
A Learning Automata Based Solution to Service

Selection in Stochastic Environments�

Anis Yazidi1, Ole-Christoffer Granmo1, and B. John Oommen2,��

1 Dept. of ICT, University of Agder, Grimstad, Norway
2 School of Computer Science, Carleton University, Ottawa, Canada

Abstract. With the abundance of services available in today’s world,
identifying those of high quality is becoming increasingly difficult. Rep-
utation systems can offer generic recommendations by aggregating user
provided opinions about service quality, however, are prone to “ballot
stuffing” and “badmouthing”. In general, unfair ratings may degrade
the trustworthiness of reputation systems, and changes in service quality
over time render previous ratings unreliable.

In this paper, we provide a novel solution to the above problems based
on Learning Automata (LA), which can learn the optimal action when
operating in unknown stochastic environments. Furthermore, they com-
bine rapid and accurate convergence with low computational complexity.
In additional to its computational simplicity, unlike most reported ap-
proaches, our scheme does not require prior knowledge of the degree of
any of the above mentioned problems with reputation systems. Instead,
it gradually learns which users provide fair ratings, and which users pro-
vide unfair ratings, even when users unintentionally make mistakes.

Comprehensive empirical results show that our LA based scheme ef-
ficiently handles any degree of unfair ratings (as long as ratings are bi-
nary). Furthermore, if the quality of services and/or the trustworthiness
of users change, our scheme is able to robustly track such changes over
time. Finally, the scheme is ideal for decentralized processing. Accord-
ingly, we believe that our LA based scheme forms a promising basis for
improving the performance of reputation systems in general.

Keywords: Reputation Systems, Learning Automata, Stochastic Opti-
mization.

1 Introduction

With the abundance of services available in today’s world, identifying those
of high quality is becoming increasingly difficult. “Reputation Systems” (RSs)

� This work was partially supported by NSERC, the Natural Sciences and Engineering
Research Council of Canada.

�� Chancellor’s Professor; Fellow : IEEE and Fellow : IAPR. The Author also holds an
Adjunct Professorship with the Dept. of ICT, University of Agder, Norway.

N. Garćıa-Pedrajas et al. (Eds.): IEA/AIE 2010, Part III, LNAI 6098, pp. 209–218, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

210 A. Yazidi, O.-C. Granmo, and B.J. Oommen

attracted a lot of attention during the last decade in the academia as well as in
the industry. RSs have also emerged as an efficient approach to handle trust in
online services, and can be used to collect information about the performance of
services in the absence of direct experience.

In this paper we intend to study how experiences can be shared between
users in a social network, where the medium of collaboration is a RS. The basic
premise, of course, is that it is possible for users to expediently obtain knowledge
about the nature, quality and drawbacks of specific services by considering the
experiences of other users. The above premise is true if the basis of the decision
is accurate, up-to-date and fair. In fact, the social network and the system itself
might contain misinformed/deceptive users who provide either unfair positive
ratings about a subject or service, or who unfairly submit negative ratings. Such
“deceptive” agents, who may even submit their inaccurate ratings innocently,
have the effect that they mislead a RS that is based on blindly aggregating
users’ experiences. Furthermore, when the quality of services and the nature of
users change over time, the challenge is further aggravated.

Finding ways to counter the detrimental influence of unfair ratings on a RS
has been a focal concern of a number of studies [1,2,3]. Dellarocas [1] used ele-
ments from collaborative filtering to determine the nearest neighbors of an agent
that exhibited similar ratings on commonly-rated subjects. He then applied a
cluster filtering approach to filter out the most likely unfairly positive ratings.
Sen and Sajja [2] proposed an algorithm to select a service provider to pro-
cess a task by querying other user agents about their ratings of the available
service providers. The main idea motivating their work is to select a subset
of agents, who when queried, maximizes the probability that the majority of
the queried agents provide correct reputation estimates. However, comprehen-
sive experimental tests show that their approach is prone to the variation of
the ratio of deceptive agents. In contrast, in [4], Witby and Jøsang presented a
Bayesian approach to filter out dishonest feedback based on an iterated filter-
ing approach. The authors of [5] proposed a probabilistic model to assess peer
trustworthiness in P2P networks. Their model, which in one sense is similar to
ours, differs from the present work because the authors of [5] assume that a peer
can deduce the trustworthiness of other peers by comparing its own performance
with reports of other peers about itself. Though such an assumption permits a
feedback-evaluating mechanism, it is based on the fact that peers provide ser-
vices to one another, thus permitting every party the right to play the role of
a service provider and the service consumer (a reporting agent). Our approach,
which we briefly describe in the next section makes a clear distinction between
these parties – the service provider and the reporting

