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Abstract. This paper reports some pioneering results in which opti-
mal parametric classification is achieved in a counter-intuitive manner,
quite opposed to the Bayesian paradigm. The paper, which builds on
the results of [1], demonstrates (with both theoretical and experimental
results) how this can be done for some distributions within the expo-
nential family. To be more specific, within a Bayesian paradigm, if we
are allowed to compare the testing sample with only a single point in
the feature space from each class, the optimal Bayesian strategy would
be to achieve this based on the (Mahalanobis) distance from the cor-
responding means, which in one sense, is the most central point in the
respective distribution. In this paper, we shall show that we can obtain
optimal results by operating in a diametrically opposite way, i.e., a so-
called “anti-Bayesian” manner. Indeed, we shall show that by working
with a very few (sometimes as small as two) points distant from the
mean, one can obtain remarkable classification accuracies. These points,
in turn, are determined by the Order Statistics of the distributions, and
the accuracy of our method, referred to as Classification by Moments
of Order Statistics (CMOS), attains the optimal Bayes’ bound! In this
paper, we shall show the claim for two uni-dimensional members of the
exponential family. The theoretical results, which have been verified by
rigorous experimental testing, also present a theoretical foundation for
the families of Border Identification (BI) reported algorithms.

Keywords: Classification using Order Statistics (OS), Moments of OS.

1 Introduction

It is well known that when the expressions for the Bayesian classification (that
involve maximizing the a posteriori probability) are simplified, this often re-
duces to testing the sample point using the corresponding distances/norms to
the means or the “central points” of the distributions. Such a classification at-
tains the Bayesian optimal lower bound.

� Chancellor’s Professor ; Fellow: IEEE and Fellow: IAPR. This author is also an Ad-
junct Professor with the University of Agder in Grimstad, Norway. The work of this
author was partially supported by NSERC, the Natural Sciences and Engineering
Research Council of Canada.

A. Campilho and M. Kamel (Eds.): ICIAR 2012, Part I, LNCS 7324, pp. 11–18, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



12 A. Thomas and B.J. Oommen

In this paper, in which we build on the results of [1], we shall demonstrate that
we can obtain optimal results by operating in a diametrically opposite way, i.e., a
so-called “anti-Bayesian” manner. Indeed, we shall show the completely counter-
intuitive result that by working with a few points distant from the mean, one
can obtain remarkable classification accuracies. The number of points referred
to can be as small as two in the uni-dimensional case. Further, if these points are
determined by the Order Statistics of the distributions, the accuracy attains the
optimal Bayes’ bound! Thus, put in a nut-shell, we introduce here the theory of
optimal pattern classification using Order Statistics of the features rather than
the distributions of the features themselves. Our novel methodology, is referred
to as Classification by Moments of Order Statistics (CMOS), and this paper
proves these results for two distributions within the exponential family.

The paper also formulates the theoretical rationale for the recently-developed
families of Border Identification (BI) and some Prototype Reduction Schemes
(PRS) algorithms [2,3]. In both these cases, instead of considering all the training
patterns for the classification, a subset of the whole set is selected based on
certain criteria. The learning (or training) is then performed on this reduced
training set, which is also called the “Reference” set. This Reference set not
only contains the patterns which are closer to the true discriminant’s boundary,
but also the patterns from the other regions of the space that can adequately
represent the entire training set. However, in the interest of brevity, the details
of BI and PRS algorithms are omitted here. They can be found in [4] and [5],
where the parallels of these and our present results are explained in detail.

Contributions of this Paper: The novel contributions of this paper are:

– We propose an “anti-Bayesian” paradigm for the classification of patterns
within the parametric mode of computation, where the distance computa-
tions are not with regard to the “mean” but with regard to some samples
“distant” from the mean. These points, which are sometimes as few as two,
are the moments of OS of the distributions;

– We provide a theoretical framework for adequately responding to the ques-
tion of why the border points are more informative for classification;

– To justify these claims, we submit a formal analysis and the results of various
experiments which have been performed for two distributions within the
exponential family, and the results are clearly conclusive.

