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Abstract

Sum-of-cisoids (SOC) processes provide a physically anaenically appealing framework for the modelling and sim-
ulation of a wide class of mobile radio channels. This papepncerned with the problem of finding a general solution
for the level-crossing rate (LCR) and the average duratfofages (ADF) of the envelope of SOC processes. Exact
expressions are derived for the LCR and the ADF by taking atimount that the inphase component, the quadrature
component, and the time derivatives of the inphase and gtiadrcomponents of SOC processes are in general mutu-
ally correlated. The validity of the theoretical resulte@firmed by simulation results. This study reveals newgimsi

into the fading behaviour of SOS-based multipath fadingiakémodels. The results of this study are indispensable for
the performance assessment of mobile radio channel sionsil@mploying the SOC principle.
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1. Introduction

Rice’s sum-of-sinusoids (SOS) [1, 2] provides a powerfullmeenatical tool for the modelling and simu-
lation of mobile radio channels. By computing appropriatee parameters of the SOS model, one dén e
ciently design a wide class of channel models with givermithistion and correlation functions [3, pp. €5].

In [4], it has been shown that a subclass know as sum-ofesg8iOC) process can be derived from two
correlated SOS processes. A comparison of SOS and SOC ¢haoaiels has shown [4, 5] that SOS models
are superior to SOC models in case of isotropic scatteringth® other hand, SOC models unleash their
full computational power when it comes to the modelling oh+isotropic scattering scenarios, implying
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that the Doppler power spectral density has an asymmetajgeshSince this is in general the case in real-
world channels, it goes without saying that SOC models at®nly the better but the only choice for the
modelling and simulation of non-isotropic or measuremuaged fading channels. Especially this feature
explains why SOC processes have become very attractivedzdes in recent years for the modelling of
physical channels.

A fundamental analysis of the statistical properties of J@daesses can be found in [4], where expres-
sions have been derived for the correlation functions, papectral densities, and distribution functions.
The interested reader can gain a deeper insight into thistetsitof SOC processes from studying [6]. A
summary of the most important statistical properties of $Pacesses can be found in [3, pp. X2k Ref-
erence [7] presents a systematic approach to classify sdlilple types of SOC models. A specific solution
to the problem of finding the model parameters of SOC prosassder isotropic scattering conditions has
been presented in [4]. More general solutions to the paré&agbn problem under non-isotropic scattering
conditions can be found in [5, 8, 9]. Reference [10] presargeneralized method for the design of SOC
simulators for the generation of multiple uncorrelated IR fading channels. The channel capacity of
multipath fading channels based on the SOC principle has aealyzed in [11]. Given the rich literature
on the modelling and simulation of Rayleigh and Rice fadihgrmels employing the SOC concept, one can
now say that the statistical properties of SOC processeselteinderstood.

One of the last, if not the last, open problem is to find the egad general expression for the level-
crossing rate (LCR) and the average duration of fades (ADRh@ envelope of SOC processes. This
problem has first been tackled in [12], where a simple appnaié solution as well as a specific exact
solution have been derived. The specific exact solutiorstake account that the inphase and quadrature
components of SOC models are in general correlated. Howgyvesimplify the mathematical analysis,
it has been imposed on the model parametrization that thgroess SOC process and its time derivative
are uncorrelated at the same time. Since this is generalltheacase, the approach in [12] leaves space
for further improvements. This leads us to the primary naiton of our paper, which can be phrased as
follows.

We want to find the general exact expression for the LCR and Afxke envelope of SOC processes.
At the expense of increased mathematical complexity, wevghat a solution to this LCR problem indeed
exists for any SOC process characterized by constant gainstant frequencies, and random phases.

The organization of this paper is as follows. Section 2 det¢shtackground by reviewing the main
properties of SOC processes. The problem description Eepted in Section 3. Section 4 derives exact
expressions for the LCR and ADF of the envelope of SOC preses3he correctness of the theory is
confirmed in Section 5 by comparing the obtained analytiesuilts with simulation results. Finally, the key
findings and conclusions are outlined in Section 6.

