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This paper deals with the modeling and analysis of narrowband multiple-input multiple-output (MIMO) mobile-to-mobile
(M2M) fading channels in relay-based cooperative networks. In the transmission links from the source mobile station to the
destination mobile station via the mobile relay, non-line-of-sight (NLOS) propagation conditions are taken into account. A
stochastic narrowband MIMO M2M reference channel model is derived from the geometrical three-ring scattering model, where
it is assumed that an infinite number of local scatterers surround the source mobile station, the mobile relay, and the destination
mobile station. The complex channel gains associated with the new reference channel model are derived, and their temporal as well
as spatial correlation properties are explored. General analytical solutions are obtained for the four-dimensional (4D) space-time
cross-correlation function (CCF), the three-dimensional (3D) spatial CCF, the two-dimensional (2D) source (relay, destination)
correlation function (CF), and the temporal autocorrelation function (ACF). Exact closed-form expressions for different CFs
under isotropic as well as nonisotropic scattering conditions are provided in this article. A stochastic simulation model is then
drawn from the reference model. It is shown that the CCFs of the simulation model closely approximate the corresponding CCFs
of the reference model. The developed channel simulator is not only important for the development of future MIMO M2M
cooperative communication systems, but also for analyzing the dynamic behavior of the MIMO M2M channel capacity.

1. Introduction

Recent attempts to combat multipath fading effects along
with providing increased mobility support have resulted in
the emergence of M2M communication systems in cooper-
ative networks. The use of cooperative diversity protocols
[1–4] improves the transmission link quality and the end-
to-end system throughput, whereas M2M communication,
on the other hand, expands the network range (coverage
area). The fundamental idea of cooperative networks is
to allow mobile stations in the network to relay signals
to the final destination or to other mobile stations acting
as relays. The development and performance investigation
of such seemingly straightforward cooperative networks
require a thorough understanding of the M2M fading chan-
nel characteristics. For this reason, there is a need for simple

yet efficient M2M fading channel models, providing us with
a detailed knowledge about the statistical characterization of
M2M channels.

The idea of introducing M2M communication in nonco-
operative networks can be traced back to the work of Akki
and Haber [5, 6], which deals with the study of the statistical
properties of narrowband single-input single-output (SISO)
M2M fading channels under non-line-of-sight (NLOS)
propagation conditions. Several papers dealing with M2M
communication in cooperative networks can be found in the
recent literature [7–9]. In various studies regarding M2M
fading channels in relay-based cooperative networks under
NLOS propagation conditions, it has been shown that a
double Rayleigh process is an unsophisticated but still a
well-suited statistical channel model for such channels [10,
11]. Besides, the credit of reporting the temporal ACF of
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fading channels in amplify-and-forward relay systems goes to
Patel et al. [11]. The analysis of experimental measurement
data for outdoor-to-indoor M2M fading channels included
in [12] verifies the existence of double Rayleigh processes
in real-world environments. Talha and Pätzold [7] have
extended the double Rayleigh channel model to the double
Rice channel model for line-of-sight (LOS) propagation
environments. Furthermore, a variety of other realistic M2M
fading channel models based on the multiple scattering
concept [13] are available in the literature for both NLOS
and LOS propagation environments [9, 14]. The M2M
fading channel models for relay-based cooperative networks
proposed to date are for narrowband SISO fading channels.
Meaning thereby, the source mobile station, the mobile relay,
and the destination mobile station are equipped with only
one antenna. However, it is a well-established fact that the
gains in terms of channel capacity are larger for MIMO
channels as compared to SISO channels [15, 16]. This thus
calls for an extension of SISO M2M channel models to
MIMO M2M channel models, since such models facilitate
investigations pertaining to the channel capacity and the
system performance of cooperative networks with multiple
antenna models.

Another area that requires further attention is the
development of simulation models for MIMO M2M fading
channels in cooperative networks. Some techniques for
simulating narrowband SISO M2M fading channels in
noncooperative networks can be found in [17]. Various
studies have revealed that geometrical channel models
are a good starting point for deriving simulation models
for MIMO channels. Quite a lot of narrowband MIMO
channel models based on geometrical scattering models for
isotropic environments have been developed so far [18–25].
The design of geometry-based MIMO channel models for
nonisotropic scattering conditions is addressed in [26, 27],
whereas wideband MIMO channel models are discussed
in [28, 29]. The common feature in the works [18–29]
is that they model MIMO fixed-to-mobile (F2M) and/or
fixed-to-fixed (F2F) channels. The geometrical two-ring-
based model for MIMO F2M channels originally proposed
in [21] was extended to a narrowband MIMO M2M channel
model by Pätzold et al. [30]. Zajić and Stüber [31] have
reported on MIMO M2M reference and simulation models
under LOS propagation conditions. The geometrical street
model [32] and the geometrical T-junction model [33]
for MIMO M2M fading channels are worth mentioning.
All the geometry-based channel models mentioned to this
point in the current section are 2D channel models. There
are also Zajić and Stüber [34] who have successfully
expanded 2D MIMO M2M channel models to 3D models
based on geometrical cylinders. Nonetheless, to the best
of the authors’ knowledge, geometrical channel models
for MIMO M2M communication systems in cooperative
networks are an unexplored area. This in turn results in
a lack of proper reference and simulation models derived
from such geometrical models for MIMO M2M fading
channels.

Motivated by the need for proper MIMO M2M fading
channel models, we are addressing in this article modeling

and simulation approaches for such channels in amplify-
and-forward relay-type cooperative networks. Additionally,
there was not a single M2M channel model for cooperative
networks available in the literature, which assumes multiple
antennas on the source mobile station, the destination
mobile station, or the mobile relays. This gap in the
research propelled us to introduce a geometry-based model
for MIMO M2M channels in relay-based systems. The
scattering environment around the source mobile station,
the mobile relay, and the destination mobile station are
modeled by a geometrical three-ring scattering model.
The advanced geometrical three-ring scattering model is
an extension of the geometrical two-ring scattering model
presented in [30], where the source mobile station and
the destination mobile station are surrounded by rings
of scatterers. However, in the suggested extension of the
two-ring model to the three-ring model, we have a sep-
arate ring of scatterers around the mobile relay in addi-
tion to a ring around each source mobile station and
destination mobile station. For simplicity, the reference
model introduced in this article caters for MIMO M2M
fading channels under NLOS propagation conditions only.
Moreover, it is assumed that the direct transmission link
between the source mobile station and the destination
mobile station is blocked by obstacles. Since geometry-
based MIMO channel models are usually characterized by
their temporal as well as spatial correlation properties, we
explore the correlation properties of our devised three-
ring-based model here. It is noteworthy that while deriving
the temporal ACF of the relay links, the authors of [11]
took into consideration such propagation scenarios where
a stationary base station (BS) acts either as a source (i.e.,
transmitter) or a relay. It is usually supposed that the BS
is elevated and unobstructed. It is further believed that the
BS is not surrounded by local scatterers. This assumption
of the elevated BS makes [11] different from our work.
Additionally, we derive a stochastic simulation model from
the developed reference model. Finally, we discuss the
nonisotropic scattering scenario along with the isotropic one
as a special case and present closed-form expressions for the
correlation functions of the reference as well as simulation
models.

