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Abstract—Over the last few years, the field of Chaotic Neural
Networks (CNNs) has been extensively studied because of their
potential applications in the understanding/recognition of pat-
terns and images, their associative memory properties, their
relationship to complex dynamic system control, and their ca-
pabilities in the modeling and analysis of other measurement
systems. However, the results concerning CNNs which can
demonstrate chaos,quasi-chaos, Associative Memory (AM), and
Pattern Recognition (PR) are scanty. In this paper, we consider
the consequences of networking a set of Logistic Neurons (LNs).
By appropriately defining the input/output characteristics of a
fully connected network of LNs, and by defining their set of
weights and output functions, we have succeeded in designing
a Logistic Neural Network (LNN) possessing some of these
properties. The chaotic properties of a single-neuron havebeen
formally proven, and those of the entire network have also been
alluded to. Indeed, by appropriately setting the parameters of
the LNN, we show that the LNN can yield AM, chaotic and PR
properties for different settings. As far as we know, the results
presented here are novel, and the chaotic PR properties of such
a network are unreported.

I. I NTRODUCTION

As a soft computing methodology, Neural Networks (NNs)
are one of the fundamental strategies to tackle adaptable
and flexible solutions for control systems, and for modeling
and measurement systems. Further, as a sub-branch of NNs,
Chaotic Neural Networks (CNNs) posses more useful proper-
ties in the area of dynamic system control and measurement
systems. Historically, the concept of CNNs originates fromthe
so called phenomena of Physical-Biology. Freeman’s clinical
work has clearly demonstrated that the brain, at the individ-
ual neural level and at the global level, possesses chaotic
properties. He showed that the quiescent state of the brain is
chaos. However, during perception, when attention is focused
on any sensory stimulus, the brain activity becomes more
periodic[1]. Thus, as applied scientists, if we are able to
develop a system which mimics the brain to achieve chaos
and PR, it could leads to a new model of NN, which is
the primary goal of Chaotic Neural Networks (CNNs), and
chaotic PR. In turn, the modeling and measurements achieved
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using such a methodology can be further employed to control
the underlying system by making inferences based on the
classification and PR.

CNNs which also possessed PR were first proposed by
Adachi and his co-authors[2], [3], [4], [5], [6]. They designed
a new simple neuron model possessing chaotic dynamics, and
an Artificial Neural Network (ANN) composed of such chaotic
neurons. Their experimental results demonstrated that such a
CNN (referred to the AdNN in this paper) possesses both
Associative Memory (AM) and PR properties.In the next year,
the author of [7] proposed two methods of controlling chaos
with a small perturbation in continuous time, i.e., by invoking
a combined feedback with the use of a specially-designed
external oscillator or by a delayed self-controlling feedback
without the use of any external force to stabilize the unstable
periodic orbit of the chaotic system. Subsequently, motivated
by the work of Adachi, Aihara and Pyragas, various types of
CNNs have been proposed to solve a number of optimization
problems, or to obtain Associative Memory (AM) and/or PR
properties. An interesting step in this regard was the work
reported in [8], where the authors utilized the delayed feedback
and Ikeda map to design a CNN to mimic the biological
phenomena observed by Freeman[1].Thereafter, in [9], [10],
[11] Hiura and Tanaka investigated several CNNs based on
a piecewise sine map or the Duffing’s equation to solve the
TSP. Their simulations showed that the latter model yieldeda
better performance than the former.

More recently, based on the AdNN, Calitoiu and his co-
authors made some interesting modifications to the basic
network connections so as to obtain PR properties and “blur-
ring”. In [12], they showed that by binding the state variables
to those associated withcertainstates, one could obtain PR
phenomena. However, by modifying the manner in which the
state variables were bound, they designed a newly-created
machine, the so-called Mb-AdNN, which was also capable
of justifying “blurring” from a NN perspective.

As a tool in the area of intelligent measurement systems,
CNNs have also been utilized for system optimization. Chen
and Aihara [13] demonstrated that their CNN-based search
algorithm had better search ability for solving combinatorial
optimization problems than the Hopfield-Tank approach. In
2007, the authors of [14] proposed a CNN-based predictive



control strategy by using “Tent-map” Chaotic Particle Swarm
Optimization (TCPSO). Indeed, results describing the utiliza-
tion of the theory and applications of CNNs in measurement
systems can be found in [15], [16], [17].

