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Abstract—This paper presents a new philosophy to model the
behavior of a student in a tutorial-like system using learning
automata (LAs). The model of the student in our system is inferred
using a higher level LA, referred to as a meta-LA, which attempts
to characterize the learning model of the students (or student sim-
ulators), while the latter use the tutorial-like system. The meta-LA,
in turn, uses LAs as a learning mechanism to try to determine
if the student in question is a fast, normal, or slow learner. The
ultimate long-term goal of the exercise is the following: if the
tutorial-like system can understand how the student perceives
and processes knowledge, it will be able to customize the way
by which it communicates the knowledge to the student to attain
an optimal teaching strategy. The proposed meta-LA scheme has
been tested for numerous environments, including the established
benchmarks, and the results obtained are remarkable. Indeed, to
the best of our knowledge, this is the first published result that
infers the learning model of an LA when it is externally treated
as a black box, whose outputs are the only observable quantities.
Additionally, our paper represents a new class of multiautomata
systems, where the meta-LA synchronously communicates with
the students, also modeled using LAs. The meta-LA’s environment
“observes” the progress of the student LA, and the response of
the latter to the meta-LA actions is based on these observations.
This paper also discusses the learning system implications of such
a meta-LA.

Index Terms—Learning automata (LAs), modeling of adaptive
systems, student modeling, tutorial-like systems.

I. INTRODUCTION

C ENTRAL to every learning or adaptive system is an entity
that performs the learning and another entity that teaches

the latter. Based on real-life analogies, these can informally
be referred to as the “student” and the “teacher,” respectively.
Broadly speaking, this paper deals with the issue of modeling
the student in such a learning/adaptive system. In particular,
we intend to demonstrate how this modeling can successfully
be achieved using learning automata (LAs), when the learning
cycle is couched within the framework of a tutorial-like system.

The student is the focal point of interest in any tutorial
system. The latter is customized to maximize the learning curve
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for the student. For the tutorial system to achieve this, it needs
to treat every student according to his1 particular skills and
abilities. The system’s model for the student permits such a
customization.

In the context of this paper, a student model is a repre-
sentation of the student’s behavior and status. It is the basis
for representing the state of the student. When the student
uses the system, the student model records his sequence of
actions performed, using which the system should hopefully
model the learning paradigm used by the student and should
attempt to assess the student’s learning progress. Thus, the aim
of this paper can be stated as follows: we intend to present
a new philosophy to model how a student learns while using
a tutorial-like system based on the theory of stochastic LA.
The stochastic LA will enable the system to determine the
learning model of the student, which will consequently enable
the tutorial-like system to improve the way it “deals” (i.e.,
presents material, teaches, and evaluates) with the student to
customize the learning experience.

Inferring the student’s learning model, by what we call as a
meta-LA, will improve the learning experience for the student.
If the teacher knows in advance what the learning model of the
student is, he will customize his teaching strategy according to
this learning model. For example, if the teacher knows that he is
dealing with a smart student, then he will present more difficult
problems to the student from the start and be able to present
material at a faster rate.

In this paper, we propose a meta-LA strategy, which can
be used to examine the student model. As the name implies,
we have used LAs as a learning tool/mechanism that steers
the inference procedure achieved by the meta-LA. To be more
specific, we have assumed that a student can be modeled as
being one of the following types:

1) slow-learner student;
2) normal-learner student;
3) fast-learner student.

Clearly, this subdivision of capabilities can be subject to a more
fine resolution, but we believe that such a resolution is sufficient
for most “tutorial-like” applications and to demonstrate a prima
facie case for our hypothesis.

For the system to determine the learning model of the stu-
dent, it monitors the consequent actions of the student and uses
the meta-LA to unwrap the learning model.

It is conceivable that each student can be represented by
other types of learning mechanisms such as neural networks,

1For the ease of communication, we request the permission to refer to the
entities involved (i.e., the teacher, the student, etc.) in the masculine.
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Bayesian or Markovian models, and reinforcement learning
models. Although we hypothesize that generalizing our par-
adigm to other learning models will not be too difficult, we
briefly list some of the difficulties that we would encounter if
any of these models are used to represent a student.

1) If the student is represented by a neural network, the
model will first involve the number of neurons. Second,
the topology of the network must be specified, and so,
in this case, the topology must also be considered as a
“parameter” of the network. Finally, every single edge
associated with the topology would have a corresponding
weight traditionally learned through the training process.
Thus, the entire modeling field would have to incorpo-
rate the specifications and instantiation of all of these
quantities.

2) If the student is represented by a Bayesian or Markovian
model, the designer would have to decide on the number
of states that the model will contain. Thereafter, he would
have to consider the interconnections between the states
and their corresponding transition probabilities. Finally,
the question of determining the output of the model based
on the state will involve a state/output function, which
will also have to be determined. All these parameters
are traditionally done by an inference mechanism and by
training.

3) If the student is modeled using a reinforcement learning
model, the state vector of the model will not only contain
probability distributions but also include the information
that is recorded concerning the state of the environment.

In this paper, to keep the discussion focused, we shall
concentrate only on the premise that the student is modeled
by an LA. The additional problem that we foresee in using
other learning models is that of understanding how the students
will impart the knowledge to their colleagues2 and how the
categorization can be done with a small set of parameters. In the
case of LAs, this can be achieved in a straightforward matter
by a simple message-passing mechanism in which only the
action probability vector is communicated. We add though that
reinforcement learning models are probably the next level of
generalization to LAs, and we believe that these would be the
first avenues by which a researcher can obtain a more finely
tuned model of the student.