This article has the following structure. Section 2 intro-
duces briefly the geometrical three-ring scattering model
describing the transmission link from the source mobile
station to the destination mobile station via the mobile
relay. Based on the geometrical three-ring scattering model,
we develop the reference model for MIMO M2M fading
channels and study its correlation properties in Section 3. In
Section 6, we derive the stochastic simulation model from
the developed reference model. Section 4 deals with the
derivation of closed-form expressions for the correlation
functions describing the reference model under nonisotropic
scattering conditions. Section 5 shows the accuracy of the
stochastic simulation model by comparing its statistical
properties with those of the reference model. In this section,
we also confirm the validity of the closed-form expressions
obtained in Section 4. Finally, concluding remarks are given
in Section 7.
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2. The Geometrical Three-Ring Model

In this section, we extend the geometrical two-ring scattering
model proposed in [30] to a geometrical three-ring scatter-
ing model for narrowband MIMO M2M fading channels
in amplify-and-forward relay-type cooperative networks.
For ease of analysis, we have considered an elementary
2 × 2 × 2 antenna configuration, meaning thereby, the
source mobile station, the mobile relay, and the destination
mobile station are equipped with two antennas each. For
simplicity, NLOS propagation conditions have been taken
into account in all the transmission links. It is further
assumed that there is no direct transmission link from the
source mobile station to the destination mobile station.

Due to high path loss, the contribution of signal power
from remote scatterers to the total received power is usually
negligible. In this context, the recommended three-ring
scattering model only accommodates local scattering. A

total number of M local scatterers, that is, S(m)
S (m =

1, 2, . . . ,M) are positioned on a ring of radius RS around the

source mobile station, whereas N local scatterers S(n)
D (n =

1, 2, . . . ,N) lie around the destination mobile station on
a separate ring of radius RD. Besides, the local scatterers

S(k)
R (k = 1, 2, . . . ,K) and S(l)

R (l = 1, 2, . . . ,L) are located on a
third ring of radius RR around the mobile relay. The number
of local scatterers around the mobile relay is K = L. It should

be pointed out here that S(k)
R = S(l)

R for k = l. Throughout
this paper, the subscripts S, R, and D represent the source
mobile station, the mobile relay, and the destination mobile
station, respectively. As can be seen from Figure 1, the symbol

φ(m)
S denotes the angle of departure (AOD) of the mth

transmitted wave seen at the source mobile station, whereas
φ(n)

D represents the angle of arrival (AOA) of the nth received
wave at the destination mobile station. Furthermore, the
symbols φ(k)

S-R and φ(l)
R-D correspond to the AOA of the kth

received wave and the AOD of the lth transmitted wave at
the mobile relay, respectively. The mobile relay is positioned
at a distance DS-R and an angle γS with respect to the
source mobile station. While the location of the mobile relay
seen from the destination mobile station can be specified
by the distance DR-D and the angle γD. In addition, the
source mobile station and the destination mobile station
are a distance DS-D apart from each other. It is expected
that the inequalities max{RS,RR} � DS-R, max{RR,RD} �
DR-D, and max{RS,RD} � DS-D hold. The interelement
spacings at the source mobile station, the mobile relay, and
the destination mobile station antenna arrays are labeled
as δS, δR, and δD, respectively, where it is understood that
these quantities are smaller than the radii RS, RR, and RD,
that is, max{δS, δR, δD} � min{RS,RR,RD}. With respect
to the x-axis, the symbols βS, βR, and βD describe the tilt
angle of the antenna arrays at the source mobile station, the
mobile relay, and the destination mobile station, respectively.
Additionally, it is supposed that the source mobile station
(mobile relay, destination mobile station) moves with speed
vS (vR, vD) in the direction determined by the angle of
motion αS (αR,αD).

3. The Reference Model

3.1. Derivation of the Reference Model. In this section, we
develop a reference model for MIMO M2M fading chan-
nels in cooperative networks using the geometrical three-
ring scattering model shown in Figure 1. Ignoring for the
moment the geometrical details, Figure 1 can be simplified to
Figure 2, in order to understand the overall MIMO channel
from the source mobile station to the destination mobile
station via the mobile relay. Figure 2 shows that the complete
system can be separated into two 2 × 2 MIMO subsystems.
One of the MIMO subsystems (comprising the source mobile
station and mobile relay) is denoted by the S-R MIMO
subsystem. While the other MIMO subsystem (consisting
of the mobile relay and the destination mobile station) is
termed as the R-D MIMO subsystem. The input-output
relationship of the S-R MIMO subsystem can be expressed
as

X(t) = HS-R(t)S(t) + NR(t), (1)

where X(t) = [X(1)(t) X(2)(t)]
T

is a 2 × 1 received signal

vector at the mobile relay, S(t) = [S(1)(t) S(2)(t)]
T

is a 2 × 1
signal vector transmitted by the source mobile station, and

NR(t) = [N (1)
R (t) N (2)

R (t)]
T

is a 2×1 additive white Gaussian
noise (AWGN) vector. In (1), HS-R(t) is a 2 × 2 channel
matrix, which models the M2M fading channel between the
source mobile station and the mobile relay. The channel
matrix HS-R(t) can be expressed as

HS-R(t) =
⎛
⎝h

(11)
S-R (t) h(12)

S-R (t)

h(21)
S-R (t) h(22)

S-R (t)

⎞
⎠. (2)

Here, each element h
(iq)
S-R(t) (i, q = 1, 2) of the channel matrix

represents the diffuse component of the channel describing
the transmission link from the source mobile station antenna
element A

