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Abstract

We consider the problem of polling web pages as a strategy for monitoring the world wide web. The

problem consists of repeatedly polling a selection of web pages so that changes that occur over time are

detected. In particular, we consider the case where we are constrained to poll a maximum number of web

pages per unit of time, and this constraint is typically dictated by the governing communication bandwidth,

and by the speed limitations associated with the processing. Since only a fraction of the web pages can be

polled within a given unit of time, the issue at stake is one of determining which web pages are to be

polled, and we attempt to do it in a manner that maximizes the number of changes detected. We solve

the problem by first modelling it as a Stochastic Non-linear Fractional Knapsack Problem. We then present an

on-line Learning Automata (LA) system, namely, the Hierarchy of Twofold Resource Allocation Automata (H-

TRAA), whose primitive component is a Twofold Resource Allocation Automaton (TRAA). Both the TRAA and

the H-TRAA have been proven to be asymptotically optimal. Finally, we demonstrate empirically that the

H-TRAA provides orders of magnitude faster convergence compared to the Learning Automata Knapsack

Game (LAKG) which represents the state-of-the-art for this problem. Further, in contrast to the LAKG,

the H-TRAA scales sub-linearly. Based on these results, we believe that the H-TRAA has also tremendous

potential to handle demanding real-world applications, particularly those which deal with the world wide

web.
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Figure 1: Web page changes occurring over time. An ’x’ on the time-lines denotes that the respective web
page has changed. Observe that the occurrence of this event is not observable to the outside world unless
the web page is polled. Observe too that the rates at which the various web pages change are not the same,
implying that the corresponding polling frequencies should also be page-dependent.

1 Introduction

The world wide web is an extremely vast resource-thirsty field, which probably consumes a major portion

of the computing resources available today. Searching, updating and examining web-pages is, undoubtedly,

one of the primary tasks done by both individuals and companies today. This, in turn, leads to numerous

extremely interesting real-life resource allocation and scheduling problems, and in this paper, we study one

such problem, the so-called “Web polling” problem.

Web page monitoring consists of repeatedly polling a selection of web pages so that the user can detect

changes that occur over time. Clearly, as this task can be prohibitively expensive, in practical applications,

the system imposes a constraint on the maximum number of web pages that can be polled per time unit. This

bound is dictated by the governing communication bandwidth, and by the speed limitations associated with

the processing. Since only a fraction of the web pages can be polled within a given unit of time, the problem

which the system’s analyst encounters is one of determining which web pages are to be polled. In such cases,

a reasonable choice of action is to choose web pages in a manner that maximizes the number of changes

detected, and the optimal allocation of the resources involves trial-and-failure. As illustrated in Figure 1,

web pages may change with varying frequencies (that are unknown to the decision maker), and changes

appear more-or-less randomly. Furthermore, as argued elsewhere, [6–8], the probability that an individual

web page poll uncovers a change on its own, decreases monotonically with the polling frequency used for

that web page.

Although several nonlinear criterion functions for measuring web monitoring performance have been

proposed in the literature (e.g., see [14, 21]), from a broader viewpoint they are mainly built around the

basic concept of the update detection probability, i.e., the probability that polling a web page results in new

information being discovered. Therefore, for the purpose of clarification and for the sake of conceptual

clarity, we will use the update detection probability as the token of interest in this paper. To further define

our notion of web monitoring performance, we consider that time is discrete with the time interval length,

T , to be the atomic unit of decision making. In each time interval every single web page i has a constant
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probability qi of remaining unchanged1. Furthermore, when a web page is updated/changed, the update

is available for detection only until the web page is updated again. Subsequent to that event, the original

update is considered to be “lost”. For instance, whenever a newspaper web page is updated, the previous

news items are replaced by the most recent ones.

In the following, we will denote the update detection probability of a web page i as di. Under the above

conditions, di depends on the frequency, xi, that the page is polled with, and is modeled using the following

expression:

di(xi) = 1− qi
1
xi .

By way of example, consider the scenario that a web page remains unchanged in any single time step with

probability 0.5. Then, polling the web page uncovers new information with probability 1 − 0.53 = 0.875 if

the web page is polled every 3rd time step (i.e., with frequency 1
3 ) and 1 − 0.52 = 0.75 if the web page is

polled every 2nd time step. As one can observe, increasing the polling frequency reduces the probability of

discovering new information on each polling.

A number of classical policies for the Web Polling Problem have been discussed in the literature (see e.g.,

[14]). The Uniform policy allocates monitoring resources uniformly across all web pages. This classical policy

can be applied directly in an unknown environment. In the so-called Proportional policy, the allocation of

monitoring resources to web pages is proportional to the update frequencies of the web pages. Accordingly,

this policy requires that the web page update frequencies are known. The Estimator policy, on the other hand,

handles unknown web update frequencies by polling web pages uniformly in a parameter estimation phase,

with the purpose of estimating the update frequencies. After the parameter estimation phase, the scheme

applies the proportional policy, where, however, the latter is based on the estimated update frequencies rather

than the true ones. Finally, the Optimal policy requires that the web page update frequencies are known, and

determines the optimal solution based on the principle of Lagrange multipliers [14, 21].

Although the Web Polling problem is quite general, we shall proceed to solve it by suggesting that

it falls within the model of knapsack-based problems. Indeed, in the most general setting, we shall uti-

lize the model of the Stochastic Non-linear Fractional Equality Knapsack (NEFK) problems to model the

present problem, and once such a formalization has been established, we shall allude to the Learning Au-

tomata (LA) [11, 18] solution of the NEFK problem, proposed in [9], to solve the Web Polling problem. LA

have previously been used to model biological systems [19], and have attracted considerable interest in the

last decade because they can learn the optimal actions when operating in (or interacting with) unknown

stochastic environments. Furthermore, they combine rapid and accurate convergence with low computa-

tional complexity.

The novel Learning Automata Knapsack Game (LAKG) scheme that we proposed in [8] does not rely on

estimating parameters, and can be used to solve the Stochastic NEFK problem in both static and dynamic

1Note that in our empirical results, we also report a high monitoring performance even with changing qi. The high performance
can be explained by the ability of our scheme to achieve adaptation.
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settings. Indeed, empirical results verify that the LAKG finds the optimal solution with arbitrary accuracy,

guided by the principle of Lagrange Multipliers. Furthermore, the empirical results show that the perfor-

mance of the LAKG is superior to that of parameter-estimation-based schemes, both in static and dynamic

environments. Accordingly, we believe that the LAKG can be considered to represent the state-of-the-art

when it concerns research on the stochastic NEFK problem. This landmark is now extended to develop the

Twofold Resource Allocation Automaton (TRAA), (which, in itself is the first reported LA which is artificially

ergodic2), and its hierarchical version, the H-TRAA – which is the strategy used to solve the problem being

investigated.

1.1 Contributions of This Paper

The contributions of this paper are the following:

1. We report the first analytical results for schemes that solve the optimal Web Polling problem using a

formal solution to the Stochastic NEFK problem.

2. The solution we propose involves a novel scheme for the two-material resource allocation problem,

namely, the Twofold Resource Allocation Automaton (TRAA), which is the first reported LA that is artifi-

cially rendered ergodic, and which is proven to be asymptotically optimal3.

3. The solution we propose for web-polling also utilizes the H-TRAA, which is the first hierarchical solu-

tion to the Stochastic NEFK Problem, based on a hierarchy of TRAAs.

4. We verify empirically that the H-TRAA provides orders of magnitude faster convergence compared

to the LAKG for the web-polling problem.

As a result of the above contributions, we believe that the H-TRAA is the first reported viable and

realistic strategy for solving the optimal Web Polling problem. Indeed, it can also be used for other optimal

allocation of sampling resources in large scale web accessibility assessment [16].