We venture to add that, on the other hand, one of the most
interesting aspects of this endeavor is that we can categorize
a learning mechanism (for example, one that utilizes neural
networks, Bayesian or Markovian models, or reinforcement
learning) as being, for example, slow, normal, or fast, by
studying its behavior using such a meta-LA strategy.

The proposed meta-LA scheme has been tested for numer-
ous environments, including the established benchmarks, and
the results obtained are remarkable. Our experimental results,
which are presented and explained later, show that the meta-
LAs are successful in determining the learning model of the
student, by observing the student’s actions and the teaching en-

2This is an issue that we shall discuss elsewhere [11], [12].

vironment. This would have a direct effect on the effectiveness
of the tutorial-like system.

Indeed, to the best of our knowledge, this is the first pub-
lished result that attempts to infer the learning model of an LA
when it is externally treated as a black box, whose outputs are
the only observable quantities.

A. Tutorial-Like Systems: An Overview

Our entire research will be within the context of tutorial-
like systems [11]. In these systems, there need not be real-life
students, but rather, each student could be replaced by a student
simulator that mimics a real-life student. Alternatively, it could
also be a software entity that attempts to learn. The teacher,
in these systems, attempts to present the teaching material to
a school of student simulators. The students (synonymously
referred to also as student simulators) are also permitted to
share information between each other to gain knowledge.
Therefore, such a teaching environment allows the students to
gain knowledge not only from the teacher but also from other
fellow students.

In the tutorial-like systems that we study, the teacher has
a stochastic nature, where he has imprecise knowledge of
the material to be imparted. The teacher also does not have
prior knowledge about how to teach the subject material. He
“learns” that himself while using the system and thus hopefully
improves his skills as a teacher. Observe that, conceptually, the
teacher, in some sense, is also a “student.”

On the other hand, the student simulators need to learn from
the stochastic teacher, as well as from each other. Each student
needs to decide when to request assistance from a fellow
student and know how to “judge” the quality of information he
receives from them. Thus, we require each student to possess
a mechanism whereby it can detect a scenario of procuring
inaccurate information from other students.

In our model of teaching/learning, the teaching material of
the tutorial-like system follows a Socratic model, where the
domain knowledge is represented in the form of questions,
either a multiple-choice sort or, in the most extreme case, a
Boolean sort. These questions, in our present paradigm, carry
some degree of uncertainty, where each question has a proba-
bility that indicates the accuracy for the answer of that question.

Using machine learning in student modeling was the focus
of a few previous studies. Legaspi and Sison [19] modeled the
tutor in intelligent tutorial systems (ITSs) using reinforcement
learning with the temporal difference method as the central
learning procedure. Beck [6] used reinforcement learning to
learn to associate superior teaching actions with certain states
of the student’s knowledge. Baffes and Mooney implemented
ASSERT [5], which used reinforcement learning in student
modeling to capture novel student errors using only correct
domain knowledge. Our method is distinct from all the afore-
mentioned, as we shall presently demonstrate.

B. Stochastic LA

LAs have been used in systems that have incomplete knowl-
edge about the environment in which they operate [3], [15],
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[21], [25], [27], [45], [56]. The learning mechanism attempts
to learn from a stochastic teacher that models the environment.
In his pioneer work, Tsetlin [57] attempted to use LAs to model
biological learning. In general, a random action is selected
based on a probability vector, and these action probabilities
are updated based on the observation of the environment’s
response, after which the procedure is repeated.

The term “LAs” was first publicized in the survey paper by
Narendra and Thathachar. The goal of LAs is to “determine
the optimal action out of a set of allowable actions” [3]. The
distinguishing characteristic of automata-based learning is that
the search for the optimizing parameter vector is conducted in
the space of probability distributions defined over the parameter
space, rather than in the parameter space itself [55].

Excellent references that survey the field are the books
by Lakshmivarahan [15], Narendra and Thathachar [25],
and Najim and Poznyak [21] and a recent special issue
of the IEEE TRANSACTIONS ON SYSTEMS, MAN, AND

CYBERNETICS—PART B [27].
The learning paradigm as modeled by LAs has found appli-

cations in systems that possess incomplete knowledge about the
environment in which they operate. A variety of applications3

that use LAs have been reported in the literature. They have
been used in game playing [4], [15], [16], pattern recognition
[23], [47], object partitioning [36], [37], parameter optimization
[7], [25], [45], [46], multiobjective analysis [22], telephony
routing [24], [26], and priority assignments in a queuing system
[20]. They have also been used in statistical decision making
[21], [25], distribution approximation [1], natural language
processing, modeling biological learning systems [57], string
taxonomy [32], graph partitioning [33], distributed scheduling
[51], network protocols (including conflict avoidance [39]) for
LANs [40], photonic LANs [42], star networks [41], broad-
cast communication systems [43], dynamic channel allocation
[43], tuning proportional-integral differential controllers [13],
assigning capacities in prioritized networks [38], map learning
[8], digital filter design [14], controlling client/server systems
[44], adaptive signal processing [52], vehicle path control [58],
the control of power systems [60], and vehicle suspension
systems [10].