(q)
S to the mobile relay antenna element A(i)

R . Con-
sidering the geometrical three-ring scattering model shown
in Figure 1, it can be observed that the mth homogeneous

plane wave emitted from A
(q)
S , first encounters the local

scatterers S(m)
S around the source mobile station. Moreover,

before impinging on A(i)
R , the plane wave is captured by

the local scatterers S(k)
R around the mobile relay. It is worth

mentioning here that the reference model is based on the
assumption that the number of local scatterers, M and K ,
around the source mobile station and the mobile relay is

infinite. Following [30], the diffuse component h(11)
S-R (t) of the

transmission link from A(1)
S to A(1)

R can be approximated as

h(11)
S-R (t) = lim

M→∞
K→∞

1√
MK

M∑

m=1

K∑

k=1

g(mk)
S-R e j[2π( f (m)

S + f (k)
S-R )t+(θ(mk)

S-R +θS-R)]

(3)

with joint gains 1/
√
MK and joint phases θ(mk)

S-R caused by

the interaction of the local scatterers S(m)
S and S(k)

R . The joint

phases θ(mk)
S-R are considered to be independent and identically
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Figure 1: The geometrical three-ring scattering model for a 2× 2× 2 MIMO M2M channel with local scatterers on rings around the source
mobile station, the mobile relay, and the destination mobile station.
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Figure 2: A simplified diagram describing the overall MIMO M2M channel from the source mobile station to the destination mobile station
via the mobile relay.
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distributed (i.i.d.) random variables, each having a uniform
distribution over the interval [0, 2π]. In (3),

g(mk)
S-R = a(m)

S b(k)
R c(mk)

S-R , (4a)

a(m)
S = e j(π/λ)δS cos(φ(m)

S −βS), (4b)

b(k)
R = e j(π/λ)δR cos(φ(k)

S-R−βR), (4c)

c(mk)
S-R = e j(2π/λ){RS cos(φ(m)

S −γS)−RR cos(φ(k)
S-R−γS)}, (4d)

θS-R = −2π
λ

(RS + DS-R + RR), (4e)

f (m)
S = fSmax cos

(
φ(m)

S − αS

)
, (4f)

f (k)
S-R = fRmax cos

(
φ(k)

S-R − αR

)
, (4g)

where fSmax = vS/λ ( fRmax = vR/λ) is the maximum Doppler
frequency caused by the motion of the source mobile station
(mobile relay) and λ denotes the carrier’s wavelength. The
knowledge of the position of the mobile relay with respect to
the source mobile station is incorporated in (4d). It should
be pointed out here that in the reference model, the AOD

φ(m)
S , and the AOA φ(k)

S-R are independent random variables
determined by the distribution of the local scatterers around
the source mobile station and the mobile relay, respectively.

Replacing a(m)
S and b(k)

R by their complex conjugates a(m)∗
S

and b(k)∗
R in (4b) and (4c), respectively, we can obtain the

diffuse component h(22)
S-R (t) of the A(2)

S − A(2)
R transmission

link [30]. The diffuse components h(12)
S-R (t) and h(21)

S-R (t) can

be realized likewise by substituting a(m)
S → a(m)∗

S and b(k)
R →

b(k)∗
R , respectively, in (3) [30].

In the same way, it is evident from Figure 2 that the
input-output relationship of the R-D MIMO subsystem can
be written as

R(t) = HR-D(t)X(t) + ND(t), (5)

where R(t) = [R(1)(t) R(2)(t)]
T

is a 2 × 1 received
signal vector at the destination mobile station,

X(t) = [X(1)(t) X(2)(t)]
T

is a 2× 1 signal vector transmitted
by the mobile relay, HR-D(t) is a 2 × 2 R-D fading channel

matrix, and ND(t) = [N (1)
D (t) N (2)

D (t)]
T

is a 2 × 1 AWGN
vector. By referring to the previous discussion on the
elements of the matrix HS-R(t), one can easily show that the

diffuse component h(11)
R-D(t) of the A(1)

R − A(1)
D transmission

link can be expressed as

h(11)
R-D(t) = lim

L→∞
N→∞

1√
LN

L∑

l=1

N∑

n=1

g(ln)
R-De

j[2π( f (l)
R-D+ f (n)

D )t+(θ(ln)
R-D+θR-D)],

(6)

where the term 1/
√
LN and the symbol θ(ln)

R-D represent the
joint gains and joint phases, respectively, introduced by the

local scatterers S(l)
R and S(n)

D . Like the joint phases, θ(mk)
S-R ,

θ(ln)
R-D are assumed to be i.i.d. random variables as well,

each having a uniform distribution over the interval [0, 2π].
Furthermore, in (6),

g(ln)
R-D = a(l)

R b(n)
D c(ln)

R-D, (7a)

a(l)
R = e j(π/λ)δR cos(φ(l)

R-D−βR), (7b)

b(n)
D = e j(π/λ)δD cos(φ(n)

D −βD), (7c)

c(ln)
R-D = e j(2π/λ){RD cos(φ(n)

D −γD)−RR cos(φ(l)
R-D−γD)}, (7d)

θR-D = −2π
λ

(RR + DR-D + RD), (7e)

f (l)
R-D = fRmax cos

(
φ(l)

R-D − αR

)
, (7f)

f (n)
D = fDmax cos

(
φ(n)

D − αD

)
, (7g)

where fDmax = vD/λ is the maximum Doppler frequency
caused by the movement of the destination mobile station.
The symbol γD in (7d) refers to the position of the mobile
relay with respect to the destination mobile station (see

Figure 1). It is worth highlighting that the AOD φ(l)
R-D and the

AOA φ(n)
D are independent random variables. Also keep in

mind that φ(l)
R-D and φ(n)

D are determined by the distribution
of the local scatterers around the mobile relay and the
destination mobile station, respectively.