In this paper, we provide a novel solution to the above problems based on
Learning Automata, which can learn the optimal action when operating in
unknown stochastic environments [6]. Furthermore, they combine rapid and
accurate convergence with low computational complexity. In additional to its
computational simplicity, unlike most reported approaches, our scheme does not
require prior knowledge of the degree of any of the above mentioned problems

A LA Based Solution to Service Selection in Stochastic Environments 211

with RSs. Rather, it adaptively, and in an on-line manner, gradually learns the
identity and characteristics of the users who provide fair ratings, and of those
which provide unfair ratings, even when these are a consequence of them making
unintentional mistakes.

Unlike most existing reported approaches that only consider the feedback
from “fair” agents as being informative, and which simultaneously discard the
feedback from “unfair” agents, in our work we attempt to intelligently combine
(or fuse) the feedback from fair and deceptive agents when evaluating the per-
formance of a service. Moreover, we do not impose the constraint that we need a
priori knowledge about the ratio of deceptive agents. Consequently, unlike most
of existing work, that suffer from a decline in the performance when the ratio
of deceptive agents increases, our scheme is robust to the variation of this ratio.
This characteristic phenomenon of our scheme is unique.

2 Modeling the Problem

Consider a population of L services (or service providers), S = {S1, S2, . . . , SL}.
We also assume that the social network (or pool of users) consists of N parties
(synonymously called “agents”) U = {u1, u2, . . . , uN}. Each service Sl has an
associated quality, which, in our work is represented by an “innate” probability
of the service provider performing exceptionally well whenever its service is re-
quested by an agent. This probability is specified by the quantity θl, assumed
to be unknown to the users/agents. For a given interaction instance between
user agent ui and service Sl, let xil denote the performance value, which, for the
sake of formalism, is assumed to be generated from a distribution referred to
as the Performance Distribution of Sl. After the service has been provided, the
user/agent ui observes the performance xil, where xil ∈ {0, 1}. We assume that
‘0’ denotes the lowest performance of the service, while ‘1’ denotes its highest
performance.

At this juncture, after the agent has experienced the quality of the service, he
communicates his experience to the rest of the network. Let yil be the report that
he transmits to other agents after he experiences xil. Obviously1, yil ∈ {0, 1}. To
do this, we assume that agent ui communicates his experience, xil, truthfully to
other agents in the population, with a probability pi. In other words, pi denotes
the probability that agent ui is not misreporting his experience. For ease of
notation, we let qi = 1− pi, which represents the probability that agent ui does
indeed misreport his experience. Clearly, pi = Prob(xil = yil).

Observe that as a result of this communication model, a “deceptive” agent
will probabilistically tend to report low performance experience values for high
performance services and vice versa. Our aim is to partition the agents as being
true/fair or deceptive.

Formally, the Agent-Type Partitioning Problem (ATPP), can be stated as
follows: A social network consists of N agents, U = {u1, u2, . . . , uN}, where each
1 We mention, in passing, that other researchers, have used the notation yil to signify

the rating of the service.

212 A. Yazidi, O.-C. Granmo, and B.J. Oommen

agent ui is characterized by a fixed but unknown probability pi of him reporting
his experience truthfully. The ATPP involves partitioning U into 2 (mutually
exclusive and exhaustive) groups so as to obtain a 2-partition Gk = {Gi |i =
1, 2}, such that each group, Gi, of size, Ni, exclusively contains only the agents
of its own type, i.e., which either communicate truthfully or deceptively.

To simplify the problem, we assume that every pi can assume one of two
possible values from the set {pd, pf}, where pd < 0.5 and pf > 0.5. Then, agent
ui is said to be fair if pi = pf , and is said be deceptive if pi = pd.

Based on the above, the set of fair agents is Uf = {ui|pi = pf}, and the set of
deceptive agents is Ud = {ui|pi = pd}.

Let yil be a random variable defined as below:

yil =

{
1 w.p pi.θl + (1 − pi).(1 − θl)
0 w.p pi.(1 − θl) + (1 − pi).θl.

