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Abstract The vision of pervasive environments is being realized more than ever with the
proliferation of services and computing resources located in our surrounding environments.
Identifying those services that deserve the attention of the user is becoming an increas-
ingly-challenging task. In this paper, we present an adaptive multi-criteria decision making
mechanism for recommending relevant services to the mobile user. In this context, “Rele-
vance” is determined based on a user-centric approach that combines both the reputation
of the service, the user’s current context, the user’s profile, as well as a record of the his-
tory of recommendations. Our decision making mechanism is adaptive in the sense that it is
able to cope with users’ contexts that are changing and drifts in the users’ interests, while it
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simultaneously can track the reputations of services, and suppress repetitive notifications
based on the history of the recommendations. The paper also includes some brief but
comprehensive results concerning the task of tracking service reputations by analyzing and
comprehending Word-of-Mouth communications, as well as by suppressing repetitive notifi-
cations. We believe that our architecture presents a significant contribution towards realizing
intelligent and personalized service provisioning in pervasive environments.

Keywords Pervasive computing · Unobtrusive applications · Service recommendation

1 Introduction

The environment in which we live in today is truly “pervasive”. The proliferation of services
and computing resources, indeed, makes the very dream of computing in such a pervasive
environment realizable. However, this task has numerous real-life hurdles. Most prominent
among these is the task of identifying those services that deserve the attention of the user.
Ironically, as the services and tools become more pervasive, this task, in itself, is becoming
increasingly-challenging due to the fact that:

1. The increasing number of services can overwhelm the attention of even the most educated
user. It is, rather, plausible that an arbitrary user is not even aware of the services at his
disposal.

2. The changes of a user’s preferences and needs over time, renders the task of predicting
his current services/interests extremely difficult.

3. The result of the interaction of the user with any specific service is usually uncertain.
It surely depends on the performance of the latter. As low performance services can
provoke his dissatisfaction, it is mandatory that an expedient system must be capable of
identifying reputable (and disreputable) services [30,32].

The complexity of understanding what services could be interesting and important enough
to justify disturbing the user, is the main challenge of our research. To respond to this chal-
lenge, we argue that service recommendation should rely on a multi-criteria decision maker
that combines different aspects (dimensions) of the system/environment in order to decide,
on behalf of the user, whether a service is relevant or not. “Relevance”, we propose, should
be determined based on a user-centric approach that collectively combines the reputation of
the service, the user’s current context, the user’s profile, as well as a record of the history
of recommendations. This is precisely what we have attempted to achieve in our endeavor,
and we thus believe that our architecture presents a significant contribution towards realizing
intelligent personalized service provisioning in pervasive environments.

A number of research studies have been interested in providing context-aware service
recommendations for mobile users. Context awareness permits the system to reason about
the user’s current tasks, and to infer his needs in a personalized fashion. The shortcoming
of these studies is that they merely rely on the user’s context, combined with a statically-
defined user’s profile, in order to personalize the service recommendation. Examples of these
techniques are various nomadic context-aware applications such as tourist guide applications
[11] and mobile marketing and advertising applications [13].

In this paper, we argue that service recommendation is much more than simply utilizing
the user’s context, and we therefore present a comprehensive multi-criteria approach that goes
beyond mere context awareness. Our approach resorts to Artificial Intelligence (AI) tech-
niques to improve the quality of services recommendation over time by leveraging learning
capabilities.
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To clarify things, we shall present an instantiation of our architecture to a real-life, day-to-
day scenario involving a proactive location-based application which provides an ensemble of
services. In the scenario, the goal is to build a personalized and context-aware decision maker
that delivers narrowly-targeted notifications to the user about relevant services in his envi-
ronment. Nevertheless, even though this instantiation is specific, the proposed architecture
is generic and can be applied to recommend a wide range of services.

Before we proceed we would like to mention that it is impossible to comprehensively
describe the design and implementation of the entire system in a single paper. The system
which we propose contains numerous modules which deal with inter-user communications,
the ranking of services, inferring the dependability of other users within a social network,
communication from the system to the user, discovering and recording reputations etc. Each
of these modules, in itself, is a contribution in its own right. The pertinent results describing
some of these modules have already been published, and the results concerning the other
modules are currently being compiled. Thus, we emphasize that while this paper contains
the design and implementation details of the overall architecture, we will briefly describe the
functionality of some of the component modules, and omit the details which are found in the
associated citations. The reader should note that a more detailed description of all of these
components and the overall system will be found in the doctoral thesis of the first author
[29].

The remainder of this paper is organized as follows. In Sect. 2, we describe some reported
studies which are closely related to our approach. Then, in Sect. 3, we present the details of
the architecture by explaining the functionality of each of the components and their mutual
interactions. Section 4 reports the results of simulations conducted. These results demon-
strate the efficiency of our design in reducing the unobtrusiveness that might be caused by
traditional service recommendation systems. Concluding remarks and future lines of research
are outlined in the conclusion.

2 Related Work

The rich availability of services in pervasive environments has the effect of over-burdening
the system’s service selection task. According to the vision of pervasive computing promoted
by Mark Weiser, the intention of incorporating more advanced technology should be that it
provides the user the possibility of operating in a calm frame of mind [26]. “Increasingly,
the bottleneck in computing is not its disk capacity, processor speed, or communication
bandwidth, but rather the limited resource of human attention” [7]. Filtering out irrelevant
information has been a focal concern in a number of studies. The main issue has been to
reduce the cognitive load on the user when it comes to selecting services. It is well known
that “pushing” (or downloading) notifications messages to users can cause interruptions and
distractions. Users who receive irrelevant notifications may become dissatisfied with their
recommendation service. According to the I-centric paradigm proposed by Wireless World
Research Forum (WWRF), the service provision should be tailored to the actual needs of the
user [3]. The I-centric vision promotes personalization, ambient awareness and adaptability
as the core requirements of future services.