In the first LA designs, the transition and the output func-
tions were time invariant, and for this reason, these LAs were
considered “fixed-structure” automata (FSSAs). Tsetlin [57]
presented notable examples of this type of automata. Later,
Vorontsova and Varshavskii introduced a class of stochastic
automata known in the literature as variable-structure stochastic
automata (VSSAs). In the definition of a VSSA, the LA is
completely defined by a set of actions (one of which is the
output of the automaton), a set of inputs (which is usually
the response of the environment), and a learning algorithm T .

3The applications listed here (and the references listed in the bibliography)
are quite comprehensive but are by no means complete. Indeed, this relatively
new field has been “exploding.” It has recently been enhanced by a spectrum
of applications in computer science and engineering—from areas as diverse
as the design of data structures to the implementation of automatic navigation
methods.

The learning algorithm [25] operates on a vector (called the
action probability vector)

P (t) = [p1(t), . . . , pr(t)]
T

where pi(t)(i = 1, . . . , r) is the probability that the automaton
will select the action αi at time “t”

pi(t) = Pr [α(t) = αi] , i = 1, . . . , r

and it satisfies

r∑
i=1

pi(t) = 1, ∀ t.

Note that the algorithm T : [0, 1]r × A × B → [0, 1]r is an
updating scheme, where A = {α1, α2, . . . , αr}, 2 ≤ r < ∞, is
the set of output actions of the automaton, and B is the set of
responses from the environment. Thus, the updating is such that

P (t + 1) = T (P (t), α(t), β(t))

where P (t) is the action probability vector, α(t) is the action
chosen at time t, and β(t) ∈ B is the response it has obtained.
Typically, B is the set {0, 1}, where the response “0” corre-
sponds to a reward and “1” corresponds to a penalty.

If the mapping T is chosen in such a manner that the Markov
process has absorbing states, the algorithm is referred to as
an absorbing algorithm. Many families of VSSAs that possess
absorbing barriers have been reported [25]. Ergodic VSSAs
have also been investigated [25], [30]. These VSSAs converge
in distribution, and thus, the asymptotic distribution of the
action probability vector has a value that is independent of
the corresponding initial vector. Thus, while ergodic VSSAs
are suitable for nonstationary environments, automata with
absorbing barriers are preferred in stationary environments.

In practice, the relatively slow rate of convergence of these
algorithms constituted a limiting factor in their applicability. To
increase their speed of convergence, the concept of discretizing
the probability space was first introduced in [53] and later ex-
tensively studied in [2], [3], [17], [18], [29], [31], and [34]. This
concept is implemented by restricting the probability of choos-
ing an action to a finite number of values in the interval [0, 1].
If the values allowed are equally spaced in this interval, the
discretization is said to be linear; otherwise, the discretization is
called nonlinear. Following the discretization concept, many of
the continuous VSSAs have been discretized; indeed, discrete
versions of almost all continuous automata have been presented
in the literature [2], [3], [17], [18], [29], [31], [34].

Pursuit and estimator-based LAs were introduced to be faster
schemes, characterized by the fact that they pursue what can be
reckoned to be the current optimal action or the set of current
optimal actions [2], [3], [17], [18], [30], [49], [54]. The up-
dating algorithm improves its convergence results by using the
history to maintain an estimate of the probability of each action
being rewarded, in what is called the reward-estimate vector.
While, in nonestimator algorithms, the action probability vector
is updated solely on the basis of the environment’s response, in
a pursuit or estimator-based LA, the update is based on both
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the environment’s response and the reward-estimate vector.
Families of pursuit and estimator-based LAs have been shown
to be faster than VSSAs [55]. Indeed, even faster discretized
versions of these schemes have been reported [2], [3], [17],
[18], [30].

C. Contributions of This Paper

This paper presents a novel approach for modeling how
the student learns in a tutoring session. We believe that the
successful modeling of students will be fundamental to imple-
menting effective tutorial-like systems. It will also be central to
improving the way by which an environment (perceived as a
conceptual “teacher”) can enhance its teaching within an arbi-
trary learning/adaptive system. Thus, the salient contributions
of this paper are the following.

1) This paper presents the concept of a meta-LA in student
modeling, which works with a higher level learning para-
digm. The meta-LA observes and infers the characteristics
of the learning experience of the student in an “efficient”
way. In the current instantiation, the meta-LA classifies
the student to be a slow, normal, or fast learner.

2) To the best of our knowledge, this paper is the first
published result that infers the learning model of an LA
when it is externally treated as a black box, whose outputs
are the only observable quantities.

3) While a traditional tutorial system may not be able to
consider the “psychological” perspective of the student,
we attempt to consider it by using an inferred model of
his cognitive state. After the tutorial-like system infers the
learning model of the student, it will be able to customize
its teaching strategy as per the student’s learning ability.

4) As a modeling strategy, we believe that we can categorize
a learning mechanism (for example, one which utilizes
neural networks, Bayesian or Markovian models, or rein-
forcement learning) as being, for example, slow, normal,
or fast, by studying its behavior using such a meta-LA
strategy. Notice that this mechanism need not be LA
based and that it can also be treated as a black box.

II. INTELLIGENT TUTORIAL AND

TUTORIAL-LIKE SYSTEMS

Since our research involves tutorial-like systems, which are
intended to mimic tutorial systems, a brief overview of these
follows.

ITSs are special educational software packages that involve
artificial intelligence techniques and methods to represent the
knowledge, as well as to conduct the learning interaction [28].
ITSs are characterized by their responsiveness to the learner’s
need. They adapt according to the knowledge/skill of the users.
They also incorporate experts’ domain-specific knowledge.

