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ABSTRACT
In this paper, we consider the analysis of a fascinating Ran-
dom Walk (RW) that contains interleaving random steps and
random “jumps”. The characterizing aspect of such a chain
is that every step is paired with its counterpart random jump.
RWs of this sort have applications in testing of entities, where
the entity is never allowed to make more than a pre-specified
number of consecutive failures. This paper contains the anal-
ysis of the chain, some fascinating limiting properties, and
some initial simulation results. The reader will find more de-
tailed results in [12].

Keywords : Random Walks with Jumps, Random Pro-
cesses, Ergodic Random Processes

1. INTRODUCTION

RWs have been studied for more than a century and utilized
in a myriad of applications stemming from areas as diverse
as biology, computer science, economics and physics. For in-
stance, concrete examples of these applications in biology are
epidemics models [2], the Wright-Fisher model, the Moran
Model [9] etc. . . RWs arise in the modeling and analysis of
queuing systems [8], ruin problems [11], risk theory [10], se-
quential analysis and learning theory [4]. In addition to the
aforementioned classical application of RWs, recent applica-
tions include mobility models in mobile networks [5], col-
laborative recommendation [7], web search algorithms [1],
and reliability theory for both software and hardware com-
ponents [3].

Although Random Walks (RWs) with single-step transi-
tions, such as the ruin problem, have been extensively ana-
lyzed [6], problems involving the analysis of RWs containing
interleaving random steps and random jumps are intrinsically
hard. In this paper, we consider the analysis of one such fas-
cinating RW, where every step is paired with its counterpart
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random jump. Apart from this RW being conceptually inter-
esting, it also has applications in the testing of entities, where
the entity is never allowed to make more than a pre-specified
number of consecutive failures.

To motivate the problem, consider the scenario when we
are given the task of testing an error-prone component. At ev-
ery time step, the component is subject to failure, where the
event of failure occurs with a certain probability, q. The corre-
sponding probability of the component not failing1 is p, where
p = 1 − q. Further, like all real-life entities, the component
can operate under two modes, either in the Well-Functioning
mode, or in the Mal-Functioning mode. At a given time step,
we aim to determine if the component is behaving well, i.e, in
the Well-Functioning mode, or if it is in the Mal-Functioning
mode, which are the two states of nature. It is not unreason-
able to assume that both these hypotheses are mutually exclu-
sive, implying that only one of these describes the state of the
component at a given time step, thus excluding the alterna-
tive. Let us now consider a possible strategy for determining
the appropriate hypothesis for the state of nature.

Suppose that the current maintained hypothesis conjec-
tures that the component is in a Mal-Functioning mode. This
hypothesis is undermined and systematically replaced by the
hypothesis that the component is in its Well-Functioning mode
if it succeeds to realize a certain number N1 of successive re-
coveries (or successes). In the same vein, suppose that the
current hypothesis conjectures that the component is in its
Well-Functioning mode. This hypothesis, on the other hand,
is invalidated and systematically replaced by the hypothesis
that the component is in its Mal-Functioning mode if the com-
ponent makes a certain number N2 +1 of successive failures.
We shall show that such a hypothesis testing paradigm is most
appropriately modeled by a RW in which the random steps
and jumps are interleaving. To the best of our knowledge,
such a modeling paradigm is novel! Further, the analysis of
such a chain is unreported in the literature too.

By way of nomenclature, throughout this paper, we shall

1The latter quantity can also be perceived to be the probability of the com-
ponent recovering from a failure, i.e., if it, indeed, had failed at the previous
time instant.



refer to p as the “Reward Probability”, and to q as the “Penalty
Probability”, where p+ q = 1.

2. PROBLEM FORMULATION

2.1. Specification of the State Space and Transitions

We consider the following RW with Jumps (RWJ) as depicted
in Figure 1. Let X(t) denote the index of the state of the
walker at a discrete time instant ‘t’. The details of the RW
can be catalogued as below:

1. First of all, observe that the state space of the RW con-
tains N1 +N2 + 1 states.

2. The states whose indices are in the set {1, . . . , N1} are
paired with their counterpart random jump to state 1.

3. The states whose indices fall in the range between the
integers {N1 + 1, . . . , N1 + N2} are paired with their
counterpart random jump to state N1 + 1.