A number of studies have been performed to realize this user-centric vision. A pioneer-
ing recent work was performed by Hossain et al. [9]. In this work, the authors proposed a
gain-based media selection mechanism. In this regard, the gains obtained by ambient media
services were estimated by combining the media’s reputation, the user’s context and the
user’s profile. As a result of such a modeling process, the service selection problem was
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formulated as a gain maximization problem. Thereafter, a combination of a dynamic and a
greedy approach was used to solve the problem. There are some fundamental differences
between the study of [9] and the approach that we have proposed in this paper. From an
architectural point of view, our work is based on a Publish/Subscribe paradigm in order to
realize matchmaking between available services and the user’s preferences.1 Moreover, the
authors of [9] did not present mechanisms to compute the reputation of the media services,
thus, in effect, assuming that it is merely static. We argue that this assumption is not always
valid, and that it is of paramount importance that the system tracks the variations in the
reputation of the services since they, almost certainly, change over time.

A pertinent study that falls in the same class of our current work is the Dynamos project
[21]. The Dynamos approach is an example of a context-aware mobile application that can be
used for recommending relevant services to the user. In [21], the authors designed a hybrid
recommender system for notifying users about relevant services in a context-aware manner.
The model is based on a peer-to-peer social functionality model, where the users can generate
contextual notes and ratings, and attach them to services, or to the environments. They are
also permitted to share these with their peers. The attached notes to the environment are
delivered to other users whenever they are in the spatial vicinity of the entities associated
with the notes. A main difference between their work and what we propose is the way by
which preferences are described. Their work assumed that the user was expected to explic-
itly describe his preferences by manually entering them. In this sense, the profile is defined
by the user by explicitly specifying the types of activities and associating multiple interests
to them. Such an approach can be considered to be a more “primitive” approach—it is not
viable in pervasive environments where preferences change over time. Moreover, the issue
of suppressing repetitive notifications was not addressed in [21].

A comprehensive study for personalized service provision has been performed by Naudet
et al. from Bell Labs [17]. In [17], Naudet et al. designed an application for filtering the TV
content provided to users’ mobiles based on their learned profiles. The application is based
on the use of ontologies to capture content descriptions as well as the users’ interests. The
latter interests are, in turn, mined using a dedicated profiling engine presented in [1], which
leveraged Machine Learning (ML) techniques for user profiling.

The work reported in [28] presented a system that recommends vendors’ web pages by
measuring the similarity between the user’s profile and the vendor’s web page when the user
is in the vicinity of the vendor (seller). The user’s profile is constructed through mining the
history of his web log. Another example of a mobility-aware application is PLIGRIM system
that makes use of the user’s location to recommend relevant web links [4]. In the same vein,
the SMMART framework dynamically locates products that match the shopping preferences
of the mobile user [13]. Another example is the Mycampus [18] product, which is a system
developed and implemented by Carnegie Mellon University. Mycampus offers several differ-
ent types of services including: context-aware recommender services, context-aware message
filtering services, context-aware reminder services, applications collaboration applications,
and community applications. For example, apart from the system being able to recommend
nearby services such as restaurants or movies, it can remind users about things they need to
purchase when they are close to a store. It can also send messages to the user when he is not
busy.

1 Adopting a “Push” based approach does not limit the applicability of our approach. In fact, the paradigm is
still valid and can function in a “Pull” based manner, as in the Dynamos project [21].
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The motivations behind our work are the following:

1. First of all, most of the reported context-aware recommendation systems do not consider
the reputation of the services when issuing recommendations. In order to ensure that our
hybrid recommender systems is unobtrusive, we need to locate reputable services. The
success of reputation systems (such as Ebay) suggests that there are significant latent
benefits in the convergence of these ideas in pervasive environments.

2. Secondly, in order to ensure minimal user distraction, the system should be able to track
the changes in a user’s interests, over time. In fact, static approaches, where the user
manually defines his interest’s domains, are usually not expedient as the user’s needs
and interests change over time. Therefore, appropriate ML techniques are needed for
adapting to changing interests by inconspicuously monitoring service usage.

3. Thirdly, repetitively reissuing the same notification regarding the same service is usually
regarded as a nuisance to the user’s attention. In [30], we addressed the issue of suppress-
ing repetitive notifications in a social mobile application. With regards to recommender
systems, to the best of our knowledge, the question of suppressing repetitive notifications
has not been addressed before in the literature.

Stemming from these observations, we construct a hybrid recommender system that min-
imizes the distraction to a user’s attention while, simultaneously, maximizing the hit ratio of
the service notifications. In accordance with the multiple dimensions that affect the decision
making process, we have also defined a set of enabler components. The synergy between
these enabler components is ensured through a Publish/Subscribe architecture.

All of these issues will be crystallized in the next section where we describe the architecture
of our proposed system.

3 Architecture

The main goal of our our multi-criteria decision maker is to pro-actively notify the user about
relevant services. In this section, we present the different components which articulates the
architecture of our system.

3.1 Context-Dependent Service Category Activation Rules

Within our framework, the “context” includes any information that can be used to character-
ize the situation of a mobile user requesting a service. It could include numerous pieces of
information including the user’s location (where), the time of presence (when), his current
activity, his “mood” etc. In our work, the description of the concept of the “context” follows
the works of [5,23]. Indeed, Schmidt et al. [23] define context as: “knowledge about the user’s
and IT device’s state, including surroundings, situation, and to a less extent, location”. Dey,
on the other hand, [5] defines context as: “any information that can be used to characterize
the situation of an entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user and applications
themselves”.

Inferring high-level context, such as the user’s current activity, from low-level context data
(for example, from sensor data) has been an active field of research. In this paper, we assume
that such context information is available, and thus the question of inferring high-level con-
text from raw contextual data is beyond the scope of our study. In this vein, it is worth noting
that there many pieces of middleware available in the marketplace, such as Contory, that can
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achieve the latter task. Without loss of generality, we believe that they can be reused in our
architecture as a sperate component for reasoning about low-level context data [20]. For a
review of pieces of context-aware middleware, we refer the reader to [12].

We should emphasize that in general, a user’s interests are context-dependent. For example,
recommendations about restaurants might be of interest to a certain user during weekends,
when he is both close to the restaurant in question and when he is not busy. Also, data
related to tourist attractions can be of use in the context of tourism. Such contexts can be
inferred from the fact that the user is on holidays (for example, from the user’s calendar)
and traveling. Therefore, a viable approach is to provide the user with the ability to specify
that certain kinds of services (those of interest) are active in a particular context. This is the
approach that we have adopted in the current study. The idea is relatively novel and has been
recently applied in the Dynamos framework [21]. In [21], a user is permitted to specify several
types of activities and their associated status, and to associate multiple interests to each of
them.