1.2 Paper Organization

The paper is organized as follows. In Section 2, we formulate the targeted problem formally and dis-

cuss state-of-the-art solutions. Then, in Section 3 we present the Twofold Resource Allocation Automaton

(TRAA) for the two-material problems, and prove its asymptotic optimality. We continue with proposing

how TRAAs can be arranged in a hierarchy for solving multi-material Stochastic NEFK Problems, and in

Section 4, verify empirically that the H-TRAA provides orders of magnitude faster convergence compared

2LA which have been artificially made absorbing to yield specific properties, have been earlier reported [12]. However, we are not
aware of any LA which, in essence are absorbing, but which have been made artificially ergodic.

3As we shall clarify later, the formal results about the design and convergence of the TRAA and H-TRAA are also found elsewhere
[9]. We have included them here just for the sake of completeness, so that this paper can be a stand-alone publication. This was also the
recommendation of the Referees. We emphasize, though, that the experimental results in [9] do not pertain to the application domain
studied in this paper.
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to the LAKG when applied to the optimal Web Polling problem. Indeed, we shall present results that clearly

demonstrate that the H-TRAA allows us to tackle 32, 768-parameter problems in real-time. The solution also

permits the system to be dynamic! Finally, we offer suggestions for further work before we conclude the

paper in Section 5.

2 The Stochastic Non-linear Equality Fractional Knapsack Problem

We first formulate, in a fairly general setting, a set of knapsack-based problems that are, in actuality, related

to the web-polling problem. In a multitude of real-world situations, resources are often to be allocated based

on incomplete and noisy information. Such resource allocation problems are particularly intriguing because,

in many cases, incomplete and noisy information render traditional optimization techniques ineffective. In

this paper, we address one such model which can be translated into a family of problems:

Imagine that you have to allocate a limited amount of time among n different activities. The problem

is such that spending a time instant on an activity randomly produces one of two possible outcomes — the

time instant is either spent “fruitfully” or “unfruitfully”. In this generic setting, your goal is to maximize

the expected amount of fruitfully spent time. Unfortunately, you are only given the following information

regarding the activities:

1. Each instant of time spent on an activity has a certain probability of being fruitful, and

2. This probability decreases with the amount of time spent on the activity.

To render the problem even more realistic, you do not have access to the probabilities themselves. Instead,

you must rely on solving the problem by means of trial-and-failure, i.e., by attempting different allocations,

and observing the resulting random outcomes4.

The above problem instances can be formulated as a Stochastic Non-linear Fractional Equality Knapsack

(NEFK) Problems as exemplified earlier [6–8]. Such a formulation permits an analytically rigorous treatment

of the problem.

2.1 Classical Linear and Nonlinear Fractional Knapsack Problems

In order to appreciate the qualities of the Stochastic NEFK Problem, it is beneficial to view the problem

in light of the classical linear Fractional Knapsack (FK) Problem. Indeed, the Stochastic NEFK Problem

generalizes the latter problem in two significant ways. Both of the two problems are briefly defined below.

4Students frequently encounter a version of the above intriguing problem. A student that pursues several different topics in a
semester has to decide how to allocate his working hours among the topics. After a day of work, the student will have some idea of
how much he has learned during the day, allowing him to assess his current allocation of working hours. Rather than over specializing
in a single topic and treating the other topics superficially, seeking overall mastery of the topics could be a wise choice in this situation.
However, the amount of time required to master a topic will vary, simply because the nature of a topic influences the student’s “learn-
ing curve” for that topic. Thus, finding an optimal allocation in this problem must involve trial and failure, and unknown success
probabilities, as in our present model. Thus, effectively, we are treating each mechanism which has to determine the web-polling frequency, as a
“student”.
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The Linear Fractional Knapsack (FK) Problem: The linear FK problem is a classical continuous opti-

mization problem which also has applications within the field of resource allocation. The problem involves

n materials of different value vi per unit volume, 1 ≤ i ≤ n, where each material is available in a certain

amount xi ≤ bi. Let fi(xi) denote the value of the amount xi of material i, i.e., fi(xi) = vixi. The problem

is to fill a knapsack of fixed volume c with the material mix x⃗ = [x1, . . . , xn] to yield a maximal value for∑n
1 fi(xi) [1].

The Nonlinear Equality FK (NEFK) Problem: One important extension of the above classical problem

is the Nonlinear Equality FK problem with a separable and concave objective function. The problem can be

stated as follows [10]:

maximize f(x⃗) =
∑n

1 fi(xi)

subject to
∑n

1 xi = c and ∀i ∈ {1, . . . , n}, xi ≥ 0.

Since the objective function is considered to be concave, the value function fi(xi) of each material is also

concave. This means that the derivatives of the material value functions fi(xi) with respect to xi, (hereafter

denoted f ′
i ), are non-increasing. In other words, the material value per unit volume is no longer constant as

in the linear case, but decreases with the material amount, and so the optimization problem becomes:

maximize f(x⃗) =
∑n

1 fi(xi),where fi(xi) =
∫ xi

0
f ′
i(xi)dxi

subject to
∑n

1 xi = c and ∀i ∈ {1, . . . , n}, xi ≥ 0.

Efficient solutions to the latter problem, based on the principle of Lagrange multipliers, have been devised.

In short, the optimal value occurs when the derivatives f ′
i of the material value functions are equal, subject

to the knapsack constraints [2, 5]:

f ′
1(x1) = · · · = f ′

n(xn)∑n
1 xi = c and ∀i ∈ {1, . . . , n}, xi ≥ 0.

2.2 The Stochastic NEFK Problem

In this paper we generalize the above nonlinear equality knapsack problem. First of all, we let the material

value per unit volume for any xi be a probability function pi(xi). Furthermore, we consider the distribution

of pi(xi) to be unknown. That is, each time an amount xi of material i is placed in the knapsack, we are only

allowed to observe an instantiation of pi(xi) at xi, and not pi(xi) itself. Given this stochastic environment,

we intend to devise an on-line incremental scheme that learns the mix of materials of maximal expected

value, through a series of informed guesses. Thus, to clarify issues, we are provided with a knapsack of

fixed volume c, which is to be filled with a mix of n different materials. However, unlike the NEFK, in

the Stochastic NEFK Problem the unit volume value of a material i, 1 ≤ i ≤ n, is a random quantity —

it takes the value 1 with probability pi(xi) and the value 0 with probability 1 − pi(xi), respectively. As

an additional complication, pi(xi) is nonlinear in the sense that it decreases monotonically with xi, i.e.,
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xi1 ≤ xi2 ⇔ pi(xi1) ≥ pi(xi2).

Since unit volume values are random, we operate with the expected unit volume values rather than the

actual unit volume values themselves. With this understanding, and the above perspective in mind, the

expected value of the amount xi of material i, 1 ≤ i ≤ n, becomes fi(xi) =
∫ xi

0
pi(u)du. Accordingly, the

expected value per unit volume5 of material i becomes f ′
i(xi) = pi(xi). In this stochastic and non-linear

version of the FK problem, the goal is to fill the knapsack so that the expected value f(x⃗) =
∑n

1 fi(xi) of the

material mix contained in the knapsack is maximized as below:

maximize f(x⃗) =
∑n

1 fi(xi),where fi(xi) =
∫ xi

0
pi(u)du, and pi(xi) = f ′

i(xi),

subject to
∑n

1 xi = c and ∀i ∈ {1, . . . , n}, xi ≥ 0.

A fascinating property of the above problem is that the amount of information available to the decision

maker is limited — the decision maker is only allowed to observe the current unit value of each material

(either 0 or 1). That is, each time a material mix is placed in the knapsack, the unit value of each material

is provided to the decision maker. The actual outcome probabilities pi(xi), 1 ≤ i ≤ n, however, remain

unknown. As a result of the latter, the expected value of the material mix must be maximized by means of

trial-and-error, i.e., by experimenting with different material mixes and by observing the resulting random

unit value outcomes.

