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Abstract—While the benefits of cooperative diversity have been
well studied in the literature, cooperative MAC protocol design
has attracted more and more attention recently. In single-relay
Cooperative Automatic Repeat reQuest (C-ARQ) protocol, the
best relay node is selected in a distributed manner by relays using
different backoff time before packet retransmission. However,this
relay selection scheme does not work efficiently in a dense net-
work scenario, due to high collision probability among different
contending relays. In this paper, we propose an optimized relay
selection scheme to maximize the system throughput by reducing
the collision probability. The performance improvement in terms
of throughput and packet delivery ratio by the proposed optimal
relay selection scheme is verified by simulations.

I. I NTRODUCTION

Cooperative communications are proposed as a distributed
way to achieve space diversity via distributed terminals. The
theory behind cooperation has been studied in depth, and
significant improvement of system performance has been
demonstrated in terms of throughput, network coverage and
energy efficiency [1].

More and more attention has recently been paid to coop-
erative Medium Access Control (MAC) design in distributed
wireless networks [2]- [5]. Among them, a Cooperative Auto-
matic Repeat reQuest protocol (C-ARQ) has been is proposed
in [8] to deal with the three key issues on MAC layer. In single-
relay C-ARQ, the relay nodes with successful reception of
the direct transmission from source to destination will backoff
different lengths of time before data retransmission, according
to their instantaneous relay channel quality. Therefore, the
relay node with best relay channel quality will be selected
automatically to forward the data packet. The C-ARQ scheme
can provide high performance enhancement compared with
the non-cooperative scheme in a sparse network. However, Its
performance would be remarkably degraded in dense networks
because of the high collision probability in its relay selection
procedure.

In fact, collision among relays is a common problem that ex-
ists in a category of distributed path selection protocols based
on different lengths of backoff time [6] before transmission.
The collision happens when more than one relay node have the
same shortest backoff time, and hence transmit simultaneously.
For example, the CoopMAC-Aggregation protocol in [7] is
proposed for cooperative communication in Wireless Local
Area Networks (WLANs). There is a priority round in its
helper selection mechanism, where different slots are allotted
to different helper groups according to the effective data
transmission rate on each relay link. In this case, the collision

caused by multiple relay nodes with similar effective data rates
and hence the same slottime also leads to serious impairment
of the protocol performance in dense networks.

Based on the above discussion, an optimal mapping scheme
from relay channel condition to backoff time is required to
reduce the collision probability. Therefore, an optimal relay
selection scheme is proposed in this paper to improve the
C-ARQ performance in a dense network. Furthermore, the
optimal mapping scheme here applies to the above mentioned
protocols with similar problems. Hence, the optimization so-
lution study is of great significance. Analysis and simulations
are conducted to evaluate the performance enhancement of the
proposed optimal scheme, in terms of network throughput and
packet delivery ratio.

The rest of the paper is organized as follows. The system
model is described in Sec. II. After that, the cooperative
protocol is introduced in Sec. III. The optimization problem
statement of the relay selection scheme is derived in Sec. IV,
and the scheme performance is evaluated through simulations
in Sec. V. Finally, the paper is concluded in Sec. VI.

II. SYSTEM MODEL AND ASSUMPTIONS

The network shown in Fig. 1 is taken as an example to
illustrate the network topology and cooperation scenario.The
network consists of a source node, S, a destination node, D,
and several potential relay nodes, R1, R2, ..., Rn, randomly
distributed around D1.
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Fig. 1. System Model for Cooperative Transmission.

Each direct transmission starts from S, with the intended
destination as D. If the direct transmission fails, the relay node
which has received the packet successfully and has the best
relay channel quality to D will be selected to forward the
packet to D, following the cooperative retransmission protocol.

1This network topology is based on our previous work [9], where we have
demonstrated that it is more energy efficient to use relay nodesclose to the
destination in the context of cooperative retransmission network.



In this model, it is assumed that all nodes can hear each
other. The distance between any relay node and D is negligible
compared to the distance between S and D. The channels
between every transmission pair, i.e., between S and D, S
and each relay node Ri, as well as Ri and D, are assumed
to be independent of each other, hence full spatial diversity
can be achieved by data retransmission over another/other
channel(s). Moreover, we assume the channels are strongly
temporally correlated, i.e., consecutive packets on the same
channel are subjected to the same channel fading condition
and hence identical packet error rate.

