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Abstract In this paper, we develop super-orthogonal
space-time trellis codes (SOSTTCs) using differential
binary phase-shift keying, quadriphase-shift keying and
eight-phase shift keying for noncoherent communi-
cation systems with two transmit antennas without
channel state information at the receiver. Based on
a differential encoding scheme proposed by Tarokh
and Jafarkhani, we propose a new decoding algorithm
with reduced decoding complexity. To evaluate the
performance of the SOSTTCs by way of computer
simulations, a geometric two-ring channel model is em-
ployed throughout. The simulation results show that
the new decoding algorithm has the same decoding
performance compared with the traditional decoding
strategy, while it reduces significantly the overall com-
puting complexity. As expected the system perfor-
mance depends greatly on the antenna spacing and
on the angular spread of the incoming waves. For fair
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comparison, we also design SOSTTCs for coherent de-
tection of the same complexity as those demonstrated
for the noncoherent case. As in the case of classical sin-
gle antenna transmission systems, the coherent scheme
outperforms the differential one by approximately 3 dB
for SOSTTCs as well.
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1 Introduction

Space-time coding was introduced in the late 1990s
as a promising technique to improve the reliability of
mobile data links by using transmit antenna diversity
[3, 20]. Those pioneering works and many others that
soon followed were elaborated under the assumption
that the receiver can acquire perfect channel state in-
formation (CSI). Nevertheless, the known-channel as-
sumption may not be realistic in a scenario of rapidly
changing fading environments. In our paper, we pro-
pose space-time trellis codes to be used in noncoherent
transmission systems where neither the transmitter nor
the receiver knows the fading gains of the channel. For
the single-input single-output case, differential encod-
ing coupled with trellis-coded modulation can provide
a good solution to the problem [5, 13, 14, 23]. In the
enlarged framework of multiple-input multiple-output
(MIMO) systems, a new solution emerged as unitary
space-time signals [2, 7–9]. Like Alamouti’s scheme
for coherent demodulation, these designs can provide
diversity advantage, but no coding gain.
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To obtain coding gains, trellis-coded unitary space-
time modulation systems have been proposed in [4, 16–
18, 24, 25]. To this end, the first prerequisite is a set
of unitary matrices. To avoid this, Tarokh and
Jafarkhani proposed a differential detection scheme for
two transmit antennas in [19] and extended it to mul-
tiple transmit antennas in [11]. For the case when the
receiver has CSI, super-orthogonal space-time trellis
codes (SOSTTCs) have been introduced in [10]. Zhu
and Jafarkhani presented in [26] two rather simple,
fully connected trellis sections for binary phase-shift
keying (BPSK) and quadriphase-shift keying (QPSK).
The case of eight-phase shift keying (8PSK) is not
treated in [26]. In contradistinction to [26], we consider
all the three signal constellations, BPSK, QPSK and
8PSK and design differential super-orthogonal space-
time trellis encoders based on nonfully connected
trellises. Moreover, we use the differential scheme
described in [19], while, as much as we understand, the
authors of [26] prefer an older one, based on unitary
matrices.

In [19], only differential BPSK modulation is de-
scribed in detail for the case of two transmit antennas,
while performance plots are also provided for QPSK
and 8PSK. We made no attempt to consider 16PSK
as well, since it has a rather small practical usefulness
and the complexity grows unacceptably high, as the
cardinality of the required matrix set is 256. Although
we consider the differential scheme described in [19]
as excellent, we propose a new decoding metric with
exactly the same performance as that given in [19], but
superior from the standpoint of the computing time.

The bit error rate (BER) performance of both co-
herent and noncoherent communication systems us-
ing SOSTTCs is evaluated by computer simulations
based on a geometric two-ring channel model [12]. We
take the opportunity of performing those simulations
to study the impact of different channel parameters
and transmission scenarios on the system performance.
We compare the BER performance of the SOSTTCs
using both the differential and the coherent encoding
schemes. As known from the theory and practice of sin-
gle antenna communication systems, the SOSTTCs us-
ing the differential encoding scheme are approximately
3 dB worse than those using the coherent scheme, and
this is the price paid for having no need of CSI at the
receiver.

The rest of the paper is organized as follows. In
Section 2, we describe our channel model and develop
the differential scheme for BPSK, QPSK and 8PSK. It
will be clear that the matrix sets used for trellis-coding
are quite different from those used for differential
transmission. In Section 3, for fair comparison, we first

design SOSTTCs to be included in coherent transmis-
sion systems. In Section 4, we design SOSTTCs that
work together with differential detection and therefore
have no need of CSI. Receiver issues are treated in
Section 5, where the traditional decoding algorithm and
the new decoding algorithm are presented. Simulation
results and related comments are given in Section 6.
Section 7 contains our conclusions.

2 Channel model and differential encoding

2.1 Channel model

We consider a point-to-point noncoherent wireless
communication link with two transmit antennas and
one or two receive antennas, operating in a Rayleigh
flat-fading environment like in [19]. The signal con-
stellation used for transmission is M-PSK, with M =
2b and b = 1, 2 and 3, i.e. BPSK, QPSK and 8PSK.
The average energy of the symbols transmitted from
each antenna is normalized to be 1/2, in order that the
average power of the received signal at each received
antenna is 1. Therefore, the 2D signal constellation is a
set

S =
{

e2πkj/M

√
2

|k = 0, 1, . . . , M − 1

}
(1)

where j2 = −1.

In our method, we use a 4D signal constellation that
is the Cartesian product of a 2D signal constellation
by itself. Denote the 2D symbol interval by T. A 4D
symbol is transmitted in two consecutive time intervals
of duration T and thus its duration equals 2T. We
number the 4D symbol intervals by n, n = 0, 1, 2, . . . ,

and the first and the second half of the generic 4D sym-
bol interval are denoted as 2n and 2n + 1, respectively.
Note that actually BPSK is not 2D, but 1D.

In this paper, we assume that the fading is constant
over a time interval whose duration is at least equal
to 4T. Furthermore, let us denote the path gain from
the transmit antenna q, q = 1, 2, to the receive antenna
p, by h(p,q)

n . The path gains are modelled as samples
of independent complex Gaussian stochastic processes
with variance 0.5 per real dimension.

2.2 Differential encoding

We assume that the data transmission is being made
by frames, where by frame we understand a block of
N 4D consecutive symbols, or equivalently of 2N 2D
consecutive QPSK or 8PSK symbols, and of N 2D con-
secutive symbols, or equivalently of 2N 1D consecutive
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BPSK symbols, that are maximum likelihood sequence
decoded by the receiver using the Viterbi algorithm.
For brevity of exposition, we consider 2D signal con-
stellations, but the theory is the same for BPSK. We
index the 4D symbols by n, n = 0, 1, . . . , N − 1. The
nth 4D symbol comprises two consecutive 2D symbols
denoted as s2n and s2n+1 which are transmitted by the
first antenna into two successive channel uses 2n and
2n + 1. The second antenna transmits the same infor-
mation, but in a different order and form, i.e. −ans∗

2n+1
first and ans∗

2n next, where the variable an can take the
values +1 and −1 as it will be shown later. It is useful
to consider these quantities as the entries of a 2×2
transmission matrix:

Mn =
(

s2n −an · s∗
2n+1

s2n+1 an · s∗
2n

)
. (2)

For an fixed as +1 or −1, we readily recognize in (2)
the Alamouti matrix [3], which is also an orthogonal
design, since the two columns, as well as the two rows,
are orthogonal.