4. Finally, the state whose index is N1 +N2 + 1 is linked
to both states 1 and N1 + 1.

5. Essentially, whenever the walker is in a state X(t) =
i which belongs to the the set {1, . . . , N1}, he has a
chance, p, of advancing to the neighboring state i + 1,
and a chance q = 1 − p of performing a random jump
to state 1. Similarly, whenever he is in a state X(t) = i
in the set {N1 + 1, . . . , N1 + N2}, the walker has a
chance, q, of advancing to the neighbor state i+ 1, and
a chance p of operating a random jump to state N1.
However, whenever the walker is in state N1 +N2 +1,
he has a probability p of jumping to state N1 + 1 and a
probability q of jumping to state 1.

6. These rules describe the RWJ compeletely.

The reader will observe a marginal asymmetry in the as-
signment of our states. Indeed, one could query: Why should
do we operate with N1 and N2 + 1 states in the correspond-
ing modes, instead of N1 and N2 respectively? Would it not
have been “cleaner” to drop the extra state in the latter case,
i.e., to use N2 states instead of N2 + 1? The reason why
we have allowed this asymmetry is because we have con-
sciously intended to put emphasis on the so-called “accep-
tance state”, that counts as unity. Our position is that this
is also a more philosophically-correct position – because the
acceptance state is really one which has already obtained a
success.

We shall now present a detailed analysis of the above
RWJ.

Fig. 1. The state transitions of the Random Walk with Jumps.

3. THEORETICAL RESULTS

The analysis of the above-described RWJ is particularly dif-
ficult because the stationary (equilibrium) probabilities of be-
ing in any state is related to the stationary probabilities of
non-neighboring states. In other words, it is not easy to de-
rive a simple difference equation that relates the stationary
probabilities of the neighboring states. To render the analysis
more complex, we observe that the RW does not possess any
time-reversibility properties either!

However, by studying the peculiar properties of the chain,
we have succeeded in solving for the stationary probabilities,
which, in our opinion, is far from trivial. The proof of the
result follows.

Theorem 1 For the RWJ described by the Markov Chain given
in Figure 1, P1, the probability of the walker being in the Mal-
Functioning mode, is given by the following expression:

P1 =
(1− pN1)qN2

(1− pN1)qN2 + pN1−1(1− qN2+1)
. (1)

Similarly, P2, the probability of being in the Well-Functioning
mode (or exiting from the Mal-Functioning mode) is:

P2 =
(1− qN2+1)pN1−1

(1− pN1)qN2 + pN1−1(1− qN2+1)
. (2)

Proof: To prove these results, we shall analyze the prop-
erties of the underlying MC that describes the behavior of the
walker. By investigating the various transition considerations,
we see that matrix of transition probabilities, M , is given by:

M =



q p 0 . . . 0 0 0 . . . 0
q 0 p . . . 0 0 0 . . . 0
...

...
. . . . . .

...
...

...
...

...
q 0 . . . 0 p 0 0 . . . 0
0 0 . . . 0 p q 0 . . . 0
0 0 . . . 0 p 0 q . . . 0
...

...
...

...
...

...
. . . . . .

...
0 0 . . . 0 p 0 . . . 0 q
q 0 . . . 0 p 0 0 . . . 0


The reader should observe the transitions into the non-

adjacent states, i.e., those which represent the jumps.



We shall now compute πi the stationary (or equilibrium)
probability of the chain being in state i. Clearly M repre-
sents a single closed communicating class whose periodicity
is unity. The chain is thus ergodic, and the limiting probabil-
ity vector is given by the eigenvector of MT corresponding
to the eigenvalue unity. The vector of steady state (equilib-
rium) probabilities Π = [π1, . . . , πN1+N2+1]

T can be thus
computed by solving MTΠ = Π.

Consider first the stationary probability of being in state
1, π1. By expanding the first row we see that this is expressed
by the following equation:

π1 = qπ1 + qπ2 + ...+ qπN1 + qπN1+N2+1

= q

N1∑
k=1

πk + qπN1+N2+1. (3)

For 2 ≤ k ≤ N1, the stationary probability πk is given by
a straightforward first-order difference equation, Eq. (4):

πk = pπk−1. (4)

By applying recurrence, the Eq. (4) can be rewritten as:

πk = pk−1π1. (5)

By expanding the (N+1)st row, we can see that the prob-
ability of being in the “acceptance” state πN1+1 is given by
Eq. (6):

πN1+1 = pπN1 + pπN1+1 + p

N2∑
k=1

πN1+1+k. (6)

Again, for N1 + 1 ≤ k ≤ N1 + N2 + 1, the steady
probabilities are given by:

πk = qπk−1. (7)

By applying recurrence, Eq. (7) can be written for 1 ≤
k ≤ N2 + 1 as:

πN1+1+k = qkπN1+1. (8)

Using Eq. (5) and Eq. (8), and replacing them in Eq. (3)
we obtain:

π1 = q

N1∑
k=1

pk−1π1 + qN2+1πN1+1. (9)

Therefore, we obtain:

π1 = (1− pN1)π1 + qN2+1πN1+1. (10)

From the above, we can deduce the equation that relates
π1 and πN1+1:

πN1+1 =
pN1

qN2+1
π1. (11)

Consequently, P1 is given by Eq. (12):

P1 =

N1∑
k=1

πk

=

N1∑
k=1

pk−1π1

=
1− pN1

1− p
π1. (12)

Similarly, P2 can be expressed by:

P2 =

N1+N2+1∑
k=N1+1

πk

=

N2∑
k=0

qkπN1+1

=
1− qN2+1

p
πN1+1. (13)

Using the values of P1 and P2 and the fact that P1+P2 =
1, and after carrying out some simple algebraic manipulations
we obtain:

π1 =
qN2+1

(1− pN1)qN2 + pN1−1(1− qN2+1)
, (14)

and

πN1+1 =
pN1

(1− pN1)qN2 + pN1−1(1− qN2+1)
, (15)

whence:

P1 =
(1− pN1)qN2

(1− pN1)qN2 + pN1−1(1− qN2+1)
, (16)

and

P2 =
(1− qN2+1)pN1−1

(1− pN1)qN2 + pN1−1(1− qN2+1)
, (17)

which concludes the proof. 2

3.1. “Balanced Memory” Strategies

Although the results obtained above are, in one sense, pio-
neering, the question of understanding how the memory of the
scheme should be assigned is interesting in its own right. To
briefly address this, in this section, we consider the particular
case where N1 and N2 + 1 are both equal to the same value,
N . In this case, if p = q = 1/2, one can trivially confirm
that P1 = P2 = 1/2, implying that the scheme is not biased
towards any of the two modes, the Mal-Functioning or the
Well-Functioning mode. In practice, employing a “Balanced
Memory” strategy seems to be a reasonable choice since hav-
ing equal memory depth (or number of states) for the Mal-
Functioning and Well-Functioning modes eliminates any bias
towards any of the conjectured hypotheses.



Theorem 2 For a “Balanced Memory” strategy in which N1 =
N2+1 = N , the probability, P1, of being in the Mal-Functioning
mode, approaches 0 as the memory depth N tends to infinity
whenever p > 0.5. Formally, limN→∞ P1 = 0.

Proof: Consider the quotient P1

P2
. To prove this result, we

first compute its limit as N tends to infinity for p > 0.5.

P1

P2
=

(1− pN )qN−1

(1− qN )pN−1
. (18)

Dividing the numerator and denominator by p2N we ob-
tain:

P1

P2
=

(1/pN − 1)(q/p)N−1

1/pN − (q/p)N
. (19)

Since p > 0.5, we have the condition that q/p < 1.
Therefore

lim
N→∞

(q/p)N−1 = 0.

On the other hand, limN→∞
(1/pN−1)

1/pN−(q/p)N
= 1.

Therefore limN→∞
P1

P2
= 0. Thus, we conclude that

limN→∞ P1 = 0, and the result is proved. 2

The analogous result for the case when p < 0.5 follows.

Theorem 3 For a “Balanced Memory” strategy in which N1 =
N2+1 = N , the probability, P1, of being in the Mal-Functioning
mode, approaches unity as the memory depth N tends to in-
finity whenever p < 0.5. Formally, limN→∞ P1 = 1.

Proof: The proof is similar to the proof of Theorem 2,
except that we rather consider the quotient P2

P1
. By dividing

the numerator and denominator by q2N , we get the following
expression:

P2

P1
=

(1/qN − 1)(p/q)N−1

1/qN − (p/q)N
. (20)

We remark that p/q < 1 for p < 0.5, and thus,

lim
N→∞

(p/q)N−1 = 0.

Moreover, we see that limN→∞
(1/qN−1)

1/qN−(p/q)N
= 1. There-

fore, limN→∞
P2

P1
= 0, and consequently limN→∞ P2 = 0.

