
66 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 40, NO. 1, FEBRUARY 2010

Random Early Detection for Congestion Avoidance
in Wired Networks: A Discretized Pursuit

Learning-Automata-Like Solution
Sudip Misra, Member, IEEE, B. John Oommen, Fellow, IEEE,

Sreekeerthy Yanamandra, and Mohammad S. Obaidat, Fellow, IEEE

Abstract—In this paper, we present a learning-automata-like1

(LAL) mechanism for congestion avoidance in wired net-
works. Our algorithm, named as LAL Random Early Detection
(LALRED), is founded on the principles of the operations of ex-
isting RED congestion-avoidance mechanisms, augmented with a
LAL philosophy. The primary objective of LALRED is to optimize
the value of the average size of the queue used for congestion
avoidance and to consequently reduce the total loss of packets
at the queue. We attempt to achieve this by stationing a LAL
algorithm at the gateways and by discretizing the probabilities of
the corresponding actions of the congestion-avoidance algorithm.
At every time instant, the LAL scheme, in turn, chooses the action
that possesses the maximal ratio between the number of times the
chosen action is rewarded and the number of times that it has been
chosen. In LALRED, we simultaneously increase the likelihood of
the scheme converging to the action, which minimizes the number
of packet drops at the gateway. Our approach helps to improve
the performance of congestion avoidance by adaptively minimiz-
ing the queue-loss rate and the average queue size. Simulation
results obtained using NS2 establish the improved performance of
LALRED over the traditional RED methods which were chosen as
the benchmarks for performance comparison purposes.

Index Terms—Average queue size, discretized pursuit learning,
queue loss, random early detection (RED), stochastic learning
automata (LA).

I. INTRODUCTION

ONE OF THE main advantages that wired networks offer
is their higher degrees of reliability and better connection

Manuscript received January 29, 2009; revised August 2, 2009. Current
version published October 30, 2009. This paper was presented in part at the
Proceedings of AICCSA’09, the 2009 ACS/IEEE International Conference on
Computer Systems and Applications, Rabat, Morocco, May 2009. This work
was supported in part by the Department of Science and Technology, Govern-
ment of India, under Grant SR/FTP/ETA-36/08. This paper was recommended
by Associate Editor G. Papadimitriou.

S. Misra is with the School of Information Technology, Indian Institute of
Technology, Kharagpur 721 302, India (e-mail: sudipm@iitkgp.ac.in).

B. J. Oommen is with the School of Computer Science, Carleton University,
Ottawa, ON K1S 5B6, Canada, and also with the University of Agder, 4876
Grimstad, Norway (e-mail: oommen@scs.carleton.ca).

S. Yanamandra is with the School of Information Technology, Indian
Institute of Technology, Kharagpur 721 302, India, and also with Kalinga
Institute of Industrial Technology, Bhubaneswar 751 024, India (e-mail:
sreekeerthy46@gmail.com).

M. S. Obaidat is with the Department of Computer Science, Monmouth Uni-
versity, West Long Branch, NJ 07764 USA (e-mail: obaidat@monmouth.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCB.2009.2032363

1The reason why the mechanism is not a pure LA, but rather why it yet
mimics one, will be clarified in the body of this paper.

strength as compared to their wireless counterparts. However,
the performance of wired networks often degrades to a great
extent due to congestion in the network. The latter results in
an increase in the packet loss and a corresponding significant
decrease in the throughput. Although congestion cannot be
curbed permanently (since it is determined by the traffic pat-
terns and not by the traffic-routing mechanisms), its adverse
effects can be minimized by decreasing the packet drops in the
network. Despite the fact that the transmission control protocol
(TCP) supports mechanisms such as Slow Start, Congestion
Avoidance, and Fast Retransmit and Fast Recovery to decrease
the effect of packet loss due to congestion, they are not very
effective in curbing down congestion per se [4]. Consequently,
we believe that alternative congestion-avoidance mechanisms
are needed.

To avoid congestion in networks, researchers have ad-
vocated the use of active-queue-management (AQM) strate-
gies, in which packets are dropped before the queue gets
full. Many AQM techniques, such as the adaptive virtual
queue, random early detection (RED), random exponential
marking, PI controller, and the blue and stochastic blue [11]
schemes, have been reported. Among these existing schemes,
RED is one of the most widely used techniques in practice.
Philosophically, RED is a congestion-avoidance algorithm.
This is because it foresees (or anticipates) the congestion by
monitoring the average queue size. It also avoids global syn-
chronization by randomly choosing packets to be marked or
dropped before the queue gets full. The performance of RED is
known to be sensitive to its parameters such as the MAXimum
threshold (MAXth), the MINimum threshold (MINth), the
Maximum packet-marking probability (PMP) (MaxP), and
the so-called weighting factor [6], [7]. Before we proceed,
we clarify how these parameters affect RED. Let Avg de-
note the average queue size. Then, we have the following
conditions.

1) If Avg < MINth, then no packet drops and marks occur.
2) If Avg > MAXth, then all the packets are marked.
3) If MINth < Avg < MAXth, then the packets

are randomly marked with a certain probability
whose value varies from zero to MaxP , evaluated
using (2).

4) Let pb be an intermediate PMP given by

pb ← MaxP × Avg − MINth

MAXth − MINth
. (1)

1083-4419/$26.00 © 2009 IEEE

Authorized licensed use limited to: UNIVERSITY OF AGDER. Downloaded on May 19,2010 at 07:42:07 UTC from IEEE Xplore. Restrictions apply.

MISRA et al.: RANDOM EARLY DETECTION FOR CONGESTION AVOIDANCE IN WIRED NETWORKS 67

Then, the Final PMP pa is evaluated as per equation as
follows:

pa ← pb ×
pb

1 − Count × pb
(2)

where Count denotes the number of the packets last
marked.

We observe that the packets are to be marked or dropped
before the queue gets full. To be more specific, in order to drop
a packet, it should be marked. When the average queue size lies
between the minimum and maximum thresholds, packets are
marked with a certain probability, and these marked packets are
not dropped. However, when the average queue size exceeds the
maximum threshold, the packets are marked so that they can be
dropped. Finally, it must be noted that as the value of Count
increases, the value of pa also increases [6].

The primary objective of this paper is to minimize the
average queue size and to reduce the packet loss at the queue.
The LALRED mechanism that we have proposed in this paper,
which uses a learning-automata-like (LAL) philosophy, suc-
ceeds in achieving this.

