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Abstract—Over the last few years, the field of Chaotic Neural using such a methodology can be further employed to control
Networks (CNNs) has been extensively studied because of the the underlying system by making inferences based on the
potential applications in the understanding/recognition of pat- classification and PR.

terns and images, their associative memory properties, the - .
relationship to complex dynamic system control, and their a- CNNs which also possessed PR were first proposed by

pabilities in the modeling and analysis of other measureman Adachi and his co-authors[2], [3], [4], [5], [6]. They des&d
systems. However, the results concerning CNNs which cana new simple neuron model possessing chaotic dynamics, and
demonstrate chaosquasi-chaos, Associative Memory (AM), and  an Avrtificial Neural Network (ANN) composed of such chaotic
Pattern Recognition (PR) are scanty. In this paper, we conder  a\0ns. Their experimental results demonstrated that auc

the consequences of networking a set of Logistic Neurons (L)l - .
By appropriately defining the input/output characteristics of a CNN (referred to the AdNN in this paper) possesses both

fully connected network of LNs, and by defining their set of Associative Memory (AM) and PR properties.In the next year,
weights and output functions, we have succeeded in desiggin the author of [7] proposed two methods of controlling chaos
a Logistic Neural Network (LNN) possessing some of these with a small perturbation in continuous time, i.e., by inirak
properties. The chaotic properties of_a single-neuron havdseen a combined feedback with the use of a specially-designed
formally proven, and those of the entire network have also ben . .
alluded to. Indeed, by appropriately setting the parametes of e).(ternal oscillator or by a delayed self-contlr.olllng feadl
the LNN, we show that the LNN can yield AM, chaotic and PR Without the use of any external force to stabilize the urlstab
properties for different settings. As far as we know, the reslts periodic orbit of the chaotic system. Subsequently, mttiva
presented here are novel, and the chaotic PR properties of sb by the work of Adachi, Aihara and Pyragas, various types of
a network are unreported. CNNs have been proposed to solve a number of optimization
problems, or to obtain Associative Memory (AM) and/or PR
properties. An interesting step in this regard was the work
As a soft computing methodology, Neural Networks (NNgkeported in [8], where the authors utilized the delayed iee#
are one of the fundamental strategies to tackle adaptabled lkeda map to design a CNN to mimic the biological
and flexible solutions for control systems, and for modelinghenomena observed by Freeman[l].Thereafter, in [9],, [10]
and measurement systems. Further, as a sub-branch of NI#$§] Hiura and Tanaka investigated several CNNs based on
Chaotic Neural Networks (CNNs) posses more useful proper-piecewise sine map or the Duffing’s equation to solve the
ties in the area of dynamic system control and measurem@®P. Their simulations showed that the latter model yielded
systems. Historically, the concept of CNNs originates fitbm better performance than the former.
so called phenomena of Physical-Biology. Freeman’s @dinic More recently, based on the AdNN, Calitoiu and his co-
work has clearly demonstrated that the brain, at the individuthors made some interesting modifications to the basic
ual neural level and at the global level, possesses chaaigtwork connections so as to obtain PR properties and “blur-
properties. He showed that the quiescent state of the bsaimring”. In [12], they showed that by binding the state varesbl
chaos. However, during perception, when attention is fedusto those associated witbertainstates, one could obtain PR
on any sensory stimulus, the brain activity becomes mopaenomena. However, by modifying the manner in which the
periodic[1]. Thus, as applied scientists, if we are able w&iate variables were bound, they designed a newly-created
develop a system which mimics the brain to achieve chansmchine, the so-called Mb-AdNN, which was also capable
and PR, it could leads to a new model of NN, which isf justifying “blurring” from a NN perspective.
the primary goal of Chaotic Neural Networks (CNNs), and As a tool in the area of intelligent measurement systems,
chaotic PR. In turn, the modeling and measurements achiev€Ns have also been utilized for system optimization. Chen
and Aihara [13] demonstrated that their CNN-based search
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control strategy by using “Tent-map” Chaotic Particle Swar We have shown that it goes through a spectrum of charac-
Optimization (TCPSO). Indeed, results describing thezatil teristics as one of its crucial parametess, changes. Asxy
tion of the theory and applications of CNNs in measuremeinicreases, it is first an AM, and it then becongessi-chaotic.
systems can be found in [15], [16], [17]. The system is subsequently distinguished by two phaseswhic
The primary aim of this paper is to use a completelgeally do not have clear boundaries of demarcation, where in
different neuron as a primitive element in the network, amd the former it isquasi-chaotic for some patterns and periodic
see if we can obtain chaotic, PR and AM properties. Aiminfipr others, and in the latter, it exhibits PR properties.sit i
to develop a completely new chaotic PR system, in this pap&scinating that the AdNN also possesses the capability to
we present a CNN which is founded on thegistic Map. recognize masked or occluded patterns, and even patterns
Based on numerous simulation results, we demonstrate thdtich are completely inverted.
this new NN possesses the desirable properties of 8hos Later, we investigated problem of reducing the compu-
andPR for different settings. As far as we know, this is novetational cost of the AANN and its variants. Because their
to the field of CNNs. Hopefully, the proposal presents in thigtructures involve a completely connected graph, the céarpu
article can be applied in measurement systems, espeaially tional complexity of the AANN (and its variants) is quadeati