For coherent demodulation and an fixed, all the
matrices that can be formed with symbols of a given
signal constellation make up a signal set and a space-
time trellis code can be designed by properly assigning
a transmission matrix to each state transition of a topo-
logical trellis. Clearly, the data rate is determined by
the cardinality of such a signal set. To increase the data
rate by one bit per 4D symbol, the signal set is taken as
the union of two families of matrices, one for an = +1
and the other one for an = −1. With this enlarged set of
matrices, an SOSTTC can be built [10].

When no CSI is available at the receiver, only non-
coherent demodulation can be used. As in [19], we con-
sider the two orthogonal vectors (s2n, −an · s∗

2n+1) and
(s2n+1, an · s∗

2n) having unit length. Then, any 2D vector
(s2n+2, −an · s∗

2n+3) can be uniquely represented in the
orthonormal basis given by these vectors. Assuming
that the fading is constant at least over two consecutive
4D symbols, the information to be transmitted in the
(n + 1)th 4D symbol interval is differentially encoded
as follows:(
s2n+2 −an+1 · s∗

2n+3
s2n+3 an+1 · s∗

2n+2

)
=

(
u2n+2 u2n+3

−an ·an+1 ·u∗
2n+3 an ·an+1 ·u∗

2n+2

)

·
(

s2n −an · s∗
2n+1

s2n+1 an · s∗
2n

)
(3)

where

u2n+2 = s∗
2n · s2n+2 + an · an+1 · s2n+1 · s∗

2n+3 (4)

and

u2n+3 = s2n+2 · s∗
2n+1 − an · an+1 · s2n · s∗

2n+3 . (5)

From (3), we also have that

s2n+2 = u2n+2 · s2n + u2n+3 · s2n+1 (6)

s2n+3 = an · an+1
(
u∗

2n+2 · s2n+1 − u∗
2n+3 · s2n

)
. (7)

We call transmission matrix a matrix whose entries,
denoted by the letter s, are transmitted from the two
transmit antennas, and encoding matrix, a matrix whose
entries are denoted by the letter u. The encoding matri-
ces are used to label the state transitions of the trellis
diagram. Define the encoding matrix as

MEn+1 =
(

u2n+2 −an · an+1 · u∗
2n+3

u2n+3 an · an+1 · u∗
2n+2

)
. (8)

Then, the encoding equation (3) can be written as

Mn+1 = MET
n+1 · Mn . (9)

It is easy to see that, if the entries of the transmission
matrices are signal points from an M-PSK constella-
tion, unfortunately, the entries of the encoding matrices
are not.

The general structure of our transmission system is
depicted in Fig. 1.

2.3 Signal constellations for trellis coding

In trellis-coded modulation, the signal constellation,
which is double-sized compared with the one used
by the uncoded system, is partitioned into two equal-
sized subsets called families and denoted as F0 and
F1 [21, 22]. In our paper, the family F0 comprises all
encoding matrices with anan+1 = 1, while the family F1

comprises all encoding matrices with anan+1 = −1. For
each matrix belonging to F0, there is a matrix in F1 hav-
ing the same first column, but a different second one.
The two matrices are selected by blocks of bits at the
output of a systematic feedback convolutional encoder
differing only in the least significant bit, i.e. c0n+1 = 0 for
F0 and c0n+1 = 1 for F1. The differential encoding ac-
cording to (4) and (5) depends on both (s2n, s2n+1) and
(s2n+2, s2n+3). To select the corresponding 4D symbol
(u2n+2, u2n+3), only 2b input bits are available, while
twice as much bits would have been necessary to select
an 8D symbol (s2n, s2n+1, s2n+2, s2n+3). The 2b input
bits can select one out of 22b vectors (u2n+2, u2n+3)

that transform a given 4D signal point (s2n, s2n+1) into
the next one (s2n+2, s2n+3). To establish a bijection, a
possibility is to fix a point (for instance, s2n = s2n+1 =
1/

√
2 as in [19]) and use it for all other 4D signal points

(s2n, s2n+1).
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Fig. 1 Transceiver structure
of super-orthogonal
space-time trellis encoded
M-DPSK for fading channels
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Consider first BPSK, which uses a 1D signal constel-
lation and is equivalent to binary amplitude shift keying
(BASK). In the (n + 1)th 2D symbol interval, two con-
secutive source bits, denoted as b12n+2 and b12n+3, are
presented at the input of a systematic convolutional en-
coder whose output comprises three bits: c0n+1, c1n+1 =
b12n+2 and c2n+1 = b12n+3. There must be a bijective
mapping of the set of dibits {c1n+1, c2n+1} onto the set
of encoding symbols {u2n+2, u2n+3}. Following [19], we
fix s2n = s2n+1 = 1/

√
2 in (3) and (4). For this particular

case, we have

u2n+2 = (
s2n+2 + an · an+1 · s∗

2n+3

)
/
√

2 (10)

u2n+3 = (
s2n+2 − an · an+1 · s∗

2n+3

)
/
√

2 . (11)

The signal points, computed with (4) and (5), are listed
in Table 1. Note that, in contradistinction to the 1D
signal constellation constituent of the 2D signal constel-
lation used for transmission, which has only two points
−1/

√
2 and +1/

√
2, that one used for trellis encoding

comprises three points: +1, −1 and 0.
Next, we consider QPSK. In the (n + 1)th 4D sym-

bol interval, four consecutive source bits, denoted as
b12n+2, b22n+2, b12n+3 and b22n+3, are fed to a sys-
tematic convolutional encoder whose output comprises
five bits: c0n+1, c1n+1 = b12n+2, c2n+1 = b22n+2, c3n+1 =
b12n+3 and c4n+1 = b22n+3. When fixing s2n = s2n+1 =
1/

√
2 as for BPSK, the result of the computation using

(8) and (9) is given in Table 2. Note that, with this
mapping, (6) and (7) will result into QPSK symbols

Table 1 Mapping of selection bits into 2D BPSK signal points

Subset c2n+1 c1n+1 u2n+2 u2n+3

SD0 0 0 1 0
1 −1 0

SD1 0 1 0 −1
1 0 1

only if the product s2n · s2n+1 is a real number. However,
when this product is an imaginary number, it is easy to
verify that some of the symbols computed with (6) and
(7) do not belong to QPSK.

