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Abstract. Researchers in the field of Pattern Recognition (PR) have
traditionally presumed the availability of a representative set of data
drawn from the classes of interest, say ω1 and ω2 in a 2-class problem.
These samples are typically utilized in the development of the system’s
discriminant function. It is, however, widely recognized that there exists
a particularly challenging class of PR problems for which a represen-
tative set is not available for the second class, which has motivated a
great deal of research into the so-called domain of One Class (OC ) clas-
sification. In this paper, we extend the frontiers of novelty detection by
the introduction of a new field of problems open for analysis. In par-
ticular, we note that this new realm deviates from the standard set of
OC problems based on the presence of three characteristics, which ul-
timately amplify the classification challenge. They involve the temporal
nature of the appearance of the data, the fact that the data from the
classes are “interwoven”, and that a labelling procedure is not merely
impractical - it is almost, by definition, impossible. As a first attempt
to tackle these problems, we present two specialized classification strate-
gies denoted by Scenarios S1 and S2 respectively. In Scenarios S1, the
data is such that standard binary and one-class classifiers can be applied.
Alternatively, in Scenarios S2, the labelling challenge prevents the ap-
plication of binary classifiers, and instead dictates the novel application
of one-class classifiers. The validity of these scenarios has been demon-
strated for the exemplary domain involving the Comprehensive Nuclear
Test-Ban-Treaty (CTBT), for which our research endeavour has also de-
veloped a simulation model. As far as we know, our research in this field
is of a pioneering sort, and the results presented here are novel.
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1 Introduction

1.1 Problem Formulation

A common assumption within supervised learning is that the distributions of
the target classes can be learned, either parametrically or non-parametrically.
Moreover, it is assumed that a representative set of data from these classes is
available for the training of supervised learning algorithms; indeed, the latter
implies the former.

Beyond this commonly-reported method of classification, there exists a spe-
cial form of Pattern Recognition (PR), which is regularly denoted One Class
(OC ) classification [10,12,14,16,30,31]. This “exceptional” category of binary
classification is noteworthy in lieu of the significant challenge that it presents.
Escalating the difficulty, is the fact that drawing a representative set of data to
compose the second class (ω2), which is fundamental to the derivation of a bi-
nary discriminant function, is abnormally arduous, if not altogether impossible.
The difficulty of acquiring a sufficiently symbolic set may arise because of:

1. The natural imbalance in the classification task;
2. The difficulty (due to cost, privacy, etc.) of acquiring samples from the ω2

class;
3. The task of obtaining representative samples of the ω2 class is overwhelming,

as a result of the vastness of the distribution.

PR tasks of this nature have previously been constituted as involving outlier (or
novelty) detection in lieu of the fact that the vast majority of the data takes, what
is assumed to be, a well-defined form that can be learned, and that samples from
the ω2 class will appear anomalously – outside the learned distribution. Although
such problems can be significantly more difficult than those that involve two well-
defined classes of data, the results reported in the literature demonstrate that
satisfactory results can often be obtained (see [10,12,14,16,30,31], for example).

1.2 SE Event Recognition

To expand the horizon of the field, we observe that there exists a further, and
yet more challenging subset of the OC classification domain of problems, which
remains unexplored. We have denoted this class of problems as Stochastically
Episodic (SE) event recognition.

The problem of SE event recognition can be viewed in a manner that dis-
tinguishes it from the larger set of OC classification tasks. In particular, this
category of problem has a set of characteristics that collectively distinguish it
from its more general counterparts. The characteristics of this category can be
best summarized as follows:

– The data presents itself as a time sequence;
– The minority class is challenging to identify, thus, adding unwarranted noise

to the one-class training set;
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– The state-of-nature is dominated by a single class;
– The minority class occurs both rarely and randomly within the data se-

quence.

Typically in PR solutions to so-called OC problems, the accessible class, and in
particular, the data on which the OC classifier is trained, is considered to be
well-defined. Thus, it is presumed that this data will enable the classifier to gen-
eralize an adequate function to discriminate between the two conceptual classes.
This, for example, was demonstrated in [30], where the training set consisted ex-
clusively of images of non-cancerous tissue. Similarly, in [12], a representative set
of the target computer user’s typing patterns, which are both easily accessible
and verifiable, were utilized in the training processes.

The classification of SE events1 is considerably more difficult because deriv-
ing a strong estimate of the target class’s distribution is unfeasible due to the
prospect of invalid instances (specifically members of the ω2 class erroneously
labelled ω1) in the training set. In this work, we present solutions to this problem
based on tradition one-class classifiers.

SE event recognition is additionally challenging because the validity of in-
stances drawn from the target class are suspect, and the occurrences of the mi-
nority class are temporally (i.e. with respect to the time-axis) interwoven with
the data from the majority class.

1.3 Characteristics of the Domain of Problems

To accentuate the difference between the problems that have been studied, and
the type of problems investigated in this research, we refer the reader to Table 1.
This table displays an assessment of six one-class classification problems, which,
while only a small subset, cumulatively illustrate the traditional scope of the
problem set. In addition, we include the problem of CTBT verification, which
forms our exemplary SE event recogonition problem. The first column indicates
whether the problem has traditionally been viewed as possessing an important
temporal aspect. The three entries with an asterisk require special consideration.
In particular, we note that while, traditionally, these domains have not been
studied with a temporal orientation, they do indeed contain a temporal aspect.
The subsequent column signals whether the manual labelling of data drawn from
the application domain is a significant challenge. This is, for example, considered
to be a very difficult task within the field of computer intrusion detection, where
attacks are well disguised in order to subvert the system.

The following two columns quantify the presence of class imbalance. In the
first of these, we apply a standard assessment of class imbalance, one which
relies on the determination of the a priori class probabilities. Our subsequent

1 Events of this nature are denoted stochastic because their appearances in the time-
series are the results of both deterministic and non-deterministic processes. The non-
deterministic triggering event could, for example, be the occurrence of an earthquake,
while the transmission of the resulting p- and s-waves, which are recorded in the
time-serise, are deterministic.
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Table 1. A comparison of well-known One-Class (OC) classification problems. The
explanation about the entries is found in the text.

Dataset Temporal ID Imbalance Imbalance Interwoven
Challenge Type I Type II

Mammogram No Low Yes Medium No
Continuous typist recognition No Low Yes Medium No

Password hardening No Low Yes Medium No

Mechanical fault detection No* Low Yes Medium No

Intrusion detection No* High Yes High No

Oil spill No* High Yes Medium No*

CTBT verification Yes High Yes High Yes

judgement departs slightly from the standard view, and considers class imbalance
that arises from the difficulty of acquiring measurements (due to cost, privacy,
etc.). The final column specifies if the minority class occurs rarely, and randomly
(in time and magnitude), and if it occurs within a time sequence dominated by
the majority class.

To summarize, in this section we have (briefly) both demonstrated the novelty
of this newly introduced sub-category of PR problems, and positioned the CTBT
verification task within it. We additionally note that the fault detection, intrusion
detection, and oil spill problems could be reformulated to meet the requirements
of our proposed category. This, indeed, suggests a new angle from which these
problems can be approached.

1.4 Overview of Our Solution

As previously indiated, SE event recognition composes a particular challenging
problem due to the combined affect of the four characteristics that are inherent in
such problems. Under these circumstances, we envision two possible techniques
for discriminating between the target class and the stochastically episodic events
of interest. If the incoming training data contains a sufficient quantity of accu-
rately identifiable stochastic events, a standard clustering/PR algorithm could
be applied to label both the classes appropriately. Subsequent to the labelling
procedure, a standard binary classifier could be trained and utilized to achieve
the classification of novel instances. In this body of work, we refer to this scenario
as S1, and the subsequent scenario as S2.

Alternatively, and more applicable in scenarios in which the SE events are
extremely rare, all of the training data can be assigned to the target class, and
an OC classifier can be applied. The details of, and justification for, this ap-
proach are described in the subsequent sections. Our primary objective in this
research is to illustrate how standard supervised learning algorithms can be ap-
plied to discriminate rare stochastic episodes, which apart being unanticipated,
are random in magnitude and position within the sequence of background data.
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1.5 Contributions of This Paper

The novel contributions of this paper, with respect to PR, are as follows:

– We introduce an important new category of PR, namely SE event recogni-
tion. In particular, we note that this new realm deviates from the standard
set of one-class problems based on the presence of four characteristics: (a)
the data presents itself as a time sequence; (b) the minority class is chal-
lenging to identify, thus, adding unwarranted noise to the OC training set;
(c) the state-of-nature is dominated by a single class; and, (d) the minority
class occurs both rarely and randomly within the data sequence.

