
Solving Non-Stationary Bandit Problems by

Random Sampling from Sibling Kalman Filters

Ole-Christoffer Granmo and Stian Berg

Department of ICT, University of Agder, Grimstad, Norway

Abstract. The multi-armed bandit problem is a classical optimization
problem where an agent sequentially pulls one of multiple arms attached
to a gambling machine, with each pull resulting in a random reward. The
reward distributions are unknown, and thus, one must balance between
exploiting existing knowledge about the arms, and obtaining new in-
formation. Dynamically changing (non-stationary) bandit problems are
particularly challenging because each change of the reward distributions
may progressively degrade the performance of any fixed strategy.

Although computationally intractable in many cases, Bayesian meth-
ods provide a standard for optimal decision making. This paper proposes
a novel solution scheme for bandit problems with non-stationary nor-
mally distributed rewards. The scheme is inherently Bayesian in nature,
yet avoids computational intractability by relying simply on updating
the hyper parameters of sibling Kalman Filters, and on random sam-
pling from these posteriors. Furthermore, it is able to track the better
actions, thus supporting non-stationary bandit problems.

Extensive experiments demonstrate that our scheme outperforms re-
cently proposed bandit playing algorithms, not only in non-stationary
environments, but in stationary environments also. Furthermore, our
scheme is robust to inexact parameter settings. We thus believe that
our methodology opens avenues for obtaining improved novel solutions.
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1 Introduction

The conflict between exploration and exploitation is a well-known problem in re-
inforcement learning, and other areas of artificial intelligence. The multi-armed
bandit problem captures the essence of this conflict, and has thus occupied re-
searchers for over fifty years [1]. In [2], a new family of Bayesian techniques for
solving the classical two-armed Bernoulli bandit problem was introduced, akin to
the Thompson Sampling [3] principle, and empirical results that demonstrated
its advantages over established top performers were reported.

The above mentioned solution schemes were mainly designed for stationary
bandit problems, leading to fixed arm selection strategies. However, in many
real-life applications, such as web polling [4], the associated bandit problems are
changing with time, making them non-stationary. Thus, if an algorithm with a
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fixed strategy is applied to bandit problem that is changing, each change may
progressively degrade the performance of the algorithm [5].

In this present paper, we address the Non-Stationary Multi-Armed Normal
Bandit (MANB) problem. In brief, we propose a Bayesian solution for non-
stationary normally distributed rewards, that has sufficient flexibility to track
the better actions as changes occur over time.

1.1 The Non-Stationary Multi-Armed Normal Bandit Problem

The MANB problem is a classical optimization problem that explores the trade
off between exploitation and exploration in, e.g., reinforcement learning. The
problem consists of an agent that sequentially pulls one of multiple arms attached
to a gambling machine, with each pull resulting in a reward. The reward obtained
from each Arm i has been affected by Gaussian noise of variance σ2

ob (observation
noise), with the true unperturbed reward ri being unknown.

This leaves the agent with the following dilemma: Should the arm that so far
seems to be associated with the largest reward ri be pulled once more, or should
an inferior arm be pulled in order to learn more about its reward? Sticking
prematurely with the arm that is presently considered to be the best one, may
lead to not discovering which arm is truly optimal. On the other hand, lingering
with the inferior arm unnecessarily, postpones the harvest that can be obtained
from the optimal arm.

The non-stationary MANB problem renders the above problem even more
intriguing because it allows the true unperturbed rewards ri to change with
time. In this paper, we address problems where each reward ri is modified by
independent Gaussian perturbations of constant variance σ2

tr (transition noise)
at each time step.

In effect, a solution scheme for non-stationary MANB problems must thus
both determine which action is the best one, as well as tracking any reward
distribution changes that might occur.