The essence of this idea has also been utilized in the Mobilife project, where the user has
different context-dependent sub-profiles [25]. In the Mobilife project [25], a user’s profile
can be separated into different sections that include personalized information that concerns
different applications. The appropriate sub-profiles are then activated as a result of changes
to the context. By modeling these issues in this manner, the profile and context information
are treated as meta-data that describe the user’s specific instance.

With regard to specifics, in this paper, we will adopt a two-level filtering approach in
order to support efficient matching between the available services and the user’s profile.
The first level of filtering is based on the user’s context and is called Context-Dependent
Service Category Based Filtering. The concepts here are akin to those found in [21], where
for each service category (for example, restaurants, shopping, tourist attractions etc.) the
user specifies the context attributes needed to make this category valid. Note that this
sort of filtering is static, and can be implemented using fixed rules or stereotypes. Con-
sequently, since the rules are static, they can be entered by the user or can be given by
a template, while the names of the interests can be predefined based on a service taxon-
omy. From this perspective, this filtering is coarse, since we retain the service category
such as restaurants, but do not consider refining the service recommendation by consid-
ering sub-categories of restaurants, such as Italian Pizza restaurants, Japanese restaurants,
etc. In order to realize a more diversified service category matching, we integrate a wider
range of pieces of contextual information, and not only location. The context attributes are
mainly:

– Where: The location of the user.
– When: The time context.
– What: The activity of the user.
– What Mood: The mood of the user.

We define a function F, that statically maps a set of context attributes to a service Category
as:

F : Clocation × Ctime × Cactivity × Cmood �→ Service Categories

An example of a Context-Dependent Service Categories Activation Rule, based on the
inferred context attributes is:

F(location= *, time= weekend evening, user activity= walking, mood= *) = Restaurants
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Some of the context attributes may be considered as optional, and be given a wild-card
instantiation.

3.2 Learning Preferences Manager

In the previous subsection, we explained our approach to filter the available services based on
their categories using Context-Dependent Service Category Activation Rules. Obviously, the
category-based filtering will reduce the number of eventual services that might be of interest
to the user. Nevertheless, such a filtering is coarse and needs further refinement. Therefore,
we propose to carry out a second level service filtering which performs an even closer match.
In this sense, the second level filtering re-filters the services via a finer granularity, based
on the learned interests in the sub-categories. In fact, it is important that we want to model
not only a general user’s interests such as restaurants, shops, movies etc., but also the sub-
categories of these interests that are relevant to a given user. In [31], we had presented a
novel, personalized Learning Preferences Manager that is able to adapt to changes brought
about by variations in the distribution of the user’s interests, using the principles of weak
estimation. This module is a fundamental component of our architecture. In this subsection,
we briefly give some insights about our Learning Preferences Manager, the details of which
are found in [31], and omitted here in the interest of brevity and to avoid repetition.2

Profile Representation: A essential element of the Learning Preference Manager is the Pro-
file Representation. In [31], we adopt the Profile Representation Model advocated by [9,10].
It is important to remark that in the these publications, the latter Profile Representation Model
was mainly devised for representing the user’s preferences in content media. Nevertheless,
the model can be easily applied to encompass a wider set of interests. The model reported in
[9,10] is similar to that of [34] in the sense that it is based on <feature, weight> pairs, except
that in [9,10], the authors have invoked a normalized score for the data-items. We shall first
present briefly the Profile Representation Model reported in [9,10].

The user’s affinity of interests in a service type, such as movies, or restaurants, is repre-
sented by a set of attributes. For example, for a repository of services of type movie, the set of
possible attributes could be {movie genre, director name, etc.}. An attribute, in turn, possesses
a set of data-items. For example, if the movie attribute “genre” has two data-items, namely
“action” and “comedy”, a vector associated with the attribute (comedy affininity=0.7, action
affininity=0.3) reflects that the user likes comedy movies more than action movies, with a
relative weighting of 0.7–0.3. The update of the weights of the data-items for a particular
attribute is done in an incremental manner.

Profile Acquisition Through Relevance Feedback: In the quest to learn the user’s dynamic
profile, the Learning Preferences Manager is guided by so-called Relevance Feedback (RF)
[16]. In this paper, we rely on the Service Usage History maintained by the authors of [9,10]
as the main source of the RF. In fact, a common approach towards constructing a user’s pro-
file is through non-intrusively monitoring the history of the usage of his services. A Service
Usage History (also known as the Interaction History), contains the history of the services
used by the user over time. For example, when the user has used a certain service at a certain
time instant, the Learning Preferences Manager refines and revises the user’s profile based on
the current instance of the usage history, which, in turn, is automatically and unobtrusively
observed in the background. To obtain an index to measure this, the sum of the scores of a

2 The paper [31] can be sent to interested readers and to the Referees, if required.
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data-item for a given attribute is made to be equal to unity. To now quantify this, we have
recommended the use of a Weak Estimator (devised by Oommen et al. [19]) so as to update
the score of the data-item based on the usage history. Whenever, a user selects a service, the
metadata describing the service is used to update the score of data-item. Thus, for example,
if a user currently views a “action” movie, the scheme would increase the weight associated
with the data-item, “action”.

Profile Adaptation: The core function of a personalized Learning Preferences Manager is
to update the user’s profile in a dynamic and incremental way. This is done so that the can
closely follow closely the real-time evolution of the user’s interests. From this perspective,
the user’s interests are not constant over time, and therefore it is imperative that the system
takes the profile’s drift into account. In this sense, the most recent observations are more
reliable, when one attempts to represent the user’s current interests, than older ones. From a
more general perspective, the task of learning the drifts in the user’s interests correspond to
learning evolving concepts [27].

