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Solving Multiconstraint Assignment Problems
Using Learning Automata
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Abstract—This paper considers the NP-hard problem of object
assignment with respect to multiple constraints: assigning a set of
elements (or objects) into mutually exclusive classes (or groups),
where the elements which are “similar” to each other are hopefully
located in the same class. The literature reports solutions in which
the similarity constraint consists of a single index that is inappro-
priate for the type of multiconstraint problems considered here
and where the constraints could simultaneously be contradictory.1

Such a scenario is illustrated with the static mapping problem,
which consists of distributing the processes of a parallel appli-
cation onto a set of computing nodes. This is a classical and yet
very important problem within the areas of parallel computing,
grid computing, and cloud computing. We have developed four
learning-automata (LA)-based algorithms to solve this problem:
First, a fixed-structure stochastic automata algorithm is presented,
where the processes try to form pairs to go onto the same node.
This algorithm solves the problem, although it requires some
centralized coordination. As it is desirable to avoid centralized
control, we subsequently present three different variable-structure
stochastic automata (VSSA) algorithms, which have superior par-
titioning properties in certain settings, although they forfeit some
of the scalability features of the fixed-structure algorithm. All
three VSSA algorithms model the processes as automata having
first the hosting nodes as possible actions; second, the processes
as possible actions; and, third, attempting to estimate the process
communication digraph prior to probabilistically mapping the
processes. This paper, which, we believe, comprehensively reports
the pioneering LA solutions to this problem, unequivocally demon-
strates that LA can play an important role in solving complex
combinatorial and integer optimization problems.

Index Terms—Learning automata (LA), multiconstraint assign-
ment, object partitioning, static mapping problem (SMP).

I. INTRODUCTION

O BJECT assignment is the problem of partitioning a set P

of |P| elements into |N| classes satisfying certain capacity
constraints on these classes. Within the context of our problem,
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1This feature, where we permit possibly contradictory constraints, distin-
guishes this paper from the state of the art. Indeed, we are aware of no learning
automata (or other heuristic) solutions which solve this problem in its most
general setting.

it is assumed that there are weighted directed relations between
the elements of P and that there is no relation from an object
to itself. Furthermore, each element of the object set carries a
weight.

This is a combinatorial optimization problem, also known
as integer optimization, because the solutions are restricted
to the integer domain. This class of optimization problems
is, in general, computationally very “hard” owing to the vast
number of possible configurations and the fact that working in
a discrete solution space renders it difficult to infer information
on nearby solutions from a given configuration. The higher the
dimension of the solution space is, the more difficult it will
be to obtain a solution. Indeed, in most cases, determining the
optimal solution becomes computationally intractable, although
there might be heuristics available that permit the determination
of a feasible solution.

The problem is made even worse when considering that
some of the constraints can be mutually conflicting.2 One
constraint may require that two objects Pi and Pj should
be assigned to the same group because they have a strong
relation with each other, whereas an alternate constraint may
require that they be allocated to separate classes because their
combined weight is prohibitive. In this paper, we analyze such
a classical object assignment problem from parallel computing
and propose learning-automata (LA)-based heuristic algorithms
to find a solution for this problem. The problem is generic
enough to serve as an introduction to the general solution ap-
proach. This example problem will be introduced in Section II,
highlighting its connection to the multidimensional knapsack
problem.

The objective of the classical assignment problem is to
minimize a linear sum over the integer cost of assigning object
i to class j, whose optimal solution can be found by the
Hungarian method [2]. The problem considered here is much
more complex, and the constraints on the classes combined with
the weights of the objects to be partitioned indicate that the
problem is more alike a multidimensional knapsack problem,
which is known to be NP-hard in the strong sense [3]. It can
therefore be expected that algorithms finding exact solutions
will scale exponentially with the problem size, making them
intractable for practical use.

The equipartitioning problem is the archetypical problem
for assessing NP-completeness [4, p. 223], and, given that the
most efficient algorithm for equipartitioning [5] is based on
LA, we submit that it is a good starting point for a heuristic

2The scenario is akin to the one which deals with a multiteacher environ-
ment [1].
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for the problem at hand. LA have also proven successful in
dealing with stochastic problems, and, in a practical setting,
one will typically be uncertain about the involved weights, and,
consequently, the best one can often do is to take these to be
average values. A solution based on fixed-structure stochastic
automata (FSSA) learning is introduced in Section III. Alterna-
tive approaches based on variable-structure stochastic automata
(VSSA) learning and no centralized control are introduced in
Section IV. Section VI introduces the simulation methodology
used to assess the different algorithms, and the results are
further discussed in Section VIII. Although the algorithms dis-
cussed in this paper have been presented previously at various
conferences [6]–[9], this paper provides a consolidated and
coherent presentation, adding unprecedented formalism with
respect to the problem statement, complexity, and the objective
function used in Section II and the construction of the baseline
partition in Section VII.