– In addition, we present a first attempt at classifying SE events within the
examplary verification problem suggested by the Comprehensive Test-Ban-
Treaty (CTBT). Our initial approach is extremely accessible, as it is based
on “off the shelf” PR solutions.

– More specifically, where the ω2 is sufficiently large, we demonstrate how
clustering/PR algorithms can be applied to label training data for the de-
velopment of a sound binary classifier.

– Finally, in scenarios where training instances cannot be acquired from the
second class (the so-called OC problem), and where the accessible class in
known to contain noise due to labeling issues, we illustrate how, through
novel means, standard OC classifiers can be applied as unsupervised learners.

We conclude this section by mentioning that our results probably represent the
state-of-the-art!

1.6 Paper Organization

The rest of the paper is organized as follows. In Section 2 we presented a brief
survey of the available solutions for dealing with PR. Subsequently, in Section 3,
we present the application domain, and our solution to modelling SE event sys-
tems for the purpose of PR system development. Then, in Section 4 we present a
brief overview of issues of PR in relation to SE event recognition. Thereafter, ex-
perimental results obtained by rigorously testing our solution on the exemplary
scenarios suggested by the CTBT are presented in Section 5 and 6, and discussed
in Section 7. Section 8 concludes the paper.

2 Pattern Recognition: State of the Art

This section2 serves to present the state-of-the-art in PR. In that regard, Duda,
et al., in [9] describe pattern recognition as follows:

“The act of taking in raw data and taking an action based on the
‘category’ of the pattern.”

2 This brief section has been included in the interest of completeness. Although these
issues are considered commonplace for the general PR problem, they are still fairly
non-standard for OC problems - which advocates the necessity of the section.



6 C. Bellinger and B.J. Oommen

It is, indeed, natural that we should desire to ‘teach’ machines to recognize
sets of patterns that are easily recognizable to humans, such as handwritten
characters, speech and faces, as computers present the possibility of increased
efficiency and do not become tired of mundane tasks. Furthermore, the benefits
of training machines to classify complex patterns, typically left to doctors and
scientists with considerable specialization in the domain, are equally apparent.
Thus, researchers have continued to push the state-of-the-art in PR systems
since the advent of the modern computer.

Supervised Learning. Prior to application, the PR system must be trained to
discriminate between the objects of interest in its particular application domain.
For multi-class problems, such as discrimination between handwritten charac-
ters, the PR system is said to learn a mapping that discriminates between the
individual inputs by directing them to their corresponding categories. Alterna-
tively, in the special scenario, which is of primary interest in this work, termed
OC learning, instances of a single target category are available for the training of
the PR system. As a result, the system takes a recognition-based approach, and
attempts to learn a function that maps novel instances of the target category to
the target class, and all others to the outlier class.

Broadly speaking, standard PR systems for supervised learning are trained
on datasets drawn from their prospective application domains, in which each
feature vector has been accented with its corresponding class label. The objective
of the training process is the derivation of a set of models that articulate the
individual characteristics of the classes. Thus, while the performance on the
training set is of little interest, rather, the focus shifts to the selection of a
model that will perform well on novel instances in the future. The derivation of
these models is algorithm-specific, however, there exists commonalities between
all learners. Generally speaking, regardless of the learning strategy, the accuracy
of the derived model on novel instances will increase with the size of the training
set. In addition, all learners strive to optimize the balance between specialization
and generalization [18].

Under ideal circumstances, the training procedure for a binary learner is able
to rely on an ample supply of data that has been uniformly drawn from both
classes. As a result, increasingly accurate models of the classes in question can be
constructed, and therefore, an effective classifier of novel instances is produced.
Conversely, this assumption cannot be made in SE event recognition problems.
Thus, particular expertise is required in order to derive an acceptable model.

OC learning problems characteristically involve scenarios in which the avail-
able class is easily acquired and exists in abundance, while the second class is
exceptionally difficult to acquire, or naturally rare [31]. During extreme class
imbalance, the majority class can be expected to compose as much as ninety-
five percent of the data. In such scenarios, it is typical that the class we are
most interested in identifying is the minority class, as is the case in automated
mammogram scans and many other medical disciplines [30]. Japkowicz, in [14],
and Kubat et al., in [16], demonstrate scenarios in which acquiring instances is
both difficult and expensive. In particular, the challenge of Kubat et al. requires



On the PR and Classification of Stochastically Episodic Events 7

the hand-labelling of satellite imagery, while the former involves fault detection
in helicopter gearboxes, which are expensive to run. Moreover, the derivation
of the outlier class would require the destruction of the gearboxes in an infinite
number of ways. Alternatively, under certain conditions, the second class might
be so large as to render the accumulation of a sufficient supply a seemingly in-
surmountable challenge. This scenario is well illustrated by the continuous typist
recognition problem described by Hempstalk et al., in [12]. The objective of the
depicted classification challenge is to distinguish the sole legitimate terminal user
from all other users. A proper training set, therefore, would be drawn uniformly
from the set of all people, which is clearly infeasible.

A variety of approaches have been applied to OC classification. The more
traditional of these involve extensions to existing binary classifiers or density es-
timations. The density estimation approach fits a statistical distribution, such as
Gaussian, to the target data, and classifies novel instances based on the learned
probability of their occurrences. Such a technique has been applied by the au-
thors of [4,21,30]. Techniques that extend existing classifiers typically modify
the inner structure of the classifier to fit boundaries around the target class,
and classify those novel instances falling outside the boundary as outliers, as is
demonstrated by [14,27]. These two approaches, in addition to some alternative
approaches to one-class learning, such as the work described in [12], which is a
combination of these two techniques, are discussed in the sections to follow.

Density Estimation. Density estimation is, perhaps, the most elementary of
all approaches to OC classification. The fundamental idea behind this OC clas-
sification technique is the estimation of a Probability Density Function (PDF),
P̂ (x), based on a training set, Dn = {x1,x2, ...,xn}, drawn independently and
identically from the underlying distribution, P (x), of the target class. Subse-
quent to the estimation of the PDF, novel instances are classified according to
a predefined target threshold or by resorting to a suitable statistical test.

Under ideal circumstances, and in particular, where sufficient training data is
accompanied by a substantial understanding of the background distribution, or
a flexible density estimation technique, density estimation-based classifiers are
known to produce strong results [31]. However, a significant quantity of training
data is required to overcome the curse of dimensionality, as is described by
Duda et al, in [9].

Bishop, in [5], discusses three approaches to PDF estimation; the first of
these techniques requires the modeller to provide an initial specification of the
functional form of the underlying distribution, such as Gaussian or Poisson. An
iterative process based on the predefined distribution, is applied to fit the density
function to the training data through the optimization of the corresponding PDF
parameters. The application of the parametric method is significantly limited by
the fact that, in many cases, the specified PDF may be incapable of describing
the training data.

Non-parametric estimation techniques represent a more flexible approach, as
they do not assume a particular functional form, and instead allow the training
data to completely specify the PDF. As a result, the PDF is not limited to a small
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set of standard distributions, and does not have to be provided at initialization.
However, the fact that the number of parameters to be optimized expands quickly
as the dataset increases in size, can prove to be prohibitive.

Yeung and Chow, in [33], applied the non-parametric method for probability
density estimation, introduced by Parzen, in [19], to the development of an
intrusion detection system. More specifically, their approach utilized the Parzen-
window estimation of P̂ (x), with a Gaussian kernel, on a dataset composed of
normal network activities. The generalized Parzen-window estimation of P̂ (x),
based on an n element dataset D, takes the following form:

P̂ (x) =
1

n

i∑

i=1

δn(x − xi), (1)

where δn(·) is the kernel function (in this case, Gaussian in form), the exact form
of which depends upon the number of instances in the training set. Subsequent to
the training process, novel instances are classified based on their log-likelihood.
In addition, the Parzen-window approach was previously applied by Tarassenko
et al., in [30], to the classification of anomalous mammograms.