The primary aim of this paper is to use a completely
different neuron as a primitive element in the network, and to
see if we can obtain chaotic, PR and AM properties. Aiming
to develop a completely new chaotic PR system, in this paper,
we present a CNN which is founded on theLogistic Map.
Based on numerous simulation results, we demonstrate that
this new NN possesses the desirable properties of AM,Chaos
andPR for different settings. As far as we know, this is novel
to the field of CNNs. Hopefully, the proposal presents in this
article can be applied in measurement systems, especially for
the image understanding and recognition.

II. STATE OF THE ART

A. The AdNN and its variants

The AdNN is a network of neurons with weights associated
with the edges, a well-defined Present-State/Next-State func-
tion, and a well-defined State/Output function. It is composed
of N neurons which are topologically arranged as a completely
connected graph. A neuron, identified by the indexi, is
characterized by two internal states,ηi(t) andξi(t) (i = 1...N )
at time t.The output of theith neuron,xi(t), is given by the
so-calledLogistic Function which will also be used in this
paper.

Before we proceed, we emphasize that in this paper, we
differentiate between the termsLogistic Function andLogistic
Map. The former is defined byy = 1

1+e−x (also referred to as
the Sigmoid Function), and the latter is defined by equation
(3), explained later.

Under certain settings, the AdNN can behave as a dynamic
AM. It can dynamically recall all the memorized patterns as
a consequence of an input which serves as a “trigger”. If the
external stimulations correspond to trained patterns, theAdNN
can behave like a PR system, although with some weaknesses,
as illustrated in [18].

By invoking a Lyapunov Exponents analysis (LE), one
can show that the AdNN has2N negative LEs. Unlike the
AdNN, which incorporates all the internal states to achieve
the dynamical behavior, the M-AdNN uses two global internal
states which are both associated with asingle neuron, for
example, theN th neuron.

By resorting to this modification, the M-AdNN has the two
positive LEs:λN = ln kf +

1
2 lnN andλ2N = ln kr+

1
2 lnN ,

which renders the M-AdNN to be truly chaotic.
Calitoiu and his co-authors [19] also proposed a new

approach for modeling the problem of blurring or inaccurate
perception, and demonstrated that the quality of a system can
be modified without manipulating the quality of the stimulus.

B. Our Previous Work

More recently, in our previous paper[20], we presented a
collection of previously unreported properties of the AdNN.

We have shown that it goes through a spectrum of charac-
teristics as one of its crucial parameters,α, changes. Asα
increases, it is first an AM, and it then becomesquasi-chaotic.
The system is subsequently distinguished by two phases which
really do not have clear boundaries of demarcation, where in
the former it isquasi-chaotic for some patterns and periodic
for others, and in the latter, it exhibits PR properties. It is
fascinating that the AdNN also possesses the capability to
recognize masked or occluded patterns, and even patterns
which are completely inverted.

Later, we investigated problem of reducing the compu-
tational cost of the AdNN and its variants. Because their
structures involve a completely connected graph, the computa-
tional complexity of the AdNN (and its variants) is quadratic
in the number of neurons. In [18], we considered how the
computations can be significantly reduced by merely using a
linear number of inter-neuron connections. To achieve this, we
extracted from the original completely connected graph,one
of its spanning trees, and then computed the best weights for
this spanning tree by using a gradient-based algorithm. By a
detailed experimental analysis, we showed that the new linear-
time AdNN-like network possesses chaotic and PR properties
for different settings.

III. T HE LOGISTIC NN: A NEW MODEL OF CNNS

Consider the discrete Hopfield NN model, characterized by
the following equations:

yi(t+ 1) = kyi(t) + α





∑

j

wijxj(t) + ai



 . (1)

In an attempt to obtain AM and PR properties, we shall
modify the structure by introducing a logisticfeedback com-
ponent. Therefore, our new network possesses a Present-
State/Next-State function, and a State/Output function, which
are described by means of the following equations relating the
only internal stateηi(t) and the outputxi(t) as follows:

ηi(t+ 1) = kηi(t) + α





∑

j

wijxj(t) + ai





−βzi(t)xi(t), (2)

zi(t+ 1) = 4zi(t)(1 − zi(t)), (3)

xi(t+ 1) =
1

1 + e−ηi(t+1)/ε
. (4)

Observe that the new model is composed ofN neurons,
topologically arranged as a completely connected graph. Each
neuron i, i = 1, 2, · · ·N , has an internal stateηi(t) and
an outputxi(t). With regard to the Present-State/Next-State
function, at time instantt + 1, the internal stateηi(t + 1)
is determined by previous internal stateηi(t), the external
stimulus and the net input which is obtained via the feedback
xi(t). In the equations,k is the damping factor (of the “nerve”
membrane), where0 < k ≤ 1. Also, sinceα and β are
constants, we have setα to be unity, and usedβ to be the
parameter which is tuned to get the desired performance. Also,



while zi(t) is a chaotic feedback factor characterizing the
Logistic map given by equation (3), the weights{wij} are
the edge weights obtained by the classic definition as in [3].
Observe that this is a one-shot assignment and that it, in and
of itself, does not include an additional training phase.