A. Contributions

The premise of this paper is that we can utilize a LAL phi-
losophy to optimally manage the queue. The use of “learning”
to do this is not entirely new; however, the method by which
we have approached this is both novel to the field and to our
particular application domain. In this paper, we approach the
problem by stationing a LAL mechanism at the gateway. The
task of the machine, as in any LA-based problem, is to choose
a (locally) optimal action from a set of actions offered to it
by the “Environment” in which it operates. The question now
is that of determining how we can model the environment in
this application domain. This is one of the contributions of this
paper, because once this is done, we can use the same method-
ology for other LA-based solutions. However, rather than use
a pure LA, we utilize what we refer to as a LAL machine, in
which the estimates are essential to update probabilities so as
to determine convergence—as in the recently developed family
of discretized pursuit learning [19] schemes, but not used to
choose the actions.

Thus, we can summarize the specific contributions of this
paper as follows.

1) We propose LALRED, the first efficient LAL solution
to solving the congestion-avoidance problem in wired
networks, the performance of which has been rigorously
tested through simulations when compared with RED.

2) LALRED maintains a low-average queue size, the advan-
tage of which is mentioned in Section V.

3) Although the family of discretized pursuit learning
schemes has been shown to be both extremely accurate
and fast, its application to solve other engineering or sci-
entific problems is not well known. We have adapted it to
update the probabilities and determine the convergence,
and thus, we believe that this result is pioneering when
it concerns its applicability to solve a real-life complex
problem.

Fig. 1. Transmission of packets from one node to another node in the same or
different networks through a gateway. The RED queue is used to avoid incipient
congestion in the network.

II. MOTIVATION

To motivate the problem, let us consider Fig. 1, which
shows three wired networks, namely, Network1, Network2,
and Network3. As shown in the figure, data are sent from
Network1 to Network2 and from Network2 to Network3 in the
form of packets or bytes from one node to another through
the gateway. When congestion occurs in the network, the ac-
cepted protocol drops packets at the gateway. RED helps in
avoiding congestion. As the average queue size increases (i.e.,
as it exceeds the maximum threshold), the system drops more
packets. It is thus clear that it is advantageous that congestion
be minimized for effective communication in the transmission
channel. Of course, the optimal situation is that congestion is
avoided altogether. However, since this may not be feasible, if
it occurs, it should be controlled by the network protocol.

Window-based protocols for flow control are those in which
an upper bound on the unacknowledged data sent from the
sender to the receiver is set. The flow-control mechanism in the
popular transport protocol, TCP, is influenced by the maximum
window size allowed by the receiver. This policy permits the
sender to send new packets only after receiving the acknowl-
edgment from the receiver for the previous packet. In the late
1980s, three congestion-control algorithms, namely, Slow Start,
Congestion Avoidance, and Fast Retransmit and Fast Recovery,
were proposed. TCP’s congestion-control mechanism defines
the following three variables: Congestion_Window (cwnd),
Slowstart_Threshold, and Advertised_Window (awnd). The
purpose of awnd is to limit the sender from completely using
the resources of the receiver. cwnd, on the other hand, is used
to limit the sender from transmitting more data than what the
network can support. The minimum of the quantities cwnd and
awnd is set as the window size of the sender [4]. It should be
noted that, despite using these algorithms, it is not possible to
completely eliminate congestion in the network. Consequently,
researchers sought out congestion-control algorithms to specif-
ically handle this.

To minimize the number of packet drops, it is mandatory
that the probability of marking a packet to be dropped is min-
imized, which implies the minimization of the average queue

Authorized licensed use limited to: UNIVERSITY OF AGDER. Downloaded on May 19,2010 at 07:42:07 UTC from IEEE Xplore. Restrictions apply.

68 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 40, NO. 1, FEBRUARY 2010

size. Thus, the rationale behind our LAL-based approach is to
minimize the average size of the queue and that using a LAL
mechanism.

III. LA

The functionality of a LA can be described in terms of a
sequence of repetitive feedback cycles in which the automaton
interacts with the environment. During a cycle, the automaton
chooses an action, which triggers a response from the environ-
ment, a response that can be either a reward or a penalty. The
automaton uses this response and the knowledge acquired in the
past actions to determine which is the next action. By learning
to choose the optimal action, the automaton adapts itself to
the environment. Excellent references that survey the field are
the books by Lakshmivarahan [8], Najim and Poznyak [15],
Narendra and Thathachar [16], and a recent special issue of
the journal IEEE TRANSACTIONS ON SYSTEMS, MAN, AND

CYBERNETICS, PART B [17].
The learning paradigm, as modeled by LA, has found appli-

cations in systems that posses incomplete knowledge about the
environment in which they operate [8], [15]–[17]. A variety of
applications2 that use LA have been reported in the literature.
They have been used in game playing, pattern recognition,
object partitioning, parameter optimization and multiobjective
analysis, telephony routing and path planning [12]–[14], [22],
and priority assignments in a queuing system. They have also
been used in statistical decision making, distribution approxi-
mation, natural language processing, modeling biological learn-
ing systems, string taxonomy, graph partitioning, distributed
scheduling, network protocols (including conflict avoidance)
for LANs, photonic LANs, star networks and broadcast com-
munication systems, dynamic channel allocation, tuning PID
controllers, assigning capacities in prioritized networks, map
learning, digital filter design, controlling client/server systems,
adaptive signal processing, vehicle path control, and the control
of power systems and vehicle suspension systems.

The beauty of incorporating LA in any particular application
domain is, indeed, the elegance of the technology. Essentially,
LA is utilized exactly as one would expect—by interacting with
the “Environment”—which is the system from which the LA
learns. For example, in parameter optimization, the LA chooses
a parameter, observes the effect of the parameter in the control
loop, and then updates the parameter to optimize the objective
function, where this updating is essentially achieved by the LA’s
stochastic updating rule. The details of how this is achieved in
the various application domains involve modeling the “actions”
and transforming the system’s outputs so that they are perceived
to be of a reward or penalty flavor. This is where the ingenuity of
the researcher comes into the picture—this is often a thought-
provoking task. In the first LA designs, the transition and the
output functions were time invariant, and for this reason, these

2The applications listed here are few, and the actual bibliographic citations
are omitted due to space limitations. Indeed, this relatively new field has been
“exploding.” It has recently been enhanced by a spectrum of applications in
computer science and engineering—from areas as diverse as the design of data
structures, to the implementation of automatic navigation methods.