III. C OOPERATIVEMAC PROTOCOLDESCRIPTION

The C-ARQ protocol is proposed based on the Distributed
Coordination Function (DCF) scheme in WLANs, to deal with
the three key issues on MAC layer, i.e., when to cooperate,
whom to cooperate with and how to protect cooperative
transmissions [8]. In this section, we first summarize the C-
ARQ MAC protocol, and then introduce its relay selection
algorithm in details in the second subsection.

A. Cooperative Automatic Repeat Request Scheme

The C-ARQ protocol procedure consists of two phases:
direct transmission and cooperative retransmission. The co-
operative retransmission only happens when the first direct
transmission fails. It is briefly presented in the followingabout
how the protocol works. More details can be found in [8].
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Fig. 2. C-ARQ Basic Access Scheme.

As the first step, S sends out a DATA packet to its desti-
nation D following the original DCF basic access scheme. If
and only if the data packet is received erroneously at D, D
will broadcast a Call For Cooperation (CFC) packet to invite
other nodes in the network to operate as relay nodes and at
the same time to provide them the opportunity of measuring
their respective relay channel quality. Only relay nodes that
have decoded the packet sent by S correctly become relay
candidates. According to the relay selection algorithm, the
relay candidate with the best relay channel quality Rb, will
first get channel access and forward its received packet to the
destination. After detecting the data packet from Rb on the
channel, the other relay candidates will withdraw from the
cooperation contention and discard their received packets. If
D decodes the packet correctly after the best-relay-channel
retransmission, D will return an ACK packet to S. Otherwise,

the cooperative transmission fails. In this case, S will get
access to the channel again after DIFS interval.

The message exchange sequence of the C-ARQ scheme with
a successful cooperative retransmission is illustrated inFig. 2.

B. Relay Selection Algorithm

The relay nodes in C-ARQ are selected in a distributed
manner by using the instantaneous channel condition obtained
through the CFC packet sent from D. After the cooperative
phase starts, each relay candidate gets its backoff time ofTi

according to its own relay channel condition.
1) backoff time function: In C-ARQ, the backoff time,Ti

is defined as a function:

Ti =

⌊

SNRlow

SNRi

Tup

slottime

⌋

, i = 1, 2, . . . , n (1)

whereSNRi is the Signal-to-Noise Ratio (SNR) value in dB
of the CFC packet received atRi; SNRlow is the threshold
of SNRi for Ri to participate in cooperative retransmission;
andn is the number of the relay nodes in the network. The
value ofSNRlow can be determined according to the specified
Modulation and Coding Schemes (MCSs) at the physical layer.
Tup in Eq. (1) is the upper bound of the backoff time for
relay candidates.Tup in the basic C-ARQ scheme is set to
be (DIFS-SIFS), in order to guarantee that the cooperative
retransmission will not be interrupted by other nodes in the
network. The granularity ofTi is specified to beslottime of the
system in order to cover the propagation delay in the network.

2) backoff time look-up table: The mapping fromSNRi to
Ti can also be implemented through a look-up table, as shown
in Table I.

TABLE I
MAPPING FROMSNR TO BACKOFF TIME.

SNRi [ϑ1,∞) [ϑ2, ϑ1) [ϑ3, ... (ϑm, ϑm−1)
Backoff timeTi first slot second slot ... DIFS − SIFS

In Table. 1,ϑj , j = 1, 2, ...,m are the threshold values of
SNRi to have different backoff time, andϑ1 ≥ ϑ2 ≥ ... ≥ ϑm.
ϑm is the threshold value for the relay candidate to cooperate.
Each relay candidate gets its backoff timeTi by looking up the
above table using its measured SNR value of the CFC packet
as index. It is obvious that the relay with highestSNRi will
get the first time slot and hence to transmit first.

The number of intervals divided among the SNR values
in Table. 1,m is determined by the durations of (DIFS-
SIFS) and slottime. The longest backoff time available for the
relays is set to

⌊

DIFS−SIFS
slottime

⌋

slots to give priority to coop-
erative retransmission. The boundaries involved in this table,
ϑi, i = 1, 2...,m, can be optimized to minimize the probability
of two or more relays with the same shortest backoff time.
For instance, in a network with 802.11g standard, the longest
backoff time is three time slots. Hence, two threshold values,
ϑ1 and ϑ2, need to be optimized. The optimization solution
is dependent on given network scenarios, such as the wireless
channel quality and the density of the relay nodes.