II. STATIC MAPPING PROBLEM

The example application used in this paper is a classical
problem well known since the early days of parallel computing.
The challenge is to partition a set P of processes in |N| subsets
to be allocated to computing nodes such that the combined
computation load of the processes in one set does not exceed
the capacity of the nodes and such that the combined communi-
cation weight between any two subsets also does not exceed the
capacity of the inbound and outbound communication links of
the nodes. In other words, the mapping is the act of assigning
the processes to the nodes of the available parallel computer.
Without loss of generality, it will here be assumed that all the
nodes of the computer are equal in capacities.

This problem is known in the literature as the static mapping
problem (SMP) [10] since it is assumed that the set of processes
remains fixed during the execution of the parallel applica-
tion. The SMP deals with data parallel applications, where all
processes are ready to run at startup. A wide range of algorithms
has been proposed over the years, and the interested reader is
referred to [10] and the references therein for an overview and
to [11] for a comparison of the different strategies. The SMP
is called a static scheduling problem if one adds the constraint
that there are data dependencies among the processes such that
the objective of the placement of the processes on the nodes
is to find the minimum completion time (makespan) of the
parallel application (see the excellent survey [12] for alternative
algorithms).

The mapping discussed here is known as the problem of car-
dinality variation [13] since it only groups processes together
on unlabeled nodes. It is a deferred task to assign a position for
these nodes in a physical network or to design or reconfigure
the interconnect for the resulting communication pattern. Given
that the processes are grouped onto unlabeled nodes, the former
is a graph isomorphism problem [14], and a solution to the latter
can be found in [15].

The problem is trivial if |P| ≤ |N|. In such a case, each node
will host at most one process. The number of ways to partition
the set of processes grows combinatorially when |P| > |N|, and
the mapping problem has been shown to be NP-hard.

A. General Concepts

Each process Pi requires a certain computation time τi.
The computation requirements of a process can, without loss
of generality, be normalized to the computational power of
the nodes such that 0 < τi ≤ 1. Although commonly assumed
known, it could, in practice, be difficult to estimate τi for
a parallel application. The discussion in [16] ends with the
recommendation to take τi to be equal to the expected load of
the process, accepting that some of the nodes could be over-
subscribed owing to the statistical variation of the execution
times of the assigned processes around their average loads. If
strict real-time response is required, it is better to assign τi to
a value that is equal to the upper bound of the execution time.
However, this difficulty shows why it is important to deploy
algorithms that operate well in stochastic environments. This is
a capacity of LA, making them suitable for this situation, and, to
the authors’ knowledge, this is the first solution of the mapping
problem allowing stochastic process parameters.

In the same way as for the computational power, also the
inbound and outbound capacity of a node can be assumed
normalized to unity. Associated with each process Pi, there is
a vector wi whose elements wi,j indicate how much process
Pi, on average, communicates to process Pj . Since a process
can be the only one allocated to a node and the total outbound
communication from a node is restricted to unity, the sum of
the element in wi must be less or equal to unity. Note also that
a process will not communicate with itself, so wi,i = 0.

A particular mapping is called feasible if and only if no
node’s capacity is exceeded. In other words, the computational
time of the processes allocated to a node must be less or
equal to unity, and their combined outbound and inbound
communication must be less or equal to unity in both directions.
Hence, the feasible region is the unit cube in the three constraint
dimensions.

Note that a feasible configuration is only a useful config-
uration. This is not a quality assessment since some feasible
configurations will clearly be better than others. Finding the
better configurations has to be traded against available time to
search. However, given the complexity of the problem to be
developed in the next section, it will become clear that even
finding the first feasible configuration is in itself a challenging
problem. Finding the optimal configuration involves solving the
integer optimization problem in Section II-C which is subject to
the objective function in Section II-D. This is intractable as the
system size grows; hence, there has, for a long time, been a
quest for good heuristics to find feasible mappings.

B. Complexity

Let S2(|P|, |N|) be the number of configurations. Given that
a process can be assigned to one and only one node, the location
of every process can be assigned |N| values. The same goes for
all the other processes, so the upper limit for the number of
configurations must be the total number of different possible
configurations

S2 (|P|, |N|) < |N||P|. (1)
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This is an upper limit for S2(|P|, |N|) since it allows some nodes
to be left empty. Furthermore, this simple calculation does not
take into consideration the symmetries of the problem caused
by assuming that all the nodes are equal, and, consequently,
their labels can easily interchange.

However, it is easy to generate all possible configurations by
recursive application of the following two rules.

1) Allocate the first process to the first node, and restart
the allocation with the remaining processes and nodes.
Thus, the number of configurations from this rule will be
1 × S2(|P| − 1, |N| − 1).

2) Keep the first process on hold, and then restart the al-
location of the remaining processes on all the nodes.
Then, allocate in turn the process on hold to each of
the configurations produced by the reduced process set.
Hence, this will contribute |N| × S2(|P| − 1, |N|).