A final approach, sometimes referred to as semi-parametric estimation, at-
tempts to strike a balance between the previous two methods. This approach
enables a general class of functional forms, in which the number of adaptive pa-
rameters is increased systematically to build a progressively more flexible model.

The mixture of Gaussians approach is a particular category of semi-parametric
estimation schemes, which has received considerable application, as it is analyt-
ically attractive. This approach to semi-parametric estimation was applied in
[22,23] to the detection of novel instances in a series of medical datasets, and
as a procedure for noise removal in an image processing task. In its essence, the
mixture of Gaussians method is composed of a linear combination of j Gaussian
distributions, each of which is uniquely parametrized according to its particular
mean, μj , and covariance, Σj , such that

p̂MoG(x) =
1

NMoG

∑

j

αj pN(x;μj ,Σj), (2)

where the αjs are the mixing coefficients.

2.1 One-Class Extensions to Binary Classifiers

Autoassociator. An autoassociator in an example of a feedforward Artificial
Neural Network (ANN). However, unlike its more prevalent binary counterpart,
the Multi-Layer Perceptron (MLP), which aims to produce a classification deci-
sion at the output layer, the autoassociator is trained to reconstruct the input
vector at the output layer [24]. The general architectures for both forms of ANNs
are illustrated in Figure 1.

The theoretical basis for the autoassociator relies on the fact that it is trained
to compress and decompress instances of the concept class exclusively. Thus,
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Ouput Layer

Fig. 1. This figure demonstrates two possible feedforward artificial neural network
architectures. Subfigure (a) illustrates the general form of the Multi-Layer Perceptron
(MPL). In Subfigure (b), the essential structure of an autoassociator is displayed.

during application, novel instances of the concept class should compress and de-
compress successfully. More specifically, the reconstruction error resulting from
a novel member of the concept class, during application, is expected to be small.
Alternatively, non-members of the target class are characterized by large recon-
struction errors. Therefore, the classification procedure entails a comparison of
the reconstruction error and a user-defined threshold. All instances reproduced
with an error less than the threshold are considered to be members of the concept
class, while the remainder are labelled as outliers, or non-members.

The OC classifiers of the above form have been applied in a number of do-
mains with considerable success. Hanson and Kegl, in [11], introduced an au-
toassociator system, namely PARSNIP, developed to reconstruct syntactically
correct sentences using the backpropigation procedure described by Rumelhart
et al., in [24]. The PARSNIP system, trained on the Brown University Corpus of
Present-Day American English, in which the words of each sentence are tagged
with their active syntactic category, learned to accurately identify sentences that
were syntactically correct and reject those that were incorrect.

Subsequently, Petsche et al., in [20], developed a system similar to a fuel gauge
based on the principle of the autoassociator. The system described in that work,
learned to predict the impending failure of a motor. Its intended application
domain is characterized by a high cost associated with failures, such as the fire
pump on navy vessels.

More recently, Japkowicz, [14], examined the performance of the autoasso-
ciator in comparison with a variety of binary learners on three domains. In
particular, the case studies utilized a CH46 Helicopter gearbox dataset, with the
objective of predicting the failure of the gearbox based on vibration time signals,
and the sonar and DNA promoter datasets from the U.C. Irving Repository of
Machine Learning. The recognition task in the former was to distinguish mines
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from rocks in sonar data, while the objective in the DNA promoter dataset was
to classify promoters in a DNA sequence. The autoassociator was found to be
robust relative to the other classifiers in all three case studies, and more accurate
on both the helicopter gearbox and DNA promoter tasks.

One-Class Support Vector Machines. Schölkopf et al., in [28], proposed a
one-class extension to the existing support vector techniques, for the estimation
of support in high-dimensional spaces. In general terms, their approach maps
the training data into a dot product feature space, and inserts a hyperplane in
a manner that separates the origin from the data with maximal margin.

In their work on one-class SVMs, Schölkopf et al. explored their implemen-
tation on both artificial and real-world data. For the latter category, they used
the US Postal Service’s handwritten digits.

The handwritten digits dataset was converted to facilitate two distinct sets
of experiments. In the first experiment, tests were conducted that specified a
random set of instances drawn from a single class that composed the target
data, and left all instances from the remaining nine classes to form a large set of
outliers. On this experiment, the one-class SVM was found to correctly identify
the target class 91% of the time, and had a false positive rate of 7%.

In the second experiment, ten binary features were added to the handwritten
digits dataset; one new feature for each of the possible digits. These features
were included to identify the class to the classifier during training, with the
notion that the classifier would learn to recognize what each digit should look
like. For this experiment, the OC classifier was trained on instances drawn from
each class, with the additional features. The authors found that the OC SVM
learned to accurately identify anomalous patterns, and the erroneously labelled
instances.

Similar implementations of the OC SVM have subsequently been applied to a
large number of problems. Manevitz and Yousef, in [17] for example, applied the
OC SVM to discover text documents of similar topics to those in the training set,
and compared the results to a set of alternate OC classifiers. They concluded
that, while the OC SVM is very sensitive to parametrization, with the right
parameter set, it outperformed the other classifiers considered in the study, with
the exception of the OC ANN.

Further examples of previous applications of OC SVMs are to classify yeast
gene regulation predictors in [15], and for image retrieval in [6].

2.2 Nearest Neighbour

The standard Nearest Neighbour (NN) algorithm is a binary classifier that takes
a non-parametric approach to PR. More specifically, in its simplest form, the
training process involves “remembering” all of the training instances and their
corresponding labels. During application, a novel instance x is classified accord-
ing to a majority vote rule, in which the k (k is an odd number specified by
the user) NNs of x, in the training set, are polled for their respective classes.
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The novel instance is subsequently assigned to the class that is occupied by the
majority of its neighbours [9].

The NN algorithm has seen considerable application. Horton and Nakai, for
example, compared the NN to Näıve Bayes and to decision trees, in [13], on
the problem of predicting the cellular localization sites of proteins in yeast and
ecoli. In their study, Horton and Nakai reported favourable results for the NN
classifier.

More recently, modifications have been made to the NN classifier to facilitate
OC classification. Datta, in [7], adapted the standard NN algorithm to preform
OC classification through the utilization of a threshold learned during the train-
ing phases. More specifically, the algorithm searches the training set for the pair
of NNs that are separated by the greatest distance, which is denoted by τ . When
classifying a novel instance, the distance between it and its NN is compared to
the learned parameter. If the distance is less than or equal to τ , the novel in-
stance is assigned to the positive class. Otherwise it is assigned to the negative
class.

The author applied this implementation of the OC NN (ocNN) algorithm to a
number of UCI datasets and found it to be comparable with other OC classifiers.
It was additionally found to be comparable with the binary C4.5 decision tree
classifier on some classes of the Breast Cancer Wisconsin, Pima Indian Diabetes
and Wine domains.

Tax, in [31], provided a comprehensive survey of the performance of one-class
classifiers on a number of artificial domains, in which an alternate adaptation
of the standard NN algorithm for one-class learning was included. Notably, he
identified the OC NN algorithm to be a poor performer in a general analysis
of robustness against outliers. This is, indeed, a problem that we noted when
applying the ocNN to the task of SE event recognition, due to the fact that the
mislabelled instances of the ω2 class in the training set often appear as outliers,
which should not be generalized into the model of the background (ω1) class.

Scaled Nearest Neighbour. In recognition of the limitations of ocNN within
the domain of SE event recognition, we propose a more suitable NN classifier [2] –
which is one of the contributions of this paper. This modification was motivated
by the second classification scenario, namely the one referred to earlier as S2. In
particular, this scenario is characterized by a series of rare SE events where:

– The data exists as a time-series;
– The state-of-nature is dominated by a single class (the ω1 class composes

more than, for example 90% of the instances);
– The minority class is nearly impossible to manually identify. Thus, it näıvely

takes the ω1 label even in the training set.

In this scenario, we have stated that due to the rarity of the outlier class, and
the extreme challenge of manually labelling those instances in the training set,
it can be näıvely issued to a OC classifier. Moreover, this can be done with
considerable confidence, provided that an estimate of the a priori probability
of the outlier class can be acquired. This hypothesis relies on the availability
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Fig. 2. This figure demonstrates the calculation of the τ parameter in the ocNN clas-
sifiers, and the effect of erroneous instances in the training set on the learned target
rejection rate threshold

of a so-called rejection rate, which ensures a portion of the training set will be
misclassified after the derivation of the discriminant function.