Hence the result! 2

3.2. Symmetry Properties

The MC describing the RW with Jumps is described by its
state occupation probabilities and the overall mode proba-
bilities, P1 and P2. It is trivial to obtain P1 from P2 and
vice versa for the symmetric “Balanced Memory” case – one
merely has to replace p by q and do some simple transforma-
tions. However, the RW also possesses a fascinating prop-
erty when it concerns the underlying state occupation proba-
bilities – the {π}’s themselves. Indeed, we shall derive one

such interesting property of the scheme in Theorem 4, which
specifies a rather straightforward (but non-obvious) method
to deduce the equilibrium distribution of a “Balanced Mem-
ory” scheme possessing a reward probability p from the equi-
librium distribution of the counterpart “Balanced Memory”
scheme possessing a reward probability of 1− p.

Theorem 4 Let Π = [π1, . . . , π2N ]T be the vector of steady
state probabilities of a balanced scheme characterized by a
reward probability p and penalty probability q. Let Π′ =
[π′

1, . . . , π
′
2N ]T be the vector of steady state probabilities of a

balanced scheme possessing a reward probability p′ = 1− p
and penalty probability q′ = 1 − q. Then Π′ can be deduced
from Π using the following transformation:

π′
k = πσ(k) for k with 1 ≤ k ≤ 2N ,

where σ is a circular permutation of the set S={1, 2, . . . , 2N}
defined by

σ(k) =

{
2N, if k = N

(k +N)(mod 2N), Otherwise

Proof: We shall first prove the theorem for states π′
1 and

π′
N+1. Using Eq. (14) and (15) and replacing (N1, N2+1) by

(N,N), we deduce that: π′
1 = πN+1 = πσ(1) and π′

N+1 =
π1 = πσ(N+1).

Now, consider the hypothesis for k such that 1 < k ≤ N .
By a simple substitution we see that for all k (1 < k < N ),
σ(k) = (k+N)(mod 2N) = k+N , and for k = N , σ(N) =
2N .

We use Eq. (5) to write

π′
k = p′

k−1
π′
1

= qk−1πN+1. (21)

However, as per Eq. (8), for k such that 2 ≤ k ≤ N :
qk−1πN+1 = πN+k.
Therefore, for k such that 2 ≤ k ≤ N :
π′
k = πN+k = πσ(k)

Now, we treat the case where k is bounded as per N <
k ≤ 2N separately. For this case, first of all, we remark that
σ can be expressed differently. Indeed, if k satisfies N < k ≤
2N , it can be seen that σ(k) = (k +N)(mod 2N) = k −N .
Considering this, we now apply Eq. (8) to yield:

π′
N+k = q′

k−1
π′
N+1

= pk−1π1

= πk. (22)

The result is proven by a straightforward change of vari-
ables, since we can easily deduce that for N < k ≤ 2N :
π′
k = πk−N = πσ(k). 2



4. APPLICATION TO COMPONENT TESTING

As briefly alluded to earlier, from a philosophical point of
view, the testing of a component can be modeled by the RWJ
presented in Section 2.1. At each time step, the entity is either
subject to a success or a failure, and is either supposed to be in
the Well-Functioning or Mal-Functioning mode. From a high
level perspective, a success “enforces” the hypothesis that the
entity is Well-Functioning while simultaneously “weakening”
the hypothesis that it is Mal-Functioning. On the other hand,
a failure “enforces” the hypothesis that the entity is deterio-
rating, i.e Mal-Functioning, while “weakening” the hypothe-
sis that it is Well-Functioning. It is worth noting that states
whose indices are in the set {1, . . . , N1} serve to memorize
the number of consecutive successes that have occurred so far.
In other words, if the walker is in state i ( i ∈ {1, . . . , N1}), it
implies that we can deduce that the walker has passed the test
i consecutive times. Similarly, states whose indices are in the
set {N1 + 1, . . . , N1 +N2 + 1} present an

indication of the number of consecutive failures that have
occurred. In this case, if the walker is in state N1 + i where
0 < i ≤ N2 + 1, we can infer that the walker has made i
consecutive failures so far.

We present the following mapping of the states of the RW
{1, . . . , N1 +N2 + 1} to the set of hypotheses

{Well-Functioning, Mal-Functioning}

as follows. The mapping is divided into two parts:

Mal-Functioning States: We refer to the states {1, . . . , N1}
as being the so-called Mal-Functioning states, because
whenever the index X(t) of the current state of the
walker is in that set, we conjecture that “the hypothesis
that the component is in its Mal-Functioning mode” is
true. In this phase, the state transitions illustrated in the
figure are such that any deviance from the hypothesis
is modelled by a successful transition to the neighbor-
ing state, while a failure causes a jump back to state 1.
Conversely, only a pure uninterrupted sequence of N1

successes will allow the walker to pass into the set of
Well-Functioning states.