2. Review of SOC Processes

Under flat-fading channel conditions, the scattered corapbof a multipath fading channel can be
modelled in the complex equivalent baseband by the follgveimm ofN plane waves (complex sinusoids
or cisoids)

N .
/’l(t) — cheJ(ZJTfnt"an) (1)

n=1

which defines the SOC process. In the equation above, thenp&eesc,, f,, andg, are called the gains,
Doppler frequencies, and phases of title propagation path, respectively. Depending on the uwitheyl
modelling philosophy, each of the parameters can be a aursta random variable leading to eight classes
of channel models with dlierent statistical properties [7]. The focus of this papemighe statistical prop-
erties of SOC processes of Class Il [7], which are charastdiby constant gairt,, constant frequencies
fn, and random phasés. It is assumed that the random phaggare independent identically distributed
(i.i.d.) random variables uniformly distributed over, &]. Under these conditions, the SOC procgf3 ~

in (1) represents a zero-mean complex stochastic procelssmriiancea-l% = 2,’}‘;1 c2. With reference to
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the central limit theorem [13, p. 278], we may conclude i@} tends to a zero-mean complex Gaussian
procesgu(t) if the number of cisoid tends to infinity.
The line-of-sight (LOS) component is assumed to be timeriamaand modelled by

wherep andé, are real-valued constants representing the amplitude laaseprespectively.
By taking the sum of the scattered compone(t} &nd the LOS component, we obtain the nonzero-
mean complex random process

p(t) = a(t) + m. 3)
The absolute value @i, (t), i.e.,
&) = 1A, 4)

leads to the SOC simulation model for Rice fading channdig. Structure of the resulting SOC simulation
model is shown in Fig. 1 in its time-continuous form. .
The probability density function (PDF) of the envelope me®:(t) is given by [4]

TN
Pe(d) = 22n)” | []‘[ Jo(2n|cn|x)] Jo(2nzX) Jo(2rp ) xdx, 220 (5)
0 n=1
where Jo(-) denotes the zeroth-order Bessel function of the first kiAd. expression for the cumulative
distribution function (CDFP; (r) of £(z) can be obtained after substituting (5) ifRp (1) = for pz(2) dzand
solving the integral ovezr by means of the indefinite integrﬁlz\b(z) dz = zJ(2), which can be found in

[14, Eq. (5.52-1)]. After performing straightforward algeic manipulations, the CDF; (r) can finally be
written as

00

N
P; (r) = 2ar f []_[ Jo(Zﬂlcnlx)] Ji(2rrx) Jo(2npxX)dx, r>0. (6)
0 n=1

It has been proved in [4] that under the condit@mn= oo V2/N, the PDFp;(r) in (5) approaches the Rice
density

2 +p?
zZ 252 0
p:(2) = —e 0 lg|—=], z=0 (7)
9o )
in the limit N — oo, wherely(-) denotes the zeroth-order modified Bessel function of tist kind. In a
similar way, it can be shown that the CI¥; (r) in (6) approaches the Rice CDF

Pe.(1) = 1—Q(ﬁ L), r=0 ®

0'0’0'0

asN — oo, whereQ(:, -) represents the Marcum Q-function [15].

3. Problem Description

The objective of this paper is to derive a general exact gwidor the LCRN(r) of the envelopé(t) of
the nonzero-mean SOC procesétfintroduced in (3): To solve this problem, we start from Rice’s formula

1The LCR Ng(r) describes how often the stochastic procg$pcrosses in average a specified signal leviebm down to up (or
from up to down) within a time interval of one second.
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Fig. 1. Structure of an SOC simulation model for Rice fadihgrmnels.

forthe LCR [1, 2]

00

Nz (r) = f z2py(r,9dz, r=0 9)
0

which enables us to compute the LBR(r) from the joint PDFpgS-g(z, 2) of the envelope;f“(t) and its time

derivativeZ(t) at the same time? It should be mentioned that the expression in (9) is valicfoy stationary
process. Especially for stationary processes derived fBamssian random processes, the solution of (9)
is computationally straightforward if one starts from theltivariate Gaussian distribution [16, p. 240] and
then applying the concept of transformation of random Vdei® [13, p. 244]. The literature is rich with
studies of the LCR (ADF) of many fierent types of mobile radio channels, such as Rayleigh @]7 Rice
[19], lognormal [20], Suzuki [21, 22, 23], Nakagami [24, 28hda — « — u fading channels [26]. In the
present case, however, finding a solution for the LIERY) is not straightforward. Matters are complicated
by the fact that we are dealing here with jointly correlated+Gaussian processes thwarting the application
of the above-mentioned traditional concept.