LAs were considered “fixed-structure” automata [16], [17].
Tsetlin, Krylov, and Krinsky presented notable examples of this
type of automata. Later, Vorontsova and Varshavskii introduced
a class of stochastic automata (SA) known in literature as
variable-structure SA (VSSA). In the definition of a VSSA, the
LA is completely defined by a set of actions (one of which is the
output of the automaton), a set of inputs (one of which is usually
the response of the environment), and a learning algorithm T .
Within the context of this paper, the VSSA [8], [15]–[17]
operates on a vector, called the action probability vector P(t),
where

P(t) = [p1(t), . . . , pr(t)]
T

where pi(t)(i = 1, . . . , r) is the probability that the automaton
will select the action αi at the time t

pi(t) = Pr [α(t) = αi] , i = 1, . . . , r, and it satisfies

r∑
i=1

pi(t) = 1 for all ′t′.

Note that the algorithm T : [0, 1]r × A × B → [0, 1]r is an
updating scheme, where A = {α1, α2, . . . , αr}, 2 ≤ r < ∞,
is the set of output actions of the automaton and B is the
set of responses from the environment. Thus, the updating is
such that

P(t + 1) = T (P(t), α(t), β(t)) (3)

where β(t) is the response that the LA receives from the
environment.

If the mapping T is chosen in such a manner that the Markov
process has absorbing states, the algorithm is referred to as an
absorbing algorithm. Families of VSSA that posses absorbing
barriers have been studied in the literature [8], [15], [16].
Ergodic VSSA have also been reported and extensively studied
[8], [15], [16]. These VSSA converge in distribution, and thus,
the asymptotic distribution of the action probability vector
has a value that is independent of the corresponding initial
vector. Thus, while ergodic VSSA are suitable for nonstationary
environments, automata with absorbing barriers are preferred in
stationary environments.

During the initial years of research in the field of LA, these
updating rules worked with the continuous probability space.
In practice, the relatively slow rate of convergence of these
algorithms constituted a limiting factor in their applicability.
In order to increase their speed of convergence, the concept
of discretizing the probability space was first introduced in
[25] and later extensively studied in [1]–[3], [9], [10], [18],
[20], [21], [25]. This concept is implemented by restricting the
probability of choosing an action to a finite number of values in
the interval [0, 1]. Following the discretization concept, many
of the continuous VSSA have been discretized.

The family of estimator algorithms are characterized by the
use of the estimates for each action. The change of the prob-
ability of choosing an action is based on its current estimated
mean reward and possibly on the feedback of the environment.
The environment determines the probability vector indirectly,

Authorized licensed use limited to: UNIVERSITY OF AGDER. Downloaded on May 19,2010 at 07:42:07 UTC from IEEE Xplore. Restrictions apply.

MISRA et al.: RANDOM EARLY DETECTION FOR CONGESTION AVOIDANCE IN WIRED NETWORKS 69

through the calculation of the reward estimates for each ac-
tion. Even when the chosen action is rewarded, there is a
possibility that the probability of choosing another action is
increased.

For the definition of an estimator LA, a vector of reward
estimates D̂(t) must be introduced. Hence, [23], [26], the state
vector Q(t) is defined as

Q(t) =
〈
P(t), D̂(t)

〉

where D̂(t) = [d̂1(t), . . . , d̂r(t)] can be calculated using the
following:

d̂i(t) =
Wi(t)
Zi(t)

, for i = 1, 2, . . . , r

where Wi(t) is the number of times the ith action has been
rewarded up to the time t and Zi(t) is the number of times the
ith action has been chosen up to the time t.

Thathachar and Sastry [23], [26] have shown that the es-
timator algorithms exhibit a superior speed of convergence
when compared with the nonestimator algorithms. In 1989,
Oommen and Lanctôt [9], [10] introduced discretized versions
of the estimator algorithms and have shown that the discretized
estimator algorithms are even faster than their continuous
counterparts.

For the sake of this paper, we shall concentrate on the family
of Pursuit algorithms, characterized by the fact that they pursue
the action that is currently estimated to be the optimal action.
In the continuous versions, they pursue it in a continuous space,
and in the discretized versions, by changing the probabilities in
discrete steps. The DPRI scheme is briefly described as follows.

This scheme, which was introduced by Lanctôt and Oommen
[9], is based on the reward–inaction learning “philosophy” and
is, thus, denoted by DPRI. The differences between the discrete
and continuous version of the Pursuit algorithm occur only
in the updating rules for the action probabilities. The discrete
Pursuit algorithm makes changes to the probability vector
P(t) in discrete steps, whereas the continuous version uses a
continuous function to update P(t). Being a reward–inaction
algorithm, the action probability vector P(t) is updated only
when the current chosen action is rewarded. If the current
action is penalized, the action probability vector P(t) remains
unchanged. When the chosen action is rewarded, the algorithm
decreases the probability for all the actions that do not corre-
spond to the highest estimate, by the smallest step size Δ, where
if N is the so-called resolution parameter, Δ = 1/rN . In order
to keep the sum of the components of the vector P(t) equal
to unity, the DPRI increases the probability of the action with
the highest estimate by an integral multiple of the smallest step
size Δ.

Oommen and Lanctôt proved that the DPRI is ε-optimal in
all stationary random environments.

They also performed simulations of the DPRI in some
benchmark environments, and the results have been compared
against the results of a continuous reward–penalty version, the
CPRP algorithm. The results have shown that, in some difficult
environments, the DPRI requires only 50% of the number of

iterations required for its continuous version. In a ten-action
environment, the DPRI algorithm required 69% of the iterations
required by the CPRP [9], [10].

IV. LALRED ALGORITHM

Many schemes that improve the performance of RED by
tuning the different parameters, such as control-parameter set-
tings [27], varying the rate of change of the average queue size
[5], and improving the response time when RED recovers from
congestion [28] have been proposed lately.

In spite of the existence of a number of schemes to avoid
congestion, the primary motivation behind this paper was to
design a methodology which helps to lower the packet loss
due to congestion by adaptively discretizing the drop types
based on the maximal component of the reward estimates vector
explained in Section III. Our approach should not be con-
strued as “competing” with the existing congestion-avoidance
algorithms mentioned earlier. Rather, we try to show how the
use of the discretized pursuit learning approach can help in
effectively minimizing the average queue size and packet loss
at the gateways of the networks.

