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Abstract

Linear Dimensionality Reduction (LDR) techniques have been increasingly important in

Pattern Recognition (PR) due to the fact that they permit a relatively simple mapping of the

problem onto a lower-dimensional subspace, leading to simple and computationally efficient

classification strategies. Although the field has been well developed for the two-class problem,

the corresponding issues encountered when dealing with multiple classes are far from trivial.

In this paper, we argue that, as opposed to the traditional LDR multi-class schemes, if we

are dealing with multiple classes, it is not expedient to treat it as a multi-class problem per

se. Rather, we shall show that it is better to treat it as an ensemble of Chernoff-based two-

class reductions onto different subspaces, whence the overall solution is achieved by resorting

to either Voting, Weighting, or to a Decision Tree strategy. The experimental results obtained

on benchmark datasets demonstrate that the proposed methods are not only efficient, but that

they also yield accuracies comparable to that obtained by the optimal Bayes classifier.
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1 Introduction

One of the most ironic situations that arises in the field of statistical Pattern Recognition (PR) is

the so-called “curse of dimensionality”. The irony, which researchers and practitioners have had to

wrestle with even from the infancy of research in this field, can be informally presented as follows:

If the patterns to be recognized are represented in a feature space of small dimensions, it

is likely that many crucial discriminating characteristics of the classes are ignored. How-

ever, if on the other hand, the dimensions of the feature space are large, we encounter

this “curse”, which brings along the excess baggage of all the related problems associated

with learning, training, representation, computation and classification [3, 7, 10].

The “dimensionality reduction” problem involves reducing the dimension of the input patterns and

yields the following advantages [28]:

• We need to extract and retain only the efficient features that yield superior classification in the

reduced subspace, which could provide a reliable classification with these limited “patterns”;

• We can remove redundant information from the patterns, which, in turn, leads to reduced

storage and computation.

• We can project the data onto a lower-dimensional space, (hopefully, a space that can be

visualized), which will help us better discern and take advantage of the data distribution and

separability.

The literature reports numerous strategies that have been used to tackle this problem. The

most well-known of these is Principal Components Analysis (PCA) (the details of which are omitted

here) to compute the basis (eigen) vectors by which the data subspaces are spanned, thus retaining

the most significant aspects of the structure in the data [7, 10, 28]. Indeed, it should also be

clarified that, in this context, the aspects of the structure that are significant are only those which

have to do with the variances; features that are significant in terms of discrimination may have low

variance, and may therefore be lost altogether. The basic idea of PCA is to represent d-dimensional

data by a set of orthogonal directions - capturing most of the variances in the data. While PCA

finds components that are efficient for representation, the class of Linear Dimensionality Reduction

(LDR) strategies seek features that are efficient for discrimination [7, 10]. LDR methods attempt to
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effectively use the concepts of the within-class scatter distributions, and the between-class scatter

distributions, to, hopefully, maximize the separation criterion, as it will be explained presently.

1.1 Rationale for this Paper

As argued above, and in the literature, LDR schemes are effective techniques in PR as they allow

us to deal with high dimensional classification problems in a simple and convenient way. These

kinds of schemes can be easily implemented for two classes as they involve a simple linear algebraic

transformation carried out as a matrix multiplication. When dealing with more than two classes

(which is the primary focus of this paper), however, the linear reduction can be solved by an

extension of the two-class scheme invoking a single linear algebraic operation. Here, again, we

encounter the “curse” of dimensionality: Well-separated classes in a higher dimensional space can

substantially overlap in a lower dimensional space after performing a single linear transformation.

Thus, the handicaps of methods which use such a philosophy can be listed as follows:

1. Multi-class problems are intrinsically different from two-class problems. This is because, while

in the two-class case, a single hyperplane can effectively approximate the optimal discriminant

function, in the multi-class case, we need the corresponding hyperplanes for each pair of

classes. Consequently, the optimal projection of any hyperplane need not necessarily lead to

the optimal projection of any of the others.

2. In the two-class case, Fisher’s discriminant solution leads to a projection which is at most one-

dimensional. As opposed to this, for the case of multi-class problems, Fisher’s discriminant

solution for c classes can reduce the space to a dimension up to c − 1. Observe that the

process of using a single linear transformation to yield a one-dimensional projection does not

explicitly utilize the latter property advantageously when it seeks to extend the result to a

multidimensional multi-class scenario.

3. Our conjecture is that a common projection matrix for the data points of all the classes can

be perceived to be a mixture of
(
c
2

)
projection matrices. Thus, our hypothesis is that by

investigating the classes in a pairwise manner, we are effectively decomposing the overall pro-

jection matrix into its composite mixture components, which provide information about the

separability of the classes, and such information is missed by merely processing the mixture.
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4. There are applications in which the speed of the classification phase is critical. One example

of this application is the e-mail spam detector or filter, which typically processes thousands,

if not millions, of e-mails per second. In this application, e-mails should be classified very

quickly, rather than keeping them on a queue.

5. The final reason for considering the multi-class problem as a set of two-class problems is that

it minimizes ambiguous regions, namely, those in which multiple classes overlap.

It is appropriate to mention that a long term goal of this research is to extend these concepts

for non-linear classifiers. Indeed, being essentially linear algorithms, neither PCA nor LDA can be

of significant relevance to effectively classify data that is inherently nonlinear, which constitutes a

primary limitation of linear transformation methods. Consequently, a vast body of research has

gone into resolving this limitation, and a detailed review of this is found in [3]. The state-of-the-

art in dealing with nonlinear methods include an adaptive method utilizing a rigorous Gaussian

distribution assumption [15], the Kernel-based PCA (KPCA) methods [17, 22, 23, 24], the Kernel-

based FDA (KFDA), and its reformative variant, the reformative KFDA [29], among others. Thus

the exciting problem that deserves attention, and which will hopefully result from this research,

is that of designing multi-class Chernoff-bound-oriented solutions to such “non-linear” classifiers,

whether they be kernel-based or otherwise.