There are several studies that have dealt with the task of learning a user’s interests. These
include the use of a time window [15], aging examples [14], a Gradual Forgetting function
[24] etc. However, of all these, a Sliding Window approach is the most popular one. It consists
of learning the description of the user’s interests from the most recent observations, and then
of discarding the observations that fall outside the window. A substantial shortcoming of the
“time window” approach is the choice of the window size. In [15], the authors adopted a
fixed-size time window in order to learn a user’s scheduling preferences. They empirically
determined that a window size of 180 was a proper choice for their particular scheduling
application.

In the field of Statistical Pattern Recognition, a promising approach for estimating tar-
get distributions that change over time was recently introduced in [19]. Using these con-
cepts, in [31], we devised a Preferences Learning Manager which takes advantage of
the latter updating scheme, so as to accurately estimate the user’s interest domains in
non-stationary environments. The Stochastic Weak Estimator was proven to have a fast
adaptation rate compared to legacy approaches such as the Sliding Window approach. Apart
from the updating mechanism, philosophically, our strategy, reported in [31], is related to
the approach presented in [9,10] where the authors utilized the history to update the affinity
of the user’s interests. We believe that this will facilitate the ease of the retrieval of person-
alized information, and help alleviate the user’s cognitive load, needed to locate relevant
information.

A Converged-Profiling Engine: In the course of their activities, users leave behind them a
trail of information that can be used to model their interests. These sources of information
are heterogenous: some of this information is left by the user after browsing the Internet,
other pieces remain after the use of the TV or movie selection, and even through his online
shopping at sites like Amazon or Ebay, for example. Therefore, we argue that the profiling
engine need no longer be application dependent. Rather, it can and should support numerous
applications. An interesting approach to achieve this is to exploit all these pieces of informa-
tion and to integrate all these heterogonous service usages to procure a holistic picture of the
user’s profile. Hence, the profiling engine aggregates the usage traces coming from all these
different platforms, and builds an end-user profile based on a common model. Such a com-
prehensive engine was proposed in [1]. We are currently considering such an enhancement
for future research.
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3.3 Service Reputation Manager

In this section, we introduce the Service Reputation Manager [30,32], which is a cornerstone
component of our architecture. Reputation is a particularly important criterion for filtering
services.

With the abundance of services available in a pervasive environment, identifying those
of high quality is a crucial task. When services are pervasive, in order to maximize the use-
fulness of the services accessed, the user needs to build his opinion about these services in
the absence of direct experience, and as a consequence, must rely on the experiences of his
acquaintances. In fact, through leveraging the power of Word-of-Mouth communications,
our hybrid recommender system permits us to identify reliable services possibly deserving
the user’s attention. This is well in-line with the view of the end-user. Indeed, in a user study
carried in the Dynamos project [21], a user who was interviewed stated: “I don’t pay much
attention to movie reviewers or restaurant critics. I’ve been disappointed by them too many
times. Instead, I ask a friend I can trust, ‘Have you seen any good movies lately?’.” This
remark reveals much of the latent potential of a Service Reputation Manager, and underlines
the importance of the user’s social relationships in the recommendation process. The essential
idea is to draw the attention of the user only to services that are recommended by his social
network.

In the absence of direct experience, a user can rank the quality of the services in question
by optimizing the power of Word-of-Mouth communications. By allowing users to share
their feedback in the form of ratings, it is possible for users to expediently obtain knowledge
about the nature, quality and drawbacks of specific services by considering the experiences of
other users. Traditional reputation systems, usually compute the reputation of a service as the
average of all provided ratings. This corresponds, for instance, with the percentage of positive
ratings in the eBay feedback form [22]. Such a simplistic approach of just blindly aggregating
users’ experiences may mislead the reputation system if some of the user’s acquaintances
are misinformed/deceptive users. Misinformed/deceptive users attempt to collectively sub-
vert the system by providing either unfair positive ratings about a service, or by unfairly
submitting negative ratings. Since an alternate way to interpret unfair ratings is to consider
the unreliable referrals as coming from people with different tastes, such “deceptive” agents
may even submit their inaccurate ratings innocently—due to differences in tastes. Our sys-
tem can easily become intrusive and ultimately become unusable if the “trust component”
(or equivalently, the Service Reputation Manager) does not deal with unfair ratings of this
sort. The risk of attacks from malicious users is a crucial issue that we have incorporated in
our system, which is especially pertinent in a competitive marketplace.

It is reasonable to assume that the acquaintances of the user can be divided into two clas-
ses: trustworthy acquaintances that provide accurate ratings, and unreliable acquaintances
that provide unfair ratings. It follows that a good reputation manager component would seek
to classify the acquaintances in one of these two classes so as to counter the detrimental
effect of unfair ratings. In [30,32], some of the authors of this present paper developed a
Service Reputation Manager which is based on a concept analogous to collaborative filtering
in order to separate between these two classes. The premise of the scheme in that paper was
to separate the users’ types by observing how they rate the same services. The latter scheme
was designed in such a way that these users would be in the same group by maximizing the
“within-group” similarities and minimizing the “between-group” similarities.

The latter problem was formulated as the Agent-Type Partitioning Problem, or ATTP in
brief, and an algorithm to solve it was presented in [30,32]. The aim of the solution to the
ATTP is to incrementally partition the users as being true/fair or deceptive, concurrently
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with their experiences being communicated. Thus, our scheme can be divided into two inter-
leaving phases: a Partitioning Phase and a Service Selection Phase. The inputs to the Agent
Partitioning phase are the reports communicated by the other agents, while the input to the
Service Selection phase is the current partitioning of the agent. The reports serve as an input
to the OMA-Based-Partitioning, given formally in Algorithm 1 taken from [30,32].3 Deci-
sions about whether the service is reliable or not are the output of the overall procedure.
The decision is based on intelligently combining the feedback of deceptive and fair users.
As the learning proceeds, we can exclusively rely on the feedback from the fair users. Details
of the algorithm and the notations used in Algorithm 1 can be found in [30,32].