Before we proceed with our LAL-based solution, we have
to clearly indicate the “Actions” which the environment has
to offer (which the LAL scheme has to choose from). In our
approach, we advocate the following four actions, based on the
packet drop type, as follows.

1) Forced_Drop: This action is chosen when the average
queue size is above the maximum-threshold set for the
queue or when the queue is full [24].

2) Minimum_Exceed: This action is chosen when the av-
erage queue size exceeds the minimum threshold or it
transitions from an empty queue state to a nonempty
queue state.

3) Unforced_Drop: This action is chosen when the average
queue size lies between the minimum threshold and the
maximum threshold. For an unforced drop, the arriving
packet is always dropped.

4) No_Drop: This action is chosen when the average queue
size lies below the minimum threshold.

By virtue of the nature of RED, we can state that the
actions Forced_Drop, Minimum_Exceed, Unforced_Drop, and
No_Drop in LALRED are mutually exclusive. This is because
of the following reasons.

1) Forced_Drop occurs when Avg > MAXth.
2) Minimum_Exceed occurs when MINth < Avg <

Maxth and when Avg just crosses MINth.
3) Unforced_Drop occurs when MINth < Avg <

MAXth.
4) No_Drop occurs when Avg < MINth.

The mutually exclusive nature of the actions is because the
earlier four cases are themselves mutually exclusive.

The rationale behind our approach is as follows. First of
all, we station a LAL machine, which makes its decisions
based on a LALRED strategy (see Fig. 2, where we consider
two networks: Network 1 and Network 2). Unlike a true LA
scheme, LALRED does not use an “action probability” vector

Authorized licensed use limited to: UNIVERSITY OF AGDER. Downloaded on May 19,2010 at 07:42:07 UTC from IEEE Xplore. Restrictions apply.

70 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 40, NO. 1, FEBRUARY 2010

Fig. 2. Example of the transmission of packets from one network to another
using a LAL machine placed at the gateway.

to choose the actions. Thus, it is not appropriate to consider
our scheme to be within the LA family. Rather, at every time
instant, we maintain a maximum-likelihood estimate of how
profitable a particular action has been, and this is essentially
inferred by examining the “estimate vector” stored by the
Pursuit algorithm. Thus, the scheme intelligently chooses the
randomly arriving packets to mark, drop, or not drop, based
on the current average queue size in the network. A locally
optimal action is chosen (from this set of possible actions) by
the machine at every iteration. This is enabled by the continuous
interaction of the automaton, stationed at the gateway, with the
environment.

The algorithm also maintains and updates a probability vec-
tor analogous to the “action probability” vector used by LA.
What then is the use of this vector, if truly, it is not used to
choose the actions? Indeed, it is used to control the convergence
accuracy of the mechanism. For example, let us suppose that
we have used the DPRI action probability updating scheme
discussed in Section III to update the probability vector. Un-
like the DPRI, the action chosen is not based on the “action
probability” vector but rather based on the maximal component
of the reward estimates vector. The response generated by the
environment signifies whether the action chosen is to be given
a “reward” or a “penalty.” Indeed, when the action No_Drop
is chosen by the LAL system, it gets a reward; otherwise, it
gets a penalty. When an action chosen by the automaton is
rewarded by the environment, the probabilities corresponding
to all the actions are updated, and so, more specifically, the
probability corresponding to the rewarded action is increased,
and the probabilities of the other actions are decreased by a
single step-size Δ. If the action chosen is penalized, since
the scheme is of a reward–inaction flavor, the action prob-
abilities are unchanged. This process iterates until an action
probability converges to unity (i.e., the vector becomes a unit
vector).

Consider now the effect of the step size Δ. If Δ is large,
the action probabilities will take large steps, and thus, the
scheme will converge to a unit vector more rapidly, although
the convergence could be less accurate. On the other hand,
if Δ is small, the changes will be more conservative and

measured, and thus, it will take a larger number of iterations
for the scheme to converge to a unit vector, leading to a more
accurate convergence. We, thus, have the traditional speed-
accuracy conflict, and our experimental results show that we
can choose a value of Δ that is small enough to guarantee an
accurate-enough convergence.

We establish through rigorous simulation studies that
LALRED can help minimize the average queue size and the
packet loss rate significantly. Although LALRED is effective
in reducing the queue size, it is not as effective in improving
the throughput. Indeed, in case of the throughput, the LALRED
algorithm does not outperform RED significantly. The main
objective of LALRED is to optimize the average queue size.
Our position is that we have to do this to both avoid congestion
in the network and maximize the number of packets sent
with respect to time. The formal algorithm LALRED is as
follows.

ALGORITHM LALRED
Input: Set of actions {α1, α2, α3, α4}, where
α1: Forced_Drop
α2: Minimum_Exceed
α3: Unforced_Drop
α4: No_Drop.
Output: The output is the DROPTYPE action chosen by the

automaton.
Parameters: m: Index of the maximal component of D̂(t),

d̂m(t) = maxi=1,2,...,r{d̂i(t)}
Wi(t): The number of times the ith action has been rewarded

up to the time t, with 1 ≤ i ≤ r
Zi(t): The number of times the ith action has been chosen up

to the time t, with 1 ≤ i ≤ r
N : The resolution parameter
Δ := 1/rN is the smallest step size
Method
Initialization
pi(t) = 1/r, for 1 ≤ i ≤ r

Step 0: Initialize D̂(t) by picking each action a small number
of times

Initially, choose an action αm based on the average initial
queue size

Repeat
Step 1: The feedback β of the environment is given to the

action αm chosen by the machine. When the action
No_Drop is chosen, it gets a reward (β = 0); other-
wise, it gets a penalty (β = 1).

Step 2: Update P(t) according to the following equations:
For all j �= m,
If β(t) = 0 and pm(t) �= 1

pj(t + 1) = max {pj(t) − Δ, 0}

pm(t + 1) = 1 −
∑
∀j �=m

pj(t + 1)

Else

pj(t + 1) = pj(t) for all 1 ≤ j ≤ r.

Authorized licensed use limited to: UNIVERSITY OF AGDER. Downloaded on May 19,2010 at 07:42:07 UTC from IEEE Xplore. Restrictions apply.