We conclude this section by stating that given the above considerations, we shall show that our aim

is to find the page polling frequencies x⃗ that maximize the expected number of pollings uncovering new

information per time step:

maximize
∑n

1 xi × di(xi)

subject to
∑n

1 xi = c and ∀i = 1, . . . , n, xi ≥ 0.

Note that in the general web monitoring case, we are not able to observe di(xi) or qi directly — polling

a web page only reveals whether the web page has been updated at least once since our last poll6. As

such, web monitoring forms a proof-of-concept application for resource allocation in unknown stochastic

environments.

2.3 State-of-the-Art: The Stochastic NEFK problem

To the best of our knowledge, prior to our work reported in [8], the stochastic NEFK problem was not

addressed in the literature before. However, several studies on related problems have been reported. For

example, the works of [4, 17] consider solution policies for stochastic generalizations of the so-called NP-

hard linear integer knapsack problem. In these papers, value distributions were considered known and

5We hereafter use f ′
i(xi) to denote the derivative of the expected value function fi(xi) with respect to xi.

6Some web pages are also annotated with the time of last update. However, this information is not generally available/reliable [3],
and is therefore ignored in our scheme.
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constant, making dynamic programming a viable solution. Another variant of the knapsack problem is

found in [15] where a deterministic knapsack is used, however, with objects arriving to and departing from

the knapsack at random times. The optimization problem considered was to accept/block arriving objects

so that the average value of the knapsack is maximized.

The first reported generic treatment of the stochastic NEFK problem itself can be found in [8]. The

approaches that represent the non-LA state-of-the-art, assume that the knapsack problem is deterministic

and fully known. However, from a web monitoring perspective the web must often be seen as a stochastic

and more or less unknown environment. Various instantiations of the problem have, however, appeared

sporadically, particularly within the web monitoring domain. In these latter instantiations, the unknown

parameters of the knapsack problem are estimated by means of a tracking phase where web pages are polled

mainly for estimation purposes [14, 21]. One major disadvantage of such an approach is that the parame-

ter estimation phase significantly delays the implementation of an optimal solution. This disadvantage is

further aggravated in dynamic environments where the optimal solution changes over time, introducing the

need for parameter re-estimation [6].

With regard to the particular application domain, recent approaches to resource allocation in web moni-

toring attempt to optimize the performance of the system when the monitoring capacity is restricted [14,21].

The principle cited in the literature essentially invokes Lagrange multipliers to solve a nonlinear equality

knapsack problem with a separable and concave objective function [10]. Thus, for example, a basic web

monitoring resource allocation problem may involve n web pages that are updated periodically, although

with different periods. Clearly, each web page can be polled with a maximum frequency - which would

result in a sluggish system. The problem which we study involves determining the web page polling fre-

quencies (i.e., how often each web page is accessed by the monitoring system) so as to maximize the number

of web page updates detected. Observe that this must be achieved without exceeding the available moni-

toring capacity — e.g., the maximum number of web pages that can be accessed per unit of time as dictated

by the governing communication bandwidth and processing speed limitations.

2.4 Related Solutions to Knapsack-family Problems

In order to put our work in the right perspective, we first provide a brief review of the concepts and the

solution found in [8] - which are also relevant for more “primitive” variants of the knapsack problem.

As indicated in the introduction, solving the classical linear FK problem involves finding the most valu-

able mix x⃗∗ = [x∗
1, . . . , x

∗
n] of n materials that fits within a knapsack of fixed capacity c. The material value

per unit volume for each material i is given as a constant vi, and each material is available in a certain

amount xi ≤ bi, 1 ≤ i ≤ n. Accordingly, the value of the amount xi of material i, fi(xi) = vixi, is linear

with respect to xi. In other words, the derivative of fi(xi) — i.e., the material value per unit volume — is

fixed: f ′
i(xi) = vi. Because a fraction of each material can be placed in the knapsack, the following greedy

algorithm from [1] finds the most valuable mix: Take as much as possible of the material that is most valuable per
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unit volume. If there is still room, take as much as possible of the next most valuable material. Continue until the

knapsack is full.

Let us now generalize this and assume that the material unit volume values are random variables with

constant and known distributions. Furthermore, for the sake of conceptual clarity, let us only consider binary

variables that either instantiate to the values of 0 or 1. Since the unit volume values are random, let pi denote

the probability of the unit volume value vi = 1 for material i, 1 ≤ i ≤ n, which means that the probability

of the unit volume value vi = 0 becomes 1 − pi. With some insight, it becomes evident that under such

conditions, the above greedy strategy can again be used to maximize the expected value of the knapsack,

simply by selecting the material based on the expected unit volume values, E[vi] = 0× (1−pi)+1×pi, rather

than actual unit volume values.

The above indicated solution is, of course, inadequate when the pi’s are unknown. Furthermore, the

problem becomes even more challenging when the pi’s are no longer constant, but rather depend on their

respective material amounts xi, 1 ≤ i ≤ n. Let pi(xi) denote the probability that the current unit volume

value of material i is vi = 1, given that the amount xi has already been placed in the knapsack. Then, the

expected value per unit volume of material i, 1 ≤ i ≤ n, becomes E[vi] = 0× [1−pi(xi)]+1×pi(xi) = pi(xi),

and accordingly, the expected value of the amount xi becomes fi(xi) =
∫ xi

0
pi(u)du.

Our aim, then, is to find a scheme that moves towards optimizing the following NEFK problem on-line:

maximize f(x⃗) =
∑n

1 fi(xi),wherefi(xi) =
∫ xi

0
pi(u)du, and pi(xi) = f ′

i(xi),

subject to
∑n

1 xi = c and ∀i ∈ {1, . . . , n}, xi ≥ 0.

Note that we allow only instantiations of the material values per unit volume to be observed. That is,

each time an amount xi of material i is placed in the knapsack, an instantiation vi at xi is observed.

Because of the above intricacies, in [8] and in this present paper, we choose to approach the problem by

relying on informed material mix guesses, i.e., by experimenting with different material mixes and learning

from the resulting random unit volume value outcomes. We shall assume that xi is any number in the

interval (0, 1). The crucial issue that we have to address, then, is that of determining how to change our

current guesses on xi, 1 ≤ i ≤ n. . We shall attempt to do this in a discretized manner by subdividing the

unit interval into N points { 1λ

Nλ ,
2λ

Nλ , . . . ,
(N−1)λ

Nλ , 1}, where N is the resolution of the learning scheme and

λ > 0 determines the linearity of the discretized solution space7. We will see that a larger value of N will

ultimately imply a more accurate solution to the knapsack problem.

At this juncture, it is pertinent to mention that although the rationale for this updating is the stochastic

point location solution proposed by Oommen in [13], the two schemes are quite distinct for the following

reasons:

1. The method proposed in [13] assumes the existence of an Oracle which informs the LA whether to go

“right” or “left”. In our application domain, this now has to be inferred by the system.
7The importance of this parameter can be seen from the empirical results of [8]. In this paper, we have chosen to set λ to unity.
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2. The method proposed in [13] assumes that there is only a single LA in the picture. Here, we specifically

understand that there are multiple LAs organized in a hierarchy — each of them being constrained to

work together with the others8.

3. In [13] the problem of analyzing scenarios with space varying responses from the environment was

left open. This problem is tackled in [8].

4. As opposed to the scheme in [13], our present approach is also applicable to dynamic (time varying)

environments.

5. There is a “huge” fundamental difference between the LA which we devise here and the work of [13].

Unlike the latter, in which the system is truly ergodic, our present LA would be absorbing if the end-

states of the probability space are also included. However, to forcefully render this present machine

ergodic, we have artificially made the LA ergodic by excluding these states from the set of possible

probability values. This makes the analysis both distinct and quite fascinating. As mentioned earlier,

we are not aware of any LA which, in essence are absorbing, but which have been made artificially

ergodic.