Adding the contributions of the two rules together, one
arrives at the following recursive expression for the number of
configurations:

S2 (|P|, |N|)=S2 (|P|−1, |N|−1)+|N|S2 (|P|−1, |N|) . (2)

This is recognized as the recurrence relation for the Stirling
number of the second kind [17]; hence

S2 (|P|, |N|) =
|N|∑

k=1

(−1)|N|−k k|P|−1

(k − 1)! (|N| − k)!
. (3)

C. Mathematical Formulation

Let xi,n be an indicator variable that takes the value of unity
if process Pi is allocated to node Nn, otherwise zero. Consider
first the outbound communication from a node assuming that
Pi is allocated to this particular node. Then

|P|∑
j=1

(1 − xj,n)wi,j

is the external communication from process Pi to all the other
processes Pj . If any process Pj is also allocated to node
Nn, then xj,n = 1, and this process gives no contribution to
the aforementioned sum. To find the outbound communication
from the node, similar sums must be added together but only
for the processes Pi allocated to Nn

|P|∑
i=1

⎡
⎣xi,n

|P|∑
j=1

(1 − xj,n)wi,j

⎤
⎦ .

Multiplying and rearranging give the outbound communication
constraint (5).

Observe that the aforementioned one adds together the com-
munication from a process hosted on a given node to another
process not hosted on the node. In other words, it splits the set
of processes into two subsets and adds the communication from
one subset to the other. The only “directional” quantity is the
amount of communication wi,j , indicating that the communica-
tion goes from the process Pi on the node to a remote process

Pj not on the node. Thus, the inbound communication can be
found by the same formula but adding the communication going
from the remote processes to the processes on the node wj,i,
resulting in (6).

Therefore, the problem can be stated as follows:

minimize f(x) (4)
subject to

|P|∑
i=1

|P|∑
j=1

(xi,n − xi,nxj,n)wi,j ≤ 1, n = 1, . . . , |N| (5)

|P|∑
i=1

|P|∑
j=1

(xi,n − xi,nxj,n)wj,i ≤ 1, n = 1, . . . , |N| (6)

|P|∑
i=1

xi,nτi ≤ 1, n = 1, . . . , |N| (7)

|N|∑
n=1

xi,n = 1, i = 1, . . . , |P| (8)

xi,n ∈ {0, 1} . (9)

The set of constraints (7) restricts the total computational
time for the processes allocated to any node to the normalized
capacity of the node. The constraint set (8) ensures that a
process will be placed on one and only one node. The problem
is called hard if the constraints (5) and (6) are all equal to unity
and relaxed if they are less than unity.

As argued previously, a process can be the only one allocated
to a node, and, therefore, its total outbound communication
cannot exceed unity. This restricts the process’ capacity to
communicate to other processes allocated to the same node,
although there is no explicit constraint to this effect. Again,
the local communication is said to be relaxed if the total
communication from a node is less than unity and hard if it
is exactly unity.

D. Objective Function

The feasible region for each node is the unit cube in the
three constraint dimensions (7), (5), and (6). Denote the left-
hand side of the constraints Ln, On, and In, respectively, for
n = 1, . . . , |N|. Thus, any given allocation of processes for a
given node corresponds geometrically to a point (Ln, On, In).
In the following, a single node will be considered, and the
subscripts are omitted without ambiguity.

The task is to find an objective function that penalizes all
points outside of the unit cube, and the more, the longer away
from the unit cube the point is. The Euclidean distance would
have been a good choice had only the feasible region been a unit
ball. However, the square sides of the region make the problem
slightly more difficult. The proposed solution is nevertheless
inspired by the distance metric.

Consider first the degenerate case where I = 0 and the point
is in a 2-D plane, and convert the point (L,O) to polar coordi-
nates (r, φ). Here, r is the length of the vector from the origin
to the point (L,O), and let r1(φ) be the length of this vector
inside the unit square. The fundamental idea is that r − r1(φ)
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Fig. 1. Two possibilities for the configuration vector to cross the boundary of
the feasible unit cube shown in a plane rotated an angle φ.

will represent how much outside the unit square the point is and
will serve as a distance metric in the objective function.

Start with the case when φ ≤ π/4 so that the vector to (L,O)
leaves the unit square, where L = 1. Recall the fundamental
trigonometric identity for the cosine in a right triangle

cos(φ) =
L

r1(φ)
=

1
r1(φ)

, when φ ≤ π

4
.

Thus

r1(φ) =
1

cos(φ)
= sec(φ), when φ ≤ π

4
.

Similarly, for the case when φ > π/4, the vector crosses the
side of the unit square, where O = 1, and from the trigonomet-
ric identity for the sinus in a right triangle

sin(φ) =
O

r1(φ)
=

1
r1(φ)

, when φ >
π

4
.

Hence

r1(φ) =
1

sin(φ)
= csc(φ), when φ >

π

4
.