MISRA et al.: RANDOM EARLY DETECTION FOR CONGESTION AVOIDANCE IN WIRED NETWORKS 71

Step 3: Update D̂(t) according to the following:

Wm(t + 1) = Wm(t) + (1 − β(t))

Zm(t + 1) = Zm(t) + 1

d̂m(t + 1) =
Wm(t + 1)
Zm(t + 1)

Wj(t + 1) = Wj(t)
Zj(t + 1) = Zj(t)
d̂j(t + 1) = d̂j(t)

⎫⎬
⎭ for all j �= m.

Step 4: Choose an action based on the maximal component
of D̂(t).

Step 5: Drop the packets based on the action chosen by the
automaton.

Step 6: Repeat Steps 1–5 until some component pm(t) → 1
End Repeat
END ALGORITHM LALRED

V. EXPERIMENTAL DETAILS

In this section, we present the details of the three sets of
simulation experiments that were conducted to evaluate the
performance of LALRED. We describe the network topology
and the performance metrics that were used in the experiments,
and then, we present the results obtained from the simulations.

A. Simulation Results

The performance evaluation of our proposed algorithm,
LALRED, as compared with the traditional RED algorithm,
was performed using the NS2 simulator (version NS-2.29) and
TCP traffic. The algorithms were, initially, simulated for a
network of six nodes and then for another with 100 nodes. The
simulation results reported in this paper are for an ensemble
average of ten runs.

The performance plots of LALRED and RED are presented
in the following sections. The simulation results show that
the performance of LALRED is superior by virtue of its low-
average queue size and its packet loss. Both of these decrease
significantly using our approach.

B. Performance Study

The following metrics were used to comparatively evaluate
the performances of RED and LALRED.

1) Queue Size: This metric quantifies the size of the queue.
It is measured in terms of the number of packets or bytes.

2) Queue Lost: The queue-lost metric helps to evaluate the
number of packets lost at the gateway due to congestion in
the network. As the number of packets lost increases, the
delay for a receiver to receive the message also increases.

C. Results

Three sets of experiments were conducted to establish the
performance of LALRED. In the first set, the instantaneous

Fig. 3. Topology of the network having six nodes used in the first two
experiments.

TABLE I
PARAMETERS USED FOR EXPERIMENTAL SET 1

Fig. 4. Graphs of the average queue size for RED and LALRED for experi-
mental set 1.

Fig. 5. Graphs of the instantaneous queue size for RED and LALRED for
experimental set 1.

queue size, the average queue size, and the number of all the
packets transmitted were plotted in a network having six nodes
but having different bandwidth and delay. In the second set of

Authorized licensed use limited to: UNIVERSITY OF AGDER. Downloaded on May 19,2010 at 07:42:07 UTC from IEEE Xplore. Restrictions apply.

72 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 40, NO. 1, FEBRUARY 2010

Fig. 6. Graphs of the sequence number for RED and LALRED for experimental set 1.

experiments, the queue lost and the queue size were determined
and compared in a network having six nodes. The bandwidth
and delay in this case were different from those characterizing
the network used in the first set of experiments. The third set of
experiments were conducted with a network having 100 nodes,
and the queue lost and the queue size were analyzed.

Experimental Set 1: The network topology that we used in
this set of experiments is shown in Fig. 3, which also clearly
displays the senders and the receivers. The figure also clearly
shows the delays and bandwidths of all the links. This topology
is also the one used in the second set of experiments, except
that, as mentioned later, in that case, the delays and bandwidths
of all the links were specified as per Fig. 3 and Table I. With
regard to the queues maintained between R1 and R2, we note
that the queues between (S1, R1), (S2, R1), (S3, R2), and (S4,
R2) were of the type “DropTail,” i.e., the packets were dropped
from the tail of the queue.

Some of the configuration parameters that we used in this
set of experiments are given in Table I. In the figure and table,
Bandwidth denotes the bandwidth of the links in the network,
Delay denotes the propagation delay on a link, and the Queue
limit denotes the maximum limit on the size of the queue. The
Threshold and the Maximum threshold parameters denote the
predefined minimum and the maximum threshold values set for
a queue. The Number of Flows denotes the total number of
flows among all pairs of nodes. The Simulation time parameter
denotes the duration for which the simulation experiments are
run. The Packet size denotes the size of the packets transmitted.
The results obtained are given as follows.

Average and Instantaneous Queue Sizes: Figs. 4 and 5
show the variation of the average and instantaneous queue sizes
and the queue lost of RED and LALRED. It should be noted
that, generally speaking, as the average queue size increases,
the number of packet drops also increases, because in such a
case, whenever the average queue size exceeds the maximum
threshold, the packet drops increases. Moreover, the average
queue size is used instead of the instantaneous queue size

TABLE II
PARAMETERS USED FOR EXPERIMENTAL SET 2

Fig. 7. Graphs of the queue lost for RED and LALRED for experimental
set 2.

to attenuate transient congestion. Hence, the goal of a good
algorithm should be to keep the average queue size minimal.
From the figure, it can be observed that, from time t = 1 to
t = 4, the average queue size of LALRED is lesser than that of
RED. This small queue size can be attributed to the low delay in
the network. The mean of the average queue size of LALRED
calculated for this plot is 5.024037, whereas that of RED is
5.442317. Thus, LALRED’s average queue size is 7.68% lesser
than that of RED’s. The instantaneous queue size for LALRED
is also almost always less than that for RED.

Authorized licensed use limited to: UNIVERSITY OF AGDER. Downloaded on May 19,2010 at 07:42:07 UTC from IEEE Xplore. Restrictions apply.

MISRA et al.: RANDOM EARLY DETECTION FOR CONGESTION AVOIDANCE IN WIRED NETWORKS 73

Fig. 8. Graphs of the queue size for RED and LALRED for experimental set 2.

Sequence Number: Fig. 6 shows the variation of the se-
quence number of the packets sent for both RED and LALRED.
This index, the sequence number, signifies the number of
packets acknowledged as having been received by the receiver.
It thus denotes the number of the last packet sent. From the plot,
we see that, almost uniformly and on an average, the sequence
number associated with LALRED is greater than that for RED.
Hence, we can infer that LALRED is superior to RED in terms
of the number of packets that are acknowledged.