(1)

Consider the scenario when two agents ui and uj utilize the same service Sl and
report on it. Then, based on the above notation, their reports relative to the
service Sl are yil and yjl respectively, where:

Prob(yil = yjl) = Prob[(yil = 0 ∧ yjl = 0) ∨ (yil = 1 ∧ yjl = 1)]
= Prob[(yil = 0 ∧ yjl = 0)] + Prob[(yil = 1 ∧ yjl = 1)]
= Prob(yil = 0) · Prob(yjl = 0) + Prob(yil = 1) · Prob(yjl = 1).

Throughout this paper, we shall denote Prob(yil = yjl) to be the probability
that the agents ui and uj will agree in their appraisal. This quantity has the
following property.

Theorem 1. Let ui and uj two agents. If both ui and uj are of the same nature
(either both deceptive agents or both fair), then Prob(yil = yjl) > 0.5. Similarly,
if ui and uj are of different nature, then Prob(yil = yjl) < 0.5.

Proof : The proof is straightforward. ��

3 A LA-Based Solution to the ATTP

The input to our automaton, is the set of user agents U = {u1, u2, . . . , uN}
and the reports that are communicated within the social network. With regard
to the output, we intend to partition U into two sets, namely, the set of fair
agents Uf = {ui|pi = pf}, and the set of deceptive agents Ud = {ui|pi = pd}.
The intuitive principle that we use is that the agents that have the same nature
(fair or deceptive) will report similar experiences about the same service, and
we shall attempt to infer this phenomenon to, hopefully, migrate them to the
same partition. Observe that since agents of different nature report dissimilar
experiences about the same service, we hope to also infer this, and, hopefully,
force them to converge into different partitions.

We define the Agent Migrating Partitioning Automaton (AMPA) as a 7-tuple
as below: (U , Φ, α, β, Q, G, L), where

A LA Based Solution to Service Selection in Stochastic Environments 213

– U = {u1, u2, . . . , uN} is the set of agents.
– Φ = {φ1, φ2, . . . , φ2M} is the set of states.
– α = {α1, α2} is the set of actions, each representing a group into which the

elements of U fall.
– β = {‘0’, ‘1’} is the set of responses, where ‘0’ represents a Reward, and ‘1’

represents a Penalty.
– Q is the transition function, which specifies how the agents should move be-

tween the various states. This function is quite involved and will be explained
in detail presently.

– The function G partitions the set of states for the groups. For each group,
αj , there is a set of states {φ(j−1)M+1, . . . , φjM}, where M is the depth of
memory. Thus,

G(φi) = αj (j − 1)M + 1 ≤ i ≤ jM. (2)

This means that the agent in the automaton chooses α1 if it is in any of the
first M states, and that it chooses α2 if it is in any of the states from φM+1 to
φ2M . We assume that φ(j−1)M+1 is the most internal state of group αj , and
that φjM is the boundary state. These are called the states of “Maximum
Certainty” and “Minimum Certainty”, respectively.

– W = {WD
l (t)}, where, WD

l (t) = { Last D records prior to instant t relative
to service Sl }.
Our aim is to infer from W a similarity list of agents deemed to be collectively
similar. From it we can, based on the window of recent events, obtain a list
of pairs of the form < ui, uj > deemed to be similar. The question of how
W is obtained will be discussed later.

If agent ui is in action αj , it signifies that it is in the sub-partition whose index
is j. Moreover, if the states occupied by the nodes are given, the sub-partitions
can be trivially obtained using Eq. (2).

Let ζi(t) be the index of the state occupied by agent ui at the tth time instant.
Based on {ζi(t)} and Eq. (2), let us suppose that the automaton decides a current
partition of U into sub-partitions. Using this notation we shall later describe the
transition map of the automaton. Since the intention of the learning process is
to collect “similar” agents into the same sub-partition, the question of “inter-
agent similarity” is rather crucial. In the spirit of Theorem 1, we shall reckon
that two agents are similar if they are of the same nature, implying that the
corresponding probability of them agreeing is greater than 0.5. Note that the
latter parameter was assumed constant in [7].