the image understanding and recognition. in the number of neurons. In [18], we considered how the
computations can be significantly reduced by merely using a

[I. STATE OF THEART linear number of inter-neuron connections. To achieve s

A. The AdNN and its variants extracted from the original completely connected grapig

of its spanning trees, and then computed the best weights for

_The AdNN is a network <_Jf neurons with weights associatggl; spanning tree by using a gradient-based algorithm. By a
with the edges, a well-defined Present-State/Next-State-fu yeyajled experimental analysis, we showed that the newatine

tion, and a well-defined State/Output function. It is COMBIDS e AdNN-like network possesses chaotic and PR properties
of N neurons which are topologically arranged as a completgly yifrerent settings.

connected graph. A neuron, identified by the indgxis
characterized by two internal states(t) and¢;(¢) (i = 1...N) I1l. THELOGISTICNN: A NEwW MODEL OF CNNs
at timet.The output of the'" neuron,z;(t), is given by the  Consider the discrete Hopfield NN model, characterized by
so-calledLogistic Function which will also be used in this the following equations:
paper.
Before we proceed, we emphasize that in this paper, we
differentiate between the termsgistic Function andLogistic yit +1) = kyi(t) + a Z wiai(t) +ai | (1)
Map. The former is defined by = —— (also referred to as J
the Sgmoid Function), and the latter is defined by equation In an attempt to obtain AM and PR properties, we shall
(3), explained later. modify the structure by introducing a logistieedback com-
Under certain settings, the ADNN can behave as a dynarpienent. Therefore, our new network possesses a Present-
AM. It can dynamically recall all the memorized patterns aState/Next-State function, and a State/Output functidmclv
a consequence of an input which serves as a “trigger”. If tlaee described by means of the following equations relatieg t
external stimulations correspond to trained patternsAtiieN  only internal state);(¢) and the output;(¢) as follows:
can behave like a PR system, although with some weaknesses,

as illustrated in [18].

By invoking a Lyapunov Exponents analysis (LE), one m(t+1) = kni(t) +a Zwijxj(t)Jrai
can show that the AANN ha®N negative LEs. Unlike the !
AdNN, which incorporates all the internal states to achieve —Bzi(t)zi(t), @)
the dynamical behavior, the M-AdNN uses two global internal ~ zi(t +1) = 4zi(t)(1 — z(t)), (3
states which are both associated withsingle neuron, for wi(t+1) = 1 4)

example, theV*" neuron. 14+ e—mit+1)/e

By resorting to this modiﬁcation, the M-AdNN has the two Observe that the new model is ComposedmfneuronS’
positive LES:A\y = Inkf +5In N andXon =Ink, +3In N, topologically arranged as a completely connected grapth Ea
which renders the M-AdNN to be truly chaotic. neuroni, i = 1,2,---N, has an internal state;(t) and

Calitoiu and his co-authors [19] also proposed a newh outputz;(t). With regard to the Present-State/Next-State
approach for modeling the problem of blurring or inaccura@inction, at time instant + 1, the internal statey; (¢t + 1)
perception, and demonstrated that the quality of a system ¢& determined by previous internal staig(t), the external
be modified without manipulating the quality of the stimulusstimulus and the net input which is obtained via the feedback
i z;(t). In the equations is the damping factor (of the “nerve”
B. Our Previous Work membrane), wher® < k£ < 1. Also, sincea and g are

More recently, in our previous paper[20], we presentedanstants, we have set to be unity, and used to be the
collection of previously unreported properties of the AdNNparameter which is tuned to get the desired performance, Als



while z;(¢t) is a chaotic feedback factor characterizing the 1
Logistic map given by equation (3), the weights);; } are
the edge weights obtained by the classic definition as in [3]. °
Observe that this is a one-shot assignment and that it, in and
of itself, does not include an additional training phase.