Therefore, the length of the vector inside the unit square is

r1(φ) =
{

sec(φ), φ ≤ π/4
csc(φ), φ > π/4.

(10)

The same idea can be used for the 3-D vector: The starting
point is to express the Cartesian point (L,O, I) in spherical
coordinates as (R, θ, φ). In this case, there are two possibilities:
The vector may exit the feasible unit cube through one of
the sides, or it can cut through the ceiling. Fig. 1 shows this
situation in the plane rotated the angle φ. The goal is to find the
length R1(θ, φ) representing the length of the vector inside the
feasible unit cube.

Consider first the case where the vector crosses one of the
sides of the cube. Given that θ is the angle of the vector with the
positive I-axis, the minor angle of the right triangle is π/2 − θ.

Let Iunit be the I value where the vector crosses the side, and
apply the basic trigonometric identity

tan
(π

2
− θ

)
= cot(θ) =

Iunit

r1(φ)
.

Therefore, from the Pythagorean theorem

R1(θ, φ) =
√

[r1(φ)]2 + I2
unit

=
√

[r1(φ)]2 + [r1(φ) cot(θ)]2

= r1(φ)
√

1 + cot2(θ) = r1(φ) csc(θ).

The situation where the vector crosses the top side of the unit
cube is simpler. In this case, Iunit = 1, and the length of the
vector inside the cube is directly given as

R1(θ, φ) =
√

1 + tan2(θ) = sec(θ).

It is readily seen from Fig. 1 that the vector crosses the sides
of the cube if tan(θ) ≥ r1(φ), and, otherwise, it will cross the
top side. Combining the aforementioned results gives

R1(θ, φ) =
{

sec(θ), tan(θ) < r1(φ)
r1(φ) csc(θ), tan(θ) ≥ r1(φ). (11)

Therefore, the obvious cost of a certain allocation of processes
on a node (Ln, In, On) can be defined for each node n =
1, . . . , |N|, after converting the configuration point to spherical
coordinates, as

cn(Ln, In, On) =
{

0, R1(θ, φ) ≥ R
R − R1(θ, φ), R1(θ, φ) < R.

(12)

These costs are all positive and can be combined as necessary
to give the overall cost of the configuration (4) for all nodes.
The obvious approach to combining the cost of various nodes
taken here is just to add them together, even though one could
argue that higher costs should be penalized more, and, thus, an
enforcement function (like squaring) should be used on the cn

elements before adding them.

III. FSSA

A. Fundamental Concepts of Learning

The functionality of LA can be described in terms of a
sequence of repetitive feedback cycles in which the automaton
interacts with an environment [18]–[21]. During a cycle, the
automaton chooses an action, which triggers a response from
the environment, where the response can be either a reward or
a penalty. The automaton uses this response and the knowledge
acquired in the past actions to determine which is the next
action. The goal of LA is to determine the optimal action out of
a set of allowable actions, where the optimal action is defined
as the action that maximizes the probability of being rewarded.
By learning to choose the optimal action, the automaton adapts
itself to the environment. The learning paradigm as modeled by
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LA has found applications3 in systems that possess incomplete
knowledge about the environment in which they operate.

Of all the classes of LA, the pioneering ones are those
which belong to the FSSA families. These FSSA have the
property that their transition and output functions do not change
with time. They have powerful applications in solving various
NP-hard problems, and fundamental to the solution proposed
here to the SMP is a subclass of LA solutions which has been
used to solve the object partitioning problem. In the special case
when all the groups are required to possess the same number of
objects, the problem is also referred to as the equipartitioning
problem. The most efficient solution to this involves a learning
automaton [5], and some modifications to the original version
were proposed by Oommen and Ma in [5, the Appendix] and
also by Gale et al. [22].4

Inspired by this, the present authors developed a similar
FSSA algorithm to solve the problem at hand [6]. This will be
described in the following. In contrast to the equipartitioning
algorithm, this algorithm allows an unequal number of objects
in each class; however, it is similar in modeling the objects
as having a set of states that can be thought of as the level
of confidence the object has in its present allocation. Here, it
is taken that an object has eight confidence states, and it has
converged to a good allocation if it is in one of the two last
states. If an object has zero confidence in its present allocation,
it is a candidate to be moved to another object class.

B. Object Pairing Process

The Oommen–Ma algorithm [5] works on a sequence of
queries, each in the form of object pairs 〈Pk, Pl〉 indicating that
these two objects have something in common. The algorithm
will, in general, try to group and allocate the two objects of a
query to the same class. It is imperative for the convergence
of the algorithm that the random sequence of queries reflects
an underlying optimal partition. The optimal partition is, in
general, not known for the mapping problem at hand, nor
there is any oracle that may provide a sequence of pairs to
go together. Thus, the Oommen–Ma algorithm cannot be used
for the problem at hand; however, it has inspired the algorithm
developed here, which is also based on pairing, exploiting the
fact that the outbound communication wi is known for all
processes as follows.