IV. OPTIMIZATION PROBLEM STATEMENT

Let d denote the distance between the source node and
a receiving node. We assume an average path loss that is
proportional toda where a is the path loss coefficient. For
brevity, we assume a Rayleigh fading channel with additive
white Gaussian noise (AWGN) on top of path loss, although
our analysis can be extended to other fading channels such as
Rician or Nakagami.

The average received SNR at the receiver can be written as

γ =
GPT (1 − α)

dαN0W
, (2)

wherePT is the power consumption during RF transmission;
(1−α) accounts for the efficiency of the RF power amplifier,
W is bandwidth in Hertz available for transmission;N0 is
the spectral power density of the Gaussian white noise at the
receiver, andG is a constant that is defined by the signal
frequency, antenna gains, and other parameters.

The instantaneous received SNR under Rayleigh fading has
an exponential distribution as:

f (γ) = 1/γe−γ/γ . (3)

Substitutingγ in Eq. (2) into Eq. (3), we can obtain:

f (γ) =
dαN0W

GPT (1 − α)
e
−

γdαN0W

GPT (1−α) = Cdαe−Cdαγ , (4)

whereC = N0W
GPT (1−α) .

A. Average Packet Error Rate

The exact closed-form PER in AWGN channels is difficult
to obtain. To simplify the analysis, we will rely on the
following approximate PER expression [10]:

PERn(γ) ≈







1 if γ <= γth
n

βne
−κnγ , if γ > γth

n

(5)

wheren is the MCS index, andγ is the signal to noise ratio
at the receiver. Parametersβn, κn and γth

n are dependent on
the specific MCS scheme and data packet length.

Given an average SNR value, the PER performance at the
receiving node averaged over Rayleigh fading is given as:

PERr (γ) =

∫

∞

0

PER(γ)f(γ)dγ

=
βn

1 + κnγ
e−γth

n (κn+1/γ) +
(

1 − e−γth
n /γ

)

.

(6)

Since all the relays nodes are close to the destination, and
the distance between them is negligible compared with the
distance from source to destination, we assume the average
SNR is the same at all the receiving nodes in the direct
transmission phase. Therefore, theaverage packet error rate,
denoted asPERr, is also the same at the destination and other
relay nodes. Substituting Eq. (2) into Eq. (6), we have:

PERr =
βnCd

α

Cdα + κn
e−γth

n (κn+Cdα) +
(

1 − e−γth
n Cdα

)

. (7)

We assume there areN nodes in the network. Let us denote
the number of nodes that correctly decode the packet asM .
Since the channels from the source to different relays are
independent, the event that one node successfully receives
a packet is independent of others. Thus, the number of
successful nodes is actually subject to a binomial distribution.
The probability thatM nodes correctly decode the packet is

P (M) =

(

N

M

)

[

1 − PERr)
]M [

PERr)
]N−M

. (8)

B. Conditional Cooperation Retransmission Probability

In the cooperative retransmission phase, theM relay nodes
with successful reception of the data packet will first measure
the received signal strength of the CFC packet, denoted as
γi, i = 1, 2...,M , then contend for channel access using
different backoff timeTi according toγi. Here,γi represents
the instantaneous relay channel condition and follows a similar
distribution function in Eq. (4). The path loss factor is ne-
glected in this case because of the short distance between relay
nodes and D. For convenience, we sortγi in the descending
order, asγ1 ≥ γ2 ≥ γ3... ≥ γM .

The probability of the cooperative retransmission condi-
tioned on the direct transmission failure, denoted asPcoop,
is the probability that there is at least one relay node that
will transmit before DIFS-SIFS timeout after an unsuccessful
direct transmission. The probabilityPcoop is equal to the
probability of the event that the relay node with the best
relay channel quality has higher SNR value than the threshold
value,ϑm, and hence transmit before DIFS-SIFS. Considering
the independence of the channels from the source to different
relays,Pcoop can be calculated as:

Pcoop = P {γ1 > ϑm} = 1 − P {γ1 ≤ ϑm}

= 1 − P {γi ≤ ϑm, i = 1, 2, ...,M}

= 1 −

M
∏

i=1

∫ ϑm

0

Ce−Cγidγi

= 1 −
(

1 − e−Cϑm
)M

.