IV. LYAPUNOV ANALYSIS OF A SINGLE LOGISTIC NEURON

We first undertake the Lyapunov analysis of a single neu-
ron. Indeed, it can be easily proven that a single neuron
is chaotic by considering its Jacobian matrix and its QR
decomposition[21].

Consider the primitive component of the LNN, where the
model of asingle neuron can be described as1:

η(t+ 1) = kη(t) + α(x(t) + a)− βz(t)x(t), (5)

z(t+ 1) = 4z(t)(1− z(t)), (6)

x(t+ 1) =
1

1 + e−η(t+1)/ε
. (7)

As is well known, the LEs are defined from the Jacobian
matrix as:

J t(ξ0) =
df t(ξ)

dx
|ξ0 (8)

In this case, the LEs are defined by

λi(ξ0) = logΛi(ξ0), (9)

whereΛi(ξ0) are the eigenvalues of the limit defined by:

L(ξ0) = lim
t→∞

(J t · (J t)T )
1

2t , (10)

where(J t)T denotes the transpose ofJ t.
In order to avoiding the complicated task of computing

the limit of equation (10), we resort to the strategy proposed
by Eckmann and Sandri in [21], [22]. To achieve this, we
calculate the LEs of this discrete dynamical system in another
way, that is, by resorting to the QR decomposition.

We rewriteJ(ξ0) using its QR decomposition asJ(ξ0) =
Q1R1. We now defineJ∗

k = J(fk−1(ξ0))Qk−1, and decom-
poseJ∗

k = QkRk. Consequently, we obtainJ(fk−1(ξ0)) =
QkRkQ

−1
k−1. By applying this equation to the chain rule, the

differentialDf t(ξ0) can be transformed to be:

Df t(ξ0) = QtRtQ
−1
t−1 ·Qt−1Rt−1Q

−1
t−2 · · ·R1

= QtRt · · ·R1 (11)

whereQi is an orthogonal matrix, andRi is upper triangular
matrix. The LEs,{λi} can then be obtained as:

lim
t→∞

1

t
ln |v

(t)
ii | = λi, (12)

where{vii} are the diagonal elements of the upper-triangular
productΥ(t) = Rt · · ·R1.

We are now in a position to compute the LEs of the system
described by equations (5) and (6). By a straightforward
computation we see that the Jacobian matrix of the neuron
is:

1It should be observed thatwii = 1, i = 1, 2, · · · , N .
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Fig. 1. The variation of the LEs of a single neuron with the parameterk.

J =

(

∂η(t+1)
∂η(t)

∂η(t+1)
∂z(t)

∂z(t+1)
∂η(t)

∂z(t+1)
∂z(t)

)

=

(

k + 1
ε (α− z(t)) · x(t) · (1− x(t)) −βx(t)

0 4− 8z(t)

)

.

One observes thatJ is an upper triangular. Thus, quite sim-
ply, we haveJ0 = Q1R1 whereQ1 is a unit matrix andR1 is
J0 itself. Similarly, for all i = 1, 2, · · · , t, we haveRi = Ji−1.
As a result,Υ can be rewritten asΥ = Jt−1 · Jt−2 · · · J0,
which is also an upper triangular matrix, implying that the
eigenvalues ofΥ are the diagonal elements ofΥ themselves.

Figure 1 shows the variation of the LEs of a single neuron
with the parameterk. A single neuron has two LEs since it is
defined by a two-dimension discrete system (equations (5) and
(6)). From this figure we can see that one of the LEs is positive
(approximately 0.6918), which implies that the behavior of
every single neuron is chaotic. We also see from the figure that
the positive eigenvalue approaches a constant value because it
is only determined byz(t). As we know,z(t) is a chaotic map
possessing the positive LElog 2 ≈ 0.6932! Consequently, we
claim that a single LN is truly chaotic2 because of the Logistic
feedback factorz(t).

In the same way as we used in our paper [18], the LEs
of the entire network can be obtained easily. The details of
Lyapunov analysis of the LNN has been eliminated for the
interest of brevity.