Well-Functioning states We refer to the states {N1+1, . . . , N1+
N2 + 1} as the Well-Functioning states, because when
in this set of states, we conjecture the hypothesis that
the component is in its Well-Functioning mode. More
specifically, we refer to state N1 + 1 as being an “ac-
ceptance” state because, informally speaking, when-
ever the walker is in that state, the conjectured hypoth-
esis, that the component is Well-Functioning, has been
confirmed with highest probability. In particular, within
theses state, the goal is to detect when the entity de-
teriorates, causing it to degrade into one of the Mal-
Functioning states. These states can be perceived to

be the “opposite” of the Mal-Functioning states in the
sense that an uninterrupted sequence of failures is re-
quired to “throw” the walker back into the Mal-Functioning
mode, while a single success reconfirms the conjec-
tured hypothesis that the component is functioning well,
forcing the walker to return to the Well-Functioning
state space.

We hope that this brief summary of the application do-
main suffices!

5. BRIEF SIMULATION RESULTS

Apart from the above theoretical results, we have also rigor-
ously tested the RWJ which we have studied in various experi-
mental settings. In this section, we present some experimental
results for cases where the RWJ has been simulated. The goal
of the exercise was to understand the sensitivity of the MC to
changes in the memory size, the properties of P1 as a function
of the reward probability and the limiting (asymptotic) behav-
ior of the walk. Although the chain has been simulated for a
variety of settings, in the interest of brevity, we present here
only a few typical sets of results – essentially, to catalogue the
overall conclusions of the investigation.

5.1. P1 as a Function of p, the Reward Probability

In the first set of experiments, we analyzed the value of P1 as
a function of the reward probability, p, for different memory
configurations of a balanced memory set-up. We report here
the cases when N was equal to 3, 5 and 10. By observing the
plot of P1 (see Figure 2), we see that this is a monotonically
decreasing function of p, which possesses an inflection point
at p = 1/2, which confirms the conclusions of Theorems 2
and 3. Further, from Figure 2 we see that for values of p such
that p > 0.5, P1 decreases significantly and tends towards
0 as we increase N from 3 to 10. Conversely, for values of
p such that p < 0.5, we observe that P1 increases and tends
towards unity as we increase N from 3 to 10. This too confirm
our earlier theoretical results.
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Fig. 2. A plot of P1 as a function of p, the reward probability.



5.2. Limiting Behavior of the RWJ

In our studies, we were also interested in understanding the
limiting behavior of the RWJ. To investigate this, we simu-
lated various balanced memory schemes. Indeed, we see that
the series πi monotonically decreases with the state index for
p < 0.5. In other words, π1 > π2 > . . . π2N . Figure 3 depicts
the steady state (equilibrium) distribution associated with two
balanced memory chains, each possessing 6 states (N = 3).
In the first case, the reward probability was p = 0.3, and in
the second, the reward probability was p′ = 1 − p = 0.7.
The steady probability of each state was estimated by averag-
ing over 1, 000 experiments, each consisting of 100, 000 itera-
tions. The reader will appreciate the confirmation of Theorem
4 as illustrated by Figure 3. In fact, the steady distribution for
p = 0.3 can be easily deduced from the steady distribution of
p′ = 1− p = 0.7.
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Fig. 3. This figure depicts (a) the stationary distribution for
a reward probability p = 0.7, and (b) the corresponding sta-
tionary distribution for a reward probability p = 0.3.

6. CONCLUSIONS

Although Random Walks (RWs) with single-step transitions
have been extensively studied [6], problems involving the anal-
ysis of RWs that contain interleaving random steps and ran-
dom “jumps” are intrinsically hard. In this paper, we have
considered the analysis of one such fascinating RW, where
every step is paired with its counterpart random jump. The
paper alludes to the application of the the RW in the testing
of entities which constrain the entity to never be allowed to
make more than a pre-specified number of consecutive fail-
ures. The paper contains the detailed analysis of the chain,
some fascinating limiting properties, and a few simulations
that justify the analytic results. We believe that the entire field
of RWs with interleaving steps and jumps is novel, and that

this is a pioneering paper in this field. More detailed results
of the chain, the simulations, and its potential applications are
found in [12].
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