One can show that the diffuse components h
(iq)
R-D(t) (i, q =

1, 2) of the remaining transmission links from the mobile

relay antenna element A
(q)
R to the destination mobile station

antenna element A(i)
D can similarly be realized as described

for the A
(q)
S − A(i)

R transmission link.
Finally, substituting (1) in (5) allows us to identify the

overall fading channel between the source mobile station and
the destination mobile station as

R(t) = HR-D(t)HS-R(t)S(t) + HR-D(t)NR(t) + ND(t)

= HS-R-D(t)S(t) + NR-D(t),
(8)

where NR-D(t) = HR-D(t)NR(t) + ND(t) is the total noise of
the system. The symbol HS-R-D(t) denotes the overall channel
matrix, which is defined as follows:

HS-R-D(t) = HR-D(t)HS-R(t)

=
⎛
⎝h

(11)
R-D(t) h(12)

R-D(t)

h(21)
R-D(t) h(22)

R-D(t)

⎞
⎠
⎛
⎝h

(11)
S-R (t) h(12)

S-R (t)

h(21)
S-R (t) h(22)

S-R (t)

⎞
⎠

=
⎛
⎝h

(11)
S-R-D(t) h(12)

S-R-D(t)

h(21)
S-R-D(t) h(22)

S-R-D(t)

⎞
⎠.

(9)

It is noteworthy that the overall channel matrix HS-R-D(t)
describes completely the reference model of the proposed
geometrical three-ring MIMO M2M fading channel. Here,

each element h
(iq)
S-R-D(t) (i, q = 1, 2) of the channel matrix

defines the diffuse component of the overall MIMO M2M
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fading channel, describing the transmission link from the

source mobile station antenna element A
(q)
S to the destination

mobile station antenna element A(i)
D via the mobile relay

antenna elements. Expanding (9) allows us to explicitly write

the diffuse component h(11)
S-R-D(t) of the transmission link

from the first antenna element at the source mobile station,
A(1)

S , to the the first antenna element at the destination

mobile station, A(1)
D , as follows:

h(11)
S-R-D(t)

= h(11)
R-D(t)h(11)

S-R (t) + h(12)
R-D(t)h(21)

S-R (t)

= lim
K→∞
L→∞
M→∞
N→∞

2√
KLMN

K∑

k=1

L∑

l=1

M∑

m=1

N∑

n=1

a(m)
S b(n)

D c(mk)
S-R c(ln)

R-D�

{
b(k)

R a(l)
R

}

× e j[2π( f (m)
S + f

(k)
S-R + f

(l)
R-D+ f

(n)
D )t+(θ(mk)

S-R +θ(ln)
R-D+θS-R+θR-D)],

(10)

where�{b(k)
R a(l)

R } denotes the real part of a complex number,

that is, 2�{b(k)
R a(l)

R } = b(k)
R a(l)

R + b(k)∗
R a(l)∗

R . Note that
the phases θS-R and θR-D in (10) are constant quantities,
which can be set to zero without loss of generality since
the statistical properties of the reference model are not
influenced by a constant phase shift. Similarly, the diffuse

component h(22)
S-R-D(t) of the A(2)

S − A(2)
D transmission link can

be expressed as

h(22)
S-R-D(t)

= h(21)
R-D(t)h(12)

S-R (t) + h(22)
R-D(t)h(22)

S-R (t)

= lim
K→∞
L→∞
M→∞
N→∞

2√
KLMN

K∑

k=1

L∑

l=1

M∑

m=1

N∑

n=1

a(m)∗
S b(n)∗

D c(mk)
S-R c(ln)

R-D�

{
b(k)

R a(l)
R

}

× e− j[2π( f (m)
S − f (k)

S-R + f (l)
R-D− f (n)

D )t−(θ(mk)
S-R +θ(ln)

R-D+θS-R+θR-D)].
(11)

The equations (10) and (11) will be used in the next
subsection to calculate the 4D space-time CCF.

3.2. Correlation Properties of the Reference Model. By defini-
tion, the 4D space-time CCF between the transmission links

A(1)
S − A(1)

D and A(2)
S − A(2)

D is equivalent to the correlation
between the diffuse components h(11)

S-R-D(t) and h(22)
S-R-D(t), that

is, [26]

ρ11,22(δS, δR, δD, τ) := E
{
h(11)

S-R-D(t)h(22)∗
S-R-D(t + τ)

}
. (12)

It should be noticed here that the expectation operator is
applied to all random variables, that is, the random phase

shifts {θ(mk)
S-R , θ(ln)

R-D}, the AODs {φ(m)
S ,φ(l)

R-D}, and the AOAs

{φ(k)
S-R,φ(n)

D }. Substituting (10) and (11) in (12), the 4D space-
time CCF can be expressed as

ρ11,22(δS, δR, δD, τ)

= lim
K→∞
M→∞
L→∞
N→∞

4
KLMN

K∑

k=1

L∑

l=1

M∑

m=1

N∑

n=1

E
{
a(m)2

S b(n)2
D

[
�

{
b(k)

R a(l)
R

}]2

×e− j2π( f (m)
S + f (k)

S-R + f (l)
R-D+ f (n)

D )τ
}
.

(13)

It is important to highlight, here, the functions of random
variables to which the expectation is applied. We can see
that {a(m)

S , f (m)
S } and {a(l)

R , f (l)
R-D} are functions of the AODs

φ(m)
S and φ(l)

R-D, respectively. While {b(k)
R , f (k)

S-R} and {b(n)
D , f (n)

D }
are functions of the AOAs φ(k)

S-R and φ(n)
D , respectively [30].

If the number of local scatterers approaches infinity, that is,

K ,L,M,N → ∞, then the discrete random variables φ(m)
S ,

φ(k)
S-R, φ(l)

R-D, and φ(n)
D become continuous random variables

φS, φS-R, φR-D, and φD, each of which is characterized
by a certain distribution, denoted by pφS (φS), pφS-R (φS-R),
pφR-D (φR-D), and pφD (φD), respectively, [30]. The infinitesimal
power of the diffuse components corresponding to the
differential angles dφS, dφS-R, dφR-D, and dφD is proportional
to pφS (φS)pφS-R (φS-R)pφR-D (φR-D)pφD (φD)dφSdφS-RdφR-DdφD.
This implies that when the number of local scatterers
approaches infinity, that is, K ,L,M,N → ∞, the infinites-
imal power of all diffuse components becomes equal to
1/(KLMN), that is,

1
KLMN

= pφS

(
φS
)
pφS-R

(
φS-R

)
pφR-D

(
φR-D

)

× pφD

(
φD
)
dφSdφS-RdφR-DdφD.