To satisfactorily respond to these queries, we shall explain how an ensemble of two-class LDR

classifiers can be effectively used to solve the multi-class LDR problem: the main goal of this paper.

1.2 Contributions of the Paper

The main contributions of the paper can be sumarized as follows:

1. We show that if we want to design a multi-class LDR scheme, it is expedient for us to design

it as an ensemble of
(
c
2

)
two-class LDR schemes, rather than resorting to a single multi-class

LDR schemes.

2. Although there are many two-class LDR classifiers, we show that the one which involves a

Chernoff-based criterion [20] is the most suitable one.

3. We have undertaken a systematic study of how the results of the individual two-class classifiers

can be fused, i.e., by either a Voting, Weighting, or a Decision Tree strategy.
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4. The results that have been obtained are quite conclusive, and are based on an extensive

testing using benchmark datasets.

1.3 Organization of the Paper

The paper is organized as follows. We first present an informal discussion of the state-of-the-

art methods in Section 1.4, while Section 1.5 discusses the most important families of strategies

for the two-class scenario. Section 2 outlines the general “all-at-once” multi-class schemes using

separability criteria that are extended versions of the corresponding two-class criteria. Section 3

then presents the various pairwise multi-class methods, and introduces the way by which they can

be fused. Section 4 describes the experimental results obtained by testing the various methods

using the benchmark datasets from the UCI Machine Learning Repository, after which Section 5

concludes the paper.

1.4 Previous LDR Methods

Various schemes that perform LDR have been proposed so far. The most traditional LDR scheme

is the well known Fisher’s discriminant analysis (FDA) [4], and its many extensions: the direct

Fisher’s discriminant analysis [32], the combined principal component analysis (PCA) and linear

discriminant analysis (LDA) [31], and the kernelized PCA and LDA [30]. An improvement to FDA

that decomposes classes into subclasses has been proposed in [16]. Also, a scheme to find an optimal

kernel over a convex set of kernels has been recently proposed for the kernelized FDA [11].

On the other hand, Rueda and Oommen [21] showed that the optimal classifier between two nor-

mally distributed classes can be linear even when the covariance matrices are not equal, thus leading

to an alternate way of linearly reducing the dimensionality of the space in which the classification

is done. A new approach to selecting the best hyperplane classifier (BHC) was introduced in [19],

which was based on the results related to the optimal pairwise linear classifier. A computationally

intensive method for LDR was proposed in [18], which aims to minimize the classification error

in the transformed space and operates by computing (or approximating) the exact values for the

integrals. This approach, though extremely time consuming and prohibitive for high dimensions,

does not guarantees an optimal LDR. Another criterion used for dimensionality reduction is the

subclass discriminant analysis [34], which aims to optimally divide the classes into subclasses, and

then perform a reduction followed by classification.
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Of the approaches that have been proposed to generalize homoscedastic-like methods, i.e. FDA,

the following represent the state-of-the-art. The first scheme we mention is Heteroscedastic Dis-

criminant Analysis (HDA), proposed in [14]. In that paper, the authors utilize the concept of

directed distance matrices, and a linear transformation in the original space, to effectively general-

ize the FDA criterion. They achieve this by substituting the between-class scatter matrix with a

weighted sum of the corresponding directed distance matrices. Another technique is Chernoff-based

Discriminant Analysis (CDA), proposed in [20], where the authors maximize the separability of

the lower-dimensional classes measured in terms of the Chernoff distance. In [25, 26], a linear dis-

criminant analysis approach has been proposed, which uses the Kullback-Leibler (KL) divergence

measure between two distributions as the criterion. This criterion is optimized via a gradient-based

algorithm. Other recently proposed approaches include the path alignment and part optimization

to LDR [33], a manifold-learning-based technique for local linear discriminant analysis [12], and a

semi-supervised approach for LDR that seeks for the best subspace on a graph-theoretic framework

[13].

An approach that deserves particular attention is the one that optimizes the Bayes classification

error in the transformed subspace [8, 9]. This approach, here, referred to as the Optimal Bayes LDA

(OBLDA), determines the optimal linear transformation that reduces the feature space to a single

dimension. It achieves this by assuming normally distributed classes with a common covariance

matrix. Although an optimal solution onto a one-dimensional space is found by means of convex

optimization, the approach does not readily lend itself to projections onto higher dimensional

subspaces, except via a greedy recursive approximation algorithm that finds a solution for a d-

dimensional subspace. The homoscedastic limitation is, in turn, resolved via a kernelization of the

criterion. However, unless a linear kernel is used, such a strategy leads to “increasing” the dimension

of the resulting subspace, rather than reducing it. The homoscedasticity limitations of FDA have

also been resolved by resorting to the Approximate Pairwise Accuracy Criterion (APAC) [5]. This

approach performs an all-at-once transformation, adds weights to the multi-class criterion, and then

approximates the optimal weights using error functions on the Mahalanobis distances between the

pairs of classes. All these approaches, i.e., the OBLDA, APAC, HDA, CDA and KL, have been

proposed for multi-class problems, providing a solution in terms of a single transformation matrix

that projects the data from a higher-dimensional space to a lower-dimensional space.

Finally, a few schemes have been proposed to generalize LDR methods from the two-class
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to the multi-class case by perforiming and combining pairwise classifications, and they have not

always been successful. Rather, they have even been reported to be less efficient than the two-class

solutions. One of these schemes involves generalizing two-class classifiers to the multi-class problem

by using the voting rule as proposed in [27], but this has the drawback of producing inconsequent

labelings and ties. However, the authors of [27] observed these drawbacks, and attempted to solve

them using the confidence value estimation methodology for a probabilistic voting rule so as to

avoid ties. Other schemes involve one-against-all, one-against-one and all-at-once strategies, and

the use of decision trees [1] for generalizing two-class Support Vector Machines (SVMs) for multi-

class problems so as to avoid unclassifiable regions, inconsequent labelings, and ties. An in-depth

discussion of the advantages and disadvantages of each scheme is given in [1]. Another approach

that deserves special attention is the pairwise scheme proposed in [6], in which various classifiers

are studied as being combined in a voting scheme.