Algorithm 1 Procedure OMA_Based_Partitioning
Input: U = {u1, . . . , uN } is the set of agents to be partitioned.
Output: Partitioning agents into two sub-partitions.
Method:
1: xil : Result of the interaction between ui and Sl
2: yil : Reported experience
3: Update the vector W D

l
4: for k ← 1 to D − 1 do
5: j ← Index of the agent associated to record W D

l [k]
6: if (yil = y jl ) then
7: if (ui and u j are in same group) then
8: Reward_Agreeing_Nodes(i, j)
9: else
10: Penalize_Agreeing_Nodes(i, j)
11: end if
12: else
13: if (ui and u j are in same group) then
14: Penalize_Disagreeing_Nodes(i, j)
15: else
16: Reward_Disagreeing_Nodes(i, j)
17: end if
18: end if
19: end for

End Procedure OMA_Based_Partitioning

3.4 Notification Novelty Checker

The last phase of our decision maker is a module whose task is to identify if trigger-
ing a service notification will be perceived by the user as being “repetitive” information.
In [33],4 we have argued that the user’s activities can be modeled to follow some “noisy”
periodic pattern, and so we can, in turn, affect the services notifications to be periodic as well.
This argument will be true unless we suppress repetitive information. Consequently, any noti-
fication about a service that provides redundant information to the user can be regarded as
being an unnecessary distraction. Consider the case when we represent an event as a noti-
fication attached to a particular service. If we can discern that an event is repeating (even
though this repetition is non-periodic), we should attempt to suppress it. To be more specific,

3 In the algorithm, W D
l (t) denotes: {Last D records prior to instant t relative to service Sl }. The details

of the procedures Reward_Agreeing_Nodes, Penalize_Agreeing_Nodes, Penalize_Disagreeing_Nodes and
Reward_Disagreeing_Nodes are found in [30,32]. They are not included here to avoid repetition, but can be
included if requested by the Referees.
4 The paper [33] can be sent to interested readers and to the Referees, if required.
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let us suppose that the user visits the same location regularly. For example, let us suppose
that the user visits the shop malls in the city center every weekend. One can then imagine
the “nuisance” generated by a Push system that delivers the same service notifications on
a regular basis as soon as the user approaches these malls. Prior to our work in [33], to the
best of our knowledge, the problem of suppressing repetitive notifications in the context of
services provisioning and recommendation systems, was both uninvestigated and unsolved.5

However, in [33], we presented a friendly reminder application in which we demonstrated
how one can harvest the benefit of event-sharing, without distracting the application user
with redundant notifications.

Arguing along the same vein, in this paper, we propose that we can incorporate here
the same approach that we have used for suppressing repetitions in the friendly reminder
application of [33]. In [33], we introduced a new scheme for discovering and tracking noisy
spatio-temporal event patterns, with the purpose of suppressing re-occurring patterns, while
discerning novel events. Our scheme is based on maintaining a collection of hypotheses, each
one conjecturing a specific spatio-temporal event pattern. A dedicated Learning Automa-
ton (LA)—the Spatio-Temporal Pattern LA (STPLA)—is associated with each hypothesis.
Whenever a user receives a service notification related to a given service, a STPLA is instan-
tiated, and this is attached to the latter service notification in order to learn the periodicity of
the context in which the service is available to the user. By processing events as they unfold,
we attempt to infer the correctness of each hypothesis through a real-time guided so-called
random Walk/Jump process.

To clarify issues, suppose that a notification is issued regarding a relevant service, s. If
the STPLA attached to service s learns that the service is available to the user on a weekly
basis, the subsequent alerts are suppressed. In other words, if the attached STPLA discovers
that the user visits the location of service s on a weekly basis for example, then the alert
attached to service s is suppressed because it will be, rather, perceived as a distraction. In
this sense, a service notification can be useful if it arises spontaneously and unexpectedly,
without being part of or being associated with a periodic pattern due to the user’s activities
or mobility patterns. However, if the user’s mobility pattern changes and he stops his weekly
visit to the the vicinity of service s, the learned pattern will be unlearned after a sufficient
period of time. Therefore, there is an increased likelihood of the alert being triggered if the
user revisits the same location again after that period of interruption.

In brief, the learning is divided into three parts, as illustrated in Fig. 1. Each of these
sub-modules is described below.
Pattern Evaluation: In the Pattern Evaluation part, the goal of the LA is to discover the
presence of the spatio-temporal event pattern associated with the maintained hypothesis.
In this phase, the state transitions illustrated in the figure are such that any deviance from
the hypothesized pattern, modeled as a Penalty (P), causes a jump back to State ‘1’. Con-
versely, only a systematic presence of the pattern hypothesized, modeled as a pure sequence
of Rewards (R), will allow the LA to pass into the Pattern Acceptance part.
Pattern Acceptance: In the Pattern Acceptance part, consisting of state N1 + 1, we affirm
that the hypothesized pattern has been confirmed with a fairly high probability.
Pattern Tracking: In the Pattern Tracking part, consisting of states {N1+2, . . . , N1+N2+
1}, the goal is to detect when the discovered pattern disappears, without getting distracted
by omission errors. Thus, this part is the “opposite” of the Pattern Evaluation part in the
sense that a pure sequence of Penalties is required to “throw” the LA back into the Pattern

5 Prior to our work in [33], the state-of-the-art was a simplistic approach proposed by the authors of [8], where
a notification was quite simply suppressed if it had been triggered in the past.
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Pattern Evaluation

ance

Pattern Tracking

Fig. 1 The schematic state transition map of the spatio-temporal pattern LA

Evaluation part again, while a single Reward reconfirms the pattern, forcing the LA to return
to the Pattern Acceptance part of the state space.

Our STPLA presents a simple learning-based mechanism for suppressing repetitive noti-
fications. Nevertheless, we believe that our approach presents a first step in the right direc-
tion due to the scarcity of the related literature. Understanding what seems “repetitive” and
“unobtrusive” to the user from a human and social perspective requires a more profound and
complicated analysis involving human psychology and cognition. Thus, we believe that a
more advanced learning scheme must ideally also consider issues from the perspective of
human psychology and cognition, which is beyond the scope of the present paper.

Another remark concerns the choice of the internal memory parameters of the STPLA,
i.e., N1 and N2. We advocate that N1 and N2 be set according to the specific user’s prefer-
ences. Thus, for example, some users may desire to receive a few notifications before they
are suppressed. In such cases, we can choose to increase N1. On the other hand, others may
want to increase N2 so as to suppress notifications for a longer period of time.