1.2 Contributions and Paper Organization

The contributions of this paper can be summarized as follows. In Sect. 2, we
briefly review a selection of the main MANB solution approaches. Then, in Sect.
3, we present our Kalman Filter based solution to MANB (KF-MANB). The
KF-MANB scheme is inherently Bayesian in nature, even though it only re-
lies on simple updating of hyper parameters and random sampling. Thus, the
MANB solution scheme takes advantage of the Bayesian perspective in a com-
putationally efficient manner. In addition, the scheme is able to track the best
arms when the problem is non-stationary, relying on a set of sibling Kalman
filters. In Sect. 4, we provide extensive experimental results that demonstrate
that the KF-MANB scheme outperforms established top performers, both for
stationary (!) and non-stationary bandit problems. Accordingly, from the above
perspective, it is our belief that the KF-MANB scheme represents the current
state-of-the-art and a new avenue of research. Finally, in Sect. 5 we list open
KF-MANB related research problems and provide concluding remarks.
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2 Related Work

From a broader point of view, one can distinguish two distinct fields that address
bandit like problems, namely, the field of Learning Automata and the field of
Bandit Playing Algorithms. A myriad of approaches have been proposed within
these two fields, and we refer the reader to [5] and [6] for an overview and
comparison of schemes. We here provide a brief review of selected top performers
in order to cast light on the distinguishing properties of KF-MANB.

Learning Automata (LA) have been used to model biological systems [5]
and have attracted considerable interest in the last decade because they can learn
the optimal action when operating in (or interacting with) unknown stochastic
environments. Furthermore, they combine rapid and accurate convergence with
low computational complexity. More notable approaches include the family of
linear updating schemes, with the Linear Reward-Inaction (LR−I) automaton
being designed for stationary environments [5]. In short, the LR−I maintains an
arm probability selection vector p̄ = [p1, p2], with p2 = 1 − p1. The question
of which arm is to be pulled is decided randomly by sampling from p̄, which
initially is uniform. Upon receiving a reward, a linear updating rule increases
the probability of selecting the rewarded arm in the future, allowing the scheme
to achieve ε-optimality [5]. A Pursuit scheme (P-scheme) makes this updating
scheme more goal-directed by maintaining Maximum Likelihood (ML) estimates
of the unperturbed rewards associated with each arm. Instead of using the re-
wards that are received to update p̄ directly, they are rather used to update the
ML estimates. The ML estimates, in turn, are used to decide which arm selection
probability pi is to be increased.

The ε-greedy rule is another well-known strategy for the bandit problem [7].
In short, the arm with the presently highest average reward is pulled with prob-
ability 1− ε, while a randomly chosen arm is pulled with probability ε. In other
words, the balancing of exploration and exploitation is controlled by the ε-
parameter. Note that the ε-greedy strategy persistently explores the available
arms with constant effort, which clearly is sub-optimal for the MANB problem.
It is even sub-optimal for non-stationary MANB problems because the ε-greedy
strategy maintains strongly converging ML estimates of the unperturbed re-
wards. As a remedy for the former (but not the latter) problem, ε can be slowly
decreased, leading to the εn-greedy strategy described in [8]. The purpose is to
gradually shift focus from exploration to exploitation.

A promising line of thought is the interval estimation methods, where a
confidence interval for the unperturbed reward of each arm is estimated, and
an “optimistic reward estimate” is identified for each arm. The arm with the
most optimistic reward probability estimate is then greedily selected [6, 9]. The
IntEst (Interval Estimation) scheme [9] was one of the first schemes to use op-
timistic reward estimates to achieve exploration. Many variants of the IntEst
scheme have been proposed — one for normally distributed rewards is described
in [6]. In [8], several confidence interval based algorithms are analysed. These
algorithms provide logarithmically increasing Regret, with Ucb1-Normal tar-
geting normally distributed rewards.
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The application of a Bayesian philosophy for searching in such probabilistic
spaces has a long and well-documented path through the mathematical litera-
ture, probably pioneered by Thompson [3] even as early as 1933, in the form of
the Thompson sampling principle. According to this principle, each arm should
be chosen a fraction of the time that corresponds to the probability that the ac-
tion is optimal. This principle was recently rediscovered by other authors, e.g.,
in [1], such a Bayesian philosophy appears in the so-called probability matching
algorithms. By using conjugate priors, these authors have resorted to a Bayesian
analysis to obtain a closed form expression for the probability that each arm
is optimal given the prior observed rewards/penalties. More recently, however,
Wang et al [10] combined so-called sparse sampling with Bayesian exploration,
where the entire process was specified within a finite time horizon. By achiev-
ing this, they were able to search the space based on a sparse look-ahead tree
which was produced based on the Thompson Sampling principle. In [11], the au-
thor derived optimal decision thresholds for the multi-armed bandit problem, for
both the infinite horizon discounted reward case and for the finite horizon undis-
counted case. Based on these thresholds, he then went on to propose practical
algorithms, which can perhaps be perceived to be enhancements of the Thomp-
son Sampling principle. Finally, the authors of [12] take advantage of a Bayesian
strategy in a related domain, i.e., in Q-learning. They show that for normally
distributed rewards, in which the parameters have a prior normal-gamma dis-
tribution, the posteriors also have a normal-gamma distribution, rendering the
computation efficient. They then integrate this into a framework for Bayesian
Q-learning by maintaining and propagating probability distributions over the Q-
values, and suggest that a non-approximate solution can be obtained by means of
random sampling for the normal distribution case. In a similar vein, a scheme for
Gaussian Temporal Difference learning is proposed in [13], with on-line learning
of the posterior moments of a value Gaussian process. It would be interesting to
investigate the applicability of these results for non-stationary MANB problems.