Finally, we consider 8PSK. In the (n + 1)th 4D sym-
bol interval, six consecutive source bits, denoted as
b12n+2, b22n+2, b32n+2, b12n+3, b22n+3 and b32n+3, are
fed to a systematic convolutional encoder whose out-
put comprises seven bits: c0n+1, c1n+1 = b12n+2, c2n+1 =
b22n+2, c3n+1 = b32n+2, c4n+1 = b12n+3, c5n+1 = b22n+3

and c6n+1 = b32n+3. The mapping of the selection bits
onto the encoding symbols is given in Table 3. Note
that, for convenience, the shorthand notation a = an ·
an+1 was used.

We make here the same comment as in the case of
QPSK: when the product s2n · s2n+1 is complex-valued,
using (6) and (7) results into some symbols that do not
belong to 8PSK. Fortunately, this has no detrimental
effect on the receiver, since the carrier phase is not
recovered.

Table 2 Mapping of selection bits into 4D QPSK signal points

Subset c4n+1 c3n+1 c2n+1 c1n+1 u2n+2 u2n+3

SD0 0 0 0 0 1 0
0 1 0 j
1 0 0 − j
1 1 −1 0

SD1 0 0 0 1 (1 − j)/2 (1 + j)/2
0 1 −(1 − j)/2 (1 + j)/2
1 0 (1 − j)/2 −(1 + j)/2
1 1 −(1 − j)/2 −(1 + j)/2

SD2 0 0 1 0 (1 + j)/2 (1 − j)/2
0 1 (1 + j)/2 −(1 − j)/2
1 0 −(1 + j)/2 (1 − j)/2
1 1 −(1 + j)/2 −(1 − j)/2

SD3 0 0 1 1 0 1
0 1 j 0
1 0 − j 0
1 1 0 −1
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Table 3 Mapping of selection bits into 4D 8PSK signal points

Subset c6n+1 c5n+1 c4n+1 c3n+1 c2n+1 c1n+1 u2n+2 u2n+3

SD0 0 0 0 0 0 0 1 0
0 0 1

√
2/2 j

√
2/2

0 1 0 −√
2/2 j

√
2/2

0 1 1 j(1 − a)/2 j(1 + a)/2
1 0 0

√
2/2 − j

√
2/2

1 0 1 0 − j
1 1 0 –1 0
1 1 1 −√

2/2 − j
√

2/2
SD1 0 0 0 0 0 1 (2 + √

2 − j
√

2)/4 (2 − √
2 + j

√
2)/4

0 0 1 [√2 − j(2 − √
2)]/4 [√2 + j(2 + √

2)]/4
0 1 0 −[2 + √

2 − j
√

2]/4 [2 − √
2 + j

√
2]/4

0 1 1 −[√2 − j(2 − √
2)]/4 [√2 + j(2 + √

2)]/4
1 0 0 (2 + √

2 − j
√

2)/4 −(2 − √
2 + j

√
2)/4

1 0 1 [√2 − j(2 − √
2)]/4 −[√2 + j(2 + √

2)]/4
1 1 0 −[2 + √

2 − j
√

2]/4 −[2 − √
2 + j

√
2]/4

1 1 1 −[√2 − j(2 − √
2)]/4 −[√2 + j(2 + √

2)]/4
SD2 0 0 0 0 1 0 (2 − √

2 − j
√

2)/4 (2 + √
2 + j

√
2)/4

0 0 1 (
√

2 − 2 + j
√

2)/4 (2 + √
2 + j

√
2)/4

0 1 0 −[√2 − j(2 + √
2)]/4 −[√2 + j(2 − √

2)]/4
0 1 1 −[√2 − j(2 + √

2)]/4 [√2 + j(2 − √
2)]/4

1 0 0 [√2 − j(2 + √
2)]/4 [√2 + j(2 − √

2)]/4
1 0 1 [√2 − j(2 + √

2)]/4 −[√2 − j(2 − √
2)]/4

1 1 0 −[2 − √
2 − j

√
2]/4 −[2 + √

2 + j
√

2]/4
1 1 1 (2 − √

2 + j
√

2)/4 −(2 + √
2 − j

√
2)/4

SD3 0 0 0 0 1 1 (1 − j)/2 (1 + j)/2
0 0 1 0

√
2(1 + j)/2

0 1 0 −√
2(1 − j)/2 0

0 1 1 −(1 − j)/2 (1 + j)/2
1 0 0

√
2(1 − j)/2 0

1 0 1 (1 − j)/2 −(1 + j)/2
1 1 0 −(1 − j)/2 −(1 + j)/2
1 1 1 0 −√

2(1 + j)/2
SD4 0 0 0 1 0 0 (2 + √

2 + j
√

2)/4 (2 − √
2 − j

√
2)/4

0 0 1 (2 + √
2 + j

√
2)/4 (

√
2 − 2 + j

√
2)/4

0 1 0 −[√2 + j(2 − √
2)]/4 −[√2 − j(2 + √

2)]/4
0 1 1 [√2 + j(2 − √

2)]/4 [−√
2 + j(2 + √

2)]/4
1 0 0 [√2 + j(2 − √

2)]/4 [√2 − j(2 + √
2)]/4

1 0 1 −[√2 + j(2 − √
2)]/4 [√2 − j(2 + √

2)]/4
1 1 0 −(2 + √

2 + j
√

2)/4 −(2 − √
2 − j

√
2)/4

1 1 1 −(2 + √
2 + j

√
2)/4 (2 − √

2 − j
√

2)/4
SD5 0 0 0 1 0 1 (1 + j)/2 (1 − j)/2

0 0 1
√

2(1 + j)/2 0
0 1 0 0 −√

2(1 − j)/2
0 1 1 (1 + j)/2 −(1 − j)/2
1 0 0 0

√
2(1 − j)/2

1 0 1 −(1 + j)/2 (1 − j)/2
1 1 0 −(1 + j)/2 −(1 − j)/2
1 1 1 −√

2(1 + j)/2 0
SD6 0 0 0 1 1 0 0 1

0 0 1 j
√

2/2
√

2/2
0 1 0 j

√
2/2 −√

2/2
0 1 1 j 0
1 0 0 − j

√
2/2

√
2/2

1 0 1 – j 0
1 1 0 0 –1
1 1 1 −√

2/2 −√
2/2
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Table 3 (continued)

Subset c6n+1 c5n+1 c4n+1 c3n+1 c2n+1 c1n+1 u2n+2 u2n+3

SD7 0 0 0 1 1 1 [2 − √
2 + j

√
2]/4 [2 + √

2 − j
√

2]/4
0 0 1 [√2 + j(2 + √

2)]/4 [√2 − j(2 − √
2)]/4

0 1 0 (2 − √
2 + j

√
2)/4 −(2 + √

2 − j
√

2)/4
0 1 1 [√2 + j(2 + √

2)]/4 −[√2 − j(2 − √
2)]/4

1 0 0 −[2 − √
2 + j

√
2]/4 [2 + √

2 − j
√

2]/4
1 0 1 −[√2 + j(2 + √

2)]/4 [√2 − j(2 − √
2)]/4

1 1 0 −(2 − √
2 + j

√
2)/4 −(2 + √

2 − j
√

2)/4
1 1 1 −[√2 + j(2 + √

2)]/4 −[√2 − j(2 − √
2)]/4

3 Super-orthogonal space-time trellis codes
for coherent detection

In this section, we present SOSTTCs for coherent de-
tection that are used as references for the new codes,
designed for noncoherent communications systems. We
do this in a somewhat expedite manner, since such
codes are rather well known [10, 15].