V. CHAOTIC AND PR PROPERTIES OF THELNN

We shall now report the AM and PR properties of the LNN.
These properties have been gleaned as a result of examining
the Hamming distance between the input pattern and the
patterns that appear at the output. In this regard, we mention
that the experiments were conducted using the data set used
by Adachiet al given in Figure 2.

A. AM Properties

We discuss the properties of the LNN in three different
settings. In all of the three cases, the parameters were set to
be k = 0.55, β = 30, ai = 2 and z0 = 0.3. We should
also point out that we assumed thatz1(0) = z2(0) = · · · =

2One should also observe that the other LE is negative. This LEcorresponds
to the first eigenvalue of the Jacobian matrix.
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Fig. 2. The10× 10 patterns used by Adachiet al . The first four patterns are used to train the network. The fifth pattern is obtained from the fourth pattern
by including 15% noise. The sixth pattern is the untrained pattern.

z100(0) = 0.3. In other words, we assumed that the initial
values of all the neurons were forced to be the same. Also, to
emphasize, these AM properties were demonstrated by setting
each “external stimulus” to beai = 2.

We now discuss the AM-related results of the LNN for the
three scenarios, i.e., for trained inputs, for noisy inputsand
for untrained (unknown) inputs respectively. In each case,as
mentioned above, we report only a few results, i.e., for the case
when the original pattern and the noisy version are related to
P4. The results obtained for the other patterns are identical,
and omitted here in the interest of brevity.

1) The input of the network is a known pattern, say P4.
The observation that we report is that during the first
1,000 iterations, the network can dynamically retrieve
all the known patterns. This can be seen in Figure 3
in which we plot the Hamming distance of the output
pattern with P4. Observe if the identical pattern is
observed the Hamming distance is 0, and if the inverse
version is observed, the Hamming distance is 100.

2) The input of the network is a noisy pattern, in this case
P5, which is a noisy version of P4.
In this case, the network can still dynamically retrieve
all the known patterns and their inverse versions during
the first 1,000 iterations3. This can be seen in Figure 3
(b). The reader should observe that although the initial
input is a noisy pattern, the four memorized patterns
(and their inverses) appear in the output frequently.
Based on the above observation and this present one,
we can easily conclude that the four patterns and their
inverse versions are the attractors of the network. Indeed,
in both these cases we see that independent of the initial
input, the network will be attracted to these attractors,
even though the network will not stay at a fixed or
periodic state – which is a typical phenomenon of
chaotic systems.

3) The input of the network is an unknown pattern, P6.
If the initial input is a completely unknown pattern,
say, P6, a system possessing AM should still be able
to reproduce/retrieve all the memorized patterns. On the
other hand, the system should never yield an unknown
pattern. This phenomena can be seen from Figure 4.
Here the untrained pattern never appears in the output.

3From Figure 3 we see that the known pattern P2 is never recalled because
the time frame is too short. Indeed, if the time-frame is expanded for 10,000
iterations, we see that the pattern P2 appears 5 times. But even in this expanded
time-frame, P5 and P6never appear
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Fig. 3. AM properties: The Hamming distance between the output and the
trained patterns. In (a) and (b), the input patterns are the fourth and fifth
patterns of Figure 2 (a) respectively.

A record of the statistics (frequencies) of all the above three
cases is catalogues in Table I.

B. PR Properties

Similar to the results reported in Section V-A, we now
present an in-depth report of the LNN’s PR properties by
using Hamming distance-based analyses. The parameters that
we used were:k = 0.55, β = 30, ai = 2xi, andz0 = 0.3. The
difference between these experiments and the AM-related ones
involve the “external stimulus”{ai}, which is not a constant,
but a scaled version of the{xi}. The PR-related results of
the LNN are reported for the three scenarios, i.e., for trained
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Fig. 4. AM properties: The Hamming distance between the output and the
trained patterns. In this figure, the input pattern is the sixth pattern of Fig. 2

TABLE I
THE STATISTICS(FREQUENCIES) OF THE OCCURRENCES OF THE VARIOUS

PATTERNS DURING THE FIRST10,000ITERATIONS. IN THE TABLE, ∗Pi

SIGNIFIES THE INVERSE VERSION OF THE PATTERNPi .