A more recent technique, the “Price of Knowledge and Estimated Reward”
(Poker) algorithm proposed in [6], attempts to combine the following three
principles: (1) Reducing uncertainty about the arm rewards should grant a bonus
to stimulate exploration; (2) Information obtained from pulling arms should be
used to estimate the properties of arms that have not yet been pulled; and (3)
Knowledge about the number of rounds that remains (the horizon) should be
used to plan the exploitation and exploration of arms. We refer the reader to [6]
for the specific algorithm that incorporates these three principles.

3 Kalman Filter Based Solution to Non-Stationary
Normal Bandit Problems (KF-MANB)

Bayesian reasoning is a probabilistic approach to inference which is of impor-
tance in machine learning because it allows quantitative weighting of evidence
supporting alternative hypotheses, with the purpose of allowing optimal decision
making. It also provides a framework for analyzing learning algorithms [14].
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We here present a scheme for solving the non-stationary MANB problem that
inherently builds upon the Bayesian reasoning framework, taking advantage of
the tracking capability of Kalman filters [15]. We thus coin the scheme Kalman
Filter Based Solution to MANB (KF-MANB). Essentially, KF-MANB uses the
Kalman filter for two purposes. First of all, the Kalman filter is used to provide
a Bayesian estimate of the rewards associated with each of the available bandit
arms. Secondly, a novel feature of KF-MANB is that it uses the Kalman filters as
the basis for a randomized arm selection mechanism. Being based on the Kalman
filter, the normal distribution is central to KF-MANB:

f(xi; μi, σi) = α e
− 1

2

(
(xi−μi)

2

σ2
i

)

with μi being the mean of the distribution, σ2
i being its variance, and α is

a normalization constant. The following algorithm contains the essence of the
KF-MANB approach. Note that in order to emphasize the simplicity of the
KF-MANB algorithm, the Kalman filters are incorporated into the parameter
updating of the algorithm itself, and do not appear as distinct entities.

Algorithm: KF-MANB
Input: Number of bandit arms q; Observation noise σ2

ob; Transition noise σ2
tr.

Initialization: μ1[1] = μ2[1] = · · · = μq[1] = A; σ1[1] = σ2[1] = · · · = σq[1] =
B; # Typically, A can be set to 0, with B being sufficiently large.
Method:
For N = 1, 2, . . . Do

1. For each Arm j ∈ {1, . . . , q}, draw a value xj randomly from the associated
normal distribution f(xj ; μj [N ], σj [N ]) with the parameters (μj [N ], σj [N ]).

2. Pull the Arm i whose drawn value xi is the largest one:

i = argmax
j∈{1,...,q}

xj .

3. Receive a reward r̃i from pulling Arm i, and update parameters as follows:
– Arm i:

μi[N + 1] =

(
σ2

i [N ] + σ2
tr

) · r̃i + σ2
ob · μi[N ]

σ2
i [N ] + σ2

tr + σ2
ob

σ2
i [N + 1] =

(
σ2

i [N ] + σ2
tr

)
σ2

ob

σ2
i [N ] + σ2

tr + σ2
ob

– Arm j �= i:

μj [N + 1] = μj [N ]
σ2

j [N + 1] = σ2
j [N ] + σ2

tr

End Algorithm: KF-MANB
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As seen from the above KF-MANB algorithm, N is a discrete time index and
the parameters φN = 〈(μ1[N ], σ1[N ]), (μ2[N ], σ2[N ]), . . . , (μq[N ], σq[N ])〉 form
an infinite 2×q-dimensional continuous state space, with each pair (μi[N ], σi[N ])
giving the prior of the unknown reward ri associated with Arm i. Within Φ
the KF-MANB navigates by transforming each prior normal distribution into a
posterior normal distribution, based on the reward obtained at that time step,
the observation noise, and the transition noise.