It is useful to see a signal point s of coordinates (x, y)
as a complex number x + jy. To measure the difference
between two transmission matrices M(1)

n and M(2)
n as

defined by (2), we use the coding gain distance (CGD),
defined in [10] as follows. Define Bn = M(1)

n − M(2)
n and

form the matrix An = Bn · BH
n , where BH

n is the Her-
mitian (complex conjugate and transpose) of Bn. Then,
d2 = det(An). Note that this is actually the squared
Euclidian distance between two 4D signal points
(x(1)

2n , y(1)
2n , x(1)

2n+1, y(1)
2n+1) and (x(2)

2n , y(2)
2n , x(2)

2n+1, y(2)
2n+1):

d2 =
1∑

i=0

[(
x(1)

2n+i − x(2)

2n+i

)2 +
(

y(1)

2n+i − y(2)

2n+i

)2
]

. (12)

Obviously, the larger the difference of the respective
coordinates, the larger is the CGD. Following [10], we
define the parameter ω = 2π/M. Assuming a circle of
radius 1/

√
2 centred in the origin, we then express the

coordinates x2n+i and y2n+i, i = 0, 1, as

x2n+i = 1√
2

cos k2n+i ω (13)

and

y2n+i = 1√
2

sin k2n+i ω . (14)

Inserting (13) and (14) into (12), we easily obtain:

d2 =
1∑

i=0

[
1 − cos

(
k(1)

2n+i − k(2)

2n+i

)
ω

]2
. (15)

3.1 SOSTTCs for BPSK

The BPSK signal constellation is illustrated in Fig. 2.
The two 1D signal points are labelled as 0 and 1. In this
very particular case, the natural and the Gray mapping
coincide, and BPSK is equivalent to BASK: a bit 0
is transmitted as the amplitude 1/

√
2, while a bit 1 is

transmitted as the amplitude −1/
√

2. Grouping the 1D
points into 2D points, we obtain four 2D points: (0, 0),
(0, 1), (1, 0) and (1, 1). We partition this set into two
subsets S0 and S1 such that the intrasubset Hamming
distance is maximized to 2:

S0 = {(0, 0) , (1, 1)} (16)

S1 = {(0, 1) , (1, 0)} . (17)

In two consecutive signalling intervals 2n and 2n + 1,
two bits are gathered at the input of the transmitter,
denoted by b12n and b12n+1. A 2D signal point is the
concatenation of two 1D points that are transmitted
by BPSK in two consecutive signalling periods. The bit
b12n is encoded by a rate-1/2 systematic convolutional
encoder, while the bit b12n+1 remains uncoded and, for
convenience, is denoted as c2n at the input of the BPSK
mapper. The rate-1/2 convolutional encoder outputs
two bits, denoted by c0n and c1n such that c1n = b12n.

Consider the orthogonal matrices defined by (2).
They form two families F0 (with an = +1) and F1 (with
an = −1), selected by c0n = 0 and c0n = 1, respectively.
Moreover, each family is further partitioned in subsets
of matrices and denoted as SMp, such that the index of
a matrix subset SMp is given by

p = 2c1n + c0n . (18)

Re2/1- 2/1 0

01

Fig. 2 BPSK signal constellation
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Fig. 3 Super-orthogonal
space-time trellis encoder for
BPSK signal constellation
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The first antenna transmits consecutively the symbols
s2n and s2n+1 from the BPSK signal constellation. How-
ever, for c0n = 0 and c0n = 1, the second antenna will
transmit data symbols according to the matrix pattern
with an = +1 and an = −1, respectively.

To select a point from a 1D BPSK constellation,
constituent of a 2D constellation, a bit is required,
denoted by z1i, where i ∈ {2n, 2n + 1}. The convolu-
tionally encoded bit c1n (actually, the input bit b12n)
selects a 2D subset that is the set of all 2D points for
which the following relation holds true:

z12n+1 = c1n ⊕ z12n . (19)

Then, the index m of the subset Sm, m = 0, 1, is given
by m = z12n ⊕ z12n+1.

The uncoded input bit b12n+1 determines the 2D
signal point within the already selected 2D subset to be
transmitted by the first antenna in two consecutive sig-
nalling intervals 2n and 2n + 1 such that z12n = b12n+1.

In the context of space-time trellis coding, the TCM
rules given by Ungerboeck [21–23] sound as follows:

1. The state transitions originating in even-numbered
states are assigned transmission matrices belonging
to the family F0, and the state transitions originat-
ing in odd-numbered states are assigned transmis-
sion matrices belonging to the family F1.

2. The state transitions reaching the same next state
are assigned transmission matrices from the same
family, be it F0 or F1.

Define two binary state variables σ1n and σ2n such
that the decimal value of the current state is written
as σn = 2σ2n + σ1n. Using Ungerboeck’s rules to as-
sign orthogonal matrices to the state transitions of a
four-state topological trellis [21], we derive the block
diagram of the SOSTTC encoder given in Fig. 3.
SOSTTCs with a larger number of states can be built
in a similar way.

3.2 SOSTTCs for QPSK

The QPSK signal constellation, with natural and, in
parentheses, Gray mapping, is illustrated in Fig. 4. For
coherent demodulation, the natural mapping will do.

The four 2D signal points are labelled as 0, 1, 2 and 3.
By grouping them into 4D points, we obtain 16 points
from (0, 0) to (3, 3). With those points, we then form
the following 4D subsets:

S0 = {(0, 0), (1, 1), (2, 2), (3, 3)} (20)

S1 = {(0, 1), (1, 2), (2, 3), (3, 0)} (21)

S2 = {(0, 2), (1, 3), (2, 0), (3, 1)} (22)

S3 = {(0, 3), (1, 0), (2, 1), (3, 2)} . (23)

To select one out of four subsets Sm, m = 0, . . . , 3, two
bits are required, say, c1n and c2n, such that the index
m can be written as m = 2c2n + c1n.

In two consecutive signalling intervals 2n and 2n + 1,
four bits are gathered at the input of the transmitter,
denoted by b12n, b22n, b12n+1, b22n+1. The first two
bits, b12n and b22n, are encoded by a rate-2/3 systematic
convolutional encoder, while the next two bits, b12n+1

and b22n+1, remain uncoded. The rate-2/3 convolu-
tional encoder outputs three bits, denoted by c0n, c1n

and c2n, such that c1n = b12n and c2n = b22n.