1.5 Two-class Scenario

For two classes, we assume that their distributions have a parametric form, and whence the two

classes are given in terms of their a priori probabilities p1 and p2, and two n-dimensional normally

distributed random vectors, x1 ∼ N(m1;S1) and x2 ∼ N(m2;S2). The problem consists of finding

a d × n transformation matrix A in such a way that the transformed data, given by the linear

transformation y = Ax, becomes as separable as possible, so that it can, in turn, be classified by a

relevant classification method. Various schemes have been proposed for this, and we discuss three

of them here, namely the FDA, HDA and CDA.

1.5.1 The Two-class FDA Criterion

Let SW = p1S1 + p2S2 and SE = (m1 − m2)(m1 − m2)t be the within-class and between-class

scatter matrices respectively. The FDA criterion consists of finding a d× n transformation A that

maximizes the following function [4]:

JF (A) = tr
{
(ASWAt)−1(ASEAt)

}
. (1)

The matrix A maximizing (1), is found by solving the eigenvalue decomposition of SF , where
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SF = S−1
W SE , (2)

and by taking the d eigenvectors whose eigenvalues are the largest ones. Since SE is of rank unity,

S−1
W SE is also of rank unity. Thus, the eigenvalue decomposition of S−1

W SE leads to only a single

non-zero eigenvalue, and whence FDA can only reduce to dimension d = 1.

1.5.2 The Two-class HDA Criterion

Loog and Duin proposed a new LDR technique for normally distributed classes [14], namely HDA,

which takes into account the heteroscedasticity of the data. They considered the concept of directed

distance matrices, and a linear transformation in the original space, to finally generalize Fisher’s

criterion in the transformed space by substituting the between-class scatter matrix for the corre-

sponding directed distance matrix. The HDA criterion consists of obtaining the matrix A that

maximizes the function [14]:

JH12(A) = tr
{
(ASWAt)−1


ASEAt −AS

1
2
W

p1 log(S
− 1

2
W S1S

− 1
2

W ) + p2 log(S
− 1

2
W S2S

− 1
2

W )
p1p2

S
1
2
WAt






 , (3)

where the logarithm of a matrix M, log(M), is defined as:

log(M) = Φ log(Λ)Φ−1, (4)

with Φ and Λ representing the eigenvectors and eigenvalues of M respectively.

The solution to this criterion is given by the matrix A that is composed of the d eigenvectors

(whose eigenvalues are the largest ones) of the following matrix:

SH12 = S−1
W


SE − S

1
2
W

p1 log(S
− 1

2
W S1S

− 1
2

W ) + p2 log(S
− 1

2
W S2S

− 1
2

W )
p1p2

S
1
2
W


 . (5)
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1.5.3 The Two-class CDA Criterion

It has been noted in [20] that HDA considers the Chernoff distance between the classes in the

original space, and incorporates this measure in the directed distance matrix to extend the FDA

criterion. However, this does not guarantee that the Chernoff distance in the transformed space

is maximized, and this is what is proposed in [20]. The aim of CDA is to find the matrix A that

maximizes:

J∗C12
(A) = tr

{
p1p2ASEAt(ASWAt)−1 + log(ASWAt)− p1 log(AS1At)− p2 log(AS2At)

}
(6)

where SW = p1S1 + p2S2, and the logarithm of a matrix M, log(M), is defined as in (4).

In order to maximize J∗C12
, the authors of [20] proposed a gradient-based method. First, the

gradient matrix is found by using the corresponding gradient operator, ∇, as follows:

∇J∗C12
(A) =

∂J∗C12

∂A
= 2p1p2

[
SEAt(ASWAt)−1 − SWAt(ASWAt)−1(ASEAt)(ASWAt)−1

]t

+2
[
SWAt(ASWAt)−1 − p1S1At(AS1At)−1 − p2S2At(AS2At)−1

]t
. (7)

Thereafter, the algorithm finds the maximum value of the learning rate at step k, ηk, by maximizing

the objective function in the direction of the gradient. The new gradient matrix at step k is

obtained as A(k)+ηk∇J∗C12
(A(k)), and the process is repeated until the change between the objective

functions at the current and previous steps is below a user-defined threshold.

2 All-at-once Multi-class Schemes

The multi-class problem that we consider assumes c classes, ω1, . . . , ωc, given by m labeled n-

dimensional data points arranged in c datasets D1 = {x1,1, . . . ,x1,m1}, ..., Dc = {xc,1, . . . ,xc,mc}.
The model we consider assumes that the classes have a parametric form, and thus the c classes are

given in terms of their a priori probabilities p1, . . . , pc, and c n-dimensional normally distributed

random vectors, x1 ∼ N(m1;S1), . . . ,xc ∼ N(mc;Sc). As these parameters are usually not known,

they can be estimated from the data.
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2.1 Multi-class Case

For the multi-class case, the problem consists of finding a d × n transformation matrix A in such

a way that the transformed data, given by the linear transformation y = Ax, becomes as sepa-

rable as possible. Three approaches that consider a single linear transformation matrix are the

corresponding FDA, HDA and CDA methods discussed below.

2.1.1 The Multi-class FDA Criterion

The multi-class FDA criterion that we consider in this paper is the following. Suppose that SE =
∑c

i=1 pi(mi −m)(mi −m)t, where m =
∑c

i=1 pimi, and SW =
∑c

i=1 piSi. The aim of the FDA

scheme is to find a d × n transformation matrix A that maximizes the criterion function given in

(1), and which is obtained by finding the d eigenvectors (whose eigenvalues are the largest ones )

of the matrix given in (2). Since SE is of rank r ≤ c − 1, only r of these eigenvalues are nonzero,

and so the FDA can, at most, only reduce to dimension c− 1.