3 A Hierarchy of Twofold Resource Allocation Automata (H-TRAA)

3.1 Details of the TRAA Solution

3.1.1 Design of the TRAA Solution

We first present9 our LA based solution to two-material Stochastic NEFK Problems. The two-material solu-

tion forms a critical part of the hierarchic scheme for multiple materials that is presented subsequently. As

illustrated in Figure 2, our solution to two-material problems constitutes of three modules:

1. A Stochastic Environment

2. The TRAA itself, and

3. An Earliest Deadline First (EDF) Scheduler.

We first detail each of the three modules, before we analyze the overall feedback connection between them.

Finally, we prove that the TRAA that we have developed in this section is asymptotically optimal for two-

material Stochastic NEFK problems.

8It is conceivable that this problem can be resolved with a single LA possessing an extended number of actions. But we do not
recommend it for scalability reasons — the action space would grow exponentially.

9As mentioned earlier, the formal results about the design and convergence of the TRAA and H-TRAA are also found elsewhere [9].
We have included them here just for the sake of completeness, so that this paper can be a stand-alone publication.
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Figure 2: The Twofold Resource Allocation Automaton (TRAA) interacting with a Scheduler and an un-
known Stochastic Environment.

Stochastic Environment: The Stochastic Environment for the two-material case can be characterized by:

1. The capacity c of the knapsack;

2. Two material unit volume value probability functions p1(x1) and p2(x2).

In brief, if the amount xi of material i is suggested to the Stochastic Environment, the Environment replies

with a unit volume value vi = 1 with probability pi(xi) and a unit volume value vi = 0 with probability

1 − pi(xi), i ∈ {1, 2}. It should be emphasized that to render the problem both interesting and non-trivial,

we assume that pi(xi) is unknown to the TRAA.

Twofold Resource Allocation Automaton (TRAA): The scheme which attempts to learn the optimal al-

location x⃗∗ = [x∗
1, x

∗
2] can be described as follows. A finite fixed structure automaton with the states

s(t) ∈ {1, 2, . . . , N} is used to decide the allocation of resources among the two materials. Let the cur-

rent state of the automaton be s(t). Furthermore, let qs(t) refer to the fraction s(t)
N+1 , and let rs(t) refer to the

fraction: 1− qs(t). Then the automaton’s current guess is x⃗ = [qs(t), rs(t)].

If the Stochastic Environment tells the automaton that the unit volume value of material i is vi(t) at time

t, the automaton updates its state as follows:

s(t+ 1) := s(t) + 1 If rand() ≤ rs(t) and vi(t) = 1 and 1 ≤ si(t) < N and i = 1 (1)

s(t+ 1) := s(t)− 1 If rand() ≤ qs(t) and vi(t) = 1 and 1 < si(t) ≤ N and i = 2 (2)

s(t+ 1) := s(t) Otherwise. (3)

Figure 3 shows the resulting stochastic transition graphs for resolution N = 5. The upper graph shows

the transitions for feedback from the Stochastic Environment on material 1, and the graph below shows the

transitions for feedback on material 2. Notice how the stochastic state transitions are designed to offset the
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Figure 3: The stochastic transition graphs of a TRAA with resolution N = 5.

learning bias introduced by accessing the materials with frequencies proportional to x⃗ = [qs(t), rs(t)]. Also

observe that the overall learning scheme does not produce any absorbing states, and is, accordingly, ergodic

supporting dynamic environments. The effect of these properties is analysed in the next subsection.

Finally, after the automaton has had the opportunity to change its state, it provides output to the EDF

Scheduler. That is, it outputs the material amounts x⃗ = [qs(t+1), rs(t+1)] that have been changed.

Earliest Deadline First (EDF) Scheduler: The Scheduler takes material amounts x⃗ = [x1, . . . , xn] as its

input (for the two-material case the input is x⃗ = [x1, x2]). The purpose of the Scheduler is:

1. To provide accesses to the Stochastic Environment in a sequential manner, and

2. To make sure that the unit volume value functions are accessed with frequencies proportional to x⃗.

The reader should note that our scheme does not rely on accessing the unit volume value functions se-

quentially with frequencies proportional to x⃗ for solving the knapsack problem. However, this restriction

is obviously essential for solving the problem incrementally and on-line (or rather in a “real-time” manner).

Note that since it, in some cases, may be essential to access each unit volume value function with a constant

period and not randomly (for example, in the earlier-alluded-to problem which analyzes web page polling),

we use the Earliest Deadline First (EDF) Scheduling to access the functions according to x⃗.

3.1.2 Analysis of the TRAA Solution

In this section we characterize the optimal solution to a Stochastic NEFK Problem. Thereafter, we ana-

lyze the feedback connection of the TRAA and the Stochastic Environment — we prove that the TRAA is

asymptotically optimal in the sense that it can find material allocations arbitrarily close to the solution of

the Stochastic NEFK Problem.

Lemma 1. The material mix x⃗ = [x1, . . . , xn] is a solution to a given Stochastic NEFK Problem if (1) the derivatives

of the expected material amount values are all equal at x⃗, (2) the mix fills the knapsack, and (3) every material amount

12



is positive, i.e.:

f ′
1(x1) = · · · = f ′

n(xn)∑n
1 xi = c and ∀i ∈ {1, . . . , n}, xi ≥ 0.

The above lemma is based on the well-known principle of Lagrange Multipliers [2, 5], and its proof is

therefore omitted here for the sake of brevity. Instead, we will start by analyzing the two-material problem

and the TRAA. Multiple TRAAs will then be organized in a hierarchy with the aim of tackling n-material

problems.

For the two-material problem, let x⃗∗ = [x∗
1, x

∗
2] denote a solution, as defined above. Note that since x∗

2

can be obtained from x∗
1, we will concentrate on finding x∗

1.

Theorem 1. The TRAA solution scheme specified by (1)–(3) is asymptotically optimal.

Proof. Our aim is to prove that as the resolution, N , is increased indefinitely, the expected value of the TRAA

output, x1(t), converges towards the solution of the problem, x∗
1, implying that:

lim
N→∞

lim
t→∞

E[x1(t)] → x∗
1.

We shall prove the above by analyzing the properties of the underlying Markov chain, which is specified

by the EDF Scheduler, the rules (1)–(3) (the TRAA), and the Environment. As can be seen from (1)–(3), the

states of the chain are the integers j ∈ {1, 2, . . . , N}. In brief, rules (1)–(3), when interacting with the EDF

Scheduler and the Environment, obey the Markov chain with transition matrix H = [hij ] , where

hj,j−1 = rj · p2(rj) · qj , 1 < j ≤ N (4)

hj,j+1 = qj · p1(qj) · rj , 1 ≤ j < N (5)

hj,j = 1− hj,j−1 − hj,j+1, 1 < j < N, (6)

and, accordingly,

h1,1 = 1− h1,2 (7)

hN,N = 1− hN,N−1. (8)

Clearly, H represents a single closed communicating class whose periodicity is unity. The chain is ergodic,

and the limiting probability vector is given by the eigenvector of HT corresponding to eigenvalue unity. Let

this vector be Π = [π1, π2, . . . , πN ]. Then, Π satisfies:
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h1,1 h1,2 0 · · · · 0

h2,1 h2,2 h2,3 0 · · · 0

0 h3,2 h3,3 h3,4 0 · · 0

· · · · · · · ·

· · · · · · · ·

0 · · 0 hN−2,N−3 hN−2,N−2 hN−2,N−1 0

0 · · · 0 hN−1,N−2 hN−1,N−1 hN−1,N

0 · · · · 0 hN,N−1 hN,N



T 

π1

π2

π3

·

·

πN−2

πN−1

πN



=



π1

π2

π3

·

·

πN−2

πN−1

πN



(9)

The details of solving Equation (9) are quite cumbersome, and we undertake it now. Observe that our

aim is to prove that the probability mass of Π lies arbitrarily close to the solution of the knapsack problem,

x⃗∗ = [x∗
1, x

∗
2], as N goes to infinity. Before we go through the fine details, we outline the proof strategy as

follows. We first explicitly solve for the quantities {πi} by solving the underlying difference equations. We

then define a function U that forms an upper bound for Π. We proceed to show that the upper bound goes

to zero outside an arbitrarily close vicinity of x∗
1, as the resolution, N , goes to infinity. Accordingly, since

Π is a probability distribution, and since U is its upper bound, increasing the resolution towards infinity

moves the probability mass of Π arbitrarily close to x∗
1.