Our results for classification using the OS are both pioneering and novel.

2 Relevant Background Areas Regarding Order Statistics

Let x1, x2, ...., xn be a univariate random sample of size n that follows a con-
tinuous distribution function Φ, where the probability density function (pdf) is
ϕ(·). Let x1,n, x2,n, ...., xn,n be the corresponding Order Statistics (OS). The rth

OS, xr,n, of the set is the rth smallest value among the given random variables.
The pdf of y = xr,n is given by:

fy(y) =
n!

(r − 1)!(n− r)!
{Φ(y)}r−1 {1− Φ(y)}n−r ϕ(y),
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where r = 1, 2, ..., n. The reasoning for the above expression is straightforward.
If the rth OS appears at a location given by y = xr,n, it implies that the
r − 1 smaller elements of the set are drawn independently from a Binomial
distribution with a probability Φ(y), and the other n − r samples are drawn
using the probability 1−Φ(y). The factorial terms result from the fact that the
(r − 1) elements can be independently chosen from the set of n elements.

Using the distribution fy(y), the kth moment of xr,n can be formulated as:

E[xk
r,n] =

n!

(r − 1)!(n− r)!

∫ +∞

−∞
ykΦ(y)k−1(x)(1 − Φ(y))n−rϕ(y)dy,

provided that both sides of the equality exist [6,7].
The fundamental theorem concerning the OS that we invoke is found in many

papers [7,8,9]. The theorem can be summarized as follows.
Let n ≥ r ≥ k + 1 ≥ 2 be integers. Then, since Φ is a nondecreasing and

right-continuous function from R → R, Φ(xr,n) is uniform in [0,1]. If we now
take the kth moment of Φ(xr,n), it has the form [8]:

E[Φk(xr,n)] =
B(r + k, n− r + 1)

B(r, n− r + 1)
=

n! (r + k − 1)!

(n+ k)! (r − 1)!
, (1)

where B(a, b) denotes the Beta function, and B(a, b) = (a−1)!(b−1)!
(a+b−1)! since its

parameters are integers.
The above fundamental result can also be used for characterization purposes

as explained in [5,8]. The implications of the above are the following:

1. If n = 1, implying that only a single sample is drawn from x, from Eq. (1),

E[Φ1(x1,1)] =
1

2
, =⇒ E[x1,1] = Φ−1

(
1

2

)
, (2)

which is the median of the distribution.
2. If n = 2, implying that only two samples are drawn from x, we see that:

E[Φ1(x1,2)] =
1

3
, =⇒ E[x1,2] = Φ−1

(
1

3

)
, and (3)

E[Φ1(x2,2)] =
2

3
, =⇒ E[x2,2] = Φ−1

(
2

3

)
. (4)

Thus, the first moment of the first and second 2-order OS would be the
values where Φ equal 1

3 and 2
3 respectively.

3 Optimal Bayesian Classification Using 2-OS

3.1 The Generic Classifier

Having characterized the moments of the OS of arbitrary distributions, we shall
now consider how they can be used to design a classifier.
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Let us assume that we are dealing with the 2-class problem with classes ω1

and ω2, where their class-conditional densities are f1(x) and f2(x) respectively
(i.e, their corresponding distributions are F1(x) and F2(x) respectively)

1. Let ν1
and ν2 be the corresponding medians of the distributions. Then, classification
based on ν1 and ν2 would be the strategy that classifies samples based on a
single OS. We shall show the fairly straightforward result that for all symmetric
distributions, this classification accuracy attains the Bayes’ accuracy.

This result is not too astonishing because the median is centrally located close
to (if not exactly) on the mean. The result for higher order OS is actually far
more intriguing because the higher order OS are not located centrally (close to
the means), but rather distant from the means. Consequently, we shall show
that for a large number of distributions, mostly from the exponential family, the
classification based on these OS again attains the Bayes’ bound.

