data. More specif-
ically, the protocol should be able to deliver the data packet

8

Sender:0

1

Destination:1

1

1!data,0

2

RelayR:2

2

2!data,0

4

RelayH:3

4

3!data,0

9

9
1!cfc,1

11

11
4!cfc,1

13

13
5!cfc,1

16

16
6!RTimeout,1

17

17
4!RTimeout,1

19

19
2!RTimeout,1

22

22
3!HTimeout,1

24

24
5!HTimeout,1

30

30

30

30

Figure 12: Simulation Result for Case IVc: Cooperative Retransmission Fails:
No Available Relay.

correctly if there has been a functional path (direct or indirect
via relays) between the source and the destination. See Section
6.1 for the formulation of this condition.

The assumptions and constraints are essential in this ver-
ification procedure of the protocol. The verification we have
undertaken is an "exhaustive state space mode" which is equiv-
alent to an exhaustive proof of correctness (for the correctness
conditions that were specified). In the ’invalid end state’ verifi-
cation (Sec 6.1), we make sure that the protocol never enters a
state from which it cannot exit, i.e., avoiding infinite loops (like
all nodes waiting for a packet that is never sent or get lost) or
race conditions. Further versions of the protocol should satisfy
these tests to be able to prove their correctness as well.

8. Conclusions

In this paper, we have described the C-ARQ MAC protocol
with a formal SDL model, and used PROMELA along with the
SPIN model checker to verify the correctness and the function-
ality of the protocol. Simulation results from SPIN coincide
with the protocol description, and the verifications are carried
out through never-claims, using the LTL logic in SPIN. No in-
valid end-states were found and the proposed claim holds true

in the exhaustive verification operations, indicating the integrity
and validity of the C-ARQ protocol.

Furthermore, the formal model can be refined with more
logic to verify other functions of the protocol. With the basic
logic implemented and verified in this paper, further modifica-
tions to the model should be straightforward.

Acknowledgments

The authors would like to thank Prof. Andreas Prinz and
Prof. Vladimir A. Oleshchuk (both from the University of Agder,
Norway) for their valuable feedback and insights in this work.

References

[1] J. Cai, X. Shen, J. W. Mark, Semi-distributed user relaying algorithm for
amplify-and-forward wireless relay networks, IEEE Transactions on Wire-
less Communications 7(4) (2008) 1348-1357.

[2] J. N. Laneman, D. N. C. Tse, G. W. Wornell, Cooperative diversity in wire-
less networks: efficient protocols and outage behavior. IEEE Transactions
on Information Theory 50(12) (2004) 3062-3080.

[3] J. Alonso-Zarate, E. Kartsakli, C. Verikoukis, Persistent RCSMA: A
MAC protocol for a distributed cooperative ARQ scheme in wireless
networks. EURASIP Journal on Advances in Signal Processing (2008),
doi:10.1155/2008/817401.

[4] P. Liu, Z. Tao, S. Narayanan, T. Korakis. CoopMAC: A cooperative MAC
for wireless LANs. IEEE Journal on Selected Areas in Communications,
25(2) (2007) 340-354.

[5] J. S. Pathmasuritharam, A. Das, A. K. Gupta, Efficient multirate relaying
(EMR) MAC protocol for ad hoc networks. Proceedings of IEEE ICC (2005)
2947-2951.

[6] X. He, F. Y. Li, A multi-relay cooperative automatic repeat request protocol
in wireless networks. Proceedings of IEEE ICC (2010) 1-6.

[7] G. J. Holzmann, The model checker SPIN. IEEE Transactions on Software
Engineering 23(5) (1997) 279-295.

[8] E. M. Clarke, O. Grumberg, D. Peled (2000). Model checking. ISBN-13:
978-0-262-03270-4. The MIT Press.

[9] IEEE 802 WG, Wireless LAN medium access control (MAC) and physical
layer (PHY) specifications, IEEE 802.11 (1999).

[10] F. de Renesse, A. H. Aghvami, Formal verification of ad-hoc routing pro-
tocols using SPIN model checker. Proceedings of the 12th IEEE Mediter-
ranean Electrotechnical Conference 3(3) (2004) 1177-1182.

[11] V. A. Oleshchuk, Modeling, specification and verification of ad-hoc sen-
sor networks using SPIN. Computer Standards & Interfaces, 28(2) (2005)
159-165.

[12] J. S. Segui, Demand access protocol design and validation with SPIN.
IEEE Aerospace Conference (2008) 1-8.

[13] B. Long, J. Dingel, T. C. N. Graham, Experience applying the SPIN
model checker to an industrial telecommunications system. Proceedings
of the 30th ACM/IEEE International Conference on Software Engineering
(2008) 693-702.

[14] J. Li, J. Li, Model checking the SET purchasing process protocol with
SPIN. Proceedings of the 5th International Conference on Wireless Com-
munications, Networking and Mobile Computing (2009) 1-4.

[15] X. He, F. Y. Li, Cooperative MAC design in multi-hop wireless networks:
part I: when source and destination are within the transmission range of each
other”. Wireless Personal Communications (57)(2010) 339-350.

[16] X. He, F. Y. Li, Optimization of the relay selection scheme in cooperative
retransmission networks. Proceedings of IEEE VTC (2011) 1-6.

[17] SPIN tool website, http://www.spinroot.com.
[18] G. J. Holzmann, An analysis of bitstate hashing, Formal Methods in Sys-

tem Design 13(3) (1998) 289-307.

9

	Introduction
	C-ARQ Protocol Description
	System Model for Cooperative Transmission
	C-ARQ MAC Protocol Description

	SPIN and PROMELA
	Abstraction and Modeling
	SDL Model for C-ARQ
	PROMELA Implementation

	Simulation Results
	Verification using SPIN
	Invalid End-States
	Never Claims

	Discussions
	Conclusions