The details of the proof follow. Our first step is to reformulate the individual row-wise equations from

the matrix Equation (9) recursively. Expanding the first row of Equation (9) yields:

π1 · h1,1 + π2 · h2,1 = π1 ⇒ π2 =
(1− h1,1) · π1

h2,1
=

h1,2

h2,1
· π1. (10)

Expanding the second row of Equation (9) and substituting Equation (10) yields:

π1 · h1,2 + π2 · h2,2 + π3 · h3,2 = π2 ⇒ π3 =
h2,3

h3,2
· π2. (11)

Arguing in a similar way in a row-by-row manner, it can be seen10 that

πk−1 =
hk,k−1

hk−1,k
· πk (12)

for 0 < k ≤ N , which, on reversing the recursion, yields for 0 ≤ k < N ,

πk+1 =
hk,k+1

hk+1,k
· πk. (13)

Let α(x1, N) =
⌊

x1
1

N+1

⌋
and β(x1, N) =

⌈
x1
1

N+1

⌉
. Clearly,

[
α(x1,N)
N+1 , β(x1,N)

N+1

]
is the interval that most accu-

10We omit the laborious algebraic steps in the interest of readability.

14



rately approximate x1 given the resolution N . In particular, with z = α(x∗
1, N), the solution x∗

1 is found in

the interval
[

z
N+1 ,

z+1
N+1

]
. The crucial part of our proof is to reformulate Π in terms of πz and πz+1, using

(12)–(13). More specifically, for j ∈ {1, . . . , z − 1} we have:

πj = πz ·
j+1∏
k=z

hk,k−1

hk−1,k
. (14)

Correspondingly, and arguing in an analogous manner, for j ∈ {z + 2, . . . , N} we have:

πj = πz+1 ·
j−1∏

k=z+1

hk,k+1

hk+1,k
. (15)

In other words, we represent Π in terms of two of its components: πz and πz+1.

We are now ready to define the upper bound U for Π:

U [i, z] =

 πz ·Mz−i if i ≤ z

πz+1 ·M i−(z+1) if i ≥ z + 1
(16)

where:

M = max

[
max
k≤z

{
hk,k−1

hk−1,k

}
, max
k≥z+1

{
hk,k+1

hk+1,k

}]
. (17)

As seen, the definition of M clearly makes U an upper bound for Π.

Our final goal is to show that as the resolution N goes to infinity, U goes to zero outside an arbitrarily

close vicinity of x∗
1:

lim
N→∞

U [α(x1, N), α(x∗
1, N)] → 0 if x1 ̸= x∗

1 (18)

We shall argue that the latter is guaranteed to happen if we have 0 <
hk,k−1

hk−1,k
< 1 for k ∈ {2, . . . , z} and

0 <
hk,k+1

hk+1,k
< 1 for k ∈ {z + 1, . . . , N − 1}, because then we get 0 < M < 1. We argue this by considering

the equilibrium (asymptotic) value of E[π(t)] for any finite N . This argument can be separated into three

different cases as in [13]:

1. The first case is when z
N+1 is close to zero. In this case the maximum is quickly reached and then

geometrically falls away.

2. When z
N+1 is close to 1, the value of πi geometrically increases but when the maximum is reached it

quickly falls away. For both these cases when N → ∞, most of the probability mass will be centered

in a small interval around z.

3. The third case is slightly more complex because it involves z
N+1 being away from either end. This case
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must be broken down into two distinct geometric series, one representing the geometric series from

π1 to πz and the other from πz+1 to πN . The first series increases until it reaches the maximum at πZ .

The increase is geometric (or rather, exponential as N → ∞), and the geometric ratio is bounded by

the bound given by the quantity M above. The second series starts at the maximum at the value πz+1

and then decreases until πN is reached. Again, the decrease is geometric (i.e., exponential as N → ∞),

and the geometric ratio is bounded by the quantity M above. In this case the probability mass will be

centered within a small interval around z
N+1 and z+1

N as N → ∞ because of the law of the sum of the

elements of a geometric series possessing a common ratio which is greater than unity.

First of all, since the difference between k
N+1 and k−1

N+1 goes to zero as N goes to infinity, and since p1(x)

is continuous, we have:

lim
N→∞

hk,k−1

hk−1,k
= lim

N→∞

rk · p2(rk) · qk
qk · p1(qk) · rk

(19)

= lim
N→∞

p2(rk)

p1(qk)
. (20)

Secondly, from Lemma 1 we can conclude that p1(qk) > p2(rk) for k ∈ {2, . . . , z}. Therefore, 0 <
hk,k−1

hk−1,k
< 1

for k ∈ {2, . . . , z} as N goes to infinity.

Showing that we have 0 <
hk,k+1

hk+1,k
< 1 for k ∈ {z+1, . . . , N − 1} follows analogously, and the proof is left

out here for the sake of brevity.

Accordingly, Π must go to zero outside an arbitrarily close vicinity of x∗
1 as the resolution N goes to

infinity. This, in turn, means that the probability mass of Π will lie arbitrarily close to x∗
1. In other words,

the TRAA is asymptotically optimal.

3.2 Details of the H-TRAA Solution

3.2.1 Design of the H-TRAA Solution

In this section we propose a hierarchical scheme for solving n-material problems. The scheme takes advan-

tage of the TRAA’s ability to solve two-material problems asymptotically, by organizing them hierarchically.

Construction of Hierarchy. The hierarchy of TRAAs, which we hereafter will refer to as H-TRAA, is con-

structed as follows11. First of all, the hierarchy is organized as a balanced binary tree with depth D = log2(n).

Each node in the hierarchy can be related to three entities: (1) a set of materials, (2) a partitioning of the ma-

terial set into two subsets of equal size, and (3) a dedicated TRAA that allocates a given amount of resources

among the two subsets.

11We assume that n = 2γ , γ ∈ N+, for the sake of clarity. If the number of materials is less than this, we can assume the existence of
additional materials whose values are “zero”, and who thus are not able to contribute to the final optimal solution.
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Root Node: The hierarchy root (at depth 1) is assigned the complete set of materials S1,1 = {1, . . . , n}.

These n materials are partitioned into two disjoint and exhaustive subsets of equal size: S2,1 and S2,2.

An associated TRAA, T1,1, decides how to divide the full knapsack capacity c (which, for the sake of

notational correctness will be referred to as c1,1) among the two subsets. That is, subset S2,1 receives

the capacity c2,1 and subset S2,2 receives the capacity c2,2, with c2,1 + c2,2 = c1,1. Accordingly, this

TRAA is given the power to prioritize one subset of the materials at the expense of the other.

Nodes at Depth d: Node j ∈ {1, . . . , 2d−1} at depth d (where 1 < d ≤ D) refers to: (1) the material subset

Sd,j , (2) a partitioning of Sd,j into the subsets Sd+1,2j−1 and Sd+1,2j , and (3) a dedicated TRAA, Td,j .

Observe that since level D + 1 of the H-TRAA is non-existent, we use the convention that SD+1,2j−1

and SD+1,2j refer to the primitive materials being processed by the leaf TRAA, TD,j . Assume that

the materials in Sd,j has, as a set, been assigned the capacity cd,j . The dedicated TRAA, then, de-

cides how to allocate the assigned capacity cd,j among the subsets Sd+1,2j−1 and Sd+1,2j . That is,

subset Sd+1,2j−1 receives the capacity cd+1,2j−1 and subset Sd+1,2j receives the capacity cd+1,2j , with

cd+1,2j−1 + cd+1,2j = cd,j

At depth D, then, each individual material can be separately assigned a fraction of the overall capacity

by way of recursion, using the above allocation scheme.