Lyapunov Exponents
s
&

IV. LYAPUNOV ANALYSIS OF A SINGLE LOGISTICNEURON
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We first undertake the Lyapunov analysis of a single neu- -3
ron. Indeed, it can be easily proven that a single neuron Sk
is chaotic by considering its Jacobian matrix and its QR o 02 oa 06 0s 1
decomposition[21].

Consider _the primitive component (_)f the LNN, where thesig 1. The variation of the LEs of a single neuron with theapaeterk.
model of asingle neuron can be described'as

n(t+1) = kn(t) + (@) +a) - Bz(x(t),  (5) on(tet)  on(een
2(t+1) = 4z(0)(1 - 2(¢)), (6) J = 6Z3(g(+t{) af(zt(i)l) ) =
2(t+1) = _ @) 1 Onts) P=(0)
= L@ ( k+ Yo —2() -2(t) - (1—2(t) —Bx(t) > |
As is well known, the LEs are defined from the Jacobian 0 4-82(t)
matrix as: One observes that is an upper triangular. Thus, quite sim-
dft (€) ply, we haveJy = Q1 R; whereQ; is a unit matrix andR; is
J' (&) = ngo (8) J, itself. Similarly, for alli = 1,2, ---, ¢, we haveR; = J;_;.

As a result,T can be rewritten a& = J;_1 - Ji_o--- Jo,
which is also an upper triangular matrix, implying that the
\i(€o) = log Ay (&), (9) eigenvalues off are the diagonal elements df themselves.

_ o _ Figure 1 shows the variation of the LEs of a single neuron

whereA;(§o) are the eigenvalues of the limit defined by:  with the parametek. A single neuron has two LEs since it is
. t Ty defined by a two-dimension discrete system (equations &) an
L(&%) = tlggo(‘] (7)), (10) (6)). From this figure we can see that one of the LEs is positive

where (J*)T denotes the transpose df. (approgimately 0.69.18), wh.ich implies that the beh_avior of
E/ery single neuron is chaotic. We also see from the figuite tha

In order to avoiding the complicated task of computin o . X
the limit of equation (10), we resort to the strategy propos e positive eigenvalue approaches a constant value tetaus

by Eckmann and Sandri in [21], [22]. To achieve this, w& only d_etermined b_)?(t)' As we know,z(t) is a chaotic map
calculate the LEs of this discrete dynamical system in aevotHP0SSessing the positive Lisg 2 ~ 0.6932! Consequently, we

In this case, the LEs are defined by

way, that is, by resorting to the QR decomposition. claim that a single LN is truly chaofidecause of the Logistic
We rewrite J(&p) using its QR decomposition a&(&,) = feedback factor(t). .
Q1R1. We now defines; = J(f*1(¢))Qu_1, and decom- In the same way as we used in our paper [18], the LEs
poseJ: = QuRx. Consequently, we obtaifi(f*~(¢,)) = of the entire network can be obtained easily. The details of
k= : ' =

dyapunov analysis of the LNN has been eliminated for the

RLQ7'. . By applying this equation to the chain rule, th )
QiR By applying . interest of brevity.

differential D ft(¢y) can be transformed to be:
th(fo) _ QthQ;ll ) thRtle;lQ Ry " V.hC”HAOTIC AND l;RAH;'OPEdRITDI;S OF TH!ELNI\; N
— OQ.R,-- Ry (11) e shall now report the an properties of the .

N These properties have been gleaned as a result of examining
where@; is an orthogonal matrix, anf; is upper triangular the Hamming distance between the input pattern and the

matrix. The LEs{)\;} can then be obtained as: patterns that appear at the output. In this regard, we mentio
1 ® that the experiments were conducted using the data set used
Jim 7 Injv;"| = A, (12) by Adachiet al given in Figure 2.
where{v;;} are the diagonal elements of the upper-trianguldx AM Properties
productY®) = R, --- R;. We discuss the properties of the LNN in three different

We are now in a position to compute the LEs of the systesettings. In all of the three cases, the parameters wer@set t
described by equations (5) and (6). By a straightforwatsk k¥ = 0.55, 8 = 30, a; = 2 and zo = 0.3. We should
computation we see that the Jacobian matrix of the neur@lRo point out that we assumed that0) = 2,(0) = --- =
is:

20ne should also observe that the other LE is negative. ThisdtEésponds
1t should be observed that;; = 1,7 = 1,2,---, N. to the first eigenvalue of the Jacobian matrix.
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Fig. 2. Thel0 x 10 patterns used by Adackt al . The first four patterns are used to train the network. Thi fifittern is obtained from the fourth pattern
by including 15% noise. The sixth pattern is the untrainetiepa.