Re
2/1- 2/1 0

00(00)10(11)

- 2/j

01(01)

11(10)

2/j

Im 

Fig. 4 QPSK signal constellation with natural mapping and, in
parentheses, Gray mapping
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Fig. 5 Super-orthogonal
space-time trellis encoder for
QPSK signal constellation
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For QPSK, the index of a matrix subset SMp is gi-
ven by

p = 4c2n + 2c1n + c0n . (24)

To select a point from a 2D QPSK constellation, con-
stituent of a 4D constellation, two bits are required,
denoted by z1i, z2i, where i ∈ {2n, 2n + 1}. The two
bits (z2i z1i) select a 2D signal point as shown in Fig. 4.

The two convolutionally encoded bits c1n and c2n

(actually, the input bits b12n and b22n) select a 4D
subset that is the set of all 4D signal points for which
(19) and (25) below hold true:

z22n+1 = c2n ⊕ z22n ⊕ (c1n · z12n) . (25)

The two uncoded input bits, b12n+1 and b22n+1, deter-
mine the 4D signal point within the already selected
4D subset to be transmitted by the first antenna in two
consecutive signalling intervals 2n and 2n + 1 such that
z12n = b12n+1 and z22n = b22n+1.

Define three binary state variables σ1n, σ2n, and
σ3n such that the decimal value of the current state
is written as σn = 4σ3n + 2σ2n + σ1n. Using the same
TCM rules as before, we derive the logic diagram given
in Fig. 5.

3.3 SOSTTCs for 8PSK

The 8PSK signal constellation, with natural and, in
parentheses, Gray mapping, is illustrated in Fig. 6. The
eight 2D points are labelled from 0 to 7. Grouping them
into 4D points, we get 64 4D points from (0, 0) to (7, 7).
With those points, we form the following 4D subsets:

S0 ={(0,0), (1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (7,7)}
(26)

S1 ={(0,1), (1,2), (2,3), (3,4), (4,5), (5,6), (6,7), (7,0)}
(27)

S2 ={(0,2), (1,3), (2,4), (3,5), (4,6), (5,7), (6,0), (7,1)}
(28)

S3 ={(0,3), (1,4), (2,5), (3,6), (4,7), (5,0), (6,1), (7,2)}
(29)

S4 ={(0,4), (1,5), (2,6), (3,7), (4,0), (5,1), (6,2), (7,3)}
(30)

Fig. 6 8PSK signal
constellation with natural
mapping and, in parenthesis,
Gray mapping
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S5 ={(0,5), (1,6), (2,7), (3,0), (4,1), (5,2), (6,3), (7,4)}
(31)

S6 ={(0,6), (1,7), (2,0), (3,1), (4,2), (5,3), (6,4), (7,5)}
(32)

S7 ={(0,7), (1,0), (2,1), (3,2), (4,3), (5,4), (6,5), (7,6)} .

(33)

To select one out of eight subsets Sm, m = 0, · · · , 7,
three bits are required, say, c1n, c2n and c3n such that
the index m can be written as m = 4c3n + 2c2n + c1n.

In two consecutive signalling intervals 2n and 2n + 1,
six bits are gathered at the input of the transmitter,
denoted by b12n, b22n, b32n, b12n+1, b22n+1, b32n+1.
The first three bits are encoded by a rate-3/4 system-
atic convolutional encoder, while the other three bits
remain uncoded. The rate-3/4 convolutional encoder
outputs four bits, denoted by c0n, c1n, c2n and c3n,
such that c1n = b12n, c2n = b22n and c3n = b32n.

For 8PSK, the index p of a matrix subset SMp is
given by

p = 8c3n + 4c2n + 2c1n + c0n . (34)

To select a point from a 2D 8PSK constellation, con-
stituent of a 4D constellation, three bits are required,
denoted by z1i, z2i, and z3i, where i ∈ {2n, 2n + 1}.
These three bits select a 2D signal point according to
the natural mapping as shown in Fig. 6.

The three convolutionally encoded bits c1n, c2n and
c3n (actually, the input bits b12n, b22n and b32n) select a
4D subset that is the set of all 4D signal points for which
(19), (25) and (35) below hold true:

z32n+1 = c3n ⊕ z32n ⊕ [c2n · z22n + (c2n ⊕ z22n)

· (c1n · z12n)] . (35)

The three uncoded input bits b12n+1, b22n+1, and
b32n+1, determine the 4D signal point within the al-
ready selected 4D subset to be transmitted by the
first antenna in two consecutive signalling intervals 2n
and 2n + 1 such that z12n = b12n+1, z22n = b22n+1 and
z32n = b32n+1.

Define four binary state variables σ1n, σ2n, σ3n

and σ4n such that the decimal value of the current
state is written as σn = 8σ4n + 4σ3n + 2σn + σ1n. The
resulting logic diagram is given in Fig. 7. The easy
way of selection, as reflected in (19), (25) and (35),
is explained by the clever partition of the 4D signal
constellation into M = 2b subsets: the generic sub-
set Sm contains the points {(0, m), (1, m + 1), . . . , (M −

1, M + m − 1 mod M)}. We claim that any other parti-
tion would require a rather complex look-up table, with
no special advantage. This is also well explained in [15].

4 Super-orthogonal space-time trellis codes
for noncoherent detection

In this section, we present the main contribution of our
paper, i.e. SOSTTCs for communication systems having
no knowledge of CSI. To this end, the differential
encoding scheme developed in Section 2 is added to
the SOSTTCs designed for coherent demodulation as
explained in the following. To reflect the differential
encoding, we now consider n + 1 as the time index
of the 4D (2D in case of BPSK) current symbol and,
accordingly, 2n + 2 and 2n + 3 as the time indices of
the two consecutive 2D (1D in case of BPSK) signal
symbols. The signal constellation is the collection of all
two-tuples (u2n+2, u2n+3) as given in Tables 1–3. Using
the TCM rules, those symbols are assigned to state
transitions of a topological trellis. Having in view that
the mappings given in the said tables are bijective, this
is equivalent to assigning vectors of selection bits to the
state transitions.

For BPSK, the mapping of selection bits into 2D
signal points (u2n+2, u2n+3) is shown in Table 1, where
we also group the four 2D signal points into two subsets
SD0 and SD1. Two bits are required to select a 2D
point, c1n+1 to select the subset and c2n+1 to select the
point within the selected subset. The input bit b12n+2 is
encoded by a rate-1/2 systematic convolutional encoder
just as in the coherent case and is denoted by c1n+1 at
the output.

The mapping of selection bits into 4D QPSK sig-
nal points (u2n+2, u2n+3) is given in Table 2, where
the 16 4D signal points are grouped into four sub-
sets SD0, SD1, SD2 and SD3. Table 3 shows how to
map selection bits into 4D 8PSK signal points and
subsets. The block diagrams of the SOSTTC encoder
for BPSK signal constellation, QPSK constellation and
8PSK signal constellation look similar to those given in
Figs. 3, 5, and 7, respectively, but the mapping includes
the differential encoding as well.