In [1], we initiated this discussion by examining the Uniform distribution. The
reason for this was that even though the distribution itself is rather trivial, the
analysis provided us with an insight into the mechanism by which the problem
can be tackled, which can then be extended for other distributions. Here, we
proceed to consider the CMOS for other distributions in the exponential family.

3.2 The Laplace (or Doubly-Exponential) Distribution

The Laplace distribution is a continuous uni-dimensional pdf named after Pierre-
Simon Laplace. It is sometimes called the doubly exponential distribution, be-
cause it can be perceived as being a combination of two exponential distributions,
with an additional location parameter, spliced together back-to-back.

If the densities of ω1 and ω2 are doubly exponentially distributed,

f1(x) =
λ1

2
e−λ1|x−c1|, −∞ < x < ∞, and

f2(x) =
λ2

2
e−λ2|x−c2|, −∞ < x < ∞,

where c1 and c2 are the respective means of the distributions. By elementary
integration and straightforward algebraic simplifications, the variances of the
distributions can be seen to be 2

λ2
1
and 2

λ2
2
respectively.

If λ1 �= λ2, the samples can be classified based on the heights of the distribu-
tions and their point of intersection. The formal results for the general case are
a little more complex. However, to initiate discussions, we shall first consider the
case when λ1 = λ2. In this scenario, the reader should observe the following:

– Because the distributions have the equal height, i.e. λ1 = λ2, the testing
sample x will obviously be assigned to ω1 if it is less than c1 and be assigned
to ω2 if it is greater than c2.

– Further, the crucial case is when c1 < x < c2. In this regard, we shall analyze
the CMOS classifier and prove that it attains the Bayes’ bound even when
one uses as few as only 2 OSs.

1 Throughout this section, we will assume that the a priori probabilities are equal.
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Theoretical Analysis: Doubly-Exponential Distribution - 2-OS.We shall
first derive the moments of the 2-OS for the doubly exponential distribution. By
virtue of Eq. (3) and (4), the expected values of the first moments of the two OS
can be obtained by determining the points where the cumulative distribution
function attains the values 1

3 and 2
3 . Let u1 be the point for the percentile 2

3
of the first distribution, and u2 be the point for the percentile 1

3 of the second
distribution. Then:

u1∫

c1

λ1

2
e−λ1|x−c1|dx =

2

3
− 1

2
=

1

6
, and (5)

u2∫

−∞

λ2

2
eλ2|x−c2|dx =

1

3
. (6)

The points of interest, i.e., u1 and u2, can be obtained by straightforward inte-
grations and simplifications as follows:

u1∫

c1

λ1

2
e−λ1|x−c1|dx =

1

6
=⇒ u1 = c1 − 1

λ1
log

(
2

3

)
. (7)

u2 = c2 +
1

λ2
log

(
2

3

)
. (8)

With these points at hand, we shall now demonstrate that, for doubly exponen-
tial distributions, the classification based on the expected values of the moments
of the 2-OS, CMOS, attains the Bayesian bound.

Theorem 1. For the 2-class problem in which the two class conditional distri-
butions are Doubly Exponential and identical, CMOS, the classification using
two OS, attains the optimal Bayes’ bound.

Proof. This proof is omitted here in the interest of space. It is found in [4]. ��
Experimental Results: Doubly-Exponential Distribution - 2OS. The
CMOS classifier was rigorously tested for a number of experiments with various
Doubly Exponential distributions having means c1 and c2. In every case, the 2-
OS CMOS gave exactly the same classification as that of the Bayesian classifier.
The method was executed 50 times with the 10-fold cross validation scheme.
The test results are depicted in Table 1.