With reference to (1), it can be shown that the autocorm@tdtinction ofu(t) = a1(t) + jao(t), defined

by raa(r) = E{a"(t) a(t + 1)}, is given by [4]

N .
(1) =y cael 2Tt (10)
n=1

Analogously, the autocorrelation functiog, () of the time derivativei(t) = a1(t) + jaa(t) of fi(t) can be
expressed as

N .
() = (207 ) (oo )2 127 T (11)

n=1

and for the cross-correlation functiog, () of f(t) and/i(t), defined byr (1) = E{i@* (1) /it + 7)}, we obtain
[12]
N .
() = 21) ) 2 fe 12T (12)

n=1

2Throughout this paper, the overdot denotes the time dmwate.,g(t) = d&(t)/dt.
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The expressions in (10)—(12) clearly demonstrate that @@ Srocesses; (t), i(t), a1 (t), andz(t) are in
general mutually correlated, as illustrated in Fig. 2

The problem can now be phrased as follows. We want to find d@isoltor the LCRN;(r) under the
general condition that the underlying SOC proces$a€s, Tio(t), 21 (t), andx(t) are mutually correlated.
This problem has first been tackled in [12] under the simplifiendition thaj(t) andji;(t) are uncorrelated
at the same timefor i, j = 1, 2. With reference to Fig. 2, this means that tiieeet caused by the various
intercorrelations has been neglected. On top of this, eafsr [12] provides also a simple approximate
solution, which is very accurate for large values of the nandj cisoidsN, but the approximation fails if
N is small. In this paper, we strive for an exact general soitutor the LCR in (9).

(t) = () +  Jia(t)
>
() = () + 5 n(0)

Fig. 2. lllustration of the correlation between the inphase the quadrature component of SOC processes and thegctigsptime
derivatives (intracorrelatiork— — —; intercorrelation:«—).

4. Derivation of the LCR and the ADF

4.1. Derivation of the LCR
Let us start by considering a single cisqig(t) and its time derivativgi,(t) (n = 1,2,...,N) of the
forms
fint) = cre (2Tt +6h) (13a)
and
fin(t) = j 2rfyce (27Tt + 6n) (13b)

respectively. In what follows, it is crucial to recall thaetgainc, and frequency,, are nonzero real-valued
constants, ané, refers to a random variable with a uniform distribution onf]. For fixed values of,
sayt = to, thenth cisoidin(to) = f11n(to) + jiaz2n(to) and its time derivativgin(to) = fi1n(to) + ji2n(to)
represent random variables, which are statistically dépet) because all components@fto) andin(to)
are controlled by the same random variadleThe distribution of the real pagi n(to) = cos(2rfnto + 6n) IS
described by the density [13, p. 135]

1

o al<Gn
R T B

0, IX1| = Cn.

Using (14) and extending the concept in [27, Eq. (3.15)] tor f@andom variables, allows us to capture the
statistical dependency of the random varialdegs), fi2n(to), f1.n(to), @ndizn(to) in form of the joint PDF

Pris wfianiisnfion (Xt X25 X1 X2) = Py, (Xa) 0(%2 = G1(X1)) 0(X1 — G2(X1)) (%2 — ga(x1)) (15)

where

_ ) tavl-(xa/cn)? Ixl < c
o) ={ & e (16)
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O2(x1) = =27 f g1(x1) (17)

03(x1) = 2y Xg. (18)

The joint PDFp;, 4, i 1, (X1 X2, X1, X2) in (15) holds the key for the solution of the problem desedib
in the previous section. Continuing with the expressionlis){ we can derive the joint PDE‘J%(Z, 2) of

the envelopef(t) and its time derivativé(t). After quite intricate mathematical manipulations, weaib
(without proof) the joint PDFpgg(z, 2) in the following form

o 21

o) - a2 [ [ [ soenord
0 0 O

e~ i2nlzricosl) + zr] ¢ godr, dr, .

N 1
[ Jo(zn|cn|{r§ + (2rfars)? —Arforars sin(e)}z)] (19)
n=1

Notice thatpgg(z, 2) cannot be written as a product of the marginal densitj€g) and pé('z), ie., pég(z, 2) #

P:(2) - pg('z), which implies that the stochastic procesgés andé(t) are statistically dependent. Now,
substituting (19) in (9) results after some few mathemati@nipulations in the following final expression
for the LCR

N;(r) = 4nr Tsz]ﬂ Jo(27pr) {]ﬁ[ Jo(zn|cn|{r§+(2ﬂfnr2)z —47rfnr1r28in(9)}%)] (20)
0 0 O

0 n=1
e~ 12rlmacose) + 22l ¢ g, dr, dz

whereznax denotes the maximum @ft), i.e., Zmax = maxé(t)} = 2r XN ,(faca). The fourfold integral in
(20) has to be solved by using numerical integration tealsq The increased mathematical and numerical
complexity is associated with the mutually correlated pssesu1(t), i2(t), a1(t), andix(t). This is the
price we are willing to pay for the exact and general soluti@ithout proof, for reasons of brevity, we
mention that the LCR\;(r) in (20) approaches the LCRc(r) of Rice processes in the limiN — oo, i.e.,

lim Ne(r) = Ne(r) = \/Ez; Pe(r) (21)

wherep(r) is the Rice density presented in (7), and the quagtity related to the autocorrelation function
I, (7) of the underlying Gaussian procesé) by gi = —i',,(0) (i = 1, 2).