The main contradistinction to the coherent case is
that the output of the convolutional encoder does not
select the 4D signal point to be transmitted by the first
antenna in two consecutive signalling intervals as well
as the pattern of the Alamouti transmission matrix,
but the complex-valued two-tuple (u2n+2, u2n+3) as well
as the pattern of the differential encoding matrix, as
given in (3). The 4D (2D in case of BPSK) signal
constellations used for differential encoding are 22b -
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Fig. 7 Super-orthogonal
space-time trellis encoder for
8-PSK signal constellation
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point sets, where a 4D (2D in case of BPSK) signal
point is a two-tuple (u2n+2, u2n+3) of complex-valued
symbols. It seems not very useful to consider such a 4D
signal constellation as the Cartesian product of a 2D
signal constellation by itself. Therefore, the selection
procedure is somewhat different from that used for co-
herent detection. Another important contradistinction
to the coherent case is that the convolutionally encoded
bit c0n+1 selects the encoding matrix family as follows:
when c0n+1 = 0, then an · an+1 = +1, and when c0n+1 =
1, then an · an+1 = −1. Note that, for each originating
state at time n + 1, the value of an is known because of
the second TCM rule, stating that all state transitions
arriving in the same next state are assigned matrices
from the same family, and thus, having the same an.

5 Receiver issues

5.1 Channel model for simulations

For the convenience of the reader, we insert here
a short description of the MIMO channel simulator
developed from a two-ring reference channel model
that was employed to evaluate the performance of
the SOSTTCs. In this model, it is assumed that local
scatterers are located on two individual rings around
the transmitter and the receiver. Homogeneous plane
waves emitted from the transmitter are bounced only
by the scatterers around the receiver. Assuming that
the transmitter and the receiver are equipped with
MT transmit antennas and MR receive antennas, the
complex channel gains of the channel simulator can be
expressed as [12]

hkl(t) = 1√
2Ms

Ms∑
m=1

al,m b k,m e j(2π f1,mt+θ1,m)

+ 1√
2Ns

Ns∑
n=1

cl,n dk,n e j(2π f2,nt+θ2,n) (36)

for l = 1, 2, . . . , MT and k = 1, 2, . . . , MR. In (36), Ms

and Ns denote the number of local scatterers placed
around the transmitter and the receiver, respectively.
The quantities f1,m and f2,n represent the Doppler
frequencies, as defined in [12]. The phases θ1,m and θ2,n

are considered as outcomes from a random generator
uniformly distributed over (0, 2π ]. Furthermore, we
have

al,m = e jπ(MT−2l+1)
δT
λ

cos
(
φ

(m)

T1
−βT

)
(37a)

b k,m = e jπ(MR−2k+1)
δR
λ

[
φmax

R sin φ
(m)

T1
sin βR−cos βR

]
(37b)

cl,m = e jπ(MT−2l+1)
δT
λ

[
φmax

T sin φ
(n)

R2
sin βT+cos βT

]
(37c)

dk,m = e jπ(MR−2k+1)
δR
λ

cos
(
φ

(n)

R2
−βR

)
. (37d)

In the equations presented above, the antenna spacings
at the transmitter and the receiver are denoted by δT

and δR, respectively, and the orientations of the an-
tenna arrays are described by βT and βR. The carrier’s
wavelength is denoted by λ. The angle φ

(m)

T1
represents

the angle of departure (AOD), while the angle of ar-
rival is described by φ

(n)

R2
. The angle φmax

R describes one
half of the maximum angle of arrival (AOA) observed
at the receiver, while φmax

T is one half of the maximum
AOD observed at the transmitter.

In this paper, we employ the von Mises distribution
[1] to characterize the distribution of the AODs and the
AOAs. For the channel simulator, both the AODs and
the AOAs are determined by the modified method of
equal area (MMEA) [6].

5.2 Decoding of SOSTTCs for known CSI
at the receiver

Consider first the case of a single receive antenna. De-
note the channel gains from the two transmit antennas
to the receive antenna as h1 and h2. Denote by r2n
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and r2n+1 the complex-valued signals received in two
consecutive symbol periods. For an = +1, these are:

r2n = h1 · s2n − h2 · s∗
2n+1 + η2n (38)

r2n+1 = h1 · s2n+1 + h2 · s∗
2n + η2n+1 (39)

where η2n and η2n+1 are noise components. Using (38)
and (39), form the following decision variables:

s̃(+1)
2n = h∗

1 · r2n + h2 · r∗
2n+1 =

(
|h1|2 + |h2|2

)
s2n

+ h∗
1 · η2n + h2 · η∗

2n+1 (40)

s̃(+1)
2n+1 = h∗

1 · r2n+1 − h2 · r∗
2n =

(
|h1|2 + |h2|2

)
s2n+1

+ h∗
1 · η2n+1 − h2 · η∗

2n . (41)

For an = −1, the received signals are:

r2n = h1 · s2n + h2 · s∗
2n+1 + η2n (42)

r2n+1 = h1 · s2n+1 − h2 · s∗
2n + η2n+1 . (43)

Form the following two decision variables:

s̃(−1)
2n = h∗

1 · r2n − h2 · r∗
2n+1 =

(
|h1|2 + |h2|2

)
s2n

+ h∗
1 · η2n − h2 · η∗

2n+1 (44)

s̃(−1)
2n+1 = h∗

1 · r2n+1 + h2 · r∗
2n =

(
|h1|2 + |h2|2

)
s2n+1

+ h∗
1 · η2n+1 + h2 · η∗

2n . (45)

Suppose that a matrix with an = +1 was transmitted,
but instead of (40) and (41), (44) and (45) were used.
The result would be:

s̃(+1/−1)

2n =
(
|h1|2 − |h2|2

)
s2n − 2h∗

1 · h2 · s∗
2n+1

+ h∗
1 · η2n − h2 · η∗

2n+1 (46)

s̃(+1/−1)

2n+1 =
(
|h1|2 − |h2|2

)
s2n+1 + 2h∗

1 · h2 · s∗
2n

+ h∗
1 · η2n+1 + h2 · η∗

2n . (47)

On the other hand, if a matrix with an = −1 was trans-
mitted, but instead of (44) and (45), (40) and (41) were
used, the result would be:

s̃(−1/+1)

2n =
(
|h1|2 − |h2|2

)
s2n + 2h∗

1 · h2 · s∗
2n+1 + h∗

1 · η2n

+ h2 · η∗
2n+1 (48)

s̃(−1/+1)

2n+1 =
(
|h1|2 − |h2|2

)
s2n+1 − 2h∗

1 · h2 · s∗
2n

+ h∗
1 · η2n+1 − h2 · η∗

2n . (49)

It is thus clear that the simple maximum likelihood
decision rule proposed by Alamouti in [3] is possible
only if there is certainty on the family to which the
transmitted matrix belongs.