Interaction of the H-TRAA with the EDF Scheduler and Environment. As in the single TRAA case, the

H-TRAA interacts with an EDF Scheduler, which suggests which unit volume value function pi(xi) to access

next. A response is then generated from the Stochastic Environment using pi(xi). This response is given to

all the TRAAs that were involved in determining the material amount xi, that is, the TRAAs in the hierarchy

that have allocated capacity to a material subset that contains material i. Finally, a new candidate material

mix x⃗ = [x1, . . . , xn] is suggested by the H-TRAA to the EDF Scheduler.

Example I. Consider a 4-material problem. Figure 4 shows the associated hierarchy, constructed as de-

scribed above. At the root level the TRAA T1,1 divides the knapsack capacity among the two material

subsets {1, 2} and {3, 4}, respectively related to TRAA T2,1 and T2,2. At the level below, then, the TRAA T2,1

allocates its share of the capacity among material 1 and material 2, while TRAA T2,2 assigns its share of the

capacity to material 3 and material 4. Based on the present assignment at time t, the EDF Scheduler selects

material i, suggesting the amount xi(t) to the Stochastic Environment. The Stochastic Environment, in turn,

responds with a randomly drawn material unit volume value, vi(t), using the probability value function

pi(xi). By way of example, if i = 3, the latter feedback is given to TRAAs T1,1 and T2,1, which update their

states accordingly, and the feedback loop continues.
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Figure 4: A Hierarchy of Twofold Resource Allocation Automata (H-TRAA) interacting with a Scheduler
and an unknown Stochastic Environment as explained in Example I.

3.2.2 Analysis of the H-TRAA Solution

In the previous section we proved that an individual TRAA is asymptotically optimal. We will now consider

the H-TRAA and prove its optimality. More specifically, we shall show that if each individual TRAA in the

hierarchy has solved its own two-material problem, a solution to the complete n-material Knapsack Problem

has also been produced.

Theorem 2. Let Td,j be an arbitrary TRAA at level d of the H-TRAA associated with the node whose index is j.

Then, if every single TRAA, Td,j , in the H-TRAA has found a local solution with proportions cd+1,2j−1 and cd+1,2j

satisfying

f ′
d+1,2j−1(cd+1,2j−1) = f ′

d+1,2j(cd+1,2j),

the overall Knapsack Problem involving n materials that are hierarchically placed in log2 n levels of TRAAs, also

attains the global optimum solution.

Proof. We intend to prove the above theorem by means of induction, using the hierarchical H-TRAA struc-

ture defined in the paragraph titled Construction of Hierarchy.

Basis: The Basis case concerns the nodes at the leaves, which, indeed, deal with the primitive materials

themselves. Let a and b (a, b ∈ {1, . . . , n}) be any two materials processed by a TRAA, TD,u, at a leaf node

(i.e., at depth D=log2 n) in the H-TRAA. The latter decides how to allocate an assigned capacity cD,u among

the two materials a and b, with relative proportions xa and xb respectively. Observe that since a and b are

the only two materials relevant to this TRAA, by virtue of the construction of the TRAA, xa

xa+xb
and xb

xa+xb

are the conditional probabilities of choosing a and b respectively, conditioned on the event that the knapsack
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had only to be filled with these primitive materials. Since, by virtue of Theorem 1, we know that the TRAA

will find a local solution [xa, xb], the foundation of the solution determined by the Lagrangian yields:

f ′
a(xa) = f ′

b(xb) ⇒ f ′
D+1,2u−1(cD+1,2u−1) = f ′

D+1,2u(cD+1,2u), with cD+1,2u−1 + cD+1,2u = cD,u,

thus proving the basis of the induction.

Induction Step: Consider any interior-node TRAA Td,j whose index at depth d is j in the H-TRAA hier-

archy. The TRAA associated with this node decides how to allocate an assigned capacity cd,j among two

disjoint subsets Sd+1,2j−1 = {α1, . . . , αm} and Sd+1,2j = {β1, . . . , βm} of composite materials, where each αi

and βi is, in itself, a primitive material. To simplify notation, let α⃗ = {α1, . . . , αm} and β⃗ = {β1, . . . , βm}.

Observe that the union of the sets α⃗ and β⃗ is the input to the present TRAA, and the task of this TRAA is to

assign the current knapsack capacity, cd,j , so as to satisfying the Lagrangian solution for these two mutually

exclusive and exhaustive subsets. Let Td,j assign the relative proportions to α⃗ and β⃗ by the quantities xα⃗

and xβ⃗ . Observe that since α⃗ and β⃗ are the only two materials12 relevant to this TRAA, by virtue of the con-

struction of the TRAA, xα⃗

xα⃗+x
β⃗

and
x
β⃗

xα⃗+x
β⃗

are the conditional probabilities of choosing α⃗ and β⃗ respectively,

conditioned on the event that the knapsack had only to be filled with these composite materials α⃗ and β⃗.

The solution to this TRAA will thus satisfy:

f ′
α⃗(xα⃗) = f ′

β⃗
(xβ⃗) where, (21)

f ′
α⃗(xα⃗) =

∑
αi∈α⃗

xαi∑
αj∈α⃗ xαj

f ′
αi
(xαi) and (22)

f ′
β⃗
(xβ⃗) =

∑
βi∈β⃗

xβi∑
βj∈β⃗ xβj

f ′
βi
(xβi). (23)

Since each αi and βi is a primitive material, and we are working our way up the H-TRAA hierarchy, we

can invoke the inductive hypothesis to relate xαi and xβi for all i. By virtue of the inductive hypothesis

and the Lagrangian solution at every level up the H-TRAA till level d, we know that for both of the material

subsets Sd+1,2j−1 and Sd+1,2j the following are true:

f ′
α1
(xα1) = · · · = f ′

αm
(xαm) (24)

f ′
β1
(xβ1) = · · · = f ′

βm
(xβm). (25)

To simplify the notation, let each of the quantities in Equation (24) equal f ′
α(xα), and each of the quanti-

ties in Equation (25) equal f ′
β(xβ).

Substituting Equations (24) and (25) (which represent the induction hypothesis) into Equations (22) and

12The fact hat these are composite materials is irrelevant to the present TRAA. It merely treats α⃗ and β⃗ as individual materials.
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(23), the latter become:

f ′
α⃗(xα⃗) = f ′

α(xα)
∑
αi∈α⃗

xαi∑
αj∈α⃗ xαj

and (26)

f ′
β⃗
(xβ⃗) = f ′

β(xβ)
∑
βi∈β⃗

xβi∑
βj∈β⃗ xβj

. (27)

The summations on the RHSs of both of the Equations (26) and (27) can be trivially seen to sum to unity

since they represent probabilities (in the conditioned spaces), implying that:

∀i : f ′
α⃗(xα⃗) = f ′

αi
(xαi) and (28)

∀i : f ′
β⃗
(xβ⃗) = f ′

βi
(xβi). (29)

Combining the above with Equation (21) yields:

f ′
α1
(xα1) = · · · = f ′

αm
(xαm) = f ′

β1
(xβ1) = · · · = f ′

βm
(xβm). (30)

implying that the global optimum required by the Lagrangian has been found. Hence the theorem!

Remarks: Theorem 2 has some very interesting consequences listed below:

1. The proof of Theorem 2 has tacitly assumed that all the automata have converged before the global

convergence can be asserted. This implies that the TRAA Td,j is aware of its capacity, and that this is a

known quantity to the TRAAs Td+1,2j−1 and Td+1,2j . In other words, if all the individual TRAAs con-

verge to their local optimum, Theorem 2 states that the global optimum is attained. Conceptually, this

can pose a small implementation-related problem. The fact is that the TRAAs of the lower level are

converging even while the TRAA at the higher level is attempting to find its capacity. Therefore, es-

sentially, the lower level TRAAs are working in a non-stationary environment. The strategy by which

we can resolve this is to ensure that the higher level automata converge at a slower rate than the lower

ones (thus guaranteeing a certain level of stationarity). In practice, however, we have observed that if

the resolution parameter N is large enough (in the order of hundreds) the time varying phenomenon

is marginal, and the TRAAs at all the levels tend to converge simultaneously.