Since the state space of KF-MANB is both continuous and infinite, KF-MANB
is quite different from both the Variable Structure- and the Fixed Structure LA
families [5], traditionally referred to as Learning Automata. In all brevity, the
novel aspects of the KF-MANB are listed below:

1. In traditional LA, the action chosen (i.e, arm pulled) is based on the so-
called action probability vector. The KF-MANB does not maintain such a
vector, but chooses the arm based on the distribution of the components of
the Estimate vector.

2. The second difference is that we have not chosen the arm based on the a
posteriori distribution of the estimate. Rather, it has been chosen based on
the magnitude of a random sample drawn from the a posteriori distribution,
and thus it is more appropriate to state that the arm is chosen based on the
order of statistics of instances of these variables1.

In the interest of notational simplicity, let Arm 1 be the Arm under investi-
gation. Then, for any parameter configuration φN ∈ Φ we can state, using a
generic notation2, that the probability of selecting Arm 1 is equal to the prob-
ability P (XN

1 > XN
2 ∧ XN

1 > XN
3 ∧ · · · ∧ XN

1 > XN
q |φN ) — the probability

that a randomly drawn value x1 ∈ XN
1 is greater than all of the other ran-

domly drawn values xj ∈ XN
j , j �= i, at time step N , when the associated

stochastic variables XN
1 , XN

2 , . . . , XN
q are normally distributed, with parameters

(μ1[N ], σ1[N ]), (μ2[N ], σ2[N ]), . . . , (μq[N ], σq[N ]) respectively. In the following,
we will let pφN

1 denote this latter probability.
Note that the probability pφN

1 can also be interpreted as the probability that
Arm 1 is the optimal one, given the observations φN . The formal result that we
will derive in the unabridged paper shows that the KF-MANB will gradually
shift its arm selection focus towards the arm which most likely is the optimal
one, as the observations are received.

4 Empirical Results

In this section we evaluate the KF-MANB by comparing it with the best per-
forming algorithms from [8,6], as well as the Pursuit scheme, which can be seen
1 To the best of our knowledge, the concept of having automata choose actions based

on the order of statistics of instances of estimate distributions, has been unreported
in the literature.

2 By this we mean that P is not a fixed function. Rather, it denotes the probability
function for a random variable, given as an argument to P .
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as an established top performer in the LA field. Based on our comparison with
these “reference” algorithms, it should be quite straightforward to also relate the
KF-MANB performance results to the performance of other similar algorithms.

Although we have conducted numerous experiments using various reward dis-
tributions, we here report, for the sake of brevity, results for 10-armed stationary
and non-stationary MANB problems, measured in terms of Regret. Regret is sim-
ply the difference between the sum of rewards expected after N successive arm
pulls, and what would have been obtained by only pulling the optimal arm. For
these experiment configurations, an ensemble of 1000 independent replications
with different random number streams was performed to minimize the variance
of the reported results. In each replication, 2000 arm pulls were conducted in
order to examine both the short term and the limiting performance of the eval-
uated algorithms.

We first investigate the effect observation noise has on performance in station-
ary environments. The difficulty of stationary bandit problems is determined by
the “signal-to-noise ratio” of the problem, that is, the ratio between arm re-
ward difference and the standard deviation of the observation noise. In brief, if
the arms are ranked according to their index i, we let the difference in reward
between Arm i and Arm i + 1 be 50.0 (ri − ri+1 = 50.0). With the scale thus
being set, we vary observation noise to achieve a wide range of signal-to-noise
ratios: σob ∈ [ 14 · 50.0, 1

3 · 50.0, 1
2 · 50.0, 2

3 · 50.0, 4
5 · 50.0, 50.0, 1 1

4 · 50.0, 1 1
2 · 50.0, 2 ·

50.0, 3 · 50.0, 4 · 50.0]. Thus, for σob = 1
4 · 50.0 the observation noise is small

compared to the difference between rewards, and distinguishing which arm is
best is correspondingly easier. Conversely, an observation noise of σob = 4 · 50.0
makes the true difference between arms in the ranking fall within 1/4 standard
deviation of the noise. Accordingly, discriminating between the arms in this case
is correspondingly more challenging.