3.5 Service Notification Based on a Publish/Subcribe Paradigm

Now that the individual modules have been explained, we state that the overall architecture
of or system would be as described pictorially in in Fig. 2.

Our requirement of offering highly pertinent information through a push-based approach
to the user can be well supported through the Publish/Subscribe paradigm [2]. The system
can be deployed using a Publish/Subscribe System, which puts all the pieces of this puzzle
together. A Publish/Subcribe model consists of information providers, who publish events
to the system, and of information consumers, who subscribe to events of interest within
the system. A Publish/Subscribe architecture ensures the timely notification of events to the
interested subscribers. Note too that the use of a Publish/Subcrsibe server will enhance pri-
vacy, since no user-sensitive private information need be transmitted to the service providers.
It is worth mentioning that the case where the services are not published in the registry of
the Publish/Subscribe System (therefore the user can not subscribe to them) is a research
problem in itself which we are currently investigating.
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Fig. 2 The high-level architecture of our system

In our solution, we deploy a user-centric approach in order to decide wether to trigger
a notification regarding a service. First of all, a user must subscribe to receiving notifica-
tions. The subscription, in turn, contains a static and a dynamic part. The static part is defined
by the user, and relies on the Context Based Service Category Filtering explained in Sect. 3.1.
The dynamic part is affected by the continuously changing user’s interests, the versatility
of the reputation of the services, and the novelty of the notifications. The “Matchmaker”
achieves its task by utilizing different types of matching phenomena, such as category-based
matching, location-based matching etc. A notification is issued whenever the service matches
the user’s subscription. In other words, this occurs whenever the following conditions should
be met:

– A spatial filter reports that the service is in the user’s vicinity. We agree that in the case
of location-based services, the knowledge of the user’s context is the most differentiating
information within this context.

– The Service Reputation module returns the truth value of whether the service is reputable,
as per the approach defined in [30,32], and briefly explained in Sect. 3.3.

– The service description matches the user’s profile according to the above-mentioned
two-level filtering approach. To identify service items of interest, the matching process
consists of two steps. First, for each service, its associated category is matched with the
set of active service categories. These service categories, generally, specify the business
branches of the service (e.g., Restaurants, Shops). After applying the context-dependent
category activation rules, only the services belonging to the active categories are main-
tained. Moreover, the service sub-category should match the second filter characterized
by a finer granularity, namely the Learning Preferences Manager.

– The Novelty Detection module reports that the eventual service notification would not be
repetitive by checking wether the notification is a part of a spatio-temporal pattern.

We propose that an Event Server, analogous to the one described in [6], allow the differ-
ent modules to notify the core of the system if relevant changes occur. Based on the result
of the above-mentioned Matchmaker, the Notification Dispatcher Engine will be triggered
to deliver notifications to the user. As stated in [6], Metadata listeners are essential to the
proper functioning of our Publish/Subscribe paradigm. In fact, if a change occurs that might
eventually affect the result of the matchmaking procedure, the system would re-invoke the
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Matchmaker. For example, if a notification reports changes to the context of active users, the
system mandates that the Matchmaker be re-invoked so as to verify whether new matched
services have to be notified.

In this direction, we need the following Metadata Listener:

– We need a Metadata Listener attached to the Context Manager module. Whenever
the Context Manager reports a change in a context attribute that might affect the
Context-Dependent Service Category Activation rules, or a change in the user’s loca-
tion, this Listener invokes the Matchmaker.

– We need a Metadata Listener attached to the the Service Reputation module. Whenever a
service reputation undergoes a change as a result of a new submitted rating, the Listener
invokes the Matchmaker.

– We need a Metadata Listener attached to the Preferences Manager module. Thus, when-
ever an update in the weights of the interests of the services is performed due to a Relevance
Feedback, this Listener invokes the Matchmaker.

– We need a Metadata Listener attached to the Context-Dependent Service Category Acti-
vation Rules. Whenever the Context-Dependent Service Category Activation Rules are
manually changed, there is, again, a need to re-evaluate the service match.

3.6 Improvement to Current Practice: Collecting Advertisements for Later Use

In this section, we conclude these design considerations, by providing an enhancement to
the architecture so as to be able to provide offers for future contexts. In fact, in the previ-
ous section, we argued that the notification should be trigged instantaneously as a result of
matchmaking procedures. However, suppose that a service category is not valid in the user’s
current context. In that case, all the surrounding services belonging to that service category
will be ignored by the Matchmaker, and the user will not be aware of them in his current
context. However, in order to provide more flexibility, we argue that some of the advertise-
ments concerning services should still be collected and stored in a Registry for later use, even
though they do not match the user’s current context.

4 Experimental Results

As the reader can easily comprehend, it is impossible to completely test the entire system that
we have proposed since it involves numerous subjective and real-life components. However,
to demonstrate the proof of these concepts, in this section, we present results of simulations
that we have conducted, that puts into a nutshell all the components of the proposed architec-
ture. To do this, we have adopted a Discrete Event Simulation methodology. The performance
metric to assess our architecture is the hit ratio, denoted α(tn), and defined at any given time
instance, tn , as the ratio of the relevant notifications delivered to the user at time tn . We define
a relevant (or equivalently, non-distractive) notification as one where:

– The service matches the user’s profile
– The notification is not repetitive
– The user’s interaction with the service leads to the user’s satisfaction.

By virtue of the above, we consequently regard a distractive notification as one that is
either repetitive, or if the interaction with the service does not lead to the user’s satisfaction
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due to its low performance value [30,32], or if the recommended service does not match the
current user’s interests.

In the same vein, we define the “Distraction” ratio (denoted β(tn)), at any given time
instance tn , as the ratio of distractive notifications delivered to the user at time tn . Clearly
α(tn)+ β(tn) = 1.