Observe that the standard ocNN algorithm is intuitively unable to learn a
threshold capable of discriminating most of the erroneously labelled outliers, and
is inherently ineffective in the presence of noise. The problem, which is embedded
in the ocNN algorithm, is depicted in Figure 2. By definition, the näıvely labelled
instances of the second class are outliers. Thus, they are expected to reside
on the periphery of the “real” background distribution. Therefore, with a high
probability, the learned parameter, τ , which is intended to record the variability
in the background class [7], can be expected to represent the distance between
a background instance and an erroneously labelled member of the outlier class.
A hypothetically learned distance of this sort is illustrated in Figure 2 as τ1.
Ideally, however, the algorithm should learn the distance that is denoted as τ2,
because it is the maximum target rejection rate threshold found in the set of
pure background instances (represented as empty circles).

Because this scenario creates an unsupervised learning environment, in which
we cannot explicitly identify the members of the outlier class during training,
we rely on a rejection rate parameter to be “engrained” in the OC classification
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algorithm in order to facilitate the exclusion of these instances. However, while
Datta coined τ to be the target rejection rate threshold, by definition, it does not
exclude any instances in the training set. Indeed, this was not the intention. Thus,
in this exceptional domain, it incorporates the erroneous information provided
by the mislabelled members of the outlier class into the learned threshold, as is
depicted by τ1 in Figure 2.

As a means of accounting for the overestimate, we have added a scaling pa-
rameter, ε, where 0 < ε ≤ 1, such that

τ ′ = ε · τ, (3)

with the understanding that the optimal value of ε will enable the rejection of
the majority of the outlier instances, by reducing the magnitude of the learned
threshold.

2.3 Combined Density and Class Probability Estimation

Hempstalk et al., in [12], introduced a technique for converting OC classification
problems into binary tasks, based on a two-fold strategy. The initial phase of
the strategy involves an examination of the training data for the concept class
in order to determine its distribution. This knowledge is subsequently utilized in
the generation of a non-concept, or outlier, class. In the second phase, a standard
binary classifier is trained based on the concept class and the generated class.
Most standard classification techniques are applicable here. The single limiting
factor in the selection of a binary classifier is the requirement that the classifier of
choice can produce a class probability estimate at prediction time. Using Bayes’
rule, the authors demonstrate how the class density function can be combined
with the class probability estimate to yield a description of the concept class.

The performance of the combined density and class probability estimation tech-
nique was examined on a multitude of datasets, the bulk of which result from the
U.C. Irving Repository of Machine Learning. In addition, the performance was
gauged on the very interesting task of recognizing a “continuous typist”. This
latter application required the validation of individual computer terminal users
based on their learned typing patterns. With considerations founded upon these
experiments, the authors concluded that the combination of the density function
with a classification model can produce an improvement in accuracy beyond that
which resulted from the density function or the classification model alone.

3 Modelling the Problem

To this point, we have described a novel sub-category of PR, which is character-
ized by the detection of a minute number of SE events interwoven in a time-series.
Indeed, a number of interesting PR problems fit this form, including advanced
earthquake, tsunami and machine failure warning systems, to name but a few.
In this section, we present a series of experiments based on the verification of
the CTBT. These experiments are designed to both illustrate the domain of SE
events, and to exhibit a first attempt at SE events recognition.
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3.1 Application Domain

The CTBT aims to prevent nuclear proliferation through the banning of all
nuclear detonations in the environment. As a result, a number of verification
strategies are currently under study, aimed at ensuring the integrity of the
CTBT. The primary verification technique being explored relies on the quantity
of radioxenon measured continuously at individual receptor sites, distributed
throughout the globe. Radionuclide monitoring, in general, has been identified
as the sole technique capable of unambiguously discriminating low yield nuclear
detonations from the background emissions. More specifically, verification of the
treaty based on the four radioxenon isotopes, 131Xe, 133Xe, 133mXe and 135Xe,
has been promoted due to the relatively low background levels, their ideal rates
of decay, and their inert properties [25,29].

In general, the measured radioxenon levels are expected to have resulted from
industrial activities, such as nuclear power generation and the production of
medical isotopes. However, they are also the byproducts of low yield clandestine
nuclear weapons tests, which are the subject of the CTBT.

3.2 Procuring Data: Aspects of Simulation

While it is generally beneficial to develop and study classifiers on “real” data, this
is, indeed, impossible within the CTBT verification problem due to the absence
of measured detonations, and the limited availability of background instances.
It has, however, been demonstrated that artificial data can be utilized for PR
system development, and to generate controlled experiments (generalized case-
studies), in the absence of “real” measurements [1,8]. In this vein, as a means
of acquiring experimental datasets for this research, we utilized the simulation
framework presented by Bellinger and Oommen in [3]. Their simulation frame-
work models SE events, such as earthquakes, nuclear explosions, etc., as they
propagate through the background noise, in this case representing radioxenon
emitted from the industry into the earth’s atmosphere.

Simulation Scenario. In order to explore the PR of low yield clandestine nu-
clear tests, we devised a simulation scenario to capture the effects of a diverse
set of detonation possibilities, within a realistic background scenario. In partic-
ular, and accordance with the majority of the CTBT’s International Monitoring
Station (IMS), the IMS in the simulated environment was impacted by a single
industrial emitter. In this simulation scenario, the industrial emitter was posi-
tioned 3,000 km away from the IMS. Thus, when the atmospheric conditions
transported the emitted radioxenon directly from the source to the receptor,
and when the conditions were not conducive to the dispersion of the radioxenon,
the background concentration could reached significant levels. However, due to
the realistic atmospheric conditions that were built into the model, such as the
fluctuations in wind speed and direction, along with atmospheric stability, the
background levels were generally low. This fact is displayed by the histogram
in Figure 3. The figure specifically demonstrates that the majority of the 131Xe
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Fig. 3. This figure displays a histogram of the measured concentrations of 131Xe at
the IMS, resulting from the background source during the simulation

concentrations measured at the IMS site during the simulation were less than
0.5 Bq m−3.

It is, however, highly probable that a clandestine detonation will occur at
distances beyond the industrial source, thus, causing no, or only a minute, change
in the radioxenon concentrations measured at the IMS, depending on the angular
direction to the detonation site, and the prevailing meteorological conditions.
Therefore, the classification of this type of SE event is extremely challenging.

With the above fact in mind, we considered the performance’s of the PR
systems as a function of distances. This is to specifically assess the probability
of detecting detonations at various distances. In particular, 23 subcategories
of datasets were generated. In each case, the modelled environment contained
the same industrial source and IMS at the receptor site. As a result, for each
simulation the background readings can be assumed to follow the distribution
displayed in Figure 3. The 23 subsets formed a series of incremental detonation
ranges, which commenced with all detonations occurring between 500 km and
1000 km, as illustrated in Figure 4.

The detonation range was iteratively increased by 500 km for each successive
set. This incremental approach enabled the examination of performance as a func-
tion of distance, in addition to the more general considerations of performance.

As a binary classification problem, the generated sets were composed of two
classes, in this case a background class and a detonation class. In addition to
the class label, each instance was composed of the concentrations of the four
isotopes measured by the IMS at the receptor site over the period of an hour. The
simulation system contains two phases, the first phase simulates the effect of the
background emission source on the receptor sites, thereby producing instances
of the background class (labelled 0). Thus, an instance measured over hour i,
takes the following form:

xi,0 = 131Xei,0,
133Xei,0,

133mXei,0,
135Xei,0, 0. (4)

The second phase generates the data for the detonation class (labelled 1). This is
done by generating random (in time, space and magnitude) low yield explosions,
and measuring their impact on the receptor site. Subsequently, the effect of the
detonation is combined with that of the background source over the appropriate
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Fig. 4. This figure demonstrates the iterative composition of the simulated domain.
In each iteration of the simulation, a fixed number of explosions are probabilistically
generated as uniform, random events in time, space and magnitude, and dispersed
according to the prevailing meteorology, which may or may not carry the pollutant
cloud past the receptor site.

period of time, and written to the dataset with the detonation label. Therefore,
a detonation instance measured over hour j, takes the following form:

xj,1 = xj,0 + 131Xej,1,
133 Xej,1,

133m Xej,1,
135 Xej,1, 1. (5)

3.3 Generated Datasets

A total of 230 datasets were derived and applied to scenario S1 and S2, ac-
cording to the simulation procedure previously described. More specifically, 10
datasets were generated for each of the 23 detonation ranges, each of which was
subsequently divided into training and testing components.