We now consider the reward and penalty scenarios separately. Whenever two
agents ui and uj test the same service, if their corresponding reports are identical
(either both ‘0’ or both ‘1’), and they currently belong to the same partition,
the automaton is rewarded by moving ui and uj one state closer to the internal
state. This mode of rewarding is called RewardAgreeing mode depicted in Figure
1. As opposed to this, if ui and uj are dissimilar and they currently belong to
distinct partitions, the automaton is rewarded. This mode of rewarding is called
the RewardDisagreeingMode.

214 A. Yazidi, O.-C. Granmo, and B.J. Oommen

1α 2α

iu ju

1Mφ − 1Mφ +2Mφ +1φ 2φ 2Mφ 2 1Mφ −Mφ

(a)

1α 2α

iu ju

1Mφ − 1Mφ +2Mφ +1φ 2φ 2Mφ 2 1Mφ −Mφ

(b)

Fig. 1. (a)RewardAgreeing Mode: This is the case when both agents ui and uj belong
to the same partition. (b) Reward Disagreeing Mode: This is the case when both agents
ui and uj belong to different partitions.

Whenever two agents ui and uj test the same service, if their corresponding
reports are identical (either both ‘0’ or both ‘1’), and they currently belong to
distinct partitions, the automaton is penalized by moving ui and uj one state
closer to the boundary state in their respective groups. If one of the two agents is
already in the boundary state, he moves to the boundary state of the alternate
group. More specifically, this case is encountered when two similar agents, ui

and uj, are allocated in distinct groups say, αa and αb respectively. This mode
of rewarding is called the PenalizeAgreeing mode depicted in Figure 2.

However, if ui and uj are both assigned to the same subpartition, but they
should rather be assigned to distinct groups, the automaton is penalized. Anal-
ogous to the above, this mode of penalizing is called the PenalizeDisagreeing
mode, because, in this mode, agents which are actually dissimilar are assigned
to the same subpartition and they are therefore penalized. This is depicted in
Figure 3.

We now address the question of recording the reports associated with the
various agents, which in turn, involves the set W defined above. In our work,

1α 2α

iu
ju

1Mφ − 1Mφ +2Mφ +1φ 2φ 2Mφ 2 1Mφ −Mφ

(a)

1α 2α

iu ju

1Mφ − 1Mφ +2Mφ +1φ 2φ 2Mφ 2 1Mφ −Mφ

(b)

Fig. 2. PenalizeAgreeing Mode: This is the case when both agents ui and uj belong to
different partitions. In (a), neither of them is in a boundary state. As opposed to this,
in (b), the figure depicts the case when one of them, uj , is in a boundary state.

1α 2α

iu ju

1Mφ − 1Mφ +2Mφ +1φ 2φ 2Mφ 2 1Mφ −Mφ

(a)

1α 2α

iu
ju

1Mφ − 1Mφ +2Mφ +1φ 2φ 2Mφ 2 1Mφ −Mφ

(b)

Fig. 3. PenalizingDisagreeing mode: This is the case when both agents ui and uj belong
to the same partition, when, in actuality, they should belong to distinct partitions. In
(a), neither of them is in a boundary state. As opposed to this, in (b), the figure depicts
the case when one of them, uj , is in a boundary state.

A LA Based Solution to Service Selection in Stochastic Environments 215

we adopt a “tuple-based” window to store the reports for a given service [8],
where the window is specified in terms of the number of tuples. Observe that
our approach is consistent with the work of Shapiro [9] where it was proven
that in an environment in which peers can change their behavior over time, the
efficiency of a reputation mechanism is maximized by giving higher weights on
recent ratings and where older (stale) ratings are discounted. Clearly, this is
equivalent to enforcing a sliding window model.

Despite the ability of our LA-based clustering algorithm to separate between
the two groups Uf and Ud, the agent can not determine which of the two groups
is the fair one, (Uf), and which is the deceptive one, (Ud), unless he tries the
services himself. Intuitively, if the agents knows this information, he can just take
the inverse of the reports of the “liars” as being trustworthy, while he considers
the rest of the reports from fair agents as also being trustworthy.

With regard to the set W, and the decision making procedure that maximizes
the likelihood of choosing high performance service, for a given service is as
follows. Every agent stores the last D reports seen so far. Thus, the agent in
question maintains, for every service, a sliding window over the last D reported
experiences, which guarantees gathering the most recent reports. At time instant
t, WD

l (t) contains the D tuples with the largest time stamps (where, if the total
number d of reports seen so far is smaller than the length of the window D,
the vector contains these d elements). Clearly, WD

l (t) stores the most recent
D tuples2. Also, let WD

l [k] denote the record of index k in the vector, or the
(D − k)th last record. Since we adopt a simple interaction model, at each time
instant a random agent chooses a random service to interact with and report his
experience to the rest of agents.