Experimental Set 2: In experimental set 2, we considered a
network having a set of six nodes, whose topology is the same
as that used in experimental set 1. The links present in the
network had a bandwidth of 10 Mb and a delay of 2 ms. In this
set of experiments, the quantities measured were the queue lost
and the queue size. The important simulation parameters that
were used in this experimental set are summarized in Table II.

Queue Lost: As queue lost signifies the number of packets
lost with respect to time, an increased value for this index
would imply an increased difficulty in reassembling the original
message at the destination. This would thus increase the delay
of transmission in the network. For an ideal scenario, the queue-
lost value should be zero. Fig. 7 shows the comparison of queue
lost of the RED and LALRED schemes. From the figure, it is
shown that the curve of LALRED is almost always lower than
that of RED. This signifies that the queue lost for RED is greater
than that of LALRED. For instance, it can be observed that the
value of the queue lost for RED at 19.95 s is 46 100 B. On the
other hand, the queue lost for LALRED at the same time instant
is 42 100 B. This implies a decrease of 8.676% for LALRED
over RED.

Queue Size: The size of the queue should be optimized to
such an extent that both the packet loss at the queue and the
delay are minimized. Fig. 8 shows the variation of queue size
for both RED and LALRED. From the figure, it is again shown
that the curve corresponding to LALRED is always lower than
that of RED. Thus, the queue size at any instant, for example,
5.1499 s, in case of RED, is 1194, whereas that of LALRED

TABLE III
PARAMETERS USED FOR EXPERIMENTAL SET 3

is 1136. The general observation is that the queue size of
LALRED is generally smaller than that of RED.

Experimental Set 3: In experimental set 3, we tested the
performance of LALRED and RED when the number of nodes
is increased. In this set of experiments, we used a network with
100 nodes. The links between the nodes had a bandwidth of
2 Mb and a delay of 1 ms. The simulation parameters set in this
set of experiments are summarized in Table III.

Queue Size: Fig. 9 shows the variation of queue size for RED
and LALRED when the Queue Type is DropTail. The experi-
mental results show that the average queue size of LALRED
is marginally lesser than that of RED, by about 0.12%. This
is much smaller than what was observed in experimental
set 1.

Queue Lost: Figs. 10 and 11 show the performance results
corresponding to the queue-lost metric. From the plots in the
figures, it can be observed that the queue lost in case of RED
is more than the queue lost in case of LALRED. For example,
the value of queue lost at 19.95 s of RED is about 2 086 000,
whereas the same index for LALRED is about 2 063 880.
Again, the superiority is not as marked in this experimental set
as compared to that in experimental set 1.

Authorized licensed use limited to: UNIVERSITY OF AGDER. Downloaded on May 19,2010 at 07:42:07 UTC from IEEE Xplore. Restrictions apply.

74 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 40, NO. 1, FEBRUARY 2010

Fig. 9. Queue sizes of RED and LALRED for experimental set 3 when the queue type is DropTail.

Fig. 10. Graphs of the queue lost of RED and LALRED for experimental set 3 when the queue type is DropTail.

VI. CONCLUSION

In this paper, we have devised a LAL mechanism for conges-
tion avoidance in wired networks. Our algorithm, LALRED,
is not a pure LA family because it does not use the action
probability vector to choose the action at any given time instant.
Rather, it uses the so-called estimate vector maintained by
the family of Pursuit algorithms and updates the probability
vector using a discretized philosophy so as to move toward
convergence. LALRED is founded on the principles of the
operations of existing RED congestion-avoidance mechanisms,
augmented with a LAL philosophy, and it aims to optimize
the value of the average size of the queue used for congestion
avoidance and to consequently reduce the total loss of packets at
the queue. Simulation results obtained using NS2 establish the
improved performance of LALRED over the traditional RED
methods which were chosen as the benchmarks for performance

comparison purposes. From these, we infer the following
results.

1) The number of packets lost at the gateway using
LALRED is lower as compared to that using RED.
LALRED reduces the packet drops at the gateway.

2) The average queue size maintained when using LALRED
is lower as compared to that using RED. The average
queue size is proportional to the dropping probability at
the gateway.

3) Using LALRED, more packets are acknowledged to the
sender.

4) For more complex subnets, it may happen that the transfer
of packets between the nodes takes place more than in less
complex networks. However, our observation is that the
average throughput of LALRED is less than that of the
conventional RED. Furthermore, the average queue size

Authorized licensed use limited to: UNIVERSITY OF AGDER. Downloaded on May 19,2010 at 07:42:07 UTC from IEEE Xplore. Restrictions apply.

MISRA et al.: RANDOM EARLY DETECTION FOR CONGESTION AVOIDANCE IN WIRED NETWORKS 75

Fig. 11. Graphs of the queue lost of RED and LALRED for experimental set 3 when the queue type is RED.

and the number of packets lost at any particular instant
of time are less than that of normal RED. Our position
is that, for even networks with 100 nodes, the LALRED
scheme is superior to the RED.

We suggest a few ideas for future research by which
LALRED can be enhanced.

1) The question of using the action probability vector and
the estimate vector to choose the actions is the first
promising avenue for further research. This is not going
to be so trivial because the action probability vector may
recommend the choice of an action contrary to the choice
recommended by reward estimate vector. This research is
currently being undertaken.

2) It would be interesting to see how LALRED performs in
environments characterized by nodes that are mobile.

3) An entirely new approach along the lines of thought
used in LALRED or a modified LALRED needs to be
proposed for congestion avoidance in both infrastructure-
based and infrastructureless wireless networks.

4) The scalability of LALRED for use in networks having a
large number of nodes needs to be improved.

5) The performance of LALRED in fault-prone environ-
ments would also need detailed investigation.

REFERENCES

[1] M. Agache, “Families of estimator-based stochastic learning algorithms,”
M.S. thesis, School Comput. Sci., Carleton Univ., Ottawa, ON, Canada,
2000.

[2] M. Agache and B. J. Oommen, “Continuous and discretized generalized
pursuit learning schemes,” in Proc. 4th SCI, S. Andraddttir, K. J. Healy,
D. H. Withers, and B. L. Nelson, Eds., Orlando, FL, Jul. 2000,
pp. VII:270–VII:275.

[3] M. Agache and B. J. Oommen, “Generalized pursuit learning schemes:
New families of continuous and discretized learning automata,” IEEE
Trans. Syst., Man, Cybern. B, Cybern., vol. 32, no. 6, pp. 738–749,
Dec. 2002.