The sequence decoding of SOSTTCs is performed
using the Viterbi algorithm. The observations are the
complex-valued output signals of a PSK demodulator,
which will be denoted as r2n = R2n · e jϕ2n and r2n+1 =
R2n+1 · e jϕ2n+1 . Let us express the path gains from the
first and the second transmit antenna to the receiver
as h1 = H1 · e jγ1 and h2 = H2 · e jγ2 . Then, for maximum
likelihood sequence decoding with perfect CSI at the
receiver, a suitable branch metric is given as

BMn = ∣∣r2n − h1 · s2n + an · h2 · s∗
2n+1

∣∣2

+ ∣∣r2n+1 − h1 · s2n+1 − an · h2 · s∗
2n

∣∣2
. (50)

After some simple algebra and trigonometry, we
obtain:

BMn = R2
2n + R2

2n+1 + H2
1 + H2

2

− √
2H1

[
R2n · cos(ϕ2n − γ1 − k2n · ω)

+ R2n+1 ·cos(ϕ2n+1−γ1−k2n+1 ·ω)
]

+ √
2an ·H2

[
R2n · cos(ϕ2n − γ2 + k2n+1 · ω)

− R2n+1 ·cos(ϕ2n+1−γ2−k2n ·ω)
]

.

(51)

The branch metric is used to reduce the number of
transitions in the trellis diagram reaching the same state
to a single one, called survivor. The branch metric with
an = +1 and an = −1 is used for those transitions origi-
nating in even and odd numbered states, respectively.

When it is possible to equip the receiver with two
antennas, the branch metric is simply the sum of two
branch metrics as derived for a single receive antenna:

BMn = BM(1)
n + BM(2)

n . (52)

The path gains are denoted by h(1,q) and h(2,q), q =
1, 2, for the first and the second receive antenna,
respectively.

5.3 Decoding of SOSTTCs for unknown CSI
at the receiver

We have two alternative strategies.

5.3.1 First decoding strategy

The first decoding strategy is essentially the method
applied in [19]. Consider first a single receive antenna.
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For differential decoding, the receiver is based on the
following measured quantities:

r2n = h1 · s2n − h2 · an · s∗
2n+1 + η2n (53)

r2n+1 = h1 · s2n+1 + h2 · an · s∗
2n + η2n+1 (54)

r2n+2 = h1 · s2n+2 − h2 · an+1 · s∗
2n+3 + η2n+2 (55)

r2n+3 = h1 · s2n+3 + h2 · an+1 · s∗
2n+2 + η2n+3 (56)

where η2n, η2n+1, η2n+2, and η2n+3 are noise compo-
nents. The symbols r2n+2 in (55) and r2n+3 in (56) denote
the complex-valued signals received in the two consec-
utive symbol periods 2n + 2 and 2n + 3. We need some
derived quantities upon which to base our estimation
on u2n+2 and u2n+3 as given in (4) and (5), respectively.
Define

R1 = r∗
2n · r2n+2 + an · an+1 · r2n+1 · r∗

2n+3 . (57)

Introducing (52–56) in this expression, we obtain:

R1 =
(
|h1|2 + |h2|2

)
u2n+2 + noise terms . (58)

Define also

R2 = r∗
2n+1 · r2n+2 − an · an+1 · r2n · r∗

2n+3 . (59)

Proceeding as before, we get:

R2 =
(
|h1|2 + |h2|2

)
u2n+3 + noise terms . (60)

It is assumed that an is known. For both an+1 = +1
and an+1 = −1, the receiver computes the closest vector
(u2n+2 u2n+3) to (R1 R2). If hard decision is used, by
inverse mapping, the bits used further in the Viterbi
algorithm are obtained. However, if soft decision is
applied, the quantized version of (R1 R2) is used in the
Viterbi algorithm.

When the receiver is equipped with two antennas,
using the same method, we compute R(1)

1 and R(1)
2

for the first antenna and R(2)
1 and R(2)

2 for the sec-
ond antenna. Then, the closest vector (u2n+2 u2n+3) to
(R(1)

1 + R(2)
1 R(1)

2 + R(2)
2 ) is computed. The rest of the

procedure is the same as explained for a single receive
antenna.

5.3.2 Second decoding strategy

The transmission matrix at the discrete time n + 1,
according to (2), is:

Mn+1 =
(

s2n+2 −an+1 · s∗
sn+3

s2n+3 an+1 · s∗
sn+2

)
. (61)

We can write the branch metric as

BMn+1 = ∣∣r2n+2 − h1 · s2n+2 + h2 · s∗
2n+3

∣∣2

+ ∣∣r2n+3 − h1 · s2n+3 − h2 · s∗
2n+2

∣∣2
. (62)

Fig. 8 Performance of
differential SOSTTC and
coherent SOSTTC BPSK for
one (MR = 1) receive
antenna and two (MR = 2)
antennas
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Fig. 9 Performance of
differential SOSTTC and
coherent SOSTTC QPSK for
one (MR = 1) receive
antenna and two (MR = 2)
antennas

Differential, MR = 1, old decoding strategy

Differential, MR = 1, new decoding strategy

Coherent SOSTTC, MR = 1

Differential, MR = 2, old decoding strategy

Differential, MR = 2, new decoding strategy

Coherent SOSTTC, MR = 2
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From (62), we obtain:

BMn+1 =|r2n+2|2 + |r2n+3|2 +
(
|h1|2 + |h2|2

)

×
(∣∣s2

2n+2

∣∣2 + ∣∣s2
2n+3

∣∣2
)

+ 2Re
{
r2n+2

(−h∗
1 · s∗

2n+2 + h∗
2 · an+1 · s2n+3

)
+ r2n+3

(−h∗
1 ·s∗

2n+3−h∗
2 · an+1 ·s2n+2

)}
.

(63)

The first terms are positive and common to all state
transitions of a trellis section. Only the last term de-
pends on the signal being actually transmitted. Define
thus the reduced metric

RMn+1 = 2Re
{
r2n+2

(−h∗
1 · s∗

2n+2 + h∗
2 · an+1 · s2n+3

)
+ r2n+3

(−h∗
1 ·s∗

2n+3 − h∗
2 ·an+1 ·s2n+2

)}
. (64)

The branch metric BMn+1 is minimized by the most
negative value of the reduced metric RMn+1. Using the

Fig. 10 Performance of
differential SOSTTC and
coherent SOSTTC 8PSK for
one (MR = 1) receive
antenna and two (MR = 2)
antennas
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differential encoding, we have:

RMn+1 =2Re
{
u2n+2

[
r∗

2n+2

(−h1 · s2n + h2 · an · s∗
2n+1

)]
+ r2n+3

(−h∗
1 ·an ·s∗

2n+1−h∗
2 ·s2n

)
an+1

]
+ u2n+3

[
r∗

2n+2

(−h1 ·s2n+1 − h2 ·an ·s∗
2n

)
+ r2n+3

(
h∗

1 ·an ·s∗
2n − h∗

2 ·s2n+1
)

× an+1
]}

. (65)

By neglecting the noise term, we can write:

r2n = h1 · s2n − h2 · an · s∗
2n+1 (66)

r2n+1 = h1 · s2n+1 + h2 · an · s∗
2n . (67)

Finally, we obtain:

RMn+1 =−2Re
{(

r2n ·r∗
2n+2+an ·an+1 ·r∗

2n+1 ·r2n+3
)

u2n+2

+(
r2n+1 ·r∗

2n+2−an ·an+1 ·r∗
2n ·r2n+3

)
u2n+3

}
.