4.2. Derivation of the ADF

The mean value of the time intervals over which the procédsemains below a specified threshold
levelz=r is known as the ADF of(t), which is denoted byl; (r). The ADFT; (r) can be obtained using
[17, Eq. (1.3-41)]

Pz (r)
[
To (1) = ——— (22)
& Nz(r)
whereP; (r) stands for the CDF in (6), ard;(r) denotes the LCR in (20). Thus, an exact general solution
for the ADFT; (r) can easily be obtained by substituting the derived exfmessn (6) and (20) in (22).
From the statements above, it is obvious fliafr) tends to the ADF of Rice processeshis- co.
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5. Numerical Results

The objective of this section is to illustrate the key findiraf this paper by numerically evaluating the
analytical expressions in (5), (20), and (22). Another ofije is to verify the correctness of the analytical
results by numerical simulations.

The numerical simulation results have been obtained byuatialy the statistical properties of a set of
sample functions generated by using the SOC channel siongetsented in Fig. 1. For the computation
of the parameters of the SOC channel simulator, we have @d/tke extended method of exact Doppler
spread (EMEDS) [3, pp. 22f.], which allows us to express the gaigsand Doppler frequencief, in
closed form as follows

o0 \/% (23)

2r 1
frnax cos[ﬁ (n - Z) (24)

Cn

fn

forn =1,2,...,N, where fnha stands for the maximum Doppler frequency. As mentioned ictiSe 2,
the phases, are i.i.d. random variables with a uniform distribution dhZr]. Let us denote a specific
outcome of, by 67, then the set of parameteiis, fn, 65, o, 6,}\., defines completely a sample functfon
£9(t) of the stochastic procegét). In fact, a stochastic proces§) is defined by an ensemble Sfsample
functions&®(t), i.e.,&(t) := {£D(t), £2(1), ..., EO(t)}. All experimental results presented below have been
obtained by evaluating the statistical propertieSof 100 sample function&®(t) (s = 1,2,...,S). To
investigate the influence of the number of cisditlen the PDF, LCR, and ADF @f(t), we studied the cases
N = 10,20, and 30. The values of the remaining parameters were setla®/$olfmax = 91 Hz,o-g =1,
p €10,2}, 6, = 0. In the following study, Rayleigh and Rice processes wil/s as reference models, which
are essential for gaining a better insight into the charsties of SOC processes.

Figure 3 shows the graphs of the Rayleigh PDF and the Rice WBiEh have been obtained by evaluat-
ing (7) forp = 0 andp = 2, respectively. Moreover, Fig. 3 illustrates the PR¥Z) of the envelope process

£(t). The results have been found by solving numerically thegrdl in (5) for all considered caseshfand

p, i.e.,N € {10,20,30} andp € {0, 2}. Efficient numerical integration techniques for computing styples

of infinite range integrals consisting of an arbitrary prodof Bessel functions can be found in [28] and
[29]. In addition, Fig. 3 presents the experimental resulitsined from the statistical analysis of the sample
functions (waveforms) generated by means of the simulatiodel in Fig. 1. Owing to the perfect match
between theoretical and experimental results, we can cottfie validity of the solution for the PDE;(2)

in (5). Furthermore, we can confirm that the PPK2) of the envelope of SOC processes is in harmony
with the PDFp¢(2) of Rice and Rayleigh processedNfis not less than 10.

Figure 4 shows a comparative study of the normalized LCR gfidigh and Rice processes and the
normalized LCR of the envelope of SOC processes. The rdsultise reference model and the simulation
model have been obtained by evaluating (21) and (20), résphc Figure 4 presents also the experimental
results demonstrating the validity of the theoretical lssuFrom these graphs, we can conclude that the
LCR of the envelope of SOC processes provides a reasonabty/fgting to the LCR of the corresponding
reference model iN = 10, but noticeable improvements can be achieved by usingehigalues ofN,
sayN = 20. Furthermore, we may conclude that values bey¥ne 20 do not considerably improve the
performance of the SOC model with respect to the LCR.