[4] J. Antila, TCP Performance Simulations Using NS2, Last accessed
on Feb. 3, 2009. [Online]. Available: http://www.netlab.tkk.fi/j˜mantti3/
pubs/special study.pdf

[5] R. Fengyuan, R. Yong, and S. Xiuming, “Enhancement to RED algo-
rithm,” in Proc. 9th IEEE Int. Conf. Netw., Oct. 2001, pp. 14–19.

[6] S. Floyd and V. Jacobson, “Random Early Detection gateways for con-
gestion avoidance,” IEEE/ACM Trans. Netw., vol. 1, no. 4, pp. 397–413,
Aug. 1993.

[7] D. Katabi and M. Handley, “Enhancing Internet congestion control using
explicit and precise feedback,” in Proc. Oxygen Workshop, Jul. 2001,
pp. 1–2.

[8] S. Lakshmivarahan, Learning Algorithms Theory and Applications. New
York: Springer-Verlag, 1981.

[9] J. K. Lanctôt, “Discrete estimator algorithms: A mathematical model
of computer learning,” M.S. thesis, Dept. Math. Stat., Carleton Univ.,
Ottawa, ON, Canada, 1989.

[10] J. K. Lanctôt and B. J. Oommen, “Discretized estimator learning au-
tomata,” IEEE Trans. Syst., Man, Cybern., vol. 22, no. 6, pp. 1473–1483,
Nov./Dec. 1992.

[11] Active Queue Management, Last accessed on Feb. 3, 2009. [Online].
Available: http://en.wikipedia.org/wiki/active queue management

[12] S. Misra and B. J. Oommen, “GPSPA: A new adaptive algorithm for
maintaining shortest path routing trees in stochastic networks,” Int. J.
Commun. Syst., vol. 17, no. 10, pp. 963–984, Dec. 2004.

[13] S. Misra and B. J. Oommen, “An efficient dynamic algorithm for main-
taining all-pairs shortest paths in stochastic networks,” IEEE Trans. Com-
put., vol. 55, no. 6, pp. 686–702, Jun. 2006.

[14] S. Misra and B. J. Oommen, “Fault-tolerant routing in adversarial mobile
Ad Hoc networks: An efficient route estimation scheme for non-stationary
environments,” Telecommun. Syst. J., 2009, to be published.

[15] K. Najim and A. S. Poznyak, Learning Automata: Theory and Applica-
tions. Oxford, U.K.: Pergamon, 1994.

[16] K. S. Narendra and M. A. L. Thathachar, Learning Automata: An Intro-
duction. Englewood Cliffs, NJ: Prentice-Hall, 1989.

[17] M. S. Obaidat, G. I. Papadimitriou, and A. S. Pomportsis, “Learning
automata: Theory, paradigms, and applications,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 32, no. 6, pp. 706–709, Dec. 2002.

[18] B. J. Oommen, “Absorbing and ergodic discretized two-action learning
automata,” IEEE Trans. Syst., Man, Cybern., vol. SMC-16, no. 2, pp. 282–
293, Mar./Apr. 1986.

[19] B. J. Oommen and M. Agache, “Continuous and discretized pursuit
learning schemes: Various algorithms and their comparison,” IEEE
Trans. Syst., Man, Cybern. B, Cybern., vol. 31, no. 3, pp. 277–287,
Jun. 2001.

[20] B. J. Oommen and J. P. R. Christensen, “ε-optimal discretized
reward–penalty learning automata,” IEEE Trans. Syst., Man, Cybern.,
vol. 18, no. 3, pp. 451–457, May/Jun. 1988.

[21] B. J. Oommen and E. R. Hansen, “The asymptotic optimal-
ity of discretized linear reward–inaction learning automata,” IEEE
Trans. Syst., Man, Cybern., vol. SMC-14, no. 3, pp. 542–545,
May/Jun. 1984.

[22] B. J. Oommen, S. Misra, and O.-C. Granmo, “Routing bandwidth guar-
anteed paths in MPLS traffic engineering: A multiple race track learn-
ing approach,” IEEE Trans. Comput., vol. 56, no. 7, pp. 959–976,
Jul. 2007.

Authorized licensed use limited to: UNIVERSITY OF AGDER. Downloaded on May 19,2010 at 07:42:07 UTC from IEEE Xplore. Restrictions apply.

76 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 40, NO. 1, FEBRUARY 2010

[23] P. S. Sastry, “Systems of learning automata: Estimator algorithms applica-
tions,” Ph.D. dissertation, Dept. Elect. Eng., Indian Inst. Sci., Bangalore,
India, Jun. 1985.

[24] NS2 Network Simulator, Last accessed on Feb. 3, 2009. [Online].
Available: http://www.isi.edu/nsnam/ns/

[25] M. A. L. Thathachar and B. J. Oommen, “Discretized reward–inaction
learning automata,” J. Cybern. Inf. Sci., vol. 2, no. 1, pp. 24–29, Spring
1979.

[26] M. A. L. Thathachar and P. S. Sastry, “A class of rapidly converging
algorithms for learning automata,” IEEE Trans. Syst., Man, Cybern.,
vol. SMC-15, no. 1, pp. 168–175, Jan./Feb. 1985.

[27] R. Verma, A. Iyer, and A. Karandikar, “Active queue management us-
ing adaptive RED,” J. Commun. Netw., vol. 5, no. 3, pp. 275–281,
Sep. 2003.

[28] B. Zheng and M. Atiquzzaman, “Low pass filter/over drop avoid-
ance (LPF/ODA): An algorithm to improve the response time of
RED gateways,” Int. J. Commun. Syst., vol. 15, no. 10, pp. 899–906,
Dec. 2002.

Sudip Misra (M’09) received the B.S. degree
from the Indian Institute of Technology, Kharagpur,
India, the M.S. degree from the University of
New Brunswick, Fredericton, NB, Canada, and the
Ph.D. degree in computer science from Carleton
University, Ottawa, ON, Canada.

He has several years of experience working in
the academia, government, and private sectors in
research, teaching, consulting, project management,
architecture, software design, and product engineer-
ing roles. He was with Cornell University, Ithaca,

NY; Yale University, New Haven, CT; Nortel Networks, Canada; and the
Government of Ontario, Canada. He is currently an Assistant Professor with
the School of Information Technology, Indian Institute of Technology. He is
the author/Editor of a large number of scholarly research papers and books.
His current research interests include algorithm design and engineering for
telecommunication networks, software engineering for telecommunication ap-
plications, and computational intelligence and soft-computing applications in
telecommunications.