(14)

Thus, we can write the 4D space-time CCF ρ11,22(δS, δR,
δD, τ) of the reference model given in (13) as

ρ11,22(δS, δR, δD, τ) = ρS(δS, τ) · ρR(δR, τ) · ρD(δD, τ),
(15)

where

ρS(δS, τ) =
∫ π

−π
a2

S

(
δS,φS

)
e− j2π fS(φS)τ pφS

(
φS
)
dφS, (16)

ρR(δR, τ) = 4
∫∫ π

−π
e− j2π[ fS-R(φS-R)+ fR-D(φR-D)]τ

× [�{bR
(
δR,φS-R

)
aR
(
δR,φR-D

)}]2

× pφS-R

(
φS-R

)
pφR-D

(
φR-D

)
dφS-RdφR-D,

(17)

ρD(δD, τ) =
∫ π

−π
b2

D

(
δD,φD

)
e− j2π fD (φD)τ pφD

(
φD
)
dφD (18)



EURASIP Journal on Advances in Signal Processing 7

are the CFs at the source mobile station, mobile relay, and the
destination mobile station. Here,

aS
(
δS,φS

) = e j(π/λ)δS cos(φS−βS), (19a)

bR
(
δR,φS-R

) = e j(π/λ)δR cos(φS-R−βR), (19b)

aR
(
δR,φS-R

) = e j(π/λ)δR cos(φR-D−βR), (19c)

bD
(
δD,φD

) = e j(π/λ)δD cos(φD−βD), (19d)

fS
(
φS
) = fSmax cos

(
φS − αS

)
, (19e)

fS-R
(
φS-R

) = fRmax cos
(
φS-R − αR

)
, (19f)

fR-D
(
φR-D

) = fRmax cos
(
φR-D − αR

)
, (19g)

fD
(
φD
) = fDmax cos

(
φD − αD

)
. (19h)

In this article, we refer to the CF at the source mobile station
ρS(δS, τ) as the source CF. Likewise, the CF at the mobile relay
(destination mobile station) ρS(δR, τ) (ρS(δD, τ)) is termed as
the relay CF (destination CF). Equation (15) illustrates that
the 4D space-time CCF ρ11,22(δS, δR, δD, τ) of the reference
model can be expressed as the product of the source CF
ρS(δS, τ), the relay CF ρR(δR, τ), and the destination CF
ρD(δD, τ). Besides, from (16) and (18), it turns out that the
source mobile station and the destination mobile station are
interchangeable.

The 3D spatial CCF ρ(δS, δR, δD), defined as ρ(δS, δR,

δD) = E{h(11)
S-R-D(t)h(22)∗

S-R-D(t)}, is equal to the 4D space-time
CCF ρ11,22(δS, δR, δD, τ) at τ = 0, that is,

ρ(δS, δR, δD) = ρ11,22(δS, δR, δD, 0)

= ρS(δS, 0) · ρR(δR, 0) · ρD(δD, 0).
(20)

The temporal ACF r
h

(iq)
S-R-D

(τ) of the diffuse component

h
(iq)
S-R-D(t) of the transmission link from the source mobile

station antenna element A
(q)
S to the destination mobile

station antenna element A(i)
D , for all i,q ∈ {1, 2} can be given

as

r
h

(iq)
S-R-D

(τ) := E
{
h

(iq)
S-R-D(t)h

(iq)∗

S-R-D(t + τ)
}
. (21)

It is not difficult to show that the temporal ACF r
h

(iq)
S-R-D

(τ),

for all i,q ∈ {1, 2} is equal to the 4D space-time CCF
ρ11,22(δS, δR, δD, τ) of the reference model at δS = δR = δD =
0, that is,

r
h

(iq)
S-R-D

(τ) = ρ11,22(0, 0, 0, τ)

= ρS(0, τ) · ρR(0, τ) · ρD(0, τ).
(22)

Substituting δS = 0, δR = 0, and δD = 0 in (16), (17),
and (18), respectively, gives ρS(0, τ), ρR(0, τ), and ρD(0, τ),

respectively, as

ρS(0, τ) =
∫ π

−π
e− j2π fS(φS)τ pφS

(
φS
)
dφS, (23)

ρR(0, τ) = 4
∫∫ π

−π
e− j2π[ fS-R(φS-R)+ fR-D(φR-D)]τ

× pφS-R

(
φS-R

)
pφR-D

(
φR-D

)
dφS-RdφR-D,

(24)

ρD(0, τ) =
∫ π

−π
e− j2π fD (φD)τ pφD

(
φD
)
dφD. (25)

The reference model developed in Section 3 is a theo-
retical model, which is based on the assumption that the
number of local scatterers (K ,L,M,N) around the source
mobile station, the mobile relay, and the destination mobile
station is infinite. The assumption of an infinite number
of local scatterers prevents the realization of the reference
model. However, a realizable stochastic simulation model
can be derived from the reference model by: (i) using only
a limited number of local scatterers K = L, M, and N is
finite, (ii) setting the constant phase shifts θS-R and θR-D to

zero in (10), and (iii) considering the discrete AOD φ(m)
S

and φ(l)
R-D, as well as the AOA φ(k)

S-R and φ(n)
D are constant

quantities [30]. Thus, using (10), the diffuse component

ĥ(11)
S-R-D(t)(throughout this paper, the caret is used for the

stochastic simulation model) of the A(1)
S − A(1)

D transmission
link of the stochastic simulation model can be expressed as

ĥ(11)
S-R-D(t)

= 2√
KLMN

K∑

k=1

L∑

l=1

M∑

m=1

N∑

n=1

a(m)
S b(n)

D c(mk)
S-R c(ln)

R-D�

{
b(k)

R a(l)
R

}

× e j[2π{ f (m)
S + f (k)

S-R + f (l)
R-D+ f (n)

D }t−θ(mk)
S-R −θ(ln)

R-D].
(26)

In the same way, the diffuse component ĥ(22)
S-R-D(t) of the A(2)

S −
A(2)

D transmission link in the stochastic simulation model can
be expressed as

ĥ(22)
S-R-D(t)

= 2√
KLMN

K∑

k=1

L∑

l=1

M∑

m=1

N∑

n=1

a(m)∗
S b(n)∗

D c(mk)
S-R c(ln)

R-D�

{
b(k)

R a(l)
R

}

× e j[2π{ f (m)
S + f

(k)
S-R + f

(l)
R-D+ f

(n)
D }t−θ(mk)

S-R −θ(ln)
R-D].
(27)