2. Theorem 2 claims that the solution obtained by the convergence of the individual TRAAs leads to the

global convergence of the overall optimization problem. But this claim means that the ordering of the

materials at the leaf nodes does not carry any significance. This is, indeed, true! It turns out that if the

nodes at the leaves are ordered in such a way that “more precious materials” lie in the same sub-tree,

the weight associated with the sub-tree of the composite material containing these “more precious

materials” will have a much larger weight, and the weight of the other sub-trees will be much smaller.

As opposed to this, if the “more precious materials” lie in distinct sub-trees, the weights associated
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with the respective sub-trees will be correspondingly compensated for.

4 Experimental Results: Optimal Polling Frequency Determination

4.1 Problem Background

Having obtained a formal solution to the model in which we set the NEFK, we shall now demonstrate how

we can utilize this solution for the current problem being studied, namely, the optimal web-polling problem.

As mentioned in Section 1, in our work, we will denote the update detection probability of a web page

i as di. Under the above conditions, di depends on the frequency, xi, that the page is polled with, and is

modeled using the following expression:

di(xi) = 1− qi
1
xi .

By way of example, consider the scenario that a web page remains unchanged in any single time step with

probability 0.5. Then polling the web page uncovers new information with probability 1 − 0.53 = 0.875 if

the web page is polled every 3rd time step (i.e., with frequency 1
3 ) and 1 − 0.52 = 0.75 if the web page is

polled every 2nd time step. As seen, increasing the polling frequency reduces the probability of discovering

new information on each polling.

Given the above considerations, our aim is to find the page polling frequencies x⃗ that maximize the

expected number of pollings uncovering new information per time step:

maximize
∑n

1 xi × di(xi)

subject to
∑n

1 xi = c and ∀i = 1, . . . , n, xi ≥ 0.

4.2 H-TRAA Solution

In order to find a H-TRAA Solution to the above problem we must define the Stochastic Environment that

the LA are to interact with. As seen in Section 3, the Stochastic Environment consists of the unit volume

value functions F ′ = {f ′
1(x1), f

′
2(x2), . . . , f

′
n(xn)}, which are unknown to H-TRAA. We identify the nature

of these functions by applying the principle of Lagrange multipliers to the above maximization problem.

In short, after some simplification, it can be seen that the following conditions characterize the optimal

solution:
d1(x1) = d2(x2) = · · · = dn(xn)∑n

1 xi = c and ∀i = 1, . . . , n, xi ≥ 0

.

Since we are not able to observe di(xi) or qi directly, we base our definition of F ′ on the result of polling

web pages. Briefly stated, we want f ′
i(xi) to instantiate to the value 0 with probability 1− di(xi) and to the
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value 1 with probability di(xi). Accordingly, if the web page i is polled and i has been updated since our

last polling, then we consider f ′
i(xi) to have been instantiated to 1. And, if the web page i is unchanged, we

consider f ′
i(xi) to have been instantiated to 0.

4.3 Empirical Results

4.3.1 Experimental Setup

In this section we evaluate our learning scheme by comparing it with by comparing it with four classical

policies using synthetic data. We have implemented the following classical policies, non of which invokes

the Knapsack Problem.

Uniform: The uniform policy allocates monitoring resources uniformly across all web pages. This is the

only classical policy of the four that can be applied directly in an unknown environment.

Proportional: In the proportional policy, the allocation of monitoring resources to web pages is pro-

portional to the update frequencies of the web pages. Accordingly, this policy requires that the web page

update frequencies are known.

Estimator: The estimator policy handles unknown web update frequencies by polling web pages uni-

formly in a parameter estimation phase, with the purpose of estimating update frequencies. After the pa-

rameter estimation phase, the proportional policy is applied, however, based on the estimated frequencies.

Optimal: This policy requires that update frequencies are known, and finds the optimal solution based

on the principle of Lagrange multipliers [14, 21].

To evaluate web resource allocation policies, recent research advocates Zipf-like distributions [22] to

generate realistic web page update frequencies [14, 21]. The Zipf distribution can be stated as follows [20]:

Z(k; s,N) =
1/ks∑N

n=1 1/n
s

where N is the number of elements, k is their rank, and s is a parameter that governs the skewed-ness of

the distribution (e.g., for s = 0 the distribution is uniform).

For our experiments, web pages are considered ranked according to their update frequencies, and the

update probability of a web page is calculated from its rank. We use the following function to determine

the update probability of each web page:

qk(α, β) =
α

kβ
.

In this case, k refers to the web page of rank k and the parameter β determines the skewed-ness of the

distribution, while α ∈ [0.0, 1.0] represents the magnitude of the update probabilities (i.e., the web page of

rank 1 is updated with probability α each time step).

Without loss of generality, we normalize the web page polling capacity in our experiments to 1.0 poll per

time step, and accordingly, we vary the average total number of web page updates per time step instead.
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As we will see in the following, it turns that one of the strengths of the H-TRAA is its ability to take

advantage of so-called spatial dependencies among materials. As mentioned earlier, in the above exper-

imental setup, materials are spatially related in the sense that the updating probabilities decreases with

the rank-index k. In order to starve the H-TRAA from this information, we opted to perturb this spatial

structure. Each perturbation swapped the updating probabilities of a randomly selected material and the

material succeeding it in the ranking. Based on the above, we conducted our experiments with 103, 104, 105

and 106 perturbations.

The results of our experiments are truly conclusive and confirm the power of the H-TRAA. Although

several experiments were conducted using various α, β, and number of automata, we report for the sake of

brevity mainly the results for 512 web pages (the main case from [14]) within the following environments:

• α = 0.3; β = 1.5, where the average number of updates per time step is 0.76 and accordingly, below

the web page polling capacity. The web page update distribution is highly skewed, as explored in [14].

• α = 0.3; β = 1.0, where the average number of updates per time step is increased to 2.0 (twice the

web page polling capacity) by making the web page update distribution less skewed (the normal Zipf

distribution).

• α = 0.9; β = 1.5, where the average number of updates is set to 2.3 by increasing the web page update

probability. Because of the high values of both α and β, this environment turns out to be the most

challenging one, discriminating clearly between the optimal policy and the proportional policy.

For these values, an ensemble of several independent replications with different random number streams

was performed to minimize the variance of the reported results.

4.3.2 Configuring the H-TRAA

The H-TRAA can be configured by various means. First of all, the material amount space (0, 1) need not

be discretized uniformly. Instead, a nonlinear material amount space can be formed, as done for the LAKG

in [8]. Furthermore, the discretization resolution N must also be set for each TRAA, possibly varying from

TRAA to TRAA in the hierarchy. In short, the performance achieved for a particular problem can be op-

timized using these different means of configuring the H-TRAA. In this section, however, our goal is to

evaluate the overall performance of the H-TRAA, without fine tuning. Therefore, we will only use a linear

material amount space, as specified in Section 3. Furthermore, we will use the same resolution N = 500 for

all the TRAAs in the hierarchy, independent of the specific knapsack problem at hand. Thus, our aim is to

ensure a fair comparison with the present state of the art, namely, the LAKG scheme.

While the focus of the previous section was on learning only from material units of value 1 (rewards),

with some simple modifications the H-TRAA scheme clearly supports the three well-established updating

approaches:
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Figure 5: Using the (α = 0.9, β = 1.5)-environment we observe that the Inaction-Penalty updating is the
most accurate. However, the Reward-Penalty updating converges more quickly.

1. Reward-Inaction: In this case, the H-TRAA updates its state only when a material unit volume value

of ‘1’ is given as the feedback from the Stochastic Environment, which is the case studied in the previ-

ous section.