z100(0) = 0.3. In other words, we assumed that the initial

values of all the neurons were forced to be the same. Also, to & WMWW
DO 200 400 600

800 1000

emphasize, these AM properties were demonstrated by gettin

each “external stimulus” to be; = 2. & so
We now discuss the AM-related results of the LNN for the
three scenarios, i.e., for trained inputs, for noisy inparsl 2 WMWWMWMMM
for untrained (unknown) inputs respectively. In each case,
mentioned above, we report only a few results, i.e., for Heec z WMWWMW
when the original pattern and the noisy version are related t
P4. The results obtained for the other patterns are idéntica 2 WMWWWWWWMW‘”{
and omitted here in the interest of brevity.
1) The input of the network is a known pattern, say P4. € 0
The observation that we report is that during the first % 20000 o0 @0 1000
1,000 iterations, the network can dynamically retrieve (a)

all the known patterns. This can be seen in Figure 3

in which we plot the Hamming distance of the output ElOOWWWWWWMW ‘

pattern with P4. Observe if the identical pattern is 20 20 500 800 000

0
observed the Hamming distance is 0, and if the inverse 3 128WW%WWWWNWWWWM

version is observed, the Hamming distance is 100.

0
2) The input of the network is a noisy pattern, in this case o 128WWM%WWW
o ‘ ‘ ‘

P5, which is a noisy version of P4. ) 0 200 o a0 000
In this case, the network can still dynamically retrieve . 1§gwmwwwwmwww
all the known patterns and their inverse versions during o o~ " po P 1000
the first 1,000 iteratiorfs This can be seen in Figure 3 0 fgw‘”“”ww“wmmwww
(b). The reader should observe that although the initial o o~ m o - 1000
input is anoisy pattern, the four memorized patterns glggwwwwmww«%mww
(and their inverses) appear in the output frequently. % o s w0 - 1000
Based on the above observation and this present one,

we can easily conclude that the four patterns and their (0)

inverse versions are the attractors of the network. Indeggly. 3. AM properties: The Hamming distance between the wugpd the
in both these cases we see that independent of the initiained patterns. In (a) and (b), the input patterns are theth and fifth
input, the network will be attracted to these attractor821ems of Figure 2 () respectively.

even though the network will not stay at a fixed or

periodic state — which is a typical phenomenon of

chaotic systems.

3) The input of the network is an unknown pattern, P6.
If the initial input is a completely unknown pattern,
say, P6, a system possessing AM should still be atﬁe
to reproduce/retrieve all the memorized patterns. On theSimilar to the results reported in Section V-A, we now
other hand, the system should never yield an unknovanesent an in-depth report of the LNN's PR properties by
pattern. This phenomena can be seen from Figure ybing Hamming distance-based analyses. The parametérs tha
Here the untrained pattern never appears in the outpute used werek = 0.55, 8 = 30, a; = 2x;, andzy = 0.3. The

difference between these experiments and the AM-related on

3From Figure 3 we see that the known pattern P2 is never rdcaéieause involve the “external stimulus’{ai}, which is not a constant,
the time frame is too short. Indeed, if the time-frame is exfeal for 10,000

iterations, we see that the pattern P2 appears 5 times. Batiethis expanded but a scaled version of th{%vi}- The PR'r_eIate.d results Qf
time-frame, P5 and PBever appear the LNN are reported for the three scenarios, i.e., for &ain

A record of the statistics (frequencies) of all the aboveehr
cases is catalogues in Table I.

PR Properties



1000

Fig. 4. AM properties: The Hamming distance between the wuapd the
trained patterns. In this figure, the input pattern is theéhspattern of Fig. 2

TABLE |

THE STATISTICS(FREQUENCIEY OF THE OCCURRENCES OF THE VARIOUS
PATTERNS DURING THE FIRSTL0,000ITERATIONS. IN THE TABLE, *P;

SIGNIFIES THE INVERSE VERSION OF THE PATTERNP;.