From the experimental results and the theoretical analysis, we conclude that
the expected values of the first moment of the 2-OS of the Doubly Exponential
distribution can always be utilized to yield the exact accuracy as that of the
Bayes’ bound, even though this is a drastically anti-Bayesian operation.

We now proceed to consider the analogous result for the k-OS.

Theoretical Analysis: Doubly-Exponential Distribution - k-OS.We now
extend the results of Theorem 1 for the case when we utilize other k-OS for the
CMOS. The formal result pertaining to this is given in Theorem 2.
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Table 1. Classification for the Doubly Exponential Distribution by the CMOS

c1 0 0 0 0 0 0 0 0 0

c2 10 9 8 7 6 5 4 3 2

Bayesian 99.75 99.65 99.25 99.05 98.9 97.85 96.8 94.05 89.9

CMOS 99.75 99.65 99.25 99.05 98.9 97.85 96.8 94.05 89.9

Theorem 2. For the 2-class problem in which the two class conditional distri-
butions are Doubly Exponential and identical, the optimal Bayesian classification
can be achieved by using symmetric pairs of the n-OS, i.e., the n− k OS for ω1

and the k OS for ω2 if and only if log
(

2k
n+1

)
> c1−c2

2 .

Proof. The proof of this result is included in [4]. ��
Experimental Results: Doubly-Exponential Distribution - k-OS
The CMOS method has been rigorously tested with different possibilities of k-OS
and for various values of n, and the test results are given in Table 2.

Table 2. Results of the classification obtained by using the symmetric pairs of the OS
for different values of n. The value of c1 and c2 were set to be 0 and 3.

No. Order(n) Moments OS1 OS2 CMOS Pass/Fail

1 Two
(
2
3 ,

1
3

)
c1 − 1

λ1
log

(
2
3

)
c2 + 1

λ2
log

(
2
3

)
95.2 Passed

2 Three
(
3
4 ,

1
4

)
c1 − 1

λ1
log

(
1
2

)
c2 + 1

λ2
log

(
1
2

)
95.2 Passed

3 Four
(

5−i
5 , i

5

)
, 1 ≤ i ≤ n

2 c1 − 1
λ1

log
(

4
5

)
c2 + 1

λ2
log

(
4
5

)
95.2 Passed

4 Five
(

6−i
6 , i

6

)
, 1 ≤ i ≤ n

2 c1 − 1
λ1

log
(

1
3

)
c2 + 1

λ2
log

(
1
3

)
95.2 Passed

5 Six
(

7−i
7 , i

7

)
1 ≤ i ≤ n

2 c1 − 1
λ1

log
(

4
7

)
c2 + 1

λ2
log

(
4
7

)
95.2 Passed

6 Seven
(

8−i
8 , i

8

)
1 ≤ i ≤ n

2 c1 − 1
λ1

log
(

1
4

)
c2 + 1

λ2
log

(
1
4

)
95.2 Passed

7 Eight
(

9−i
9 , i

9

)
, 1 ≤ i ≤ n

2 c1 − 1
λ1

log
(

2
9

)
c2 + 1

λ2
log

(
2
9

)
4.8 Failed

8 Eight
(

9−i
9 , i

9

)
, 1 ≤ i ≤ n

2 c1 − 1
λ1

log
(

4
9

)
c2 + 1

λ2
log

(
4
9

)
95.2 Passed

9 Nine
(

10−i
10 , i

10

)
, 1 ≤ i ≤ n

2 c1 − 1
λ1

log
(

3
5

)
c2 + 1

λ2
log

(
3
5

)
95.2 Passed

To clarify the table, consider the row given by Trial No. 5 in which the 6-OS
were invoked for the classification. In this case, the possible symmetric OS pairs
could be 〈1, 6〉, 〈2, 5〉, and 〈3, 4〉 respectively. Observe that the expected values

for the first moment of the k-OS has the form E[xk,n] = log
(

2k
n+1

)
. In every

single case, the accuracy attained the Bayes’ bound, as seen in the table.
Now, consider the results presented in the row denoted by Trial No. 7. In this

case, the testing attained the Bayes accuracy for the symmetric OS pairs 〈2, 7〉,
〈3, 6〉 and 〈4, 5〉 respectively. However, the classifier “failed” for the specific 8-
OS, when the OS used were c1 − 1