2.1.2 The Multi-class HDA Criterion

The HDA criterion aims to find the d× n transformation matrix A that maximizes [14]:

JH(A) =
c−1∑

i=1

c∑

j=i+1

pipjtr

{
(ASWAt)−1AS

1
2
W

[
(S
− 1

2
W SijS

− 1
2

W )−
1
2 S

− 1
2

W SEijS
− 1

2
W (S

− 1
2

W SijS
− 1

2
W )−

1
2 +

1
πiπj

(
log(S

− 1
2

W SijS
− 1

2
W )

−πi log(S
− 1

2
W SiS

− 1
2

W )− πj log(S
− 1

2
W SjS

− 1
2

W )
)]

S
1
2
WAt

}
, (8)

where SEij = (mi −mj)(mi −mj)t, πi = pi

pi+pj
, πj = pj

pi+pj
, and Sij = πiSi + πjSj . The multi-

class HDA criterion is maximized by finding the matrix A composed of the d eigenvectors (whose

eigenvalues are the largest ones) of the following matrix:

SH =
c−1∑

i=1

c∑

j=i+1

pipjS−1
W S

1
2
W

[
(S
− 1

2
W SijS

− 1
2

W )−
1
2 S

− 1
2

W SEijS
− 1

2
W (S

− 1
2

W SijS
− 1

2
W )−

1
2

+
1

πiπj

(
log(S

− 1
2

W SijS
− 1

2
W )− πi log(S

− 1
2

W SiS
− 1

2
W )− πj log(S

− 1
2

W SjS
− 1

2
W )

)]
S

1
2
W . (9)
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2.1.3 The Multi-class CDA Criterion

The multi-class criterion for CDA is also an extension of the two-class case, and is obtained by

maximizing the weighted sum of the pairwise Chernoff distances between classes ωi and ωj , for all

i = 1, . . . , c − 1, j = i, . . . , c, i < j. The weights used for the pairwise class criterion are given

by the normalized joint prior probabilities between classes ωi and ωj , namely, πiπj . The criterion

consists of finding the optimal d × n transformation A, in such a way that the following function

is maximized:

J∗C(A) =
c−1∑

i=1

c∑

j=i+1

J∗Cij
(A) , (10)

where:

J∗Cij
(A) = tr

{
πiπj(ASWijA

t)−1ASEijA
t + log(ASWijA

t)− πi log(ASiAt)− πj log(ASjAt)
}

.

The gradient matrix, given by the first-order necessary condition, is the following:

∇J∗C(A) =
∂

∂A

c−1∑

i=1

c∑

j=i+1

J∗Cij
(A) =

c−1∑

i=1

c∑

j=i+1

∇J∗Cij
(A) , (11)

where:

∇J∗Cij
(A) = 2πiπj

[
SEijA

t(ASWijA
t)−1 − SWijA

t(ASWijA
t)−1(ASEijA

t)(ASWijA
t)−1

]t

+2
[
SWijA

t(ASWijA
t)−1 − πiSiAt(ASiAt)−1 − πjSjAt(ASjAt)−1

]t
. (12)

As for the two-class case, to find the matrix A that maximizes J∗C(A), a gradient-based algo-

rithm was proposed in [20].

3 Pairwise Multi-class Schemes

Classifiers are often developed to distinguish between just two classes of objects. A discriminant

function fij is optimized such that for values larger than a certain threshold, the object is classified
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as belonging to class ωi, or otherwise belonging to class ωj . This procedure is a direct generalization

of the Bayes classifier where we estimate the density function for each class, and the object is

assigned to the class with the highest posterior probability.

The principle behind designing LDR classifiers is the same. We use a linear reduction to improve

the efficiency of classification by mapping the objects onto a subspace so as to apply a classifier

in that space, which, ideally, is more suitable for classification than the original space. In this

section, we use the two-class above-described well-known LDR techniques, namely the FDA, HDA

and CDA, coupled with a back-end classifier, to develop the new multi-class classifiers. A generic

scheme of this type is referred to as a LDR classifier (or LDRC).

When we have more than two classes, the search for the best transformed space that uses

LDR methods is far more complex because of three main problems: The increase in the inter-class

overlap, the decrease in the between-class separability (see Figure 1), and the existence of class

covariances which are unequal. The first two handicaps can be observed in Figure 1. In (a), the

classes are linearly separable in the original space and substantially overlap in the transformed

space. In (b), although the classes remain to be linearly separable in the transformed space, they

become closer to each other than in the original space.

W

(a)   Overlapping

w3

w2

w1

,

H

(b) Less separability than the original space

w3

w1

w2

Figure 1: The effect on the overlapping between two classes and their separability by mapping
them onto a lower-dimensional subspace.

For the above reasons, we need a distinct new way for treating the multi-class linear reduction

problem, and in this vein, we propose three ways by which we can use two-class LDRC methods for

the multi-class case, namely those that include the Voting, Weighting, and Decision Tree strategies

respectively, all of which effectively use the set of possible two-class classifiers as shown in Figure 2.

Observe that by determining the three distinct classifiers, all the pairs of classes are separable (and
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even linearly separable) in the transformed space. The way we tackle the multi-class classification

problem agrees with the scheme proposed in [6], in which it is pointed out that treating the problem

as separate two-class problems has the advantage of deriving simpler classification functions, simpler

decision boundaries and leading to smaller classification errors between the underlying pairs. While

the starting point of our scheme is similar to the work of [6], we enhance the pairwise multi-class

classification by using weighted voting and decision trees, which have lower complexity in the

classification phase, and show similar classification performance, as shown later in the experimental

results. Another advantage of our approach is that we consider the pairwise classification as a linear

dimensionality reduction problem, while taking the heteroscedasticity of the data into account.

H12

H13

H
 32


w1

w2

w
1

w
3

w
 3

w
 2

(a) (b)

w1

w3

w2

w1

w2

w3

Figure 2: The various one-against-one LDR classifiers for three classes. The figure on the left
side (a) is the mapping in the transformed space, while the figure on the right (b) displays the
corresponding linear classifiers after using a threshold as a classifier in the transformed space.

3.1 Simple Voting

The Simple Voting scheme is, indeed, quite straightforward. It consists of a training and testing

phase. We first train all possible two-class classifiers using the available training data, and thus

obtain
(
c
2

)
possible LDR classifiers. On encountering an unknown sample, x, it is tested against all

the
(
c
2

)
classifiers, and every class is given a vote of unity whenever it “wins” a two-class competition.