Unguided Recommendation System: To demonstrate the power of our architecture, we
compare our approach to an Unguided Recommendation System, that delivers to the user
notifications regarding services that match only his contextual preferences based on the Con-
text Based Service Category static filtering. In other words, we suppose that the Unguided
Recommendation System performs only coarse contextual filtering. For example, in the case
of the notification of location-based services, the Unguided Recommendation System sends
restaurant suggestions every time the user is close to a restaurant without learning his profile,
without suppressing repetitive alerts and without checking the reputation of the service. In
our simulation, we considered delivering only a single notification per location.6

Modeling the Spatio-Temporal Pattern: We assume that the user’s mobility follows a given
noisy periodic spatio-temporal pattern. As explained previously in Sect. 3.4, the location and
time primitives are combined from their cross-product spaces to produce spatio-temporal
patterns. Let us suppose that the mobile user in question, u, visits a given location R accord-
ing to a weekly spatio-temporal pattern characterized by an omission noise q = 0.1. We
suppose that a pool of services S is available in the visited area, for eventual access by the
user.

Two Time Scales: At this juncture, it is important to remind the reader that, for the sake of
clarity, we use two time granularities (or two time scales) for different events in our Discrete
Event Simulation model. In fact, at the granularity of a week, namely at time instances tn
(n denotes the week index), the user visits the location R, and therefore, it is likely that service
notifications can take place. On the other hand, at the lower time scale (or equivalently, at
the finer time granularity) of a day, we assume that other possible events can take place, such
as the generation of Relevance Feedback that serves as input to the Learning Preferences
Manager, or the submission of a service rating by user in U that serves as input to the Service
Reputation Manager.

Comparison Approach: In order to assess the efficiency of our approach, we compare,
through simulation results, the hit ratio of our design with the hit ratio of the Unguided
Recommendation System, and show that we can reduce the perceived distraction and unob-
trusive application behavior by resorting to AI-based learning mechanisms. However, it is
worth noting that our design can still lead to distractive notifications if the “learning process”
fails to cope with the continuously-changing user’s interests, or the trust component does
not filter low performance services due to the presence of deceptive agents that subvert the
Service Reputation Manager. In order to present the entire picture clearly, we specify how
the components of our architecture are integrated together in the artificially-created Discrete
Event Simulation environment.

6 It is possible to adopt a top-N recommendation approach in order to not overwhelm the user with a long list
of services and thus limit the size of the list.
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Modeling Experience Sharing: We further assume that the mobile user u possesses a set
of acquaintances U that communicate their experiences regarding the performance of the
available pool of services, S. We assume that at discrete time instances, the acquaintances
in U communicate their ratings to u. In the absence of direct experience from the user, the
feedback provided by the acquaintances serves as input to the Service Reputation Manager,
referred to in Sect. 3.3. Intuitively, the ability of the Service Reputation Manager to identify
high reputation services depends on the quantity of feedback submitted by the user’s acquain-
tances. In fact, if the feedback is scarce, the Service Reputation Manager would probably fail
to identify and recommend high performance services to the user.

Modeling Preferences: For the sake of clarity and simplicity, we assume that the user pref-
erences fall into two categories C1 and C2. We further assume that the underlying distribution
of the weights of the preferences that reflect the affinity of user’s interest in each of the pref-
erences categories C1 and C2 follows a binomial distribution [31]. Therefore, the problem
of estimating the user’s interests in this particular case is modeled as the estimation of the
parameters for binomial random variables. The Relevance Feedback concerning the prefer-
ences categories C1 and C2 is generated according to the true underlying value of s1 and s2.
The intention of the Learning Preferences Manager is to estimate S, i.e., si for i = 1, 2. We
achieve this by maintaining a running estimate P(n) = [p1(n), p2(n)]T of S, where pi (n)

is the estimate of si at time granularity ‘n’, where n denotes the day index. Note that we
assume that the Relevance Feedback is available at the finer time granularity of a day.

If si > s j , we say that category Ci represents the user’s preferred interest category, and thus
assume that only services that belong to category Ci are of interest to the user. All the services
belonging to category C j will not be of interest to the user, and notifying him about these
services will result in a distraction. Consequently, the matchmaking of the preferences will
rely on the same simple mechanism, and recommend the services whose estimated category
weight is larger between the two categories. The reader should observe that this simple rule
is similar to decision rules in classifiers, where the decision maker has to decide on a hypoth-
esis on the state of nature between two exclusive hypotheses. However, a more sophisticated
preferences matchmaking approach, analogous to the one in [9,10] that is based on assessing
a linear combination of the weights, can be easily adopted in combination with our Learning
Preferences Manager [31].

An important parameter that must be specified is the rate at which the Relevance Feed-
back occurs. We suppose that at the finer time granularity of a day, a Relevance Feedback is
generated according the underlying distribution, S. Therefore, the estimated weights of C1

and C2 are tracked and updated at the granularity of a day.

Classifying the Services: We further model the performances of services as either being
High Performance or Low Performance as reported in [30,32]. We also assume that the ser-
vices either belong to C1 or C2. Therefore, we will have a combination of 4 exclusive classes
of services in the current experiments:

– 25 High performance services that belong to C1

– 25 High performance services that belong to C2

– 25 Low performance services that belong to C1

– 25 Low performance services that belong to C2.

If, for example, C1 represents the current preferred interest category, the Recommenda-
tion System will recommend services to the user that are both of high performance, and
that belong to category C1. In the simulation settings, we assume that the user possesses
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40 acquaintances in his social network—twenty of which are deceptive and the remaining
20 are trustworthy [30,32]. Furthermore, the trustworthy user’s acquaintances are charac-
terized with p = 0.8, while the deceptive ones have p = 0.2. In all the experiments, we
configure the STPLA with N1 = 5 and N2 = 5. The high performance services have an
performance probability of 0.8, while the low performance services have are characterized
by the performance probability of 0.2 [30,32].

As alluded to previously, we suppose that the user’s mobility follows a weekly periodic
noisy pattern, and thus we conducted the simulations for a period of 40 week instances.

We report now the results obtained by testing our proposed architecture in a variety of
settings.7

4.1 The Case of Static Preferences

In this experiment, we compared the distraction ratio as well as the hit ratio obtained by
our approach with the respective ratios obtained by utilizing an Unguided Recommendation
System. The results were obtained from an ensemble of 100 simulations, and we report α(tn),
where n denotes the week index. In Fig. 3a, we report the hit ratio, and in Fig. 3b, we report the
distraction ratio. The preferences were assumed static, and thus, in other words, we employed
the same underlying distribution for the weights of the preferences. We also assumed that
the current preferred services category was C1. We supposed that at a finer time granularity,
namely, at a daily basis, each of the acquaintances submitted a rating for a randomly chosen
service among the pool of available services. We observe from Fig. 3b that the distraction
ratio asymptotically approaches the value 0.2 and that the hit ratio approaches the value 0.8.
These values can be explained by the fact that our architecture tends to recommend only the
25 High performance services that belong to C1 as time advances.