The 4D space-time CCF of the diffuse components ĥ(11)
S-R-D(t)

and ĥ(22)
S-R-D(t) of the stochastic simulation model is defined by

ρ̂11,22(δS, δR, δD, τ) := E
{
ĥ(11)

S-R-D(t)ĥ(22)∗
S-R-D(t + τ)

}
, (28)
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where the expectation operator now only applies on the

random phases θ(mk)
S-R and θ(ln)

R-D. The substitution of (26) and
(27) in (28) results in the following closed-form expression:

ρ̂11,22(δS, δR, δD, τ)

= 4
KLMN

K∑

k=1

L∑

l=1

M∑

m=1

N∑

n=1

a(m)2
S b(n)2

D

(
�

{
b(k)

R a(l)
R

})2

× e− j2π{ f (m)
S + f (k)

S-R + f (l)
R-D+ f (n)

D }τ

= ρ̂S(δS, τ) · ρ̂R(δR, τ) · ρ̂D(δD, τ),

(29)

where

ρ̂S(δS, τ) = 1
M

M∑

m=1

a(m)2
S (δS)e− j2π f (m)

S τ , (30)

ρ̂R(δR, τ) = 4
KL

K∑

k=1

L∑

l=1

(
�

{
b(k)

R a(l)
R

})2
e− j2π[ f (k)

S-R + f (l)
R-D]τ ,

(31)

ρ̂D(δD, τ) = 1
N

N∑

n=1

b(n)2
D (δD)e− j2π f (n)

D τ (32)

are called the source CF, the relay CF, and the destination CF
of the simulation model.

The 3D spatial CCF ρ̂(δS, δR, δD) of the simulation model,
defined as

ρ̂(δS, δR, δD) = E
{
ĥ(11)

S-R-D(t)ĥ(22)∗
S-R-D(t)

}
(33)

is equal to the 4D space-time CCF ρ̂11,22(δS, δR, δD, τ) at
τ = 0, that is,

ρ̂(δS, δR, δD) = ρ̂11,22(δS, δR, δD, 0)

= ρ̂S(δS, 0) · ρ̂R(δR, 0) · ρ̂D(δD, 0).
(34)

In the stochastic simulation model, the temporal ACF

r̂
h

(iq)
S-R-D

(τ) of the diffuse component ĥ
(iq)
S-R-D(t) of the A

(q)
S − A(i)

D

transmission link can be derived as follows:

r̂
h

(iq)
S-R-D

(τ) := E
{
ĥ

(iq)
S-R-D(t)ĥ

(iq)∗

S-R-D(t + τ)
}

= 1
KLMN

K∑

k=1

L∑

l=1

M∑

m=1

N∑

n=1

e− j2π{ f (m)
S + f (k)

S-R + f (l)
R-D+ f (n)

D }τ

= ρ̂S(0, τ) · ρ̂R(0, τ) · ρ̂D(0, τ) ∀i, q ∈ {1, 2}.
(35)

From (35), it can be seen that the temporal ACF r̂
h

(iq)
S-R-D

(τ)

is equal to the 4D space-time CCF ρ̂11,22(δS, δR, δD, τ) of the
simulation model at δS = δR = δD = 0, that is, r̂

h
(iq)
S-R-D

(τ) =
ρ̂11,22(0, 0, 0, τ).

4. Scattering Scenarios

This section studies the correlation properties of the ref-
erence model under nonisotropic scattering conditions. In
order to characterize nonisotropic scattering around the
source mobile station (destination mobile station), we have
utilized the von Mises distribution for the AOD φS (AOA φD),
that is,

pφS

(
φS
) = 1

2π I0(κS)
eκS cos(φS−φ(0)

S ), φS ∈ [0, 2π),

(36)

where I0(·) is the modified Bessel function of the first kind
of order zero, the parameter φ(0)

S (φ(0)
D ) ∈ [0, 2π) is the mean

AOD (AOA), and the parameter κS (κD) ≥ 0 controls the
angular spread of φS (φD). Similarly, nonisotropic scattering
around the mobile relay can be defined by the von Mises
distribution of the AOA φS-R along with the von Mises
distribution of the AOD φR-D over [0, 2π). Hence, the
distributions pφS-R (φS-R) and pφR-D (φR-D) can be obtained by
replacing the index S by S-R and R-D in (36), respectively.
The reason for using the von Mises distribution is its
flexibility to closely approximate the Gaussian distribution
and the cardioid distribution as well as to include the
uniform distribution as a special case [35]. Moreover,
Abdi et al. [36] made a proposition of employing the
von Mises distribution to model AOA statistics of mobile
radio fading channels. They supported their proposal by
matching the von Mises distribution to the measured data.
Substituting (36) in (16) and using [37, Equations (3.338–
4)] results in the following closed-form expression for
the source CF:

ρS(δS, τ)

= 1
I0(κS)

I0

×
([

κ2
S−4π2

{(
δS

λ

)2

+
(
fSmaxτ

)2−2
δS

λ
fSmaxτ cos

(
αS−βS

)
}

+ j4πκS

{
δS

λ
cos
(
βS−φ(0)

S

)
− fSmaxτ cos

(
αS−φ(0)

S

)}]1/2
)
.

(37)

The destination CF ρD(δD, τ) can easily be realized by
replacing the index S by D in (37).

Likewise, substituting the von Mises distribution for
the AOA φS-R and the AOD φR-D in (17) and solving the
integrals using [37, Equations (3.338-4)], provides us with
the closed-form solution for the relay CF ρR(δR, τ) as given in
(38).