Intuitively, the first scenario presents a slightly easier classification problem,
because a set, albeit small, of SE events can be extracted from the application
domain and applied to train and/or test the PR systems. More specifically,
within this scenario, we assume that the ω2 class is both identifiable and available
in quantities that facilitate the training of binary classifiers. However, in many
ways, the classification problem still presents itself as a so-called OC classification
task, and thus warrants exploration on both fronts. The datasets specifically
contain a 90% background data (ω1) and 10% explosion data (ω2).
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Alternatively, each set involved in the S2 scenario is divided with 99% back-
ground data (ω1) and 1% explosion data (ω2). In order to simulate the challenge
of manually labelling the instances drawn from class ω2, and in accordance with
the disguised nature of the SE events, all of the ω2 training instances were erro-
neously labelled ω1.

Alternatively, the test sets included appropriately labelled instances from both
classes, with proportions following the predefined states-of-nature. This enabled
us to assess each classifier’s ability to generalize the “real” background data from
the noisy training set.

4 PR Solutions

In this section, we present a series of experiments designed to both illustrate
the demonstration domain, and to exhibit a first attempt at classifying this
sub-category of PR problems.

4.1 Classification Scenarios

As mentioned in the introductory section, within this challenging domain of
classification problems, there exist two conceivable scenarios, which we have
denoted as S1 and S2. These scenarios explicitly influence the choice of the
classification scheme applied to the task of recognizing the SE events.

Intuitively, the first scenario presents a slightly easier classification problem,
because a set, albeit small, of SE events can be extracted from the application
domain and applied to train and/or test the PR systems. More specifically,
within this scenario, we assume that the outlier class is both identifiable and
available in quantities that facilitate the training of binary classifiers. However,
in many ways, the classification problem still presents itself as a so-called OC
classification task, and thus warrants exploration on both fronts.

Alternatively, the second scenario presents itself as a much more difficult PR
task, and in many ways more accurately reflects the PR problem suggested by
the detection of SE events, in general, and the verification of the CTBT, in
particular.

In accordance with the general domain characteristics, as they were originally
defined, the data presents itself as a time-series of background measurements
that are interwoven with a minute number of SE events. However, unlike the
ideal scenario depicted in S1, here we attempt to assume a state-of-nature that
is more appropriate for the CTBT task. In particular, we assume that there is a
1% a priori probability of a detonation, which, while still an overestimate, is a
more accurate depiction, while it still provides insight into the behaviour of PR
systems on the class of SE events.

Raising the difficulty further, is the recognition that, in practice, the clan-
destine nature of the SE events are such that manually identifying a distant
clandestine occurrence in the acquired time-series of readings is extremely diffi-
cult, if not impossible. Thus, this prohibits the derivation of a labelled training
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set, which dictates that practitioners are left to utilize a training set composed
largely of background instances, but with a minute number of unidentifiable
members of the SE event class.

In the absence of a labelled training set, we propose the application of stan-
dard OC learners as unsupervised classifiers. When applying OC classifiers to an
unlabelled training set, the practitioner must rely on the knowledge of a domain
expert to acquire estimates of the a priori class probabilities.

In particular, estimates of the state-of-nature are required to appropriately
specify the parameters of the OC classifiers, such as the rejection rate, or error
rate. This technique aims to prevent the inclusion of the SE event instances in
the generalized description of the background class. Our reliance on an error,
or rejection rate, presumes that the SE events will reside on the periphery of
the background class, and thus, by marginally tightening the generalization of
the background class, those instances of the SE event class will no longer be
included.

4.2 Classification

Standard PR problems typically assume the existence of data that was drawn
independently and identically from the application domain, and that the data
can be divided upon class lines into representative sets. The availability of such
data facilitates the training of binary classifiers, which have been shown to be
proficient at learning class distributions, and thus at labelling novel instances.

In all brevity, we mention that the binary classifiers used in this study were the
Multi-layer Perceptron (MLP), the Support Vector Machine (SVM), the Nearest
Neighbour (NN), the Näıve Bayes (NB) and the Decision Tree (J48), all of which
are fairly well known, and so their descriptions are omitted here. However, we
mention that their implementations were obtained from Weka.

Alternatively, OC classifiers rely on instances drawn from a single class in the
derivation of a discriminant function. A broad set of OC classifiers exists in the
literature, each of which applies a slightly different strategy to the construction
of a binary discriminant function from a single class. However, in simple terms,
the process can be articulated as one in which the selected classifier learns to
recognize, in some general terms, novel instances that are similar to those viewed
during the training process. Thus, novel instances that do not appear to fit into
the learned distribution are designated to the ω2 class.

Although these classifiers were briefly outlined earlier, to summarize:

– The autoassociator (AA), for example, applies a neural network structure to
compress/decompress instances of the concept class exclusively. Thus, an un-
successful compression/decompression results in the instance being assigned
to the second class [14].

– Hempstalk et al., in [12], converted the OC classification problem into binary
tasks by estimating the distribution of the concept class and generating
instances of the non-concept, accordingly. Finally, a standard binary classifier
is trained. This process has been denoted the Combined Probability and
Density Estimator (PDEN).
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– Alternatively, the one-class Nearest Neighbour (ocNN) algorithm [7] learns
a target rejection rate, τ , where τ is the distance between the two nearest
neighbours with the greatest separation in the training data. Subsequently,
all novel instances whose nearest neighbours are at greater distances than τ
are classified as outliers.

– We have additionally implemented a modified version of the ocNN in Weka,
and denoted it as the scaled ocNN (socNN). Contrary to the ocNN, the
socNN classifier is capable of learning a model that accounts for the noise in
the training set.

– Subsequent research also explored the performance of the often extolled one-
class SVM [28]. However, due to the poor results which were generally equiva-
lent to those yielded by the ocNN, it is not included in the present discussion.

4.3 Classifier Assessment Criteria

As discussed in the previous section, this research considers the performance of
the classifier within two distinct scenarios. Within each of the scenarios, namely
S1 and S2, we considered the performance of the classifier according to a set of
criteria. These criteria are discussed in greater detail.

In particular, we examined the general performance of the classifiers across all
of the simulated detonation ranges. Performance in this category is particularly
important, as, in practice, the detonation ranges are largely unpredictable. The
results of this assessment are presented in Sections 5.1 and 6.1. In addition, we
explored the performance of the classifier within two shorter detonation ranges,
the result of which is presented in Sections 5.2 and 6.2.

The performance of the classifier, as a function of distance, was also examined.
The results of this comparison are detailed in Sections 5.3 and 6.3.

Finally, in light of the inherent challenge of distinguishing these two very
similar classes according to the four radioxenon isotopes, we were motivated to
explore an expanded CTBT feature space. Based on the significant role held by
meteorology in affecting the pollutant levels at the receptor site, we surmised
that the inclusion of meteorological features would improve the performance of
the classifiers. The results of our experiments with an expanded feature space
are provided in Sections 5.4 and 6.4.

5 Results: Scenario 1

In this section, we present the results that were obtained according to the four
assessment criteria that were motivated in the previous section, on the first
classification scenario, S1. We commence our exploration of PR performance
by examining the Area Under the ROC Curve (AUC) scores produced by each
classifier over the 23 detonation ranges.

5.1 General Performance

In this section, we present a general overview of the performance levels of each of
the considered classifiers on the simulated CTBT domain. More specifically, we
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Fig. 5. This figure displays the performance of the nine classifiers, in terms of their
AUC scores on the 230 generated CTBT datasets, in the form of a series of boxplots

present an assessment of the five binary classifiers and the four one-class classi-
fiers, in terms of their AUC scores averaged over the 230 datasets that spanned
the 23 detonation ranges. In light of the fact that the SE events, which are to be
identified, will, in practice, occur at random and unpredictable distances, these
results are a particularly insightful overview of the general performance levels.

The results depicted in Figure 5 were compiled as a series of boxplots; one for
each classifier.