(68)

For each state transition, the receiver knows all the
quantities from this expression. The survivor is selected
as that transition entering a given next state that makes
RMn+1 to be the most negative one. The knowledge of
h1 and h2 is obviously not required.

6 Simulation results

In this section, we first compare the performance of
the differential SOSTTCs decoded by the two algo-
rithms described in Section 5. All the three signal
constellations, i.e. BPSK, QPSK and 8PSK, have been
considered. For comparison, we also present simula-
tion results for SOSTTCs using the coherent encoding
scheme. Moreover, we study the effect of the antenna
spacing and the angular spread of scatterers on the
BER performance of the differential SOSTTCs.

In all simulations, the AODs and the AOAs were de-
termined by using the MMEA with Ms = 40 and Ns =
50, βT = βR = π/2 and φmax

T = φmax
R = 2◦. The transmit-

ter and the receiver moved in the direction determined
by the angles of motion αT = 60◦ and αR = 60◦. The
maximum Doppler frequencies at both sides were equal

Table 4 Comparison of the required simulation time for the
BPSK constellation

Strategy Number of symbols L

104 105 106 107

Traditional decoding strategy (s) 0.80 7.92 78.84 792.98
New decoding strategy (s) 0.61 5.54 55.52 554.13

Table 5 Comparison of the required simulation time for the
QPSK constellation

Strategy Number of symbols L

104 105 106 107

Traditional decoding strategy (s) 1.75 16.62 165.66 1,651.60
New decoding strategy (s) 1.30 11.24 112.50 1,125.41

to 91 Hz. The chosen value 91 Hz is for the case when
the carrier frequency is 900 MHz and the speed of the
mobile unit is 110 km/h. If not mentioned otherwise,
we assume that the scatterers were located uniformly
on the two rings, i.e. the parameter κ controlling the
angular spread in the von Mises distribution equals
zero.

The performance comparison between the differen-
tial SOSTTCs using the proposed decoding algorithm
and the conventional decoding algorithm is depicted
in Fig. 8 for BPSK. The comparison between the two
aforementioned decoding algorithms is presented in
Fig. 9 for QPSK and in Fig. 10 for 8PSK. In these
three figures, we also present the simulation results
for the cases in which the receiver is equipped with
one antenna and two antennas. It is seen from Figs. 8–
10 that the proposed algorithm has the same decod-
ing performance as the conventional algorithm. For
the sake of comparison, Figs. 8–10 also present the
BER performance of the coherent SOSTTC. It can be
concluded from the three figures that a loss of 3 dB
occurs when differential SOSTTCs are used instead of
coherent SOSTTCs, what fully agrees with [19].

In addition, we compare the simulation time of the
differential SOSTTCs using both decoding algorithms
for the case MT = 2 and MR = 1. The Tables 4, 5, and 6
show the simulation time required for the differential
SOSTTC using the BPSK, QPSK and 8PSK constella-
tion, respectively. The quantity L in these three tables
denotes the number of symbols used in the simula-
tion runs. According to Tables 4–6, we find that, for
the differential BPSK, QPSK and 8PSK scheme, the
simulation time using the new decoding algorithm is
approximately 70%, 68% and 58% of that using the
traditional one, from which we may conclude that the
proposed decoding algorithm has a lower complexity.
Moreover, the new decoding algorithm works more

Table 6 Comparison of the required simulation time for the
8PSK constellation

Strategy Number of symbols L

104 105 106 107

Traditional decoding strategy (s) 4.63 45.87 459.68 4,546.00
New decoding strategy (s) 2.71 26.56 260.38 2,643.62
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Fig. 11 The effect of the
antenna spacings on the BER
performance of differential
BPSK SOSTTC under
isotropic scattering conditions
(κ = 0, MT = 2, MR = 2)
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efficiently for differential SOSTTCs having a larger size
of signal constellation.

In the following, we study the effect of the antenna
spacing and the angular spread of the incoming waves
on the performance of the differential SOSTTC with
BPSK. Here, we only focus on the differential SOSTTC

using the new decoding algorithm. Moreover, we as-
sume that the transmitter and the receiver are equipped
with two antennas.

Figure 11 illustrates the impact of the antenna spacing
on the BER performance. As expected, the BER per-
formance improves with increasing antenna spacings,

Fig. 12 The effect of the
angular spread (≈ 2/

√
κ) on

the BER performance of
differential BPSK SOSTTC
under isotropic (κ = 0) and
nonisotropic (κ �= 0)
scattering conditions
(δT = 10λ, δR = 3λ, MT = 2,
MR = 2)
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while the performance deteriorates if the antennas
become close to each other. The reason for this behavior
is that the spatial correlation between the channel gains
decreases as the antenna spacing becomes larger. It
seems that the transmitter and the receiver have almost
equivalent influence on the BER performance. This
can be explained on account of the symmetry of the
geometrical two-ring scattering model and the equal
values set for the main parameters of the transmitter
and the receiver.

Figure 12 shows the impact of the angular spread of
the incoming waves on the BER performance. The con-
sidered propagation scenarios include both isotropic
(κ = 0) and nonisotropic (κ �= 0) scattering. In sim-
ulations, we assume that the scatterers are clustered
around the mean AOA μ = π and the antenna spacings
are fixed to δT = 10λ and δR = 3λ. It is shown that
increasing the value of κ leads to performance degra-
dations. However, when the scatterers are highly cen-
tralized, e.g. when κ = 20, no significant performance
difference can be observed if we further increase the
value of κ .

7 Conclusions

In this paper, a differential encoding scheme has been
applied to design new and better SOSTTCs for nonco-
herent mobile communication systems for which CSI is
not available at both the transmitter and the receiver.
A two-ring MIMO channel simulator has been used to
study the performance of the differential SOSTTCs for
BPSK, QPSK and 8PSK. Moreover, we have proposed
a new decoding algorithm. It has been shown by simula-
tions that the proposed decoding algorithm can provide
the same performance compared with the traditional
strategy, while it reduces the decoding complexity by
approximately 30%. The proposed decoding algorithm
works more efficiently for a larger size of signal con-
stellation. For example, for differential 8PSK scheme,
the new algorithm can save around 42% decoding time
compared with the traditional algorithm. Our simula-
tions have confirmed the engineering intuition that the
system performance depends greatly on the antenna
spacing as well as on the angular spread of the incoming
waves. Moreover, we have compared the BER perfor-
mance of the differential SOSTTCs with that of the
coherent SOSTTCs. As expected, the coherent scheme
outperforms the differential one by a coding gain of
approximately 3 dB.
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