An ITS mainly consists of a number of modules, which is
typically three [9] and is sometimes four when a communica-
tion module (interface) is added [59]. The former three modules
are the domain model (knowledge domain), the student model,
and the pedagogical model (which represent the tutor model

Fig. 1. Common ITS architecture.

itself). Self [50] defined these components as the tripartite
architecture for an ITS—the what (domain model), the who
(student model), and the how (tutoring model). Fig. 1 depicts
a common ITS architecture.

A. Tutorial-Like Systems

Tutorial-like systems share some similarities with the well-
developed field of tutorial systems. Thus, for example, they
model the teacher, the student, and the domain knowledge.
However, they are different from “traditional” tutorial systems
in the characteristics of their models, etc., as will be highlighted
below.

1) Different types of teacher. In tutorial systems, as they are
developed today, the teacher is assumed to have perfect
information about the material to be taught. Furthermore,
built into the model of the teacher are the knowledge of
how the domain material is to be taught and a plan of
how it will communicate and interact with the student(s).
This teaching strategy may progress and improve over
time. The teacher in our tutorial-like system possesses dif-
ferent features. First, one fundamental difference is that
the teacher is uncertain of the teaching material—he is
stochastic. Second, the teacher does not initially possess
any knowledge about “how to teach” the domain subject.
Rather, the teacher himself is involved in a “learning”
process, and he “learns” what teaching material has to
be presented to the particular student. To achieve this,
as mentioned, we assume that the teacher follows the
Socratic model of learning by teaching the material using
questions that are presented to the students. He then uses
the feedback from the students and their corresponding
LAs to suggest new teaching material.

Although removing the “how-to-teach” knowledge
from the teacher would take away the “bread-and-butter”
premise of the teaching process in a tutorial system, in a
tutorial-like system, removing this knowledge allows the
system to be modeled without excessive complications
and renders the modeling of knowledge less burdensome.
The success of our proposed methodology would be
beneficial to systems in which any domain knowledge
pertinent to tutoring teaching material could merely be
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plugged into the system without the need to worry about
“how to teach” the material.

2) No real students. A tutorial system is intended for the
use of real-life students. Its measure of accomplishment
is based on the performance of these students after using
the system, and it is often quantified by comparing their
progress with other students in a control group, who
would use a real-life tutor. In our tutorial-like system,
there are no real-life students who use the system. The
system could be used by either of the following.
a) Student simulators. Student simulators mimic the be-

havior and actions of real-life students using the sys-
tem. The latter would themselves simulate how the
students improve their knowledge and their interaction
with the teacher and with other students. They can also
take proactive actions, interacting with the teaching
environment by one of the following measures:

i) asking a question to the teacher;
ii) asking a question to another student;

iii) proposing to help another student.
b) Artificial entity. An artificial entity, in itself, could

be another software component that needs to “learn”
specific domain knowledge.

3) Uncertain course material. Unlike the domain knowledge
of “traditional” tutorial systems where the knowledge is
typically well defined, the domain knowledge teaching
material presented in our tutorial-like system contains
material that has some degree of uncertainty. The teach-
ing material contains questions, each of which has a
probability that indicates the certainty of whether the
answer to the question is in the affirmative.

4) Testing versus evaluation. Sanders [48] differentiates
between the concepts of “teaching evaluation” and
“teaching testing.” He defines “teaching evaluation” as
an “interpretive process,” in which the teacher “values,
determines the merit or worth of the students’ perfor-
mance, and their needs.” He also defines “teaching test-
ing” as a “data collection process.” In a tutorial system,
an evaluation is required to measure the performance of
the student while using the system and acquiring more
knowledge. In our tutorial-like system, the student(s) ac-
quires knowledge using a Socratic model, where it gains
knowledge from answering questions without having any
prior knowledge about the subject material. In our model,
the testing will be based on the performance of the set of
student simulators.

5) School of students. Traditional tutorial systems deal with
a teacher who teaches students, but they do not permit
the students to interact with each other. A tutorial-like
system assumes that the teacher is dealing with a school
of students where each learns from the teacher on his own
and can also learn from his “colleagues” if he desires or is
communicating with a cooperating colleague. Notice that
we will now have to consider how each student learns, as
well as how the entire school learns.

In all brevity, we list below the salient aspects of each of the
modules of our paradigm for a tutorial-like system.

The student simulator is modeled using an LA paradigm.
It uses LAs as the learning mechanism to try to mimic the
behavior and the learning of the student. In addition to being
able to learn from the teacher, the student simulator is able to
communicate with other student simulators to enable them to
exchange information and learn from each other.

The method by which the model for the student is inferred is
the kernel of the study involved here and will be discussed in
subsequent sections.

The student–classroom interaction is intended to maximize
the learning experience of each student, as well as the collective
learning of the students. When interacting with each other,
a student or the student simulator can select an interaction
strategy to communicate with other students. Such a strategy
can be one in which: 1) he always assumes that the knowledge
of other students is reliable; 2) he uses the information from
his colleagues (partially or totally) only if it is reliable; 3) he is
able to unlearn if the information provided by his colleagues is
misleading; and 4) he decides to independently learn and does
not communicate with other fellow students.