(9)

C. Collision Probability among Different Relays

Collision will happen whenγ1 andγ2 have similar values,
i.e., two relays have the same backoff time. Therefore, the
collision probabilityPcol can be written as:

Pcol =

m
∑

j=1

P {γ1, γ2 ∈ [ϑj , ϑj−1)} , (10)

whereϑ0 = ∞. To calculatePcol, we have:

P {γ1, γ2 ∈ [ϑj , ϑj−1)} = P {γ1, γ2 < ϑj−1} − P {γ1 < ϑj}

−P {ϑj−1 > γ1 ≥ ϑj}P {γ2 < ϑj |ϑj−1 > γ1 ≥ ϑj}
(11)

In the following, we derive the three items on the right side
of Eq. 11 step by step. As we defined,γ1 andγ2 is the maximal
and the second maximal values of the received signal strengths



at all the relays, respectively. Hence,P {γ1, γ2 ≤ ϑj} is equiv-
alent toP {γ1 ≤ ϑj}, and can be obtained as:

P {γ1, γ2 < ϑj−1} = P {γ1 < ϑj−1}

= CM
M
∏

i=1

∫ ϑj−1

0

e−Cγidγi

=
(

1 − e−Cϑj−1
)M

.

(12)

Similarly, P {γ1 < ϑj} can be easily obtained.
In Eq. 11, P {ϑj−1 > γ1 ≥ ϑj} = P {γ1 < ϑj−1} −

P {γ1 < ϑj}. And P {γ2 ≤ ϑj |ϑj−1 > γ1 ≥ ϑj} can be cal-
culated as:

P {γi ≤ ϑj , i = 2...,M |γ1 ≥ ϑj}

=

M−1
∏

i=1

∫ ϑj

0

Ce−Cγidγi

=
(

1 − e−Cϑj
)M−1

.

(13)

In this way,Pcol can be expressed as a function of distance
d, number of relaysM , number of thresholdsm, threshold
valuesϑj , j = 1, 2, ..,m− 1. AveragingPcolover the distance
and the number of relays leads to:

Pcol(ϑj ,m) =

M
∑

i=0

P (M)Pcol(ϑj ,m,M, d)

=

M
∑

i=0

P (M)

(

m
∑

i=1

P {γ1, γ2 ∈ [ϑj , ϑj−1)}

)

.

(14)

Thus, we derived the closed-form expression of the average
collision probability among different relay node,Pcol as a
function of the threshold valuesϑj , j = 1, 2...,m.

D. System Performance Analysis

The performance of the cooperative retransmission protocol
is analyzed in terms of saturation throughput and Packet
Delivery Rate (PDR) at the MAC layer in this subsection.

The PDR of the cooperative scheme is the sum of the packet
successful rate in the direct phase and the additional successful
probability in the cooperative retransmission phase. Notethat
in our analysis, no data corruption is assumed on the relay
channels from Ri to D due to short distances. That is, a
failure of the cooperative retransmission is only caused by
the collision among different relays due to the imperfect relay
selection scheme.

PDRc = 1 − PERr + PERrPcoop(1 − Pcol). (15)

The normalized system saturation throughput, denoted by
η, is defined as the successfully transmitted payload bits per
time unit, and can be written as:

η =
E[ψ]

E[D]
, (16)

whereE[ψ] is the number of payload information bits success-
fully transmitted in a virtual time slot, i.e., the time interval

between two consecutive packet transmissions initiated byS in
this study, andE[D] is the expected length of the virtual time
slot. For our proposed scheme,E[ψ] andE[D] are expressed
as follows.