Ultimately, x will be labeled to the class with the highest number of votes1.
1In the case of ties, the assignment is to the class with the higher a priori probability. If the tie still persists, a

random decision is made.
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3.2 Weighted Voting

The problem with the Simple Voting scheme is that ties result as a consequence of inconsistent re-

gions (see figure 2(b)). One way of resolving this is by resorting to a Weighted Voting methodology,

where the respective weights use the two-class posterior probabilities obtained by the LDRC.

To be more specific, as in the above case, we first train all the possible two-class classifiers

using the available training data. On encountering an unknown sample, x, it is tested against all

the
(
c
2

)
classifiers. For any two-class competition in which the classifier involves classes ωi and ωj

(represented in a subspace by hyperplane Hij), the confidence of x belonging to these classes, say

Vi(x) and Vj(x) respectively, is increased by fi(x) and fj(x) respectively, where2:

fi(x) =
PHij (ωi|x)

PHij (ωi|x) + PHij (ωj |x)
, and fj(x) =

PHij (ωj |x)
PHij (ωi|x) + PHij (ωj |x)

. (13)

In the formula given above, PHij (ωi|x) and PHij (ωj |x) are the two-class posterior probabilities of

assigning x to ωi and ωj respectively as per the LDRC, and not the Bayes rule. Observe that these

can be readily computed by first obtaining the means and variances in the projected space, or even

using any other classification strategy, such as the nearest neighbor rule.

3.3 Decision Tree Based Fusion

From the methods described above and the literature, we see that to further improve classification

for the case when ties are obtained and for unclassifiable regions, it would be advantageous to

search for other ways to generalize two-class LDR classifiers for the multi-class case. To achieve

this, we shall use the well-known concept of decision trees. The authors of [1] had earlier proposed

the use of decision trees for the generalization of two class SVMs for the multi-class problem. In

an analogous way, we show how we can utilize the same principles for LDR classifiers.

The decision trees proposed by Platt, Cristianini and Shawe-Taylor [1] generalize two-class

classifiers to the multi-class case, so as to resolve classification in the unclassifiable regions. In the

interest of completeness, we briefly describe the construction and application of these trees. The

nodes of the tree are “Decision Boxes” which are obtained by invoking a two-class LDRC. At every

node, we classify x based on the local discriminant function, Dij , which determines whether x

should be assigned to class ωi or class ωj . Without loss of generality, we assume that if Dij(x) > 0,

2Note that fi(x)+fj(x) = 1, implying that the Simple Voting scheme is a special 0/1 instantiation of this scenario.
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x is assigned to class ωi, and it is assigned to ωj otherwise. By intelligently invoking a sequence

of classifiers, one can eliminate the classes to which x will not be assigned, and ultimately reach a

leaf node where the final classification of x can be achieved.

The generalization of this method to c classes is executed by list processing. The complete

process to use decision trees consists of the following six steps:

1. Generate a list L with the indices of the classes as elements.

2. Consider the LDRC for the classes represented by the first and last elements of L, say (i, j).

3. Calculate the value of the LDRC, Dij(x), for sample x.

4. If Dij(x) > 0, delete the element j from L. Otherwise, delete the element i.

5. Repeat Steps 2 to 4 until L has only a single element.

6. Assign x to the class represented by the only element in L.

Figure 3 shows an example of such a decision tree for a 3-class problem, and the corresponding

“regionalizations”. One main advantage of using this scheme is that O(c) decisions are made in

order to classify a single sample, as opposed to the c(c−1)
2 = O(c2) decisions needed in the voting

and weighted schemes. One must note, however, that even though the ambiguous region problem

is resolved, the order of the decision making nodes in the tree affect the classification performance

in most of the cases. That is, applying D12(x) prior to D23(x), could discard a sample that could

belong to ω1, and is then assigned to class ω2 or ω3. This is because D13(x) will not be “revisited”,

since it is in a different branch of the tree. Thus, the ordering of the decision functions in the tree

is an interesting problem that we are currently investigating.

4 Experimental Results

In order to evaluate the performance of the new LDRC multi-class schemes, we present an empirical

analysis based on measuring the accuracies of the classifiers tested. As a benchmark for comparison,

the classifiers presented here have been compared with the results obtained by the methods of [20].

The datasets that are used here are the same for all the experiments, and have been taken

from the UCI ML Repository [2]. They consist of the following six datasets: Iris Plants, Pen-Based

Recognition of Handwritten Digits, Thyroid Disease, Wine, Glass Identification, Vowel Recognition.
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Figure 3: Decision-tree-based classification. The figure on the left (a) shows the decision-tree-based
pairwise classification for three classes, while the figure on the right (b) displays the generalization
regions obtained by this sequence of pairwise classifications.

Using these six datasets we performed a 10-fold cross-validation procedure. Some preprocessing

was attempted to render the data applicable for our setting. Indeed, in order to avoid ill-conditioned

covariance matrices, we had to apply a PCA preprocessing to the Glass Identification dataset,

thus, reducing the number of dimensions from nine to eight. We also removed class ‘6’ because it

contained less than 10 elements, rendering it unsuitable for such a 10-fold cross-validation.

The comparison was made on the basis of the three LDR techniques explained above, namely

the FDA, HDA and CDA methods. Also, each of these methods was complemented with linear

and quadratic classifiers in the transformed space. Thus, in the tables below, we show the average

of accuracy rates for the 10 folds on each dataset for the three LDR techniques coupled with their

corresponding linear (+L) and quadratic (+Q) classifiers. In terms of nomenclature, the symbol d

indicates the dimension which yielded the highest rate, n indicates the dimension of the original

data, and c represents the number of classes.

For each classifier (linear and quadratic), the LDR method which achieved the highest average

accuracy is marked with a ‘*’. A bird’s eye view of these results is presented in Table 1 (a), and

the comparative details are explained subsequently.