2. Inaction-Penalty: In this case, the H-TRAA updates its state only when a material unit volume value

of ‘0’ is given as feedback. Here, the reader will observe that the state transitions of the individual

TRAAs from Section 3 are inverted.

3. Reward-Penalty: In this case, the H-TRAA updates its state in both of the above cases.

When exposed to the (α = 0.9, β = 1.5)-environment, we see from Figure 5 that the Inaction-Penalty

updating is the most accurate of the three approaches. However, the Reward-Penalty updating converges

more quickly, since the state is updated both on rewards and on penalties. Only relying on rewards is

slightly inferior to the other two approaches for (α = 0.9, β = 1.5)-environment. Because we emphasize

speed of learning in this paper, we will, in the following, only use Reward-Penalty updating. But we note,

however, that the two other approaches produce similar results.

4.3.3 Static Environments

We see from Figure 6 that the proportional policy and the optimal policy provide more-or-less the same

solution — a solution superior to the uniform policy solution. We also observe that the performance of

the estimator scheme increases steadily with the length of the parameter estimation phase. The figure also

shows the performance of the H-TRAA increases significantly quicker than the LAKG and the Estimator
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Figure 6: In the (α = 0.3, β = 1.5)-environment, the H-TRAA scheme is superior to the LAKG scheme
and the estimator scheme. However, for highly unstructured environments, the LAKG provides better
performance.

schemes. However, when increasing the number of perturbations, the performance of the H-TRAA is re-

duced. Indeed, with 1, 000, 000 perturbations, the LAKG turns out to converge both more quickly and more

accurately than the H-TRAA. Note that even with 1, 000, 000 perturbations, the H-TRAA provides perfor-

mance equal to the LAKG if each TRAA in the hierarchy is given a resolution N that is twice as large as the

resolution applied by any of its children. However, then the performance advantage of the H-TRAA is lost

for the less perturbed cases. In this sense, the H-TRAA is more flexible than the LAKG, performing either

better or similarly when the H-TRAA configuration is optimized for the problem at hand. Note that, in

contrast to the Estimator scheme, the performance of both the H-TRAA and the LAKG is improved online

(in a real-time manner) without invoking any parameter estimation phase.

As seen in Figure 7, a less skewed web page update distribution function makes the uniform policy

more successful, mainly because a larger number of web pages will have a significant probability of being

updated. For the same reason, the estimator scheme is able to lead to an improved performance quicker. In

spite of this, the H-TRAA yields a superior performance.

The most difficult class of environments we simulate is an environment with a highly skewed web page

update distribution (β = 1.5) combined with a high update probability (α = 0.9). In such an environment,

the optimal policy performs significantly better than the proportional policy, and so any scheme that con-

verge towards a proportional policy solution will not attain an optimal performance. As seen in Figure

8, both the LAKG and the H-TRAA breach the performance boundary set by the proportional policy, and

converges towards near-optimal solutions. The H-TRAA converges slightly quicker compared to the LAKG.
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Figure 7: In the (α = 0.3, β = 1.0)-environment, a less skewed web page update distribution makes the uni-
form policy as well as the estimator policy more successful, mainly because of more widely and abundant
updating of the web pages.

4.3.4 Dynamic Environments

A dynamically changing environment is particularly challenging because the optimal solution is time de-

pendent. In such cases, the current resource allocation solution should be modified according to the envi-

ronmental changes. When, additionally, the environment and its characteristics are unknown, any changes

must first be learned before any meaningful modification can take place.

In order to simulate a dynamic environment, we change the ranking of the web pages at every rth web

page poll — a single web page is selected by sampling from the current Zipf-distribution, and this web page

switches rank with the succeeding web page in the ranking. As a result, the Zipf-distribution also changes.

This means that the web monitor is allowed to conduct r web page polls before the environment changes.

Figure 9 demonstrates the ability of our scheme to re-learn in a switching environment for r = 80, 000.

As seen in the figure, the H-TRAA quickly recovers after the environment has changed, and then moves

towards a new near optimal solution. Also, the H-TRAA clearly outperforms the LAKG.

In the previous dynamic environment, the H-TRAA was able to fully recover to a near-optimal solu-

tion because of the low frequency of environmental changes. Figure 10 demonstrates the behavior of the

automata in a case when this frequency is increased to r = 1, 000. As seen, the automata still quickly and

steadily improve the initial solution, but are obviously never allowed to reach an optimal solution. The

reader should however note how the quickly-changing environment is not able to hinder the automata

from stabilizing on a solution superior to the solutions found by the estimator scheme. Again, the H-TRAA

performs better than the LAKG.
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Figure 8: This figure shows that in the (α = 0.9, β = 1.5)-environment, the H-TRAA scheme breaches the
performance boundary set by the proportional policy, converging towards near-optimal solutions.

Clearly, these results demonstrate how the H-TRAA can perform when the environment is switching

with a fixed period (in this case r = 80000 and r = 1000). However, we believe that similar results will

be obtained if r is not fixed, but changing in such a way that the scheme has enough time to learn the

parameters of the updated environment.

4.3.5 Scalability

One of the motivations for designing the H-TRAA was to obtain improved scalability by means of hierarchi-

cal learning. As seen in Figure 11, extending the number of materials significantly increases the convergence

time of the LAKG. An increased initial learning phase may be unproblematic in cases where the system will

run correspondingly longer, adapting to less dramatic changes as they occur. However, as also seen from

the figure, the adaptation speed increases with the number of materials too, when the LAKG is used.

The H-TRAA, however, is far less affected by the number of materials. In Figure 12 we observe that the

initial learning phase is orders of magnitude faster than what can be achieved with the LAKG. Furthermore,

the impact on adaptation speed is negligible!

5 Conclusions and Further Work

In this paper, we have considered the optimal web polling problem, which involves determining a strategy

for monitoring the world wide web. The problem consists of repeatedly polling a selection of web pages

so that changes that occur over time are detected. In particular, we have considered the case where we are
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Figure 9: This figure shows the performance of the schemes n the (α = 0.9, β = 1.5)-environment where
the web page ranking changes at every 80, 000th web page poll. The H-TRAA finds near-optimal solutions
initially, and recovers quickly after the respective environmental changes.

constrained to poll a maximum number of web pages per unit of time. This realistic constraint is typically

dictated by the governing communication bandwidth, and by the speed limitations associated with the

processing. Since only a fraction of the web pages can be polled within a given unit of time, our problem

has been that of determining which web pages are to be polled, and we have attempted to do this in a

manner that maximizes the number of changes detected is a reasonable choice. To solve the problem, we

first modelled it as a Stochastic Non-linear Fractional Knapsack Problem. We then presented a completely new

on-line Learning Automata (LA) system, namely, the Hierarchy of Twofold Resource Allocation Automata (H-

TRAA), whose primitive component is a Twofold Resource Allocation Automaton (TRAA). Both the TRAA and

the H-TRAA have been proven to be asymptotically optimal.

Comprehensive experimental results demonstrated that performance of the H-TRAA is superior to pre-

vious state-of-the-art schemes, and in particular, to a previously reported strategy which solves the same

problem, the LAKG. We have also demonstrated that the H-TRAA scheme adapts to switching web distri-

bution functions, allowing us to operate in dynamic environments. Finally, we have also provided empirical

evidence to show that the H-TRAAs possess a sub-linear scaling property.

In our further work, we aim to develop alternate LA-based solutions for different classes of knapsack

problems, including the NP-hard integer knapsack problem, which we hope to then apply to the www.

Indeed, we are also currently investigating how other classes of LA can form the basis for novel knapsack-

based learning problems.
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Figure 10: In the (α = 0.9, β = 1.5)-environment where the web page ranking changes every 1, 000th poll.
Observe that the H-TRAA is able to steadily improve the initial solution, but is never allowed to reach an
optimal solution due to the nature of the switching.
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