Table 1 reports normalized Regret after 2000 arm pulls for each algorithm,
with suitable parameter settings. As seen in the table, KF-MANB is

Table 1. Normalized regret for transition noise σtr = 0 (stationary environments)

Algorithm / σob 12.5 16.7 25.0 33.3 50.0 75.0 100.0 150.0 200.0

BLA Kalman 5 .1 5 .2 5 .4 5 .8 7 .1 10 .6 16 .1 28 .5 45 .0

Ucb1 Normal 135.0 135.0 135.2 136.3 140.7 151.8 168.9 213.9 270.5

IntEst 0.1 608.5 595.1 537.2 515.0 450.3 367.3 298.5 229.4 188.9

IntEst 0.2 581.7 579.7 559.3 549.9 526.1 442.8 422.3 357.6 320.2

IntEst 0.05 558.6 585.6 522.0 484.3 420.1 325.4 239.7 158.1 150.0

Pursuit 0.050 45.6 41.2 45.4 47.0 50.8 52.7 71.0 85.7 114.6

Pursuit 0.010 52.3 52.2 52.3 53.0 53.3 55.5 58.6 69.0 78.1

Pursuit 0.005 101.7 101.9 102.2 102.4 103.3 105.0 106.4 112.4 122.9

Poker 5.5 5.7 5.5 7.2 10.6 19.1 29.5 42.6 58.7

εn-Greedy c = 0.3 29.0 28.6 28.1 30.5 33.5 39.8 50.2 74.1 97.8

εn-Greedy c = 0.6 37.9 37.7 37.9 38.3 40.4 46.1 54.1 68.0 84.4

εn-Greedy c = 0.9 65.3 65.5 65.5 65.2 65.4 68.1 70.3 86.5 99.0
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superior under all tested degrees of observation noise, with the POKER al-
gorithm being a close second best. Note that POKER is given the total num-
ber of arm pulls to be used in each run. This information is used to prioritize
exploitation when further exploration will not pay off due to the limited num-
ber of arm pulls remaining. The Pursuit scheme and the en−Greedy-schemes
provide significantly higher Regret. Furthermore, IntEst clearly provides the
highest Regret among the compared algorithms. Corresponding results con-
cerning the probability of selecting the best arm after each arm pull can be
found in the unabridged paper. These results show that KF-MANB converges
to selecting the best arm more accurately and more quickly than the other
schemes.

The fact that KF-MANB outperforms the other schemes in stationary envi-
ronments is rather surprising since most of the competing algorithms also as-
sume normally distributed rewards (which is the sole assumption of KF-MANB
in this experiment). This performance advantage can perhaps be explained by
KF-MANBs capability of reasoning with the known observation noise. However,
as will be seen below, the performance advantage of KF-MANB is not overly
sensitive to incorrectly specified observation noise.

The advantage of KF-MANB becomes even more apparent when dealing with
bandit problems that are non-stationary. In Table 2, normalized Regret is re-
ported for σob = 50.0, with varying transition noise: σtr ∈ [0.0, 1

4 · 50.0, 1
3 ·

50.0, 1
2 · 50.0, 2

3 · 50.0, 4
5 · 50.0, 50.0, 1 1

4 · 50.0, 1 1
2 · 50.0, 2 · 50.0, 3 · 50.0, 4 · 50.0].

As seen in the table, KF-MANB is superior for the non-stationary MANB prob-
lems. Also, notice how the degree of transition noise affects its performance to
a very small degree, demonstrating the power of the KF-MANB scheme. Con-
versely, the other schemes, being unable to track reward changes, are obtaining
a progressively worse Regret as the number of arm pulls increases.