The solid lines that bisect the boxes represent the median AUC score pro-
duced by the particular classifier. The box itself indicates the distribution of the
middle half of the AUC scores produced by the classifier. Thus, it stretches from
the 25th percentile (at the lower hinge) to the 75th percentile (at the upper
hinge). The boxes that are evenly divided indicate that the classifier’s scores are
evenly distributed throughout the central region. This is, indeed, the case for AA
and NB.

The fact that there is no box around the median indicator for the SVM,
suggests that nearly all of the AUC results were equivalent, and in this case,
approximately 0.5. The relatively large number of circles extending up from the
median, individually identify outliers. This suggests that, in general, the SVM
classifier performed poorly, but that it occasionally produced anomalously strong
results, which stretched slightly beyond 0.8.

Alternatively, the scenario where the median does not produce an even bi-
section of the box indicates that the distribution of the inter-quartile range is
skewed. This is the case, for example, with PDEN, where the upper-quartile is
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large, indicating that the points composing the upper-quartile are spread over a
larger distance.

The dashed lines, or whiskers, stretch to either the maximum and minimum
values, where outliers do not exist, or to 1.5 times the range of the inter-quartile
region in scenarios with outliers, such as in the case with the SVM classification
results.

The SVM classifier is, surprisingly, by far the worst-performing classifier on
this data, and in spite of its bias, it is, on average, worse than the OC classifiers,
AA and socNN. This is reiterated in Table 2, which contrasts the mean AUC
scores of AA and socNN as 0.656 and 0.603, respectively, with the mean value
for the SVM classifier being 0.528. Moreover, all four OC classifiers appear to be
superior to the SVM when considered in terms of their maximum AUC scores.

When assessing the classifiers according to the boxplot, the median value
provides a good indication of their performances, in general. However, most
interesting are the ranges of the inter- and outer-quartiles along with the presence
of the outliers, when combined with a high median value, as these components
provide a strong indication of how likely it is that the classifiers will reproduce
the median result.

In these terms, the binary classifier, the MLP, stands out as the superior
classifier, with J48, NN, and NB contending for the intermediate positions. The
results posted in Table 2 confirm that the MLP is the strongest of the classifiers
considered here. Furthermore, it indicates that the J48 and NB are very similar,
and that the NN is the fourth-ranking binary classifier according to the mean
and maximum scores. However, the NN is second when ranked according to the
minimum AUC scores.

Table 2. This table displays the general classification results, in terms of AUC

Mean Max Min STDV

NB 0.772 0.939 0.504 0.074
MLP 0.869 0.976 0.674 0.067
NN 0.741 0.913 0.584 0.071
J48 0.774 0.98 0.500 0.148
SVM 0.528 0.813 0.500 0.065
ocNN 0.540 0.875 0.496 0.087
PDEN 0.487 0.943 0.182 0.156
socNN 0.603 0.842 0.405 0.094
AA 0.656 0.970 0.251 0.140

Notably, of the set of OC classifiers, the PDEN produced the most variable
range of the AUC scores. It is our suspicion that this variability resulted from the
PDEN’s generation of an artificial second class in its training process. However,
further exploration of this matter is required.

In general, the AA classifier is identified as the strongest OC classifier, both
with respect to its mean and median values. While the socNN classifier achieved
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the second highest mean, it is more stable than the AA, and does not produce
any anomalous results. Indeed, the socNN has a lower standard deviation, and
furthermore, its boxplot spans a smaller range.

5.2 Performance on Short- and Long-Range Detonations

In Figure 6, we present the AUC results produced over two detonation ranges
of particular interest. The Boxplot on the left in this figure contains the results
for the datasets that included detonations ranging from 1,000 km and 5,500
km, while the Boxplot on the right has those with detonations between 5,500
km and 10,000 km. Together, these plots contrast the performance of the in-
dividual classifiers in the various detonation ranges. This experimental setup
demonstrates one technique through which the performance of various recep-
tor network topologies can be examined. For example, if PR within the second
range is found to be a considerable challenge, the shorter range may, perhaps,
be considered an upper bound on the acceptable distance between receptors.

There are two factors at play when hypothesizing about classifier performance
within these ranges. Intuitively, detonations closer to the receptor site will be more
visible at the receptor site, provided the meteorological conditions are such that
the emissions are advected in the direction of the receptor. Conversely, detonations
that occur farther afield are likely to have a smaller influence on the pollutant lev-
els at the receptor site, leading to a more challenging classification problem. On
the surface, then, it appears that nearby detonations should be easier to detect.
Indeed, the very near detonations are often easily identifiable. However, the sce-
nario is made more complex by the fact that during the simulation, the industrial
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Fig. 6. In this figure, Boxplot (i) displays the performance of the nine classifiers, in
terms of their AUC scores for detonations occurring between the distances of 1,000 km
and 5,500 km, and Boxplot (ii) displays their performances for detonations between
the distances of 5,500 km and 10,000 km
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source was positioned approximately in the middle of the shorter range. Thus,
there was, in a sense, a great deal of competing background noise to distort the
signal.

Indeed, Figure 6 demonstrates that within this scenario it is possible for the
performance of the classifiers to improve when detonations occur at greater
distances. However, the fact that this only occurred for the binary classifiers,
highlights the importance of the second class in the learning process. It turns
out that the majority of the binary classifiers are able to, through the training
process, utilize the low concentration instances of the detonation class, which
resulted from explosions at great distances, to specialize their models to the
counter-intuitive point where many of the instances with low concentrations
were correctly identified as explosions.

Alternatively, the figure suggests that neither the one-class classifiers, nor
the SVM, were able learn a model with this characteristic. Moreover, the SVM
exclusively produces AUC scores of 0.5 within the second range, and the ocNN’s
performance was nearly equivalent. Finally, at greater distances, the PDEN’s
performance fell even further, with only a minute number of instances exceeding
an AUC of 0.5.

Within the shorter range, it is notable that the stronger OC classifiers, namely
the AA and socNN, are very comparable with most of the binary classifiers.
However, the distinction in favour of the binary learners is emphasized for the
larger detonation range.

5.3 Performance as a Function of Distance

In this sub-section, we present the performance of the classifier as a function of
distance, where the performance is assessed both according to the AUC and the
False Positive Rate (FPR).

A false positive occurs when the classifier mislabels a novel instance as a
member of the positive class (in this case, a member of the background class),
when it is, in fact, a member of the negative class (specifically, a member of
the SE event class). Thus, the FPR is the total number of false positives over
the total number of negative instances. As a metric, the FPR provides insight
into whether the model is overly biased towards the positive class, which is a
significant risk when the problem is extremely imbalanced.

These results are particularly interesting, as they provide greater insight into
performance trends. Moreover, these suggest a performance scale for successively
sparser receptor networks, and enable the interested parties to weigh the cost of
receptor stations against the probability of detection.

The performance plots depicted both in Figure 7 and Figure 8 were produced
by calculating the ensemble mean of each classifier’s performance at the 23 det-
onation ranges, and then through the extrapolation of a performance function.

Within Figure 7, the MLP classifier is identifiably the superior classifier when
compared to the remaining four binary learners in terms of the AUC, across
the range of detonation distances. In addition, it is not subject to the abrupt
fluctuations that J48, and to a lesser extent, NB, incur.
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Fig. 7. In this figure, the plot on the left displays the performance of the five binary
classifiers, in terms of their AUC scores, as a function of distance. Similarly, the plot
on the right displays the performances of the four one-class classifiers as a function of
distance, according to their AUC scores.

All of the classifiers, with the SVM appearing as the sole exception, have no-
table hulls in their performance curves that extend over varying distances and
to distinct depths. In each case, a slow descent begins immediately, and is subse-
quently accompanied by a slow ascent. Alternatively, the SVM classifier suffers
from a similar initial decline. However, it fails to recover from the degradation
at greater distances.

In each case, the position of the performance hull roughly corresponds to the
radial distance between the industrial source of radioxenon and the receptor site.
Thus, this suggests that detonations occurring at approximately the same radial
distance as that of the primary background emitter are a significant challenge
for the detection systems.

The plot on the left in Figure 7 confirms our previous findings, which identified
the MLP as the top classifier in this domain, the SVM as the worst, and the
remaining three classifiers as contenders for the inner rankings. Indeed, while
there are notable differences in the AUC plots for the J48, the NB, and the NN,
the fact that their functions cross at numerous points, prohibits the derivation
of a general ranking over the entire range of distances.