4.1 Simple Voting

In Table 1 (b), we show the results for the three LDR methods coupled with the linear and quadratic

classifiers, using a Simple Voting strategy. There are considerable differences between the results

for our benchmark, (a), and those of Simple Voting, (b), except for the Iris dataset (which differs

only in FDA+Q, but with a difference which is less than 1%). In the Pendigits dataset, we observe
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Dataset n c FDA+L d HDA+L d CDA+L d FDA+Q d HDA+Q d CDA+Q d

(a) All-at-once:

Iris 4 3 0.9800* 1 0.9800* 1 0.9800* 1 0.9733 1 0.9800* 1 0.9800* 1
Pendigits 16 10 0.8760* 9 0.8709 15 0.8699 15 0.9507 9 0.9768 15 0.9777* 14
Thyroid 5 3 0.9065* 1 0.9065* 4 0.9065* 1 0.9671* 1 0.9578 1 0.9626 4
Wine 13 3 0.9778 2 0.9889* 5 0.9836 2 0.9889 2 0.9945* 2 0.9945* 2
Glass 8 6 0.6613* 4 0.6032 6 0.5894 6 0.5667* 2 0.5532 4 0.5504 4
Vowel 10 11 0.5344 6 0.5556* 2 0.5556* 2 0.6212 9 0.6778 6 0.6960* 6

(b) Simple Voting:

Iris 4 3 0.9800* 1 0.9800* 4 0.9800* 1 0.9667 1 0.9800* 2 0.9800* 3
Pendigits 16 10 0.9652 1 0.9655 16 0.9656* 2 0.9675 1 0.9813 15 0.9821* 15
Thyroid 5 3 0.9160 1 0.9483* 4 0.9483* 4 0.9626* 1 0.9578 4 0.9578 5
Wine 13 3 0.9830 1 0.9886 12 0.9889* 12 0.9889 1 0.9889 12 0.9944* 7
Glass 8 6 0.6334 1 0.6354 5 0.6586* 6 0.6080* 1 0.6051 8 0.6000 7
Vowel 10 11 0.5980 1 0.6111* 4 0.6051 9 0.6030 1 0.6990 4 0.7131* 4

(c) Weighted Voting:

Iris 4 3 0.9800* 1 0.9800* 4 0.9800* 1 0.9667 1 0.9800* 2 0.9800* 3
Pendigits 16 10 0.9681* 1 0.9680 16 0.9681* 1 0.9692 1 0.9813 15 0.9821* 15
Thyroid 5 3 0.9160 1 0.9435* 4 0.9435* 4 0.9626* 1 0.9578 4 0.9532 1
Wine 13 3 0.9830 1 0.9886 12 0.9889* 12 0.9889 1 0.9889 12 0.9944* 7
Glass 8 6 0.6171 1 0.6213 5 0.6249* 6 0.6032* 1 0.5809 8 0.5864 7
Vowel 10 11 0.6010 1 0.6182* 5 0.6081 1 0.6040 1 0.7010 4 0.7172* 4

(d) Decision Tree:

Iris 4 3 0.9800* 1 0.9800* 4 0.9800* 1 0.9667 1 0.9800* 2 0.9800* 3
Pendigits 16 10 0.9624 1 0.9625 16 0.9626* 2 0.9658 1 0.9813 15 0.9821* 15
Thyroid 5 3 0.9160 1 0.9483* 4 0.9483* 4 0.9626* 1 0.9578 4 0.9578 5
Wine 13 3 0.9830 1 0.9886 12 0.9889* 12 0.9889 1 0.9889 12 0.9944* 7
Glass 8 6 0.6435 1 0.6394 6 0.6589* 6 0.6080* 1 0.6051 8 0.5963 8
Vowel 10 11 0.5970 1 0.6121* 4 0.6010 1 0.6040 1 0.7030 4 0.7202* 4

Table 1: Accuracies obtained with the three all-at-once LDR methods coupled with linear and
quadratic classifiers, applied on six real-life datasets from the UCI ML repository.

an improvement in all cases, especially for the linear classifier, where the average rates were 10%

superior when compared to those of the All-at-once scheme. As opposed to this, in the case of the

quadratic classifier, the differences are not as extensive, although the improvement was higher than

1%, which is good, considering the values are near 100%. In the Thyroid dataset we observe that

the improvement in accuracy rates of the linear classifier for the three LDR methods was higher

than 4% in the best case (HDA+L+S and CDA+L+S), although the quadratic classifier did not yield

an enhancement in any criteria (the difference being less than 1%). It is interesting to note that

in the case of the Wine dataset, we have the same values in both tables, where we attained the
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same maximum values, although these maxima were reached by different approaches. Thus, for

example, in the All-at-once scheme, for the linear classifier, the highest value is reached for the HDA

+L (98,89%) scheme, and in Simple Voting the same maximum is attained for CDA+L+S scheme.

As opposed to this, for the quadratic classifier, the highest value was obtained for the HDA+Q

and CDA+Q (99.45%) methods, for which the corresponding value in Simple Voting is for CDA

+Q+S (99.44%). In general, based on the results in the table, we can state that Chernoff-based

classification is the most superior.

4.2 Weighted Voting

In Table 1 (c), we show the results for the three LDR methods coupled with the linear and quadratic

classifiers enhanced with a Weighted Voting phase. Again, there are considerable differences be-

tween the results for the benchmark (a), and Weighted Voting (c), except for the Iris dataset, which

differs only in FDA+Q in Simple Voting, although the difference is less than 1%. Also, in general,

the results with Weighted Voting are very similar to the results of Simple Voting. In the Pendigits

dataset, we observe an improvement in all cases, especially for the linear classifier average rates,

which were superior by ca. 10% compared to the results of All-at-once. As opposed to this, in the

case of the quadratic classifier, the differences are not as impressive, even though an improvement

of more than 1% was obtained. For example, in the case of the Vowel context dataset, we have

improvements in both classifiers, linear and quadratic; in the case of the linear classifier the im-

provements were, on the average, in all criteria by about 6%; in the case of the quadratic classifier

the improvements were higher than 2% in HDA+Q+W and CDA+Q+W in Weighted Voting when

compared to the HDA+Q and CDA+Q entries in Table 1 (a). Again, similar observations about

the superiority of the new Chernoff-based schemes can be observed from these tables, and are not

specifically re-iterated here.