Within our paradigm, the domain knowledge will be pre-
sented via multiple-choice Socratic-type questions, and thus,
for each question, every choice has an associated probability of
being correct, implying that the choice with the highest reward
probability is the answer to that question. The knowledge
imparted is arranged in chapters, each of which will have a
set of questions. Each chapter represents a level of complexity/
difficulty that is harder than the previous one, and students will
not be able to predict the answer for subsequent chapters using
prior knowledge.

Similarly, within our paradigm, we model the teacher to
be able to teach the Socratic-type domain knowledge, via
multiple-choice questions. This knowledge is also used to test
the students of the imparted knowledge. Thus, the stochastic
teacher can not only present Socratic-type domain knowledge
to the students but also model the way by which he can assist
them to be able to learn increasingly complex material. Finally,
we build our research on the model that the teacher possesses
a formal strategy to improve the ability of the students to learn
more complex material. He does this by assisting them with
additional information to handle the domain knowledge as the
difficulty of the latter increases.

Finally, our tutorial-like system allows the teacher to “learn”
and improve his “teaching skills” while he is using the system.
This is accomplished by providing a higher level LA, referred to
as the Meta-Teacher, which will infer the required customiza-
tion that the teacher needs for the particular student. Thus,
for each environment that the student is attempting to learn
from, the teacher will define his own standards for the specific
environment. Thus, based on the knowledge inferred from the
Meta-Teacher and the student model, the teacher will be able
to customize the teaching material presented and provide the
appropriate assistance to each individual student.

III. NETWORK INVOLVING THE LA/Meta-LA

Our tutorial-like system incorporates multiple LAs that
are indirectly interconnected with each other. This can be

Authorized licensed use limited to: UNIVERSITY OF AGDER. Downloaded on May 19,2010 at 07:37:23 UTC from IEEE Xplore.  Restrictions apply. 



486 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 40, NO. 2, APRIL 2010

Fig. 2. Modeling using a network of LAs.

perceived as a system of interconnected automata [55]. Since
such systems of interconnecting automata may be one of two
models, namely, synchronous and sequential, we observe that
our system represents a synchronous model. The LAs in our
system and their interconnections are illustrated in Fig. 2, in
which c is the vector of penalty probabilities.

In a traditional system of interconnected automata, the re-
sponse from the environment associated with one automaton
represents the input to another automaton. However, our system
has a rather unique LA interaction model, which is used to
assist in the process of inferring on the type of the LA itself.
While the student LA is affecting the meta-LA, there is no direct
connection between both of them. The meta-LA environment
monitors the “performance” of the student LA over a period of
time, and depending on that, its environment would penalize or
reward the action of the meta-LA.

This model represents a new structure of interconnection,
which can be viewed as being composed of two levels: a higher
level automaton, i.e., the meta-LA, and a lower level automa-
ton, which is the student LA. The convergence of the higher
level automaton is dependent on the behavior of the lower level
automaton. A typical scenario would be that the higher level
automaton (which infers the type of learning achieved by the
lower level LA) converges, while the lower level automaton
has yet to converge. If the lower level automaton converges
before the higher level automaton, this could mean that the
convergence of the higher level automaton is inaccurate.

Observe the uniqueness of such an interaction of modules, as
a consequence of the following.

1) The environment for the meta-LA is rather atypical but
consists of observations, which must implicitly (and not
explicitly) be perceived as an environment after doing
some processing of the signals observed.

2) The meta-LA has access to the environment of the lower
level, including the set of the penalty probabilities that are
unknown to the lower level LA.

3) The meta-LA has access to the actions chosen by the
lower level LA.

4) Finally, the meta-LA has access to the responses made by
the lower level environment.

In conclusion, we observe that items 2–4 collectively con-
stitute the environment for the meta-LA. Such a modeling is
unknown in the field of LAs.

IV. MODELING A STUDENT

The tutorial-like system derives a model for the student by
assessing and determining the way he learns. To achieve this,
we assume that the system has a finite set of possible learning
models for each student. For example, each student can be
modeled as being one of the following types:

1) an FSSA model, which represents a slow learner;
2) a VSSA model, which represents a normal learner;
3) a pursuit model LA, which represents a fast learner.

The rationale for the aforementioned categorization and clas-
sification is given as follows: When the field of LAs was first
pioneered, Tsetlin [25], [57] presented their learning machines,
which were capable of learning in an ε-optimal manner in
certain environments. Although this was significant, it turned
out that their machines were remarkably slow, often requiring
tens of thousands of iterations to converge. Furthermore, the
number of states in their machines had to be quite large to attain
reasonable convergence accuracy. The reason for the relatively
slow convergence was because of the fact that the LAs could
change their actions only at their boundary states. By proposing
the concept of action probability vectors, researchers were able
to develop LAs that could potentially choose different actions
for subsequent time instants, thus significantly improving the
rate of learning. This led to the family of VSSAs such as the
LRI scheme, which converged in a few thousands of iterations.
Finally, Thathachar and Sastry [49], [54] (and others [3], [17],
[18], [35]) proposed a further enhancement of the learning
by considering the option of also incorporating estimates of
the penalty probabilities in the updating rules. This led to the
extremely fast convergence obtained by the family of the so-
called estimator-based algorithms. Our belief is that these three
families of algorithms represent three distinct types of learning
paradigms and learning rates sufficient for the present research.