Figure 5 charts the analogous results obtained for the riaedaADF of the two reference models and
the SOC model. Note that the correctness of the theory isagai@ confirmed by experimental simulations.

Finally, Fig. 6 provides an insight into the relative erm;(r) of the LCRN(r), which is defined as

Nz(r) — Ne(r)

Ne(r) (23)

ENg(r) =

3The sample functiog(d(t) is also called waveform or deterministic process.
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Fig. 3. Comparison of the PDF of Rayleigh £ 0) and Rice 4 = 2) processes with the PDF of the envelope of SOC proce%es
designed by using the EMEDS with € {10, 20,30} (03 = 1, fnax = 91 Hz).
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Fig. 4. Comparison of the normalized LCR of Rayleigh=0) and Rice ¢ = 2) processes with the normalized LCR of SOC processes
designed by using the EMEDS witt € {10, 20, 30} (o‘% =1, fmax= 91 Hz).

whereN;(r) andN(r) are denoting the LCR of the SOC model and the reference nasddéscribed by
(20) and (21), respectively. In Fig. 6, we can clearly reattzat there exists obviously a threshold lengl

of approximatelyy, = r ~ 2.5 at which the tangent of the relative ereq(r) passes through zero. Below
this threshold levety,, the LCR of the SOC model is larger than that of the referenodeh while the
inverse statement is true for> ry,. Fortunately, the magnitude of the relative erggun(r) is much smaller
for all levelsr < ry, than forr > ry,. Especially this feature manifests the usefulness of th€ &del

as Rayleigh (Rice) fading channel simulator for the perfamoe analysis of mobile radio communication
systems. The reason is that the performance of any mobilencorication system depends much more on
the fading behaviour at low signal levels than it does at hylels. This implies that any useful fading
channel simulator must accurately emulate the deep fatiststs, while performance degradations at high
signal levels can often be tolerated.

6. Conclusion

This paper has examined the LCR and the ADF of the envelop®Gf @ocesses with constant gains,
constant Doppler frequencies, and random phases. In aly, ste have taken into account that the inphase
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Fig. 5. Comparison of the normalized ADF of Rayleigh~ 0) and Rice ¢ = 2) processes with the normalized ADF of SOC processes
designed by using the EMEDS with € {10, 20,30} (03 = 1, finax = 91 Hz).
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Fig. 6. Relative erroeNg(r) of the LCR of SOC processes designed by using the EMEDSM#ih10, 20, 30} (o‘% =1, fmax = 91 Hz,
p=0).

component, the time derivative of the inphase componeatjtiadrature component, and the time derivative
of the quadrature component of SOC processes are in genetaly correlated. This fact, combined with
the cumbersome expression for the distribution of the epeebf SOC processes, makes the theoretical
analysis of the LCR (ADF) a flicult task.

In this study, we have found the general and exact solutiothinLCR (ADF) of the envelope of SOC
processes. Owing to the complexity of the problem, the piteskesolution requires the use of sophisticated
numerical integration techniques. The solution shows it CR is not proportional to the PDF of the
envelope. This is in contrast to Rayleigh and Rice procesggish serve here as reference models, where
the LCR can be expresses simply as a constant multipliedédgdiresponding envelope distribution.

From our analysis, we can conclude that the LCR (ADF) of saistih SOC channel simulators is more
sensitive to the model parameters than the envelope distib While 10 cisoids can be considered as
suficient for the SOC model to guarantee an excellent fit to thddRgty and Rice distributions, we rec-
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ommend using approximately twice that number to obtain & tih® same quality with respect to the LCR
(ADF). Furthermore, our analysis has revealed that thestsea threshold signal level around 2.5 at which
the relative error of the LCR goes through zero for all valogsl. For signal levels below (above) this
threshold, we have seen that the LCR of the SOC model is albeev) the LCR of the reference model.
We have also demonstrated that even for small valuds sdyN ~ 10, the relative error of the LCR is only
in the order of some few per cent if the signal level is beydrthreshold level, while the relative error
increases drastically the larger the signal level excesalthreshold level.

Given the presented solution of the LCR problem and addirigiscthe huge amount of research results
known from previous studies of SOC processes, we can noly s that the statistical properties of the
SOC process are well understood. This allows us to draw thédonclusion by saying that the theory of
SOC processes provides a unified framework for the modedlivtysimulation of mobile radio channels.
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