Substituting (37), (38), and the closed-form expression
of ρD(δD, τ) in (15) results in the 4D space-time CCF
ρ11,22(δS, δR, δD, τ) of the reference model in a closed form.
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ρR(δR, τ) =
(

1
(I0(κS-R)I0(κR-D))

)

×
[
I0

([
κ2

S-R − 4π2

{(
δR

λ

)2

+
(
fRmaxτ

)2 − 2
δR

λ
fRmaxτ cos

(
αR − βR

)
}

+ j4πκS-R

{
δR

λ
cos
(
βR − φ(0)

S-R

)
− fRmaxτ cos

(
αR − φ(0)

S-R

)}]1/2
)

× I0

([
κ2

R-D − 4π2

{(
δR

λ

)2

+
(
fRmaxτ

)2 − 2
δR

λ
fRmaxτ cos

(
αR − βR

)}

+ j4πκR-D

{
δR

λ
cos
(
βR − φ(0)

R-D

)
− fRmaxτ cos

(
αR − φ(0)

R-D

)}]1/2
)

+ I0

([
κ2

S-R − 4π2 f 2
Rmax

τ2 − j4πκS-R fRmaxτ cos
(
αR − φ(0)

S-R

)]1/2
)

× I0

([
κ2

R-D − 4π2 f 2
Rmax

τ2 − j4πκR-D fRmaxτ cos
(
αR − φ(0)

R-D

)]1/2
)

+ I0

([
κ2

S-R − 4π2

{(
δR

λ

)2

+
(
fRmaxτ

)2 + 2
δR

λ
fRmaxτ cos

(
αR − βR

)}

− j4πκS-R

{
δR

λ
cos
(
βR − φ(0)

S-R

)
+ fRmaxτ cos

(
αR − φ(0)

S-R

)}]1/2
)

× Io

([
κ2

R-D − 4π2

{(
δR

λ

)2

+
(
fRmaxτ

)2 + 2
δR

λ
fRmaxτ cos

(
αR − βR

)
}

− j4πκR-D

{
δR

λ
cos
(
βR − φ(0)

R-D

)
+ fRmaxτ cos

(
αR − φ(0)

R-D

)}]1/2
)]

.

(38)

Note that the von Mises distribution reduces to the
uniform distribution for κS = κS-R = κR-D = κD =
0. This implies that setting the respective κ’s to zero
reduces (37) and (38) to the CFs (i.e., [38, equation
(27)] and [38, Equation (28)], respectively), derived for
isotropic scattering conditions. From the 4D space-time
CCF ρ11,22(δS, δR, δD, τ) of the reference model derived
for isotropic scattering conditions, it follows that the
3D spatial CCF ρ(δS, δR, δD) of the reference model is a
product of four Bessel functions, that is, ρ(δS, δR, δD) =
ρ11,22(δS, δR, δD, 0) = J0(2πδS/λ){2J0(2πδR/λ)}2J0(2πδD/λ).
In the same way, the temporal ACF r

h
(iq)
S-R-D

(τ) of the reference

model can be written as r
h

(iq)
S-R-D

(τ) = ρ11,22(0, 0, 0, τ) =
J0(2π fSmaxτ){2J0(2π fRmaxτ)}2 J0(2π fDmaxτ). A product of two
Bessel functions describes the 2D spatial CCF and the
temporal ACF of the reference model derived from a
geometrical two-ring scattering model [30]. For the 3D
spatial CCF and the temporal ACF of the reference model
derived from a geometrical three-ring scattering model,
a product of four Bessel functions is justified, since
the geometrical three-ring scattering model is a concate-
nation of two separate geometrical two-ring scattering
models.

5. Numerical Results

The purpose of this section is to illustrate the important
theoretical results found for the CCFs of the reference
model and the stochastic simulation model by evaluating
the expressions in (16), (18), (30), and (32). Here, we focus
on discussing numerical results for the source CFs and the
relay CFs. The results for the destination CFs can easily be
obtained from the source CFs just by replacing the index S
by D. As a performance criterion, we consider the absolute
error eS(δS, τ) = |ρS(δS, τ) − ρ̂S(δS, τ)| as a measure for the
quality of the approximation ρS(δS, τ) ≈ ρ̂S(δS, τ). Similarly,
the absolute error eR(δR, τ) = |ρR(δR, τ) − ρ̂R(δR, τ)| has
been introduced to study the amount of precision of the
approximation ρR(δR, τ) ≈ ρ̂R(δR, τ). The selected values for
the parameters influencing the CFs are: βS = βR = π/2,
αS = π/4, αR = 0, and fSmax = fRmax = 91 Hz. The wavelength
λ was set to λ = 0.15 m.

6. The Stochastic Simulation Model

For the stochastic simulation model, an appropriate number
of discrete scatterers M and K (L) located on the rings
around the source mobile station and the mobile relay,
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Figure 3: The source CF ρS(δS, τ) of the 2 × 2 × 2 MIMO M2M
reference channel model under isotropic scattering conditions.
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Figure 4: The source CF ρ̂S(δS, τ) of the 2 × 2 × 2 MIMO M2M
stochastic channel simulator under isotropic scattering conditions.

respectively, should be selected. In our simulations, we have
chosen M = 40 and K = L = 23. A good solution
to the parameter computation problem in M2M fading
channel simulators in case of isotropic scattering is advanced
in [30], where the authors have suggested the extended
method of exact Doppler spread (EMEDS). Whereas, in case
of nonisotropic scattering, a high-performance parameter
computation method is the modified method of equal areas
(MMEA) [39]. Since the MMEA reduces to the EMEDS in
case of isotropic scattering [30], we have used the MMEA for

computing the AODs φ(m)
S and φ(l)

R-D as well as the AOA φ(k)
S-R.

Figures 3–8 bring to light the numerical results associated
with isotropic scattering conditions. Figure 3 demonstrates
the shape of the source CF ρS(δS, τ) of the reference model
determined by (37) when κS = 0, whereas the simulation
model’s source CF ρ̂S(δS, τ) is displayed in Figure 4. The
absolute error eS(δS, τ), presented in Figure 5, shows the
quality of the approximation ρS(δS, τ) ≈ ρ̂S(δS, τ). The shape
of the relay CF ρR(δR, τ) of the reference model given by (38)
when κR = 0 and the simulation model’s relay CF ρ̂R(δR, τ)
are exhibited in Figures 6 and 7, respectively. A careful
study of the absolute error eR(δR, τ) in Figure 8 reveals the
ranges of δR/λ and τ · fRmax with an excellent approximation
ρR(δR, τ) ≈ ρ̂R(δR, τ). When δR/λ is confined in the range
[0, (K = L)/8], then the approximation ρR(δR, τ) ≈ ρ̂R(δR, τ)
is very accurate. On the other hand, for δR = 0 with τ · fRmax
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Figure 5: Absolute error eS(δS, τ) = |ρS(δS, τ) − ρ̂S(δS, τ)| by using
the MMEA with M = 40 (isotropic scattering).