1) First, the node that violates the most the constraint (7) is
selected.

2) A process, for example, PA, allocated to this node is
selected randomly among the processes on the node
according to the empirical distribution of their average
weights τi.

3) Then, the process PA selects randomly another process
PB according to the probability distribution wA.

The set of processes 〈PA, PB〉 is, in the following, referred
to as a (unordered) pair.

3For a comprehensive list of the applications, we refer the reader to [18]–[21]
and to the references cited in these publications.

4This paper also specifies a modified “criterion for convergence,” by which
the OMA demonstrates a higher accuracy.

Fig. 2. Successful pairing of two processes A and B belonging to the same
node will increase their confidence in a correct placement and move them one
step closer to a converged configuration. Here, the convergence is said to have
occurred if the depth is greater than or equal to six.

Fig. 3. Decreasing the confidence of two paired processes, where neither is in
the exit state.

The pairing is said to be successful, and the two processes
will be awarded if the two processes already belong to the same
node; otherwise, it is unsuccessful, and the two processes are
penalized. In the case of a successful pairing, both the two in-
volved processes will increase their confidence in their current
allocation. The situation is graphically illustrated in Fig. 2.

C. Unsuccessful Pairing

When there is an unsuccessful pairing, the two processes
are not on the same node. However, this is an indication that
the processes might have intensive communication partners
with whom they are not currently colocated. Consequently, the
confidence in their present location should be decreased, and
this situation is illustrated in Fig. 3.

Consider next an unsuccessful pairing, where process A is in
the boundary (exit) state of its node and has zero confidence in
its location, whereas B has some confidence in its location. In
this case, one would desire to bring A to the node of B. This
situation is shown in Fig. 4.

Finally, there is the situation where both process A and
process B are in the exit states of their nodes. Then, there are
three possible alternative migrations.

1) Both A and B may group on A’s node.
2) Both A and B may group on B’s node.
3) A and B group on a third node.
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Fig. 4. A and B are unsuccessfully paired: B reduces its confidence as usual,
and A will migrate to the node of B.

Fig. 5. Three alternatives for colocating two processes A and B both having
zero confidence in their present location.

The three alternative moves are shown in Fig. 5. The decision
about which move to make is based on how much the involved
nodes of the processes A and B violate the constraint (7).

The first alternative is really not an option given that PA

was chosen to be on the node violating most the constraint (7).
Therefore, both processes will be assigned to B’s node if this
is possible without violating the constraint (7); otherwise, both
processes will be placed together on the node with the least
value for the constraint (7).

D. Algorithm

Fig. 6 shows the pseudoalgorithm used to solve the mapping
problem with FSSA. How the paired processes are moved was
described in the preceding sections.

Fig. 6. Pseudocode for the basic algorithm to partition the processes based
on first selecting a node and then pairing one process on this with a remote
communication partner.

IV. VSSA

The alternative to FSSA is VSSA whose transition and
output matrices are time varying [18], [23]. In practice, they
are defined in terms of an action probability vector p(k) with
pi(k) being the probability that action i in the action set A

will be selected at time k out of the |A| available actions.
Hence,

∑
i pi(k) = 1 for all k. The updating rules for the

probability vector are either continuous or discrete. The fastest
converging LA belong to the VSSA family. Adapting these
families of automata to solve the problem considered could
hopefully improve the speed of obtaining a solution.

Based on this, Thathachar and Sastry [24] introduced what
is known as estimator algorithms: The main feature of these
algorithms is that they maintain the running estimates for the
reward probability of each possible action and use them in the
probability-updating equations. Typically, in the first step of
the functional cycle, the automaton chooses an action, and the
environment generates a response to this action. Based on this
response, the estimator algorithm updates the estimate of the
reward probability for that action. The change in the action
probability vector p(k) is based on d̂(k), the vector of the
running estimates of the reward probabilities that was updated
according to the feedback received from the environment.

A. Pursuit Automata

The pursuit algorithm first introduced by Thathachar and
Sastry [24] is a rule for updating the probability vector directly
to “pursue” the currently estimated best action. Hence, after
receiving the feedback on a proposed action, the second step
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Fig. 7. Fundamental pursuit learning algorithm.

is to increase the component of p(k) whose reward estimate
is maximal (the current optimal action) and to decrease the
probability of all the other actions. The last step is to update the
running estimates for the probability of being rewarded based
on the actual reward or penalty received from the environment.
The fundamental steps of the algorithm are illustrated in Fig. 7.

The differences between the discrete and continuous versions
of the pursuit algorithms occur only in the updating rules for
the action probabilities. The discrete pursuit algorithms make
changes to the probability vector p(k) in discrete steps, whereas
the continuous versions use a continuous function to up-
date p(k).