Input Patterns
P1 P2 P3 P4 P5 P6

P1 99 96 108 102 92 89
∗P1 187 85 201 197 191 186
P2 38 45 32 34 38 31
∗P2 31 19 41 41 31 32

Frequency P3 190 190 185 174 189 222
∗P3 235 90 219 219 236 218

Statistic P4 98 98 127 135 84 95
∗P4 40 18 30 30 43 33
P5 0 0 0 0 1 0
∗P5 0 0 0 0 0 0
P6 0 0 0 0 0 1
∗P6 0 0 0 0 0 0

inputs, for noisy inputs and for untrained (unknown) inputs
respectively. As in the AM case, we report only the results for
the setting when the original pattern and the noisy version are
related to P4. The results obtained for the other patterns are
identical, and omitted here for brevity.

1) The input of the network is a known pattern, say P4.
To report the results for this scenario, we request the
reader to observe Figure 5, where in (a) we can find that
P4 is retrieved very frequently as a response of the input
pattern. This occurs 197 times (almost 1/5) in the first
1,000 iterations. On the other hand, the other three pat-
terns never appear in the output sequence.From Figures
5 (a),we can conclude that the input can be recognized
successfully if it is one of the known patterns.

2) The input of the network is a noisy pattern, in this case
P5, which is a noisy version of P4.
Even when the external stimulus is a garbled version
of a known pattern (in this case P5 which contains
15% noise), it is interesting to see thatonly the original
pattern P4 is recalled frequently (as high as 187 times
in the first 1,000 iterations). In contrast, the others three
known patterns are never recalled. This phenomena can
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Fig. 5. PR properties: The Hamming distance between the output and the
trained patterns. The input patterns are the P4 and P5 patterns of Figure 2 (a)
respectively. Observe that P5 is a 15%-noisy version of P4.

be seen from the Figure 5 (b). By comparing (a) and (b)
of Figure 5, we can conclude that the LNN can achieve
chatotic PR even in the presence of noise and distortion.
Even if the external stimulus contains some noise, the
LNN is still able to recognize it correctly.

3) The input of the network is an unknown pattern, P6.
In this case we investigate whether the LNN is capable
of distinguishing between known and unknown patterns.
Thus, we attempt to stimulate the network with a com-
pletely unknown pattern. We used the pattern P6 of
Figure 2 initially used by Adachiet al. From Figure 6
we see that some of the known patterns (P1, P3 and P4)
are retrieved several times. As opposed to this, the noisy
pattern P5 and the unknown pattern P6 never appear.

The statistical frequencies of the Hamming distances for the
Adachi dataset for all the three cases are listed in Table II.We
submit that is also a convincing proof of the fact that the LNN
can achieve chaotic PR.

VI. CONCLUSIONS

In this paper we have concentrated on the field of Chaotic
Pattern Recognition (PR), which is a relatively new sub-field of
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Fig. 6. PR properties: The Hamming distance between the output and the
trained patterns. The input pattern is the sixth pattern of Figure 2. P6 is an
unknown pattern.

TABLE II
FREQUENCY-BASED STATISTICS FOR THEADACHI DATA SET, WHICH

DEMONSTRATES THELNN’ S PRCAPABILITIES FOR FIGURES5 AND 6.

Input Patterns
P1 P2 P3 P4 P5 P6

P1 188 0 0 0 0 16
P2 0 232 0 0 0 0

Frequency P3 0 0 204 0 0 3
Statistic P4 0 0 0 197 187 36

P5 0 0 0 0 1 0
P6 0 0 0 0 0 1

PR. The network which we have designed and investigated is
one that has not been investigated before, namely the Logistic
NN based on the chaotic Logistic Map. By appropriately
defining the input/output characteristics of a fully connected
LNN, and by defining their set of weights and output functions,
we have succeeded in demonstrating that it possesses AM and
PR properties for different inputs.

We summarize the LNN’s AM and PR properties as follows:

• Case I — AM: When exposed to an external stimulus
with ai = 2, it performs as an AM. In other words, it
is able to retrieve all the known patterns independent of
what the initial input pattern is.

• Case II — PR: When exposed to an external stimulus
ai = 2xi, it achieves PR. Further, in this case:

– If xi corresponds to a known pattern or a noisy
pattern, the LNN can recognize it correctly.

– If the xi corresponds to an unknown pattern, the
LNN can retrieve all the known patters (akin, to some
degree, to an AM phenomenon), but the frequency
with which the patterns occur is much lower than in
Case I.

Finally, we observe that the AM and PR characteristics of
the LNN depending on the settings and the inputs. By the well-
defined and well-trained parameters, the LNN can be applied
for image understanding and recognition, which is crucial for
measurement systems.
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