4.3 Decision Tree Based Scheme

Table 1 (d) shows the results for the three LDR methods coupled with linear and quadratic classi-

fiers invoked in conjunction with Decision Trees. As in the previous cases, there are considerable

differences between the results for the benchmark, All-at-once, and those of the Decision Tree,

except for the Iris dataset, which again differs only in the FDA+Q in Table 1 (a) with a difference

which is less than 1%. In general, the results for the decision tree based methods are very similar
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to those of simple and weighted voting. For example, in the Pendigits dataset, we observe an im-

provement in all cases, especially for the linear classifier average rates, which is ca. 10% more than

what is reported in Table 1 (a). In the case of the quadratic classifier, the differences are again not

as large, although the improvement is higher than 1%. An interesting behavior to observe is that

the Decision Tree scheme performs as good as Simple Voting and Weighted Voting, while the time

complexity that the former takes to classify an object is linear, against the quadratic complexity of

the latter two schemes, where the complexity is measured on the number of classes, c.

Again, in the case of the Vowel dataset we have improvements in both classifiers, linear and

quadratic; for the linear classifier, the improvements were on the average, for all criteria, by 6%,

and in the case of the quadratic classifier, the improvements were less marked. In general, we infer

that we can again unequivocally affirm that the Chernoff-based strategies are the most superior

ones.

4.4 Comparison of All Schemes

In order to analyze the results from a different perspective, and to summarize the best results for

each multi-class scheme and dataset, we provide two summarized tables of the best results. The

first table shows the best results for each dataset considering all six possible LDRC schemes and

the different multi-class schemes. The second table summarizes the best result for each multi-class

scheme for each dataset. These results are separately discussed in the next two subsections.

4.4.1 Comparison by Dataset

Table 2 shows the best results for the three LDR methods coupled with linear and quadratic

classifiers, and for the three multi-class schemes. As in the previous cases, there are the considerable

differences between the results from Table 1 (a), the benchmark, and Table 2, except for the Iris

dataset, which again differs only in the FDA+Q, where the difference is less than 1%. In general,

the results for the best overall accuracy for all schemes from Table 2 are quite similar to the results

of Table 1 (b), (c) and (d). For example, for Pendigits, we observe an improvement in all cases,

especially for the linear classifier, which is ca. 10% more than what is reported in Table 1 (b). In

the case of the quadratic classifier, the differences are again not as large, although the improvement

is higher than 1%. As before, in the case of the Vowel dataset we observe improvements in both

classifiers, the linear and quadratic; for the linear classifier, the improvements were on the average,
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for all criteria, by 6%, and in the case of the quadratic classifier, the improvements were much lower.

From this summarized comparison, we again confirm our earlier affirmation that the Chernoff-based

LDR schemes are the most suitable for most of the datasets and for both classifiers, linear and

quadratic.

Datasets n FDA+L HDA+L CDA+L FDA+Q HDA+Q CDA+Q
Iris 3 0.9800* 0.9800* 0.9800* 0.9667 0.9800* 0.9800*
Pendigits 16 0.9681* 0.9680 0.9681* 0.9692 0.9813 0.9821*
Thyroid 5 0.9160 0.9483* 0.9483* 0.9626* 0.9578 0.9578
Wine 13 0.9830 0.9886 0.9889* 0.9889 0.9889 0.9944*
Glass 8 0.6435 0.6394 0.6589* 0.6080 0.6051 0.6000
Vowel 10 0.6010 0.6182* 0.6081 0.6040 0.7030 0.7202*

Table 2: Maximum average accuracies for each LDR approach coupled with the linear and quadratic
classifiers, for the all-at-once method and the three one-against-one schemes.

4.4.2 Comparison by Multi-class Scheme

Table 3 shows the best results for each multi-class scheme and for each dataset, taking into account

the best accuracy out of the six LDRC schemes, e.g., each LDR method combined with the linear

and quadratic classifier. Here, we notice some differences between the benchmark and the one-

against-one schemes, except for Iris and Wine. In Pendigits we note that the one-against-one

schemes are better than the benchmark for the three schemes, where the difference is below 1%.

This is quite interesting because the values are very close to 100%, and any gain should be almost

insignificant. In Thyroid, the one-against-one schemes are below the benchmark, but again, the

difference is very low, i.e. less than 1% – the same behavior is observed for Glass. In Vowel, the

one-against-one schemes are all better than the benchmark, where the difference is more than 1%,

and, for this dataset, the accuracy for the Decision Tree scheme is the highest one.

Datasets n Benchmark Simple Weighted Tree
Iris 3 0.9800* 0.9800* 0.9800* 0.9800*
Pendigits 16 0.9777 0.9821* 0.9821* 0.9821*
Thyroid 5 0.9671* 0.9626 0.9626 0.9626
Wine 13 0.9945* 0.9944* 0.9944* 0.9944*
Glass 8 0.6613* 0.6586 0.6249 0.6589
Vowel 10 0.6960 0.7131 0.7172 0.7202*

Table 3: Maximum average accuracies for each multi-class scheme for all three LDR approaches
coupled with the linear and quadratic classifiers.
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Finally, if we are to submit overall concluding remarks, we can say that, in general, schemes

based on Decision Trees yield the best results for datasets as the dimensionality of the feature space

increases. They always gave the most superior results when there were more than 10 dimensions

(except for the Iris dataset, in which we observed a tie). We also observe that all pairwise schemes

improve the classification accuracy with respect to the all-at-once LDR schemes. The improvement

is quite significant for the linear classifiers, while fair for the quadratic classifier. One of the reasons

for this is that the quadratic classifier performs relatively well for all-at-once schemes, and whence

there is not too much room for improvement. The other reason is that since the data is not

necessarily normally distributed, the presence of outliers are not detected by the linear classifier

which averages the covariance matrices. Additionally, another reason is that the Chernoff distance

approximates very well the error rate in the transformed space, and this is what the CDA aims

to do. In contrast, the FDA uses another criterion that is homoscedastic, and leads to optimal

classification when the covariances are coincident – not typical in real cases. The HDA, although

quite good and comparable to the CDA, does not maximize the Chernoff distance in the transformed

space.