The discrete generalized pursuit automata (DGPA) [25] is the
fastest converging automata known. Fundamentally, it is a way
to update the elements of the action probability vector. The gen-
eral idea is that all action probabilities corresponding to actions
with a higher reward estimate than the currently chosen action
should be increased. The action probabilities corresponding to
reward estimates that are less than the currently chosen action
should similarly be decreased. Finally, the probability for the
chosen action is updated to normalize the probability vector.
The algorithm is given in Fig. 8.

Traditionally, the reward estimates d̂(k) are obtained by
maximum likelihood estimation (MLE). The automaton keeps
two counters for each action, both initially set to zero. One
counts the number of times this action has been selected, and
the other counts the number of times the task of selecting
this action has been rewarded. Then, the estimated reward
probability of a given action is simply the ratio of the number
of rewarded selections to the number of selections. Observe that
the estimates obtained by MLE do not necessarily sum to unity,
but they converge asymptotically to the true values of the di’s.
Observe also that the MLE is optimal if and only if the true
reward probabilities estimated by d̂ are stationary and do not
change over time. If one action is optimal for some time before
another action becomes optimal, the automaton will continue to
select wrongly the first action until the ratio of the number of
rewards to the number of selections has decreased sufficiently
for the second action to be chosen.

Fig. 8. DGPA subroutine to update the action probabilities.

To account for this, a recently introduced family of weak es-
timators [26], referred to as stochastic learning weak estimates
(SLWEs) that are suitable for time-varying distributions, may
be successfully used to obtain the probability estimates for the
problem at hand [7]–[9]. The SLWE is itself computed using the
principles of LA, and it will, in contrast with the MLE, always
be a proper probability vector trying to estimate the underlying
distribution. Thus, as one of the estimates is increased due to
a reward, the other elements will be decreased. This estimation
process leads to estimates that do not converge with probability
one but rather converge with regard to the first and second
moments.

There are basically two options for selecting the automata for
the SMP: Each node may be an automaton, or each process is
modeled as an automaton as before. In the first case, the “ac-
tions” of the nodes would be to select the processes belonging
to that class. However, this would be impossible because of
the uniqueness constraint (8) since several nodes independently
may decide that a certain process is their better “action.” A
process may either have the nodes as its “actions” or may try
to select other peer processes as “actions” as a sort of pairing
without involving the nodes. These two strategies are discussed
in the following sections.

Thathachar and Sastry [21, pp. 76–82] prove that games
of automata like the one suggested here will converge for
stationary environments, although pursuit algorithms seem to
require full information about the past configuration history in
order to converge. This is clearly infeasible, and, therefore, the
approach can be seen similar to extending the principles used in
[27], where Batalov and Oommen demonstrated that learning
machines can be taught to play games even if they are not
explicitly provided with the rules of the game.

B. Node Action: Selecting the Better Hosts

In this case, A = N, and pi,n is the probability for process
Pi to be rewarded if it is allocated to node Nn. However, the
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concept of the reward needs definition. The approach used here
is a game of independently moving automata, and moving any
process from one node and allocating it to another at time k
create a new configuration x(k). This move is hence rewarded
if and only if this decreases the objective function (4), i.e.,
f(x(k)) ≤ f(x(k − 1)).

Seen from the moving process Pi, this means that the action
corresponding to node Nj can be rewarded some times, while,
other times, the very same move will create a penalty depending
on where the other processes are at the time of the move. It is,
therefore, obvious that the rewards are time dependent, and an
estimator like the SLWE supporting time variate distribution
should be preferred.

Two innovations suggested in [7] are likely to further im-
prove the situation: It obviously makes no sense to update the
reward estimates at the end of the iteration loop as in step 9
in Fig. 7 since the configuration has likely changed the next
time the process will move. Thus, the estimator update of step 9
in the algorithm in Fig. 7 is moved before step 5 of the same
algorithm.

Second, it makes no sense to update the reward estimates
d̂(k) based on the reward given to the process at some past
execution as the configuration has probably changed in the
meantime. Instead, a sequence of synthetic rewards is generated
by trying to predict what would be a good move for the process
Pi as follows: For each of the elements in the communication
vector, wi, one decides if the communication is active or not
with probability wi,j . If the communication is taken as active,
check if Pi can be allocated to the same node as Pj without
violating the constraints (5)–(7). If this is the case, then the
reward estimates are updated as if the automaton received a
reward for choosing the node hosting Pj . Note that, if several
of the communication partners of Pi are already allocated to
the same node, one may have several rewards for this node,
enforcing it as a good choice for reallocating Pi.

This strategy has two benefits: It will better reflect the current
situation in the update of the reward estimates, and it avoids
computing the objective function (4) but rather queries a subset
of nodes for their capacities before moving Pi randomly based
on pi.

C. Process Action: Autonomous Process Flocking

A fundamental observation is that it will be beneficial to
group together processes with mutual communication on one
node since this will limit the strain on the communication
link from the node to the other nodes. The idea is to attempt
taking advantage of the fact that a process’ affinity with the
other processes is a static relationship based on the underlying
communication digraph of the application. Consequently, it
should be possible to learn these relations in a more sta-
ble way.