The plot on the right in Figure 7 presents the performance of the one-class
learners as a function of distance. In general, the plot demonstrates that all of
the one-class classifiers follow a similar downward trend from their initial peaks,
which occurred between 0.8 and 0.9, towards, or beyond in the case of the PDEN,
an AUC of 0.5.

Moreover, the performance functions are broadly divisible into two categories.
Both the ocNN and the PDEN descend relatively quickly, while the AA and
the socNN degrade in a slower, more linear fashion. Therefore, the AA and
the socNN are the more suitable of the four one-class learners, with the AA
appearing generally superior to the socNN.

The performance of the nine classifiers, measured in terms of the FPR metric,
are plotted as a function of distance in Figure 8. In this figure, the plot on the
left emphasizes the significant challenge incurred by the binary learners when
the detonations occur at a distance similar to the noise source. Although we
previously identified the MLP as the strongest binary classifier on this domain,
for a relatively broad range (roughly between 25,000 km and 65,000 km), the
vast majority of instances, which are truly of the detonation class, were assigned
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Fig. 8. In this figure, the plot on the left displays the performance of the five binary
classifiers, in terms of their FPR scores, as a function of distance. Similarly, the plot
on the right displays the performances of the four one-class classifiers as a function of
distance, according to their FPR scores.

to the background class. The results are similar for J48. Interestingly, NB has
the smallest area under its FPR curve. Thus, it least often identified members
of the SE event class as background noise. While we do not consider the FPR
results to be individually sufficient for model selection, they do provide some
very intriguing insight into the behaviour of the classifiers.

The trends for the one-class classifiers in the plot on the left follow much the
same trends previously seen in Figure 7. In particular, the AA and the socNN
are superior to the PDEN and the ocNN. However, the distinction between the
AA and the socNN is less clear.

5.4 Expanded Feature-Space

Through our exploration of this most interesting of classification problems, we
recognized both the inherent challenge presented in the classification of SE events
that are interwoven in background noise, and the role of meteorology in effect-
ing the very noise levels that make the task so difficult. Our extensive consid-
eration of this application domain has led us to identify the particularly strong
relationship between the wind direction and pollutant levels at the receptor,
which suggests a possibly informative feature.

By expanding the standard CTBT feature space to include wind direction, we
have produced a significant increase in the AUC. In particular, the top classifiers
(MLP, AA, socNN), now demonstrate the ability to detect detonations that, when
considered solely on the basis of the four radioxenon measurements, fit into the
background distribution with a high probability. This fact is, indeed, depicted for
many of the binary and one-class classifiers in Figure 9 and Figure 10.

In particular, while the depth to the hull in the performance of the MLP de-
creases only slightly, the J48’s hull is entirely removed when the wind direction
feature is added. Thus, the J48 classification ceases to be affected by the deto-
nation distance when the new feature is included. In addition, its mean AUC is
significantly improved.

The NN and SVM classifiers also benefit from the inclusion of the wind direc-
tion feature. However, the new feature has a slightly negative effect on the NB.
It has been noted in the literature, that many of the PR algorithms, including
the MLP, SVM and NB may benefit from normalization of the features [9,32].
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Fig. 9. This figure contrasts the performance of the binary classifiers, in terms of the
AUC as a function of distance, on the standard feature-space (see the plot on the left),
and when the feature-space is extended to include an assessment of the wind direction
(see the plot on the right)
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Fig. 10. This figure contrasts the performance of the one-class classifiers, in terms of
the AUC as a function of distance, on the standard feature-space (see the plot on the
left), and when the feature-space in extended to include an assessment of the wind
direction (see the plot on the right)

Thus, it is conceivable that the performance of these classifier may be improved
to some degree. However, these results provide a good baseline from which the
individual classifiers can be compared.

By expanding the feature-space to include the wind direction, the OC learner,
socNN, improves significantly, and becomes, in general, the top learner amongst
its peers. The classifier, AA, also improves as a result of the new feature. How-
ever, its AUC scores do not increase to the same extent as the socNN.

Similar to the socNN, the PDEN’s initial performance is lower in the newly
expanded feature-space. However, the majority of its performance function is
elevated. Finally, the ocNN benefits the least from the new feature, although,
its initial performance is improved.

Thus, in the worst case, the wind direction feature produces marginal im-
provements in the performance of the four OC learners. However, it significantly
improves both the AA and the socNN’s ability to perform in scenarios where
the detonations occur at distances equivalent to, and beyond the radial distance
to the background source.

In Figure 11, a series of boxplots are utilized to facilitate the comparison of
classifier performance in the two feature-spaces. Indeed, these results confirm the
trends that we have previously identified. Particularly noteworthy is the depic-
tion of J48’s performance; this plot emphasizes both the significant increase in
the J48’s median AUC score, and the impressive stabilization of its classification
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Fig. 11. This figure utilizes a series of boxplots to compare the performance of the nine
classifiers and the standard feature-space, and with the extended feature-space, which
is augmented by a wind direction indicator

results when the wind direction feature is added. The benefits to the SVM are
also well visualized in this figure.

It is, indeed, well demonstrated in Figure 9, Figure 10, and Figure 11 that the
additional information has assisted many of the classifiers to overcome the signif-
icant challenges inherent in identifying SE events within the field of background
noise.

6 Results: Scenario 2

In this section, we present the results that were produced on the four assess-
ment criteria that were motivated, and utilized in the previous sections. In this
section, however, we explore the very intriguing classification scenario, which
we previously denoted S2. This exploration follows the same structure that was
previously applied in the exploration of the first classification scenario. Thus, we
begin by examining the AUC scores produced by each of the one-class classifiers
over the 23 detonation ranges; we then proceed to consider the performance over
the two successive, smaller distances, the performance as a function of distance,
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and finally the benefit of expanding the feature-space to include an additional
wind direction feature.

6.1 General Performance

In this section, we present a general overview of the performance of the set of
one-class classifiers on the simulated CTBT domain. More specifically, we present
an assessment of the four one-class classifiers, in terms of their AUC scores on
the 230 datasets that covered the 23 detonation ranges.

Once again, in light of the fact that the SE event will, in practice, occur at
random and unpredictable distances, these results are particularly insightful.
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Fig. 12. This figure displays the performance of the four classifiers, in terms of their
AUC scores on the 230 generated CTBT datasets, in the form of a series of boxplots

The results that are depicted in Figure 12 were compiled as a series of box-
plots; one for each classifier. In addition, Table 3 contains a compilation of the
mean, maximum, minimum and standard deviation of the each classifier’s overall
results.

Table 3. This table displays the general classification results, in terms of AUC

Mean Max Min STDV

ocNN 0.505 1 0.496 0.042
PDEN 0.507 1 0.075 0.185
socNN 0.587 1 0.292 0.171
AA 0.621 1 0.024 0.225
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Our assessments of both Figure 12 and Table 3 reveal that, similar to our
findings on the S1 scenario, the AA classifier is superior, in terms of its mean,
and median scores, to the other OC classifiers. Indeed, on this, which is a more
challenging task, its mean and median values are only slightly lower than in the
previous task. However, within this second scenario, it has the lowest minimum
AUC scores, which appear as outliers in the boxplot. In addition, it is extremely
unstable, with results ranging from perfect to near zero.

The socNN classifier ranks second after the AA according to its median and
mean, and was considerably more stable, while the ocNN and PDEN classifiers
produced values that were near or below 0.5.

6.2 Performance on Short- and Long-Range Detonations

In Figure 13, we present the results produced over two detonation ranges of
particular interest. Specifically, the Boxplot on the left in the figure contains the
results for the datasets that include detonations between the distances of 1,000
km and 5,500 km, while the Boxplot on the right has those with detonations
between 5,500 km and 10,000 km. Together, these plots demonstrate, contrary
to the previous results, that there is little change in performance at greater
distances.
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Fig. 13. In this figure, Boxplot on the left displays the performance of the four classi-
fiers, in terms of their AUC scores for detonations occurring between the distances of
1,000 km and 5,500 km, and the Boxplot on the right displays their performances for
detonations between the distances of 5,500 km and 10,000 km

6.3 Performance as a Function of Distance

In this sub-section, we present classifier performance as a function of distance.
As in the previous section, performance is assessed both according to the AUC
and the FPR.
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The AA and socNN are, once again, roughly identifiable as the best of the
four classifiers in Figure 14 and Figure 15. However, all of the classifiers, with
the exception of ocNN, which rapidly converges to 0.5, suffer from significant
and essentially random fluctuations. These fluctuations in performance suggest
that the classifiers’ results were as dependent on the nature of the SE events in
the 230 datasets, as on the distance at which the events originally occurred.
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Fig. 14. This figure displays the performance of the four one-class classifiers as a func-
tion of distance, according to their AUC scores
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Fig. 15. This figure displays the performance of the four one-class classifiers as a func-
tion of distance, according to their FPR scores

6.4 Expanded Feature-Space

In this final section, we consider the benefits of extending the feature space to
include a wind direction indicator. In Figure 16, both the original plot of the
four classifiers’ performances as a function of distance, and their performances
on the extended feature-space are plotted. For an alternate view, the comparison
is composed of a series of boxplots in Figure 17.