E[ψ] = PDRcL; (17)

E[D] =(1 − PERr)E[D1] + PERrPcoopE[D2]

+ PERr(1 − Pcoop)E[D3];
(18)

where L is the payload length in bits;E[D1], E[D2] and
E[D3] are the corresponding expected lengths of the virtual
time slot when the direct transmission succeeds, the direct
transmission fails with cooperative retransmission, and the
direct transmission fails without available cooperative relays,
respectively. They can be calculated as:

E[D1] = E[δ] + TDATA + TACK + SIFS + DIFS ; (19)

E[D2] = E[D1] + TDATA + TACK + E[Tb ] + SIFS ; (20)

E[D3] = E[D1] +DIFS; (21)

where TDATA and TACK are the transmission time for the
DATA and ACK packets, respectively;δ is the consumed
backoff time before each packet transmission.E[Tb] is the
expected backoff time the relay node with the best relay
channel quality used before its transmission, and can be
calculated as:

E[Tb] =

m
∑

j=1

P {γ1 ∈ [ϑj , ϑj−1)} j · slottime, (22)

where,

P {γ1 ∈ [ϑj , ϑj−1)}

= P {γ1 < ϑj−1)} − P {γ1 < ϑj)}

=
(

1 − e−Cϑj−1
)M

−
(

1 − e−Cϑj
)M

.

(23)

Finally, the throughput of the cooperative retransmission
scheme,η, can be obtained by taking Eqs. (19)∼ (22) into Eq.
(18), and then substituting Eqs. (17) and (18) into Eq. (16).

E. Optimization Statement

Based on the analysis in the preceding subsections, the
average network throughput is dependent on the threshold
valuesϑj , j = 1, 2...,m with given noise power,N0W , the
distance from S to D,d, number of relay nodes,N , and so
on. With given relay topology in the network and channel
conditions, the throughput can be expressed in a function of
ϑj , j = 1, 2...,m, and optimal values ofϑj should be derived
to maximize the system throughput. The optimization problem
can be shown as follows:
Maximize {η(ϑj ,m)} , j = 1, 2, ..,m− 1

subject to : (ϑj+1 − ϑj ≥ 0, j = 1, 2, ..,m− 1) .
(24)

As mentioned in Sec. III, the number of threshold values,m,
is determined by the durations of (DIFS-SIFS) and slottime.
In our study, we use 802.11g system as an example, and
two parameters,ϑ1 andϑ2, will to be tuned to optimize the
network throughput.
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V. SIMULATIONS AND NUMERICAL RESULTS

The simulation parameters are set up according to the
802.11g standard, as listed in Table II. S and D are placed
300 meters apart from each other. The relay nodes are placed
randomly within a radius of 30 meters around the desti-
nation node. The channels between each transmission pair
are implemented as independent Rayleigh fading channels.
QPSK and Convolutional Code (CC) 1/2 is adopted, with the
correspondingβn, κn andγth

n from Eq. (5) as7.2× 103, 5.3,
and 2.0 dB, respectively.

TABLE II
SIMULATION PARAMETERS.

MCS Scheme QPSK/ CC 1/2 DATA length 500 Bytes
ACK length 14 Bytes CFC length 14 Bytes
MPDU header 24 Bytes DIFS 34 µs
PHY header 20 µs SIFS 16 µs
Datarate 34 µs Slottime 9 µs
Basic datarate 6 Mbps CWmin 15

Fig. 3 and Fig. 4 illustrate the influence of different thresh-
old values on the average collision rate among relays and
the packet delivery ratio, respectively. It is obvious thatthe
performance of the cooperative scheme with high density of
relay nodes is highly affected by the different threshold values.
The network performance can be improved significantly by re-
ducing the collision probability through the optimal threshold
values. The throughput improvement by using the optimized
relay scheme compared with the original C-ARQ scheme
under different channel conditions is shown in Fig. 5. The
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Fig. 5. Throughput Performance Comparision (SNRlow=2.0 dB).

optimal values of the threshold SNR are obtained through the
analysis in Sec. IV. It can be observed that the optimal relay
scheme has shown significant advantage over the original DCF
protocol in a dense network, while C-ARQ has no benefits
from cooperative retransmission, due to the high collision
probability.

VI. CONCLUSIONS

Collisions among different relay nodes can degrade the
network performance remarkably in a cooperative network
with high density of relay nodes. In this paper, we presented
a complete analysis of the C-ARQ protocol performance with
impairment resulting from collision. Thereby, an optimized re-
lay selection scheme is proposed to maximize system through-
put, which can also be adopted in other cooperative protocols
with similar problems. The performance improvement by the
proposed optimal relay scheme is verified by simulations.
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