4.5 Comparison with Other All-at-once Schemes

The reader will observe that we have experimentally compared our new scheme with certain bench-

mark algorithms. We reckon these as the “benchmarks”, because, as explained above, they all

work under identical premises, rendering the “playing field to be even”. We have also provided a

rationale as to why we believe that these algorithms are the ones against which the comparison can

be deemed to be fair.

Although an experimental comparison with other approaches has not been included here3, in

the interest of completeness, we discuss now some analytical details which will provide the reader

with additional insight about the similarities and differences between our method and some of the

other multi-class pairwise methods presented in this paper.

1. The OBLDA assumes that the classes are normally distributed with a common covariance

matrix. The implication of this assumption is that it tacitly renders this approach to be

homoscedastic. In contrast, the superior dimensionality reduction schemes introduced in this
3A more detailed investigation of all these methods under a host of constraints (two-class vs. multi-class, linear vs.

non-linear, kernel-based vs. non-kernel-based, hierarchical vs. non-hierarchical etc.) is currently being conducted.
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paper are heteroscedastic, inasmuch as HDA and CDA are also intrinsically heteroscedas-

tic. Thus, these schemes clearly provide much more information about the classes than the

OBLDA.

2. The OBLDA is able to find an optimal solution for the criterion only when the reduction is

made onto a subspace of dimension unity. Observe that for higher dimensions, it resorts to

a greedy recursive algorithm, whose optimality is still unproven. Thus, the OBDLA provides

an “approximate” solution for minimizing the Bayes error in the transformed subspace. Note,

however, that although CDA also approximates the classification error, the philosophy behind

it is to optimize the Chernoff distance in the transformed subspace, which is a measure that

has been shown to be quite accurate, even for non-normal distributions [4, 20].

3. Finally, the OBLDA is able to overcome the overlapping problem of the all-at-once schemes

by means of the so-called kernel trick. To compare the schemes from this perspective, we

mention that unless a linear kernel is used, it contradicts the fundamental principles and

aims of dimensionality reduction, inasmuch as it usually “increases” the dimensionality when

classifying, and the consequent computational burden. In all brevity, the computational

complexity of classifying (that is, in the classification phase) in the kernelized OBLDA is

polynomial in the number of dimensions, while that of Decision Trees is linear in both the

number of classes and the number of dimensions. To clarify this, consider the setting and

experiments cited in [9], which concern the Landsat dataset, and which utilize a five-degree

polynomial kernel. Such a setting implies that the smallest dimension of the image space is
(
n+5

5

)
. In particular, for this specific example, since n = 36 and d = 1, it would imply a

maximum of ≈ 750, 000 multiplications merely for the “reduction” phase. In contrast, our

Decision Tree + CDA scheme will require O(cn) classification time, and with c = 6, this would

merely imply 6 × 36 = 216 multiplications. Clearly, from a computational perspective, our

method performs more efficient classification than the OBLDA – we must point out that this

analysis regards the classification phase. Using the kernel trick, however, the classification

phase can be carried out by using the training samples (more specifically, the support vectors),

in which case, the complexity would depend on the number of samples, the complexity of the

kernel, and the dimension of the original space. In any case, the computational cost of

classification would be much higher than the proposed LDR multi-class schemes.
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4. To render the comparison complete, some comparative remarks against the APAC is not

out of place. Within the criterion studied, the APAC can be perceived as a modification

of the HDA, which rather modifies the latter by incorporating a set of weights for all pairs

for classes. However, unlike the APAC, the HDA (which is one of the reduction methods

considered here) does take into account the heteroscedasticity of the data when it specifically

considers the information in the so-called directed distance matrices. Thus, in this sense,

the HDA is arguably more powerful than the APAC – when viewed from the perspective of

all-at-once schemes. Additionally, our results demonstrate that even considering the HDA in

pairwise scenarios does truly lead to better classification results than the all-at-once schemes.

Finally, the reader should also observe that as shown in [20], even the CDA outperforms the

HDA in more cases for the set of different standard real-life datasets. This too reinforces

our hypothesis that resorting to pairwise schemes is more expedient and fruitful than to

all-at-once methods.

5 Conclusions and Future Work

In this paper, we have considered Linear Dimensionality Reduction (LDR) techniques for the multi-

class PR problem. LDR schemes operate by invoking a relatively simple mapping of the problem

onto a lower-dimensional subspace, leading to computationally efficient testing strategies. Although

numerous results have been reported for the two-class problem, the corresponding issues encoun-

tered when dealing with multiple classes is far from trivial. In this paper, we have shown that it

is better to solve the multi-class problem using an ensemble of Chernoff-based two-class problems,

whence the overall solution is achieved by resorting to either Voting, Weighting, or to a Decision

Tree strategy. The experimental results obtained by testing the methods on benchmark datasets

demonstrate that the Chernoff-based LDR scheme works very well for one-against-one multi-class

schemes. Additionally, the proposed method is not only efficient, but also yields an accuracy

comparable to that obtained by the optimal Bayes classifier.

The extension of these concepts for non-linear mappings (kernel-based or otherwise) remains

open. Another very interesting problem currently being investigated is that of designing algorithms

to determine the order in which the nodes of the Decision Tree should be visited. Also, the scientific

community would definitely benefit by a more detailed and comprehensive investigation of all these
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methods under a host of constraints i.e., two-class vs. multi-class, linear vs. non-linear, kernel-based

vs. non-kernel-based, and hierarchical vs. non-hierarchical. Finally, the use of other LDR criteria,

such as the KL measure, in pairwise multi-class schemes is a strategy that deserves attention.
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