Dr. Misra was the recipient of six research paper awards in different confer-
ences. He was also the recipient of several academic awards and fellowships
such as the (Canadian) Governor General’s Academic Gold Medal at Carleton
University and the University Outstanding Graduate Student Award in the
doctoral level at Carleton University. In 2008, he was conferred The National
Academy of Sciences, India—Swarna Jayanti Puraskar. He is the Editor-in-
Chief of two journals and is an Associate Editor or an editorial board member
of a dozen others published by Elsevier, Springer, Wiley, IOS Press, etc. He is
an Editor of six books in the areas of wireless ad hoc networks, wireless sensor
networks, wireless mesh networks, communication networks and distributed
systems, network reliability and fault tolerance, and information and coding
theory, published by reputed publishers such as Springer and World Scientific.
He was invited to chair several international conference/workshop programs
and sessions. He was also invited to deliver keynote/invited lectures in over
15 international conferences in the U.S., Canada, Europe, Asia, and Africa.

B. John Oommen (F’03) was born in Coonoor,
India, on September 9, 1953. He received the
B.Tech. degree from the Indian Institute of Technol-
ogy, Madras, India, in 1975, the M.E. degree from
the Indian Institute of Science, Bangalore, India, in
1977, and the M.S. and Ph.D. degrees from Purdue
University, West Lafayettte, IN, in 1979 and 1982,
respectively.

In the 1981–1982 academic year, he joined the
School of Computer Science, Carleton University,
Ottawa, ON, Canada, where he is currently a Full

Professor and, since July 2006, has been awarded the honorary rank of
Chancellor’s Professor, which is a lifetime award. He is the author of more
than 315 refereed journal and conference publications. His research interests
include automata learning, adaptive data structures, statistical and syntactic
pattern recognition, stochastic algorithms, and partitioning algorithms.

Dr. Oommen is a Fellow of the IAPR. He has been on the editorial board
of the IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, and
Pattern Recognition.

Sreekeerthy Yanamandra received the B.S. degree
in computer science and engineering from Kalinga
Institute of Industrial Technology, Bhubaneswar,
India.

She is currently an Assistant Software Engineer
with Tata Consultancy Services, India. Her current
research interests include computer networks and
learning systems.

Mohammad S. Obaidat (F’05) received the M.S.
and Ph.D. degrees in computer engineering with a
minor in computer science from The Ohio State
University, Columbus.

He is an internationally well-known Academic,
Researcher, and Scientist. He was a Faculty Member
with the City University of New York, New York. He
is currently a Full Professor of computer science with
the Department of Computer Science, Monmouth
University, West Long Branch, NJ, where he was
previously the Chair of the Department of Computer

Science and the Director of the Graduate Program. He has received extensive
research funding. He has served as a Consultant for several corporations and
organizations worldwide. In 2002, he was the Scientific Advisor for the World
Bank/UN Workshop on Fostering Digital Inclusion. During the 2004/2005
academic year, he was on sabbatical leave as the Fulbright Distinguished Pro-
fessor and Advisor to the President of Philadelphia University, Philadelphia, PA
(Dr. Adnan Badran who became in April 2005 the Prime Minister of Jordan).
He has made pioneering and lasting contributions to the multifacet fields of
computer science and engineering. He has authored or coauthored six books
and over 420 refereed scholarly journal and conference articles. His research
interests include wireless communications and networks, modeling and simula-
tion, performance evaluation of computer systems and telecommunications sys-
tems, security of computer and network systems, high-performance computing/
computers, applied neural networks and pattern recognition, security of e-based
systems, and speech processing.

Dr. Obaidat is the Editor of many scholarly journals, including being the
Editor-in-Chief of the International Journal of Communication Systems (John
Wiley). He is also an Editor of the IEEE WIRELESS COMMUNICATIONS.
Recently, he was the recipient of the Distinguished Nokia Research Fellowship
and the Distinguished Fulbright Award. He has guest-edited numerous Special
Issues of scholarly journals such as the IEEE TRANSACTIONS ON SYSTEMS,
MAN, AND CYBERNETICS, IEEE WIRELESS COMMUNICATIONS, IEEE
SYSTEMS JOURNAL, Elsevier Performance Evaluation, SIMULATION: Trans-
actions of Society for Modeling and Simulation International (SCS), Elsevier
Computer Communications Journal, Journal of C&EE, Wiley Security and
Communication Network Journal, Wiley International Journal of Communi-
cation Systems, and among others. He has served as the Steering Committee
Chair, Advisory Committee Chair, Honorary Chair, and Program Chair of many
international conferences. He is the Founder of the International Symposium
on Performance Evaluation of Computer and Telecommunication Systems
(SPECTS) and has served as the General Chair of SPECTS since its inception.
He was the recipient of a recognition certificate from the IEEE. Between
1994 and 1997, he has served as Distinguished Speaker/Visitor of the IEEE
Computer Society. Since 1995, he has been serving as an Association for
Computing Machinery (ACM) Distinguished Lecturer. He is currently also
an SCS Distinguished Lecturer. He is the Founder of the SCS Distinguished
Lecturer Program and its current Director. Between 1996 and 1999, he was
an IEEE/ACM Program Evaluator of the Computing Sciences Accreditation
Board/Commission. Between 1995 and 2002, he has served as a member of
the board of directors of the Society for Computer Simulation International.
Between 2002 and 2004, he has served as Vice President of Conferences of the
Society for Modeling and Simulation International SCS. Between 2004–2006,
he served as Vice President of Membership of SCS. Between 2006–2009, he
served as the Senior Vice President of SCS. He is currently the President of
SCS. He has been invited to lecture and give keynote speeches worldwide.
He was the recipient of the Best Paper Award in the IEEE AICCSA 2009
International Conference for one of his recent coauthored papers. In 2009, he
was the recipient of the McLeod Founder’s Award for Distinguished Service
to the Profession. He is a Fellow of the Society for Modeling and Simulation
International SCS.

Authorized licensed use limited to: UNIVERSITY OF AGDER. Downloaded on May 19,2010 at 07:42:07 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