This finite set of learning models represents the different
families that characterize the way the student learns. The stu-
dent could be, for example, a slow learner, a normal leaner,
or a fast learner. Of course, a finer learning categorization
is also achievable. As mentioned, if the tutorial-like system
can understand how the student perceives knowledge, it will
be able to customize the way by which it communicates the
knowledge to the student to aim toward an optimal teaching
strategy. For example, if the tutorial-like system finds that the
student is learning in a way that resembles a pursuit model, it
can conclude that the student is “clever” and that it is a fast
learner. In this case, the system can adapt its teaching strategy
to accommodate a fast-learning student, which, in turn, enables
it to improve its teaching strategy.
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The student modeler will itself utilize an LA in the meta-
LA level to represent the different potential learning models
for the student. Furthermore, as the student interaction with
the tutorial-like system increases, this LA would hopefully
converge to the model that most accurately represents the way
the student learns.

A. Formalization of the Student Model

To simplify issues, we assume that the learning model of the
student is one of the aforementioned three types.4 The student
model will use three specific potential LAs, each of which
serves as an action for a higher level automaton—(i.e., the
meta-LA).

In our present instantiation, the meta-LA that is used to learn
the best possible model for the student simulator is a 4-tuple:
{α, β, P, T}, where the variables are described as follows.

1) α = {α1, α2, α3}, in which α1 is the action correspond-
ing to an FSSA model, which represents a slow learner,
α2 is the action corresponding to a VSSA model, which
represents a normal learner, and α3 is the action cor-
responding to a pursuit model LA, representing a fast
learner.

2) β = {0, 1}, in which β = 0 implies a reward for the
present action (i.e., student model) chosen, and β = 1
implies a penalty for the present action (i.e., student
model) chosen.

3) P = [p1, p2, p3]T , where pi(n) is the current probability
of the student simulator being represented by αi.

4) T is the probability updating rule given as a map as

T : (P, α, β) → P.

Each of these will now be clarified.
1) β is the input that the meta-LA receives (or rather infers).

Let us suppose that the current choice of the meta-LA
is that the student simulator is learning using the model
symbolized by αi. This means that the meta-LA will
have to infer a reward or a penalty based on how the
student simulator is learning and on whether the latter
can accurately be represented by αi or not. This, in
turn, means that the meta-LA must observe a sequence
of decisions made by the student simulator, and based on
this sequence, it must deduce whether its current model is
accurate or not. We propose to achieve this as follows.

For a fixed number of queries, which we shall refer to
as the “window,” the meta-LA assumes that the student
simulator’s model is αi. Let θ(t) be a measure of the
weakness (MoW) of the lower LA at time “t,” measured
in terms of the number of penalties received for any
action, weighted by the current action probability vector.
By inspecting the way by which the student simulator
learns within this window, it infers whether this current
model should be rewarded or penalized. We propose to
achieve this by using two thresholds, which we refer to as

4Extending this to consider a wider spectrum of learning models is rather
straightforward.

{θj |1 ≤ j ≤ 2} (as shown in Table I). The significance of
these thresholds is described by the following.
a) If the current observed MoW of the student simulator

is less than θ1, we assert that the student simulator
demonstrates the phenomenon of a fast learner. Now,
if the meta-LA has chosen α3, this choice is rewarded.
Otherwise, this choice is penalized.

b) If the current observed MoW of the student simula-
tor is equal to or greater than θ1 and less than θ2,
we assert that the student simulator demonstrates the
phenomenon of a normal learner. Thus, if the meta-LA
has chosen α2, this choice is rewarded. Otherwise, this
choice is penalized.

c) Finally, if the current observed MoW of the student
simulator is equal to or greater than θ2, we assert
that the student simulator demonstrates the learning
properties of a slow learner. Thus, if the meta-LA has
chosen α1, this choice is rewarded. Otherwise, the
meta-LA is penalized.

This terminates our discussion on how β is inferred.5

2) P is the action probability vector that contains the proba-
bilities that the meta-LA assigns to each of its actions. At
each instant t, the meta-LA randomly selects an action
α(t) = αi. The probability that the automaton selects
action αi at time t is the action probability pi(t) =
Pr[α(t) = αi], where

∑r
i=1 pi(t) = 1 ∀ t, i = 1, 2, 3.

Initially, the meta-LA will have an equal probability for
each of the three learning models as

P (0) =
[
1
3
,
1
3
,
1
3

]T

.

By observing the sequence of {θ(t)}, the meta-LA
updates P (t) as per the function T , as presently de-
scribed. By virtue of this interaction, one of the action
probabilities pj will hopefully converges to a value as
close to unity as we want. This convergence indicates that
the meta-LA has converged to the choice that αj is the
best learning model, and if T is appropriately chosen, we
believe that it will be successful in determining the best
learning model appropriate for the student simulator.

3) T is the updating algorithm or the reinforcement scheme
used to update the meta-LA’s action probability vector
and is represented by

P (t + 1) = T [P (t), α(t), β(t)] .