Table 2. Normalized regret for observation noise σob = 50.0, with varying transition
noise σtr (non-stationary environments)

Algorithm / σtr 0.0 12.5 16.7 25.0 33.3 50.0 75.0 100.0 150.0 200.0

BLA Kalman 7 .2 43 .0 44 .9 45 .9 47 .6 48 .4 49 .3 49 .8 49 .3 49 .3

Ucb1 Normal 140.6 260.5 269.4 271.1 286.0 281.7 287.5 286.2 278.6 280.2

IntEst 0.1 456.4 488.1 470.2 460.6 476.3 475.3 470.6 481.9 471.5 468.6

IntEst 0.2 506.0 536.7 523.2 519.5 519.7 521.0 498.4 514.7 499.6 509.0

IntEst 0.05 429.1 446.9 431.3 439.4 441.2 463.9 447.7 454.8 449.4 460.0

Pursuit 0.050 51.8 389.0 407.5 437.9 485.9 487.7 497.7 515.4 516.0 521.3

Pursuit 0.010 53.0 365.7 400.0 407.1 451.2 456.0 448.4 452.9 456.5 440.9

Pursuit 0.005 103.1 393.3 418.8 422.0 462.1 453.5 447.5 463.0 448.7 455.4

Poker 12.0 297.2 332.8 361.4 391.2 416.1 409.7 422.9 416.8 419.7

εn-Greedy c = 0.3 33.8 304.0 336.3 341.7 379.9 379.1 371.3 381.6 374.9 386.4

εn-Greedy c = 0.6 39.3 304.7 320.8 335.0 368.7 374.3 374.0 378.9 364.6 370.2

εn-Greedy c = 0.9 65.7 320.0 338.3 338.3 370.3 367.3 370.7 371.4 366.0 371.3



Solving Non-Stationary Bandit Problems by Random Sampling 207

Table 3. Sensitivity to incorrectly specified observation noise with σtr = 0.0

Belief σ̂ob:
1
4
σob

1
3
σob

1
2
σob

2
3
σob

4
5
σob σob 1 1

4
σob 1 1

2
σob 2σob 3σob 4σob

Regret: 13.2 10 .3 5 .7 5 .9 6 .4 7 .1 8 .3 10 .2 14.9 27.1 41.3

Table 4. Sensitivity to incorrectly specified transition noise with σob = 50.0

Belief σ̂tr : 1
4
σtr

1
3
σtr

1
2
σtr

2
3
σtr

4
5
σtr σtr 1 1

4
σtr 1 1

2
σtr 2σtr 3σtr 4σtr

Regret: 168 .8 113 .5 66 .6 46 .5 46 .1 48 .4 59 .6 74 .6 106 .4 159 .0 225 .6

One of the advantages of KF-MANB is its ability to take advantage of knowl-
edge about the observation noise and transition noise affecting a MANB problem.
In cases where the exact observation noise and transition noise is unavailable,
KF-MANB may have to operate with incorrectly specified noise. Table 3 sum-
marizes the effect incorrect specification of observation noise has on normalized
Regret for KF-MANB. As seen, the KF-MANB algorithm is still the top per-
former for the tested stationary MANB problems, provided the incorrectly spec-
ified observation noise has a standard deviation σ̂ob that lies within 33% and
150% of the true standard deviation σob (!). Also observe that the performance
even improves when σ̂ob is set slightly below σob. A reasonable explanation for
this phenomenon is that the KF-MANB scheme is too conservative when plan-
ning its arm pulls, probably because it does not consider the so-called gain in
information, only the present probability of selecting the correct arm. There-
fore, it is likely that a slightly too low σ̂ob compensates for this by making the
KF-MANB more “aggressive”.

We observe similar results when transition noise is incorrectly specified, as
seen in Table 4. Again, the KF-MANB is surprisingly unaffected by incorrectly
specified noise. Indeed, it provides reasonable performance when operating with
a standard deviation σ̂tr that lies within 50% and 150% of σtr.

From the above results, we conclude that KF-MANB is the superior choice
for MANB problems in general, providing significantly better performance in the
majority of the experiment configurations.

5 Conclusion and Further Work

In this paper we presented aKalman Filter based solution scheme to Multi-Armed
Normal Bandit (KF-MANB) problems. In contrast to previous LA and Regret
minimizing approaches, KF-MANB is inherently Bayesian in nature. Still, it re-
lies simply on updating the hyper parameters of sibling Kalman Filters, and
on random sampling from these. Thus, KF-MANB takes advantage of Bayesian
estimation in a computationally efficient manner. Furthermore, extensive exper-
iments demonstrate that our scheme outperforms recently proposed algorithms,
dealing particularly well with non-stationary problems. Accordingly, in the above
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perspective, it is our belief that the KF-MANB represents a new promising av-
enue of research, with a number of interesting applications. In further work, we
intend to study systems of KF-MANB from a game theory point of view, where
multiple KF-MANBs interact forming the basis for multi-agent systems.
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