λ1
log

(
2
9

)
and c2 +

1
λ2
log

(
2
9

)
, as these values

violate the condition log
(

2k
n+1

)
> c1−c2

2 , imposed by Theorem 2. Observe that if

log
(

2k
n+1

)
< c1−c2

2 , the symmetric pairs should be reversed to obtain optimality.
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The multi-dimensional case is currently being investigated and will be pub-
lished in a forthcoming paper.

3.3 The Gaussian Distribution

The Normal (or Gaussian) distribution is a continuous probability distribution
that is often used as a first approximation to describe real-valued random vari-
ables that tend to cluster around a single mean value. It is particularly pertinent
due to the so-called Central Limit Theorem. The distribution’s pdf is:

f(x) =
1√
2πσ

e
−(x−μ)2

2σ2 .

Theoretical Analysis: Gaussian Distribution
Working with the OS of Normal distributions is extremely cumbersome because
its density function is not integrable in a closed form. One has to resort to
tabulated cumulative error functions or to numerical methods to obtain precise
percentile values. However, a lot of work has been done in this area for certain
OS, and can be found in [6,8,10,11], from which we can make some interesting
conclusions.

The moments of the OS for the Normal distribution can be determined from
the generalized expression:

E[xr
k,n] =

n!

(k − 1)!(n− k)!

∫ +∞

−∞
xrΦk−1(x)(1 − Φ(x))n−kϕ(x)dx,

where ϕ(x) = 1√
2π

e
−x2

2 and Φ(x) =
∫ x

−∞ ϕ(t)dt. From this expression, the ex-

pected values of the first moment of the 2-OS can be determined as E[x1,2] =
μ − σ√

2π
and E[x2,2] = μ + σ√

2π
as shown in [6]. Using this, we now show that

the CMOS with 2-OS yields the same Bayesian accuracy.

Theorem 3. For the 2-class problem in which the two class conditional distri-
butions are Gaussian and identical, CMOS, the classification using 2-OS, attains
the optimal Bayes’ bound.

Proof. The proof of this theorem is omitted here but found in [4]. ��
Experimental Results: Gaussian Distribution
After the data points were generated, the CMOS classifier was rigorously tested
for a number of experiments with various Gaussian distributions having means
μ1 and μ2. In every case, the 2-OS CMOS gave exactly the same accuracy as that
of the Bayesian classifier. The method was executed 50 times with the 10-fold
cross validation scheme. The test results are displayed in Table 3, whence the
power of the scheme is clear!

We believe that the optimal Bayes’ bound can also be attained by performing
the classification with respect to the k-OS. However, as the density function is
not integrable, the expected values of the moments of the k-OS should rather be
obtained by numerical integration, and is currently being done. The classification
for the multi-dimensional classes is currently being investigated.
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Table 3. Classification of Normally distributed classes by the CMOS 2-OS method for
different means

µ1 0 0 0 0 0 0

µ2 14 12 10 8 6 4

Bayesian 99.2 96.5 95.1 95 90 85

CMOS 99.2 96.5 95.1 95 90 85

4 Conclusions

In this paper, we have shown that optimal classification can be attained by
an “anti-Bayesian” approach, i.e., by working with a very few (sometimes as
small as two) points distant from the mean. This scheme, referred to as CMOS,
Classification by Moments of Order Statistics, operates by using these points
determined by the Order Statistics of the distributions. In this paper, which
has built on the results of [1], we have proven the claim for two uni-dimensional
distributions within the exponential family, and the theoretical results have been
verified by rigorous experimental testing. Our results for classification using the
OS are both pioneering and novel.
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