Let a process have the other processes as possible actions.
When a process Pi arrives to a node and that move is rewarded,
i.e., the value of the objective function (4) is decreased, it is
an indication that Pi should increase its affinity with the other
processes hosted by that node. However, it is also an indication
that every other process on that node should increase its affinity

with Pk. Indeed, the reward is symmetric, so all processes
on the node should reciprocally increase their affinities. In
practical terms, a sequence of awards is given to every process
on the node for all the actions corresponding to the processes
on the node.

Then, there is a need to identify the mapping from the process
probabilities to the next host node for a process. Reference [9]
proposes an intuitive solution to this by assigning each node
a probability that is equal to the sum of action probabilities
a process has for the other processes currently hosted on that
node. However, also the weights of the processes allocated to a
node must be taken into account since the search is for a feasible
configuration, and it makes little sense moving a process to
a node already overloaded. Details on this enhanced process
placement can be found in [9].

V. DIGRAPH ESTIMATION

A general problem with using automata to learn affinities
among processes like in the previous approach is that each
automaton has the goal to select the best action and not a set
of good actions. In the stationary case, the probability for the
best action will converge to unity, whereas all the other action
probabilities will go to zero. Thus, one can never learn the static
relations of the process communication digraph this way.

Using a traditional estimator might overcome this restriction:
The inbound relations will be learned through a sequence of
interactions with the other processes. In a round-robin fashion,
the other processes are queried if they have a relation with
the “proposing” process Pi. Consequently, another object Pj

provides it with a positive feedback with probability wj,k

(which represents a reward), and, with probability 1 − wj,i, it
will provide it with a penalty. Based on this feedback, Pi will
update its estimate ŵj,i.

The reward estimates that process Pi obtains ŵ.,i can best
be produced by an MLE scheme since the relation among the
processes is static. If this is the case, the automaton keeps two
counters for each of the other processes, both initially set to
zero. One counts the number of times this process has been
selected, and the other counts the number of times the action
of selecting this process has been rewarded by the system.
Thus, the estimated reward probability is simply the ratio of
the number of rewarded selections to the number of selections.
Each individual estimate satisfies 0 ≤ ŵ.,i ≤ 1. Observe that
the estimates obtained by the MLE do not necessarily sum to
unity, which is, indeed, valid because the inbound relations are
not normalized like the outbound ones.

With the availability of the estimates of the inbound commu-
nication, one has again the same need to assign the process to
a node. The previously described heuristic proposed in [9] was
slightly modified in [8] to account differently for the loading of
the node and derive a set of node probabilities used to randomly
allocate a process.

VI. SIMULATION

Extensive simulations were carried out in order to test the
different learning algorithms outlined previously. A dedicated
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TABLE I
FRACTION OF CONVERGED SIMULATIONS FOR DIFFERENT SYSTEM SIZES AND APPLICATION SIZES. MORE THAN 300 SIMULATIONS ARE PERFORMED

FOR EACH VALUE PRESENTED. A HYPHEN MEANS THAT AN EXTENSIVE SIMULATION EXPERIMENT HAS NOT BEEN PERFORMED. FOR THE

VSSA ALGORITHMS, IT IS BECAUSE OF THE LACK OF CONVERGENCE, AND, FOR THE FSSA ALGORITHM, THERE IS NO REASON TO

SIMULATE SMALLER SYSTEMS WHEN IT CONVERGES FOR LARGER AND MORE CHALLENGING ONES

simulator was implemented in C++, and, for each run, the
following steps were carried out:

1) Initialization of the random number generator with the
current time of the computer to ensure that each random
sequence was unique. Furthermore, the best known ran-
dom generator was used [28, pp. 282–286].

2) Assignment of a feasible random baseline partition as it
would be useless to seek a solution to the problem unless
it was known that a solution would exist. The construction
of the baseline partition is the subject in Section VII.

3) Randomly rehash the baseline partition to create an infea-
sible starting configuration for the learning algorithms.

4) Execute the partitioning algorithm, and stop as soon as
a feasible configuration was detected. If the simulation
converged on a solution, the number of iterations, i.e., a
process moves from one node to another, was recorded.

5) Stop if no solution was found after a fixed number of
iterations. Various values were used for the iteration limit,
increasing with the system size to be comparable in scale
with the number of possible configurations, (3).

At least 300 simulation runs were carried out for each
problem size and for each algorithm, and the percentage of
converged simulations is reported in Table I. Not all problem
sizes were simulated for all algorithms since it would be point-
less to simulate larger systems for algorithms failing smaller
ones. Seven hundred additional simulations were executed for
the FSSA algorithm to confirm the reported results. The simu-
lations were executed on a wide range of Linux workstations at
the University of Oslo using Condor.5

VII. BASELINE PARTITION

The purpose of the baseline partition is to ensure that there
is at least one solution to the partition problem. Without this

5See http://www.cs.wisc.edu/condor/.

baseline partition, it could be that the problem had no solution
and that no algorithm would ever converge. However, defining
this baseline partition is nontrivial, and this section defines a so-
lution to this problem and is included here for the completeness
of this paper.