3.1 The Decision Making Phase

In the spirit of what we have developed so far, we assume that the services belong
to two categories: High performance services and low performance services. A
high performance service is a service with high value of θ, and similarly, a low
performance service is a service with a low value of θ. We suppose that agent u
aspires to interact with high performance services. Therefore, every time u desires
to access a service, u creates a list L of the recommended services by applying
a majority voting method, as explained below. Based on this list, u chooses a
random service among the elements of this created list. In order to create a
list of the high performance services, for every service Sl, agent u evaluates the
feedback from agents that may have directly interacted with service Sl during the
last D interactions. We adopt the terminology of a “witness” to denote an agent
solicited for providing its feedback. In this sense, at instant t, agent u examines
the service history vector WD

l (t) that contains the last reports of the witnesses
regarding the performance of service Sl. For every report in the vector WD

l (t),
agent u should take the reverse of the report as true if he believes that the witness

2 In future, unless there is ambiguity, for ease of notation, we shall omit the time index
t.

216 A. Yazidi, O.-C. Granmo, and B.J. Oommen

is a “liar”, and consider the rest of the reports as being trustworthy. Following
such a reasoning, given D trustworthy reports about a given service, we can apply
a deterministic majority voting to determine if the service is of high performance
or of low performance. Obviously, if the majority is ‘1’, the service is assumed to
be of a high performance, and consequently, it is added to the list L. However, a
potential question is that of determining which partition is the deceptive one, and
which involves the fair agents. In order to differentiate between the partitions
we design a LA that learns which of the partitions is deceptive and which is
fair – based on the result of the interaction between agent u with the selected
service Sl. The automaton is rewarded whenever agent u selects a recommended
service from the list L and the result of the interaction is a high performance
(meaning ‘1’). Similarly, the automaton is penalized whenever agent u selects
a recommended service from the list L and the result of the interaction is a
low performance (meaning ‘0’). Again, we suppose that agent u in question is
initially assigned to the boundary state. We observe the following:

– If agent u is in class αj then u supposes that all the agents in αj are fair,
and the agents in the alternate class are deceptive.

– Whenever agent u decides to interact with a high performance service, he
creates the list L of recommended services, and proceeds to choose a random
service from L.

– If the result of the interaction is ‘1’, a reward is generated, and the agent u
goes one step towards the most internal state of class αj .

– If the result of the interaction is ‘0’, a penalty is generated and agent u goes
one step towards the boundary state of class αj .

– If agent u is already in the boundary state, he switches to the alternate class.

The automaton will converge to the action which yields the minimum penalty re-
sponse in an expected sense. In our case, the automaton will converge to the class
containing the fair agents, while the deceptive agents converge to the alternate
class.

4 Experimental Results

To quantify the quality of the scheme, we measured the average performance of
the selected services over all interactions, and this was used as the performance
index. All the results reported have been obtained after averaging across 1,000
simulations, where every simulation consisted of 40,000 runs. The interactions
between the agents and the services were generated at random, and at every time
instant, a random agent was made to select a random service. In our current
experimental setting, the number of agents was 20 and the number of services in
the pool of available services was 100. The agent in question (i.e., the one which
we are interested in) periodically accesses a service every 1,000 runs as per the
above-mentioned decision making procedure.

A LA Based Solution to Service Selection in Stochastic Environments 217

4.1 Performance in Static Environments VS Dynamic Environments

We first report the results for environments which are static. In this particular
setting, 10% of the services were high performance services with θ = 0.8, and 90%
were low performance services with θ = 0.1. Further, 15 of the reporting agents
were deceptive with pd = 0.2, while 5 were fair agents with pf = 0.8. The depth
of memory used for the LA was M = 10, and the length of the sliding window
was 100. Figure 4 demonstrates the ability of the approach to accurately infer
correct decisions in the presence of the deceptive agents. Observe that the scheme
achieves a near-optimal index that asymptotically approaches the performance
of the high performance services, i.e., θ = 0.8. To investigate the behaviour of
the AMPA with performances which changed with time, we first considered the
scenario when these changes were made periodically. Indeed, we achieved this
by changing all the service performances periodically every 5,000 runs. Further,
the changes were made “drastic”, i.e., by inverting them from their prior values
as per θl,new = 1 − θl,old. From the results shown in Figure 5, the reader will
observe that the scheme is able to adapt favourably to such changes. Indeed,
from Figure 5, we notice that as the behavior of the services changed (i.e., at
every 5, 000th step), the subsequent access by agent u resulted in choosing a low
performance service.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 10 20 30 40 50 60 70 80 90 100