0

0

0

0.5

1

1.5

2

1

2

3

1
2

3

3

4

2.5

τ · fRmax

δR /λ

R
el

ay
co

rr
el

at
io

n

fu
n

ct
io

n
,ρ

R
(δ

R
,τ

)

Figure 6: The relay CF ρR(δR, τ) of the 2 × 2 × 2 MIMO M2M
reference channel model under isotropic scattering conditions.
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Figure 7: The relay CF ρ̂R(δR, τ) of the 2 × 2 × 2 MIMO M2M
stochastic channel simulator under isotropic scattering conditions.

in the range [0, (K = L)/8], the absolute error eR(δR, τ) is
almost zero.

Figures 9–14 elucidate the results in case of nonisotropic
scattering. As mentioned in Section 4, the von Mises dis-
tribution has been employed to characterize nonisotropic
scattering around the source mobile station (destination
mobile station) and the mobile relay. In our simulations,
the parameters of the von Mises distribution were set as
φ(0)

S = φ(0)
S-R = φ(0)

R-D = 60◦ and κS = κS-R = κR-D = 40.
Figure 9 has been included here to get a clear picture of the
absolute value of the reference model’s source CF |ρS(δS, τ)|



EURASIP Journal on Advances in Signal Processing 11

0

0

0

0.5

0.5

1.51.5
1

1
2

2

3

3

2.5

2.5

0.1
0.2
0.3
0.4
0.5
0.6

τ · fRmax
δR /λ

A
bs

ol
u

te
er

ro
r,

e R
(δ

R
,τ

)

Figure 8: Absolute error eR(δR, τ) = |ρR(δR, τ)− ρ̂R(δR, τ)| by using
the MMEA with K = L = 23 (isotropic scattering).
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Figure 9: Absolute value of the source CF |ρS(δS, τ)| of the 2 ×
2 × 2 MIMO M2M reference channel model under nonisotropic
scattering conditions (von Mises density with φ(0)

S = 60◦ and κS =
40).

0

0

1

1

2
23 3

4

4

5

5

0

0.2

0.4

0.6

0.8

1

τ · fSmax
δS /λ

Tr
an

sm
it

co
rr

el
at

io
n

fu
n

ct
io

n
, |ρ̂

S
(δ

S
,τ

)|

Figure 10: Absolute value of the source CF |ρ̂S(δS, τ)| of the 2×2×2
MIMO M2M stochastic channel simulator designed by applying the
MMEA with M = 40 (nonisotropic scattering, von Mises density
with φ(0)

S = 60◦ and κS = 40).

given in (37), whereas Figure 10 provides information about
the absolute value of the simulation model’s source CF
|ρ̂S(δS, τ)|. The absolute error eS(δS, τ) in Figure 11 shows
that the approximation ρS(δS, τ) ≈ ρ̂S(δS, τ) holds for
nonisotropic scattering as well. The error function eS(δS, τ)
shows a ripple effect, where the maximum value of this error
function is in the orders of 3·10−2. It has been recommended
in the literature to utilize the Lp-norm method (LPNM) [40]
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Figure 11: Absolute error eS(δS, τ) = |ρS(δS, τ) − ρ̂S(δS, τ)| by
using the MMEA with M = 40 (nonisotropic scattering, von Mises
density with φ(0)

S = 60◦ and κS = 40).

0

0

0

0.5

0.5

1.51.5
1

1
2

2

3

3

2.5

2.5

1

2

3

4

τ · fRmax
δR /λ

R
el

ay
co

rr
el

at
io

n

fu
n

ct
io

n
,|ρ

R
(δ

R
,τ

)|

Figure 12: Absolute value of the relay CF |ρR(δR, τ)| of the 2 ×
2 × 2 MIMO M2M reference channel model under nonisotropic
scattering conditions (von Mises density with φ(0)

S-R = φ(0)
R-D = 60◦

and κS-R = κR-D = 40).

for computing the simulation model parameters when the
AODs are non-uniformly distributed on the rings around
the source mobile station [30]. The successful application of
the LPNM for minimizing the error function of the one-ring
model parameters and the two-ring model parameters can be
found in [19] and [20], respectively. It is, therefore, believed
that the LPNM is equally beneficial for the computation
of the three-ring model parameters under nonisotropic
scattering conditions. The absolute value of the reference
model’s relay CF |ρR(δR, τ)| (see (38)) and the absolute
value of the simulation model’s source CF |ρ̂R(δR, τ)| (see
(31)) are shown in Figures 12 and 13, respectively. The
measure of the quality of the approximation ρR(δR, τ) ≈
ρ̂R(δR, τ), that is, the absolute error eR(δR, τ) is illustrated
in Figure 14. It can be seen in Figure 14 that the maximum
value of eR(δR, τ) is less than 10−1. The same arguments given
for minimizing eS(δS, τ) by using the LPNM are valid for
minimizing eR(δR, τ).

7. Conclusion

In this article, we have derived a reference model and
a stochastic simulation model for narrowband MIMO
M2M fading channel for relay-based cooperative networks.



12 EURASIP Journal on Advances in Signal Processing

0

0

0

0.5

0.5

1.51.5
1

1
2

2

3

3

2.5

2.5

1

2

3

4

τ · fRmax
δR /λ

R
el

ay
co

rr
el

at
io

n

fu
n

ct
io

n
,|ρ̂

R
(δ

R
,τ

)|
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2 MIMO M2M stochastic channel simulator designed by applying
the MMEA with K = L = 23 (nonisotropic scattering, von Mises
density with φ(0)
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Figure 14: Absolute error eR(δR, τ) = |ρR(δR, τ) − ρ̂R(δR, τ)| by
using the MMEA with K = L = 23 (nonisotropic scattering, von
Mises density with φ(0)

S-R = φ(0)
R-D = 60◦ and κS-R = κR-D = 40).

The starting point for deriving the reference model was
the geometrical three-ring scattering model, where it is
assumed that the local scatterers are located on rings
around the source mobile station, the mobile relay, and
the destination mobile station. Furthermore, the suggested
three-ring scattering model came out to be a concatenation
of two separate two-ring scattering models. General ana-
lytical formulas along with exact closed-form expressions
for the source (destination) CF and the relay CF specific
to nonisotropic scattering have been presented. The results
show that various CCFs describing the simulation model
closely approximate the corresponding CCFs of the reference
model. The developed channel simulator is useful for
analyzing the dynamic behavior of the MIMO channel
capacity of relay-based M2M communication systems. In
addition, the proposed geometrical three-ring scattering
model for narrowband MIMO M2M fading channels is the
groundwork towards the development and analysis of new
channels models for wideband MIMO M2M fading channels
in cooperative networks.
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