This updating algorithm could follow any LA learn-
ing schemes. For example, if it obeys the DLRI rule,
the action probability vector is updated in a discretized

5One referee queried the rationale for using LAs when our methodology
intricately involved an underlying thresholding scheme. We gratefully acknowl-
edge his perspective and input in this regard. This is really a debatable issue, but
our experience is that a mere thresholding arrangement is inadequate to infer the
model for the learning mechanism. The reason for this is that the environment
(“teacher”) and the teaching material (“domain”) are both stochastic, and thus,
the threshold itself would be a random variable. The point here is that we
have used this random variable as an implicit input to the meta-LA to learn
the underlying learning model.
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TABLE I
THRESHOLDS USED BY THE Meta-LA FOR THE LEARNING MODEL,

WHERE θ(t) IS THE MoW AT TIME “t”

manner when the meta-LA is rewarded and unchanged
when the meta-LA is penalized. In this case, the LA can
be described entirely by the following action probability
updating equations (where N is the resolution parameter
of the discretized scheme):

pj(t+1)= max
{
0, pj(t)−

1
N

}
, if α(t)=αi, β(t)=0

pi(t+1)= 1−
∑
j �=i

pj(t+1), if α(t)=αi, β(t)=0

pk(t+1)= pk(t), ∀k, if β(t)=1.

The algorithm starts with the initial action probability
vector P (0) = [(1/3), (1/3), (1/3)]T .

V. EXPERIMENTAL RESULTS

This section presents the experimental results obtained by
testing the prototype implementation of the meta-LA. To obtain
these results, we performed numerous simulations to accurately
simulate how the student modeler is able to recognize the
learning model of the student.

The simulations were performed for many different types
of environments. These environments represent the teaching
“problem,” which contains the uncertain course material of the
domain model associated with the tutorial-like system. In all the
tests performed, an algorithm was considered to have converged
if the probability of choosing an action was greater than or equal
to a threshold T (0 < T ≤ 1). If the automaton converged to the
best action (i.e., the one with the highest probability of being
rewarded), it was considered to have correctly converged.

As presented in Section III, the meta-LA was implemented as
a higher level LA, which had access to the learning environment
and the actions and penalties of the lower level LA associated
with the student simulators, while the latter learned the teaching
material. The meta-LA was implemented as a discretized LA,
i.e., the DLRI scheme, with a resolution parameter N = 40.

The student simulator was implemented to mimic three typi-
cal types of students as follows:

• Slow learner: For this type of students, the student sim-
ulator used an FSSA to mimic the student’s behavior. In
particular, it used a Tsetlin L2R,R automaton implemen-
tation for this behavior, where it had two states for each
action.

Fig. 3. Loss function displayed as a function of the MoW θ.

• Normal learner: For this category of students, the student
simulator used a VSSA to simulate the student’s behavior.
In particular, in our paper, it was implemented as an LRI ,
with λ = 0.005. Observe that the lower level LA updates
itself only if it obtained a reward for its action; otherwise,
it did nothing.

• Fast learner: To simulate students of this type, the student
simulator utilized a pursuit LA to represent the student’s
behavior. It used the pursuit PLRI , with λ = 0.005, to
simulate fast-learning students. Here too, the LA only
updated its probabilities when it obtained a reward for its
action.

The rate of learning associated with the student is a quantity
that is difficult to quantify. We had to determine the best index
in each case. To be able to measure θ, which is the MoW6

for the student, the meta-LA environment calculates the loss
function of the student simulator LA. For a “window” of n
choice-response feedback cycles of the student simulator, the
loss function is defined by

1
n

∑
nici

where
ni number of instances an action αi is selected inside the

“window”;
ci penalty probability associated with action αi of the

lower level LA.
We consider the MoW for the student to be a function of

the loss function and time, as illustrated in Fig. 3. This reflects
the fact that the loss function for any learning student typically
decreases with time (for all types of learners) as he learns more
and as his knowledge improves with time.

As mentioned, the simulation has been performed for the dif-
ferent existing benchmark environments, for which the thresh-
old T was set to be 0.99, and the number of experiments
NE = 75, over which the results were averaged. The results
of these simulations are described below.

6Recall that θ(t) is called the MoW of the lower LA at time “t," and it is
measured in terms of the number of penalties received for any action, weighted
by the current action probability vector.
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TABLE II
CONVERGENCE OF Meta-LA FOR DIFFERENT STUDENT’S LEARNING MODELS IN FOUR-ACTION ENVIRONMENTS

TABLE III
CONVERGENCE OF Meta-LA FOR DIFFERENT STUDENT’S LEARNING MODELS IN SIX-ACTION ENVIRONMENTS

A. Environment With Four Actions

The four-action environment represents a multiple-choice
question with four options. The student needs to learn the
content of this question and conclude that the answer to this
question is the action that possesses the minimum penalty
probability. Based on the performance of the student, the meta-
LA is supposed to “learn” the learning model of the student. The
results of this simulation are presented in Table II.

To be conservative, the simulation assumes that when the
student starts using the system, the results during a transient
learning phase are misleading and inaccurate. Consequently,
the first 200 iterations are neglected by the meta-LA, where it
merely ignores all the interactions, decisions, and responses of
the lower level LA.

The two different settings for the two environments are
specified by their reward probabilities given in Table II.

The results obtained were quite remarkable. Consider the
case of EA, where the best action was α1. While an FSSA
converged in 1273 iterations,7 the LRI converged in 1037
iterations, and the pursuit PLRI converged in 607 iterations.
By using the values of θ1 and θ2 as specified in Table II, the
meta-LA was able to characterize the true learning capabilities
of the student 100% of the time when the lower level LA
used a pursuit PLRI . The lowest accuracy of the meta-LA for

7The figures include the 200 iterations involved in the transient phase.

environment EA was 87%. The analogous results for EB were
97% (at its best accuracy) and 85% for the slow learner. The
power of our scheme should be obvious.