Furthermore, we remark from Fig. 3a and its counterpart Fig. 3b that the performances
achieved by utilizing our proposed architecture improves almost uniformly over time, and
that it outperforms the Unguided Recommendation System.

The results for another set of experiments are shown in Fig. 4a and b. In these experiments,
we changed the settings by assuming that the high performance services had an performance
probability of 0.7, while the low performance services were characterized by the perfor-
mance probability of 0.3. Whereas in Fig. 4a, we report the hit ratio, in Fig. 4b, we report
the distraction ratio. As in the case of the previous figures, the convergence of the graphs to
their optimal levels is clear from these figures too.

4.2 The Case of Changing Preferences

In the next set of experiments, we assumed that at a finer time granularity, for example, at
a daily basis, each of the acquaintances submitted a rating for a randomly-chosen service
among the pool of available services. Clearly, as in the previous experiment, the feedback was
provided at a lower time scale when compared the accesses and notifications of the service.

At week 20, we performed an environment “switch” by artificially modifying the distri-
bution of the preferences, so that s2 > s1, and consequently C2 became the current user’s
preferred service category instead of C1. In Fig. 5, we report the distraction ratio obtained via
utilizing our architecture for an internal parameter λ = 0.8 of the Weak Estimator. The results

7 We have done experiments for numerous settings and scenarios. In the interest of brevity, we merely report
a few representative (and typical) experimental results, so that the power of our proposed methodology can
be justified.
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Fig. 3 a The evolution of the hit ratio in the case of our proposed approach and the Unguided Recommen-
dation System, when the performance probabilities of the high and low performance services are 0.8 and 0.2
respectively. b The evolution of the distraction ratio in the case of our proposed approach and the Unguided
Recommendation System for the same settings

were again obtained from an ensemble of 100 simulations, in which we report α(tn), where
n denotes the week index. The distraction ratio increases to unity after the switch at time
instance 20 because all the notifications concerned the category of services that the user is
not interested in, namely C1. The Learning Preferences Manager spends some time instances
before it unlearns and therefore reduces the estimated weight of C1 so that C2 becomes the
current interest.

Figure 6 displays the plot of the corresponding distraction ratio obtained by our archi-
tecture for the parameter λ = 0.9 used to update the Weak Estimators. We observe that in
this case, more time instances are required for unlearning than in the previous case when
λ = 0.8. This observation is typical, because, in fact, the adaptivity of the estimator, and
consequently of our Learning Preferences Manager, is dependent on the internal parameter
λ, which controls the rate of convergence but not the final terminal value.

4.3 Effect of Varying the Experiences Submission Rate

In this experiment, we studied the effect of varying the rate at which the acquaintances
submitted their experiences to the Service Reputation Manager. In Fig. 7, we depict the dis-
traction ratio for two cases, namely the ones in which the reports were submitted at a “normal
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Fig. 4 a The evolution of the hit ratio in the case of our proposed approach and the Unguided Recommen-
dation System, when the performance probabilities of the high and low performance services are 0.7 and 0.3
respectively. b The evolution of the distraction ratio in the case of our proposed approach and the Unguided
Recommendation System for the same settings
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Fig. 5 The distraction ratio under varying preferences when λ = 0.8

submission” rate and the reports were submitted at a “lower rate”. In this context, by “normal
submission rate” we mean the case where, at the finer time granularity of a daily basis, each
of the acquaintances submitted a rating for a randomly-chosen service among the pool of
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Fig. 6 The distraction ratio under varying preferences where λ = 0.9
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Fig. 7 The plot of the distraction ratio by varying the submission rate of the reports. In this case, the probability
of an acquaintance of the user submitting a rating is 0.5

available services. Similarly, for a “lower submission rate” we mean the case where, at the
finer time granularity of a daily basis, each of the acquaintances, submitted a rating with
probability 0.5, for a randomly-chosen service among the pool of available services. There-
fore, this so-called “lower submission rate” is, on the average, half of the “normal submission
rate”. By reducing the rate of submitting reports, our Recommendation System is more prone
to recommending low performance services due to the more scarce feedback received from
the acquaintances. In other words, in the presence of scarce feedback, the Service Reputation
Manager requires more time to learn to differentiate between high performance services and
low performance services. As in the above, the results were obtained from an ensemble of
100 simulations. In Fig. 7 we report the distraction ratio α(tn), where n denotes the week’s
index.

Figure 8 displays the analogous results of Fig. 7 in which the probability of an acquain-
tance of the user submitting a rating is 0.25. As in the previous case, the results converge. But
interestingly enough, the convergence to the optimal distraction ratio is slower—by virtue
of the scarcer feedback. This result is clearly intuitively satisfying!
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Fig. 8 The plot of the distraction ratio by varying the submission rate of the reports. In this case, the probability
of an acquaintance of the user submitting a rating is 0.25

5 Conclusion

In this paper we have considered the problem of computing in pervasive environments, and
in particular, in identifying those services that deserve the attention of the user. We have
presented an adaptive multi-criteria decision making mechanism for recommending relevant
services to the mobile user, where “Relevance” is determined based on a user-centric approach
that combines both the reputation of the service, the user’s current context, the user’s profile,
as well as a record of the history of recommendations. We have proposed the architecture
of a system that builds a personalized and context-aware application that delivers narrowly
targeted information to the user, while being unobtrusive. The design avoids flooding the user
with irrelevant information. The architecture is based on a “Push”-based paradigm, where
the user is spared from continuously seeking for interesting services. However, it can be
easily adapted to a “Pull”-based approach, by incorporating the same principles of filtering.
We have also conducted simulations and reported results that suggest that our architecture
can significantly reduce unobtrusiveness. To gain more insights into the acceptance of the
system by an end user, in the future, we propose that the system be deployed into a real-life
application domain, which also incorporates a user study.
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