These figures illustrate that both the AA and the socNN significantly benefit
from the expanded feature-space. Indeed, the socNN benefits the most, as it
becomes superior to the AA for the vast majority of distances, and the variability
in its results are significantly dampened.
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Fig. 16. This figure contrasts the performance of the one-class classifiers, in terms of
the AUC as a function of distance, on the standard feature-space (see the plot on the
left), and when the feature-space is extended to include an assessment of the wind
direction (see the plot on the right)
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Fig. 17. This figure utilizes a series of boxplots to compare the performance of the four
classifiers and the standard feature-space, and with the extended feature-space, which
is augmented by a wind direction indicator

7 Discussion

In this section, we consider the results previously reported for the OC clas-
sifiers in comparison to those reported for the binary learners. In particular,
Section 7.1 compares the two classification strategies within the first scenario,
namely S1. Alternatively, the OC classifiers are considered in comparison to the
set of standard binary classifiers on scenario S2 in Section 7.2.
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7.1 Results: S1

The relatively low mean and median AUC scores produced by the OC classifiers,
combined with the considerable variability in their results on the standard CTBT
feature-space, particularly in comparison with the top binary learners, clearly
illustrate the many challenges inherent in applying OC learning to the derivation
of a binary classifier. However, Hempstalk et al., in [12], previously identified
similar comparisons between binary and OC learners as “näıve” comparisons,
when applied to scenarios that are accurately identifiable as OC problems.

In particular, in so-called OC problems, such as the detection of SE events,
the second class is inherently ill-understood due to the fact that a characteristic
set cannot be drawn from it. Thus, training and testing a binary learner as if one
could draw a representative set from the second class, which is generally assumed
when training a binary classifier, provides an upper bound on the classifier’s
future performance.

The key differences in the performance of the two forms of classifiers is well
illustrated in Figures 6 and 7. While the OC classifiers are very competitive on
the initial radial ranges, when the detonation occurs further afield, their AUC
scores drop considerably in comparison to all of the binary classifiers, with the
exception of the SVM. The initial success of the OC classifiers suggests that they
are very capable of associating anomalously high levels of radioxenon with the
SE event class.

However, the binary learners are not only well adapted to classifying anoma-
lously highly levels as members of the SE event class, through the binary learning
process they are also capable of drawing on the anomalously low levels, which
commonly result from detonations that occurred well beyond the radial distance
to the background source, to specialize their decision boundaries such that sim-
ilar events are recognized as belonging to the SE event class in the future.

The results of expanding the standard CTBT feature-space to include an
indicator of the prevailing wind were, in general, very favourable, and lead to
improved AUC scores for most of the classifiers, with the NB being the sole
exception.

In its essence, the wind direction feature enabled the classifiers to learn the
direction of the background source. As a result, the classifiers were able to iden-
tify detonations, which occurred at similar radial distances to the receptor site
as the background emissions, and thus, had signatures that were similar to the
background levels, but were transported from a different direction. This result
is identified very clearly in Figure 9, and suggests that the further expansion of
the feature-space might additionally improve performance.

7.2 Results: S2

A considerable portion of the previous analysis is applicable to this second,
more challenging, classification scenario. Most importantly, the benefits of the
extended feature-space were witnessed within S2 as well. However, due to the
nature of the problem, only the OC classifiers were applied to this first attempt
at performing PR within this new domain.
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As a result of the formulation of the problem, we proposed the use of standard
OC classifiers as unsupervised learners, and relied on inner mechanisms of the
individual classifiers to facilitate the derivation of a model that segregated those
instances of the training set that were accurately of the background class from
the näıvely/erroneously labelled instances of the outlier class.

It is clear that the instability in performance that is depicted with respect to
distance, and which is significantly more apparent in S2 than S1, results both
from the erroneous instances in the training sets of S2, and the variability in
classification challenges presented by the few members of the SE event class
in the test sets. Indeed, the generation of random SE events over a domain as
vast as the simulated CTBT domain, will inevitably produce both very easy,
and nearly impossible classification tasks. Thus, when randomly including only
a minute number of these events in the test sets, it is probable that performance
on the SE event class will fluctuate significantly. This is, of course, why a large
number of receptors are required in the global receptor network.

However, while the ensemble mean performance fluctuates considerably over
the successive radial ranges, when considered in terms of the overall means, or
medians, the performance of the OC classifiers on the S2 task is only slightly
lower than on the S1 task. In addition, this is true if in Figures 7 and 14, we
were to conduct our analysis according to a series of best-fit lines.

Finally, as is depicted in Figure 16, in addition to elevating the performance
of the top classifiers, the inclusion of the wind direction in the feature-space
significantly dampens the variability in their performance. Moreover, Saey, in an
extensive study of background radioxenon concentrations in Europe and North
America, found that a few outliers representing significant increases in the back-
ground concentrations can be expected [26]. These outliers are attributed to
alternate background sources, and can be assumed to have arrived at the recep-
tor site via short-lived, and anomalous alterations in meteorology. Based on the
standard CTBT feature space, such events, undoubtedly, suggest the detonation
of a nuclear weapon. However, provided a sufficient quantity of training data is
available, it is conceivable that PR systems functioning with the wind direction
feature may appropriately identify outliers of the background class.

8 Conclusions

In this research, we extend the frontiers of novelty detection through the in-
troduction of a new field of problems open for analysis. In particular, we note
that this new realm deviates from the standard set of one-class problems based
on the presence of three characteristics, which ultimately amplify the classifica-
tion challenge. They involve the temporal nature of the appearance of the data,
the fact that the data from the classes are “interwoven”, and that a labelling
procedure is not merely impractical - it is almost, by definition, impossible.

As a first attempt to tackle these problems, we presented two specialized
classification strategies as demonstrated within the exemplary scenario intended
for the verification of the CTBT. More specifically, we applied the simulation
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framework presented in [3], to generate CTBT inspired datasets, and demon-
strated these classification strategies within the most challenging classification
domain. More specifically, we have shown that OC classifiers can be successfully
applied to classify SE events, which are unknown, although present, at the time
of training.

Finally, we have added a weighting parameter to the OC nearest neighbour
algorithm, thereby significantly increasing its performance on our experimental
domain. We have also demonstrated that the expansion of the CTBT feature
space significantly improves classifier performance on our simulated data, thus,
motivating further exploration of the expansion of the standard CTBT feature
space to include meteorological measurements.

References

1. Aha, D.W.: Generalizing from case studies: A case study. In: Proceedings of the
Ninth International Conference on Machine Learning, pp. 1–10 (1992)

2. Bellinger, C.: Modelling and Classifying Stochastically Episodic Events. Master’s
thesis, Carleton University, Ottawa, Ontario (2010)

3. Bellinger, C., Oommen, B.J.: On simulating episodic events against a background
of noise-like non-episodic events. In: Proceedings of 42nd Summer Computer Sim-
ulation Conference, SCSC 2010, Ottawa, Canada, July 11-14 (2010)

4. Bishop, C.M.: Novelty detection and neural network validation. IEEE Proceedings-
Vision Image and Signal Processing 141(4), 217–222 (1994)

5. Bishop, C.M.: Neural networks for pattern recognition. Oxford University Press,
Walton Street (1995)

6. Chen, Y., Zhou, X., Huang, T.S.: One-class svm for learning in image retrieval. In:
IEEE International Conference on Image Processing, pp. 34–37 (2001)

7. Datta, P.: Characteristic concept representations. Ph.D. thesis, Irvine, CA, USA
(1997)

8. Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance
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