Input Patterns
P B P P B B
Py 99 96 108 | 102 | 92 89
«P; | 187 | 85 201 ] 197 | 191 | 186
Ps 38 45 32 34 38 31
* Po 31 19 41 41 31 32
Frequency| Ps | 190 | 190 | 185 | 174 | 189 | 222
«*P3 | 235 90 219 | 219 | 236 | 218
Statistic Py 98 98 | 127 | 135 | 84 95
* Py 40 18 30 30 43 33
Ps 0 0 0 0 1 0
“P; | 0 | 0 | 0] 0 0] 0 Fig. 5.
Ps 0 0 0 0 0 1
*Pg 0 0 0 0 0 0

inputs, for noisy inputs and for untrained (unknown) inputs
respectively. As in the AM case, we report only the results fo

the setting when the original pattern and the noisy versien a

related to P4. The results obtained for the other patteras ar
identical, and omitted here for brevity.

1) The input of the network is a known pattern, say P4.

2)

3)
To report the results for this scenario, we request the
reader to observe Figure 5, where in (a) we can find that
P4 is retrieved very frequently as a response of the input
pattern. This occurs 197 times (almost 1/5) in the first
1,000 iterations. On the other hand, the other three pat-
terns never appear in the output sequence.From Figures
5 (a),we can conclude that the input can be recognized
successfully if it is one of the known patterns.
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PR properties: The Hamming distance between theubuatpd the

trained patterns. The input patterns are the P4 and P5maiéiFigure 2 (a)
respectively. Observe that P5 is a 15%-noisy version of P4.

be seen from the Figure 5 (b). By comparing (a) and (b)
of Figure 5, we can conclude that the LNN can achieve
chatotic PR even in the presence of noise and distortion.
Even if the external stimulus contains some noise, the
LNN is still able to recognize it correctly.

The input of the network is an unknown pattern, P6.

In this case we investigate whether the LNN is capable
of distinguishing between known and unknown patterns.
Thus, we attempt to stimulate the network with a com-
pletely unknown pattern. We used the pattern P6 of
Figure 2 initially used by Adachét al. From Figure 6

we see that some of the known patterns (P1, P3 and P4)
are retrieved several times. As opposed to this, the noisy
pattern P5 and the unknown pattern P6 never appeatr.

The input of the network is a noisy pattern, in this case The statistical frequencies of the Hamming distances fer th

P5, which is a noisy version of P4.

Adachi dataset for all the three cases are listed in TabMyél.

Even when the external stimulus is a garbled versigibmit that is also a convincing proof of the fact that the LNN
of a known pattern (in this case P5 which containgan achieve chaotic PR.

15% noise), it is interesting to see thady the original
pattern P4 is recalled frequently (as high as 187 times

VI. CONCLUSIONS

in the first 1,000 iterations). In contrast, the others three In this paper we have concentrated on the field of Chaotic
known patterns are never recalled. This phenomena daattern Recognition (PR), which is a relatively new subdfadl
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unknown pattern.

TABLE Il
FREQUENCYBASED STATISTICS FOR THEADACHI DATA SET, WHICH
DEMONSTRATES THELNN’ SPRCAPABILITIES FORFIGURES5 AND 6.

PR properties: The Hamming distance between theubuatpd the
trained patterns. The input pattern is the sixth patternigéife 2. P6 is an

(5]

(6]
(7]
(8]

El

Input Patterns
Py P [ P3| Py Ps | Ps (10]
Py 188 0 0 0 0 16
P, 0 | 232 0 0 0 ] 0 [11]
Frequency| P3 0 0 204 0 0 3
Statistic Py 0 0 0 197 | 187 36
Ps 0 0 0 0 1 0
P 0 00001 (12]

PR. The network which we have designed and investigated’3!
one that has not been investigated before, namely the liogist
NN based on the chaotic Logistic Map. By appropriatelj4]

defining the input/output characteristics of a fully corteec

LNN, and by defining their set of weights and output functiong; s
we have succeeded in demonstrating that it possesses AM and noise on the performance of a neural network model for optition

PR properties for different inputs.

We summarize the LNN’s AM and PR properties as follow

29

o Case | — AM: When exposed to an external stimuluﬁﬂ

with a; = 2, it performs as an AM. In other words, it

is able to retrieve all the known patterns independent of

what the initial input pattern is.

. 1
o Case Il — PR: When exposed to an external stimulus

a; = 2x;, it achieves PR. Further, in this case:

[18]

— If x; corresponds to a known pattern or a noisjg

pattern, the LNN can recognize it correctly.

— If the x; corresponds to an unknown pattern, th@o]
LNN can retrieve all the known patters (akin, to som
degree, to an AM phenomenon), but the frequency
with which the patterns occur is much lower than if¢!]
Case |I. [22]

Finally, we observe that the AM and PR characteristics of

the LNN depending on the settings and the inputs. By the well-
defined and well-trained parameters, the LNN can be applied

for image understanding and recognition, which is cruaal f

measurement systems.
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