B. Environment With Six Actions

For the six-action environment, the student is posed with
multiple-choice questions with six options and is required
to determine the answer possessing the minimum penalty
probability. In turn, the meta-LA infers the learning model
of the student by examining the performance of the student.
The results of this simulation are presented in Table III for the
environments whose details are given in the table.

As in the case of the four-action problem, the meta-LA
ignores the transient response of the first 200 iterations, reck-
oning them to be misleading and inaccurate.

We now report the results obtained from this simulation.
Consider the case of EB, where the best action was α3. An
FSSA converged in 1125 iterations, where this figures includes
the 200 iterations involved in the transient phase. Including this
transient phase, the LRI converged in 1006 iterations, and the
pursuit PLRI converged in 941 iterations. By using the values
of θ1 and θ2 as specified in Table III, the meta-LA was able to
characterize the true learning capabilities of the student 96% of
the time when the lower level LA used an FSSA and 92% if it
used a pursuit PLRI . The lowest accuracy of the meta-LA for
environment EB was 91%. The analogous results for EA were
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TABLE IV
CONVERGENCE OF Meta-LA FOR DIFFERENT STUDENT’S LEARNING MODELS IN EIGHT-ACTION ENVIRONMENTS

TABLE V
CONVERGENCE OF Meta-LA FOR DIFFERENT STUDENT’S LEARNING MODELS IN TEN-ACTION ENVIRONMENTS

96% (at its best accuracy) and 75% for the normal learner,8

which are all quite amazing considering that the meta-LA views
the student as a mere black box.

C. Environment With Eight Actions

A similar simulation was also done for systems that
have multiple-choice questions with eight options, whose
results (and the corresponding environments) are reported
in Table IV.

The results obtained are described as follows: Consider the
case of EA, where the best action was α1. An FSSA converged
in 1248 iterations, where this figures includes the 200 iterations
involved in the transient phase. Including this transient phase,
LRI converged in 826 iterations, while the pursuit PLRI con-
verged in 505 iterations. The values of θ1 and θ2 are specified
in Table IV. Using these thresholds, the meta-LA was able to
characterize the true learning capabilities of the student 97% of
the time when the lower level LA used a pursuit PLRI and 95%
if it used an FSSA. The lowest accuracy of the meta-LA for
environment EA was 91%, and this was for a normal learner.

8Interestingly enough, since the problem is quite difficult, the meta-LA
confused the normal learner and the slow learner in this case. This is not too
surprising considering their relative rates of convergence.

Parallel results for EB are also found in Table IV, and they are
quite impressive.

D. Environment With Ten Actions

The ten-action environment represents one with multiple-
choice questions with ten options. The respective environ-
ments’ reward probabilities are given in Table V.

Similar to the environments for four, six, and eight actions,
the results obtained for the ten-action environments are very
fascinating. For example, consider the case of EA, where the
best action was α1. While an FSSA converged in 1369 itera-
tions, LRI converged in 748 iterations, and the pursuit PLRI

converged in 668 iterations. By using the values of θ1 and θ2

as specified in Table V, the meta-LA was able to determine the
true learning capabilities of the student 95% of the time, when
the lower level LA used a pursuit PLRI . The lowest accuracy
of the meta-LA for environment EA was 93%. By comparison,
for EB, the best accuracy was 100% for the fast leaner, and the
worst accuracy was 85% for the slow learner.

We believe that the worst-case accuracy of 85% (for the
inexact inference in this case) is within a reasonable limit.
Indeed, in a typical learning environment, the teacher may
incorrectly assume the wrong learning model for the student.
Thus, we believe that our meta-LA learning paradigm is
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remarkable considering that these are the first reported results
for inferring the nature of an LA if it is modeled as a black box.

VI. CONCLUSION AND FUTURE WORK

This paper has presented a novel strategy for a tutorial-like
system inferring the model of a student (student simulator). The
student modeler itself uses an LA as an internal mechanism to
determine the learning model of the student, so that it could be
used in the tutorial-like system to customize the learning ex-
perience for each student. To achieve this, the student modeler
uses a higher level automaton, the so-called meta-LA, which
observes the student simulator LA’s actions and the teaching
environment and attempts to characterize the learning model
of the student (or student simulator), while the latter uses
the tutorial-like system. The meta-LA tries to determine if the
student in question is a fast, normal, or slow learner.

From a conceptual perspective, this paper has presented a
new approach for using interconnecting automata, where the
behavioral sequence of one automaton affects the other automa-
ton. The numerous other differences of such an interconnection
are also listed in this paper.

From the simulation results, we can conclude that this ap-
proach is a feasible and valid mechanism applicable for im-
plementing a student modeling process. The results shows that
the student modeler was successful in determining the student’s
learning model in a high percentage of the cases—sometimes
with an accuracy of 100%.

Our proposed approach has some advantages: it demonstrates
ease of design, implementation, and testing. For future work,
we believe that our approach can also be ported for use in
real-life tutorial systems. By finding a way to measure the
rate of learning for real-life students, the student modeler
should be able to “approximate” the learning model for these
students. This would decrease the complexity of implementing
student models in traditional tutorial systems too. Our results
can also be useful in enhancing traditional adaptive/learning
systems—even though they may not be, strictly speaking, LA
based.

The incorporation of modeling the domain, the teacher, the
classroom interactions, and the teacher’s learning process to
implement a tutorial-like system is a research task for which
some results are currently available [11].
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