Ratio of deceptive agents

A
ve

ra
ge

 p
er

fo
rm

an
ce

Fig. 4. The behavior of the AMPA,
measured in terms of the average per-
formance, in an environment when the
behavior of the agents is static

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 5 10 15 20 25 30 35 40

40,000 time slots

A
ve

ra
ge

 P
er

fo
rm

an
ce

Fig. 5. The performance of the AMPA
with periodically changing service per-
formances

4.2 Immunity to the Proportion of Fair Agents

We now consider the problem of investigating how “immune” our system is to
the percentage of deceptive agents. Figure 6 presents the average performance
of the system (over all interactions) when the ratio of deceptive agents is varied.
The scheme is truly “immune” to varying the proportions of fair and deceptive
agents. In fact, even if all agents are deceptive, (i.e., this is equivalent to a ratio
of 100%, the average performance is stable and again achieves near optimal
values that approach the index of the high performance services, θ = 0.8. In our
opinion, this is quite remarkable!

218 A. Yazidi, O.-C. Granmo, and B.J. Oommen

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 5 10 15 20 25 30 35 40

40,000 time slots

Av
era

ge
 Pe

rfo
rm

an
ce

Fig. 6. The variation of the average performance under different ratios of deceptive
agents

5 Conclusion

In this paper, we presented a new technique for coping with liars in reputation
systems. The agents were modeled of two nature: fair and deceptive. Unlike other
reported approaches, our scheme is able to counter detrimental effect of deceptive
agents by intelligently combining feedback from fair and deceptive agents. The
results of the simulation are conclusive and and demonstrate the potential of
learning automata when applied in the area of Reputation Systems.

References

1. Dellarocas, C.: Immunizing online reputation reporting systems against unfair rat-
ings and discriminatory behavior. In: Proceedings of the 2nd ACM conference on
Electronic commerce, Minneapolis, Minnesota, United States, pp. 150–157. ACM,
New York (2000)

2. Sen, S., Sajja, N.: Robustness of reputation-based trust: boolean case. In: Proceed-
ings of the first international joint conference on Autonomous agents and multiagent
systems, part 1, Bologna, Italy, pp. 288–293. ACM, New York (2002)

3. Zacharia, G., Maes, P.: Trust management through reputation mechanisms. Applied
Artificial Intelligence 14(9), 881–907 (2000)

4. Whitby, A., Jsang, A., Indulska, J.: Filtering out unfair ratings in bayesian reputa-
tion systems. In: Proceedings of the 7th Int. Workshop on Trust in Agent Societies
(at AAMAS 2004). ACM, New York (2004)

5. Despotovic, Z., Aberer, K.: A probabilistic approach to predict peers performance
in P2P networks. In: Cooperative Information Agents VIII, pp. 62–76 (2004)

6. Narendra, K.S., Thathachar, M.A.L.: Learning Automata: An Introduction.
Prentice-Hall, New Jersey (1989)

7. Oommen, B.J., Ma, D.C.Y.: Stochastic automata solutions to the object partitioning
problem. The Computer Journal 35, A105–A120 (1992)

8. Mayur Datar, M., Gionis, A., Indyk, P., Motwani, R.: Maintaining stream statistics
over sliding windows. SIAM J. Comput. 31(6), 1794–1813 (2002)

9. Shapiro, C.: Consumer information, product quality, and seller reputation. The Bell
Journal of Economics 13(1), 20–35 (1982)

	A Learning Automata Based Solution to Service Selection in Stochastic Environments
	Introduction
	Modeling the Problem
	A LA-Based Solution to the $ATTP$
	The Decision Making Phase

	Experimental Results
	Performance in Static Environments VS Dynamic Environments
	Immunity to the Proportion of Fair Agents

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