A. Allocating Processes to Nodes

The starting point is a partition, i.e., an allocation of all
processes onto the nodes. In order to verify if the algorithm
finds the baseline partition or some other feasible partition, the
processes are allocated in subsequences such that the indexes of
the processes on a given node form a sequence. This is achieved
as follows.

1) For each process, a random integer is drawn in the interval
[1, . . . , |N|], representing the initial assignment of this
process. If the resulting configuration leaves one or more
nodes without any processes, the random assignment is
repeated for all processes.

2) The number of processes assigned to each node is
counted.

3) A sequence of processes of the same length as the random
assignment is allocated to each node.

Once the processes have been allocated to the nodes, their
weights τi are assigned. For each node, a random vector with
as many elements as there are assigned processes to the node is
formed and normalized. If the constraint (7) is hard, i.e., equal
to unity, the assigned weights are the elements of this vector;
otherwise, the sum of (7) is assumed to be a random number in
the interval [0, 1], and the random vector is multiplied with this
number before the weights are assigned to the processes.

B. Node Communication

Fig. 9 illustrates a situation where six processes are assigned
to three nodes, resulting in a new set of communication vectors
among the nodes. When forming the baseline partition, this
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Fig. 9. Six processes with directed communication being partitioned onto three nodes, where the communication among the nodes is based on the original
communication digraph. The load of each node is the sum of the weight of the processes. (a) Communication among the processes with the partition of the process
set indicated as gray lines. (b) Communication among the nodes under a given partition.

process must be reversed: After allocating the processes onto
the nodes, the communication digraph of the nodes must be
defined as that in Fig. 9(b), before splitting the outbound and
inbound communication of a single node on the processes
allocated to that node as that in Fig. 9(a).

The key point is to observe the flow invariant: Whatever
flows out of one node must flow into all the others. Conse-
quently, this principle establishes a link between the outbound
flows and the inbound flows and explains why the flows cannot
be selected entirely at random.

Consider the node-to-node communication matrix W, where
the rows represent the outbound communication from the nodes
and the columns represent the inbound communication. This
matrix will be zero diagonal since a node will not communicate
with itself, and it will have the following structure:

I1 I2 I3 · · · I|N|−1 I|N|

O1 0 W1,2 W1,3 · · · W1,|N|−1 W1,|N|
O2 W2,1 0 W2,3 · · · W2,|N|−1 W2,|N|
O3 W3,1 W3,2 0 · · · W3,|N|−1 W3,|N|
...

...
...

...
. . .

...
...

O|N|−1 · · · · · · · · · · · · 0 W|N|−1,|N|
O|N| · · · · · · · · · · · · W|N|,|N|−1 0

where Oi =
∑|N|

j=1 Wi,j is the total outbound communication

from node Ni and Ii =
∑|N|

j=1 Wj,i is the total inbound com-
munication. Then,

∑
i Oi =

∑
i Ii from the flow invariant and

the fact that the sum over all matrix elements is the same. Fur-
thermore, the inflow to Ni cannot be larger than the combined
outflow of all the others with the limiting case corresponding
to the situation where all nodes are sending all their output
to Ni

Ii ≤

⎛
⎝ |N|∑

j=1

Oj

⎞
⎠ − Oi. (13)

If the problem is hard, then Ii = 1 and Oi = 1 for all i =
1, . . . , |N|; otherwise, the total flow is taken as a random
number drawn uniformly over the interval [0, |N|], i.e., F ∼
U(0, |N|). Then, Oi ∼ U(0, 1) for all i = 1, . . . , |N| such that∑|N|

i=1 Oi = F . The numbers are made to satisfy the latter
equality by first drawing a random vector with elements U(0, 1)
and then normalizing and scaling this to F . Finally, the col-
umn sums are drawn uniformly between zero and the upper
limit given by (13), i.e., Ii ∼ U(0,F − Oi), again, such that∑|N|

i=1 Ii = F .
The matrix W is solved recursively. The idea is to randomly

draw the elements of the first column and the first row and then
compute the new row and column sums for the minor matrix of
size (|N| − 1) × (|N| − 1). The first column elements are taken
Wi,1 ∼ U(0, Oi) for i = 2, . . . , |N| such that

∑|N|
i=2 Wi,1 = I1.

In order to preserve (13) also for the minor matrix, there must
be a lower bound for the values drawn for the first row in
the major matrix. Since O

[|N|−1]
i = O

[|N|]
i − Wi,1 and I

[|N|−1]
i =

I
[|N|]
i − W1,i for i = 2, . . . , |N|, the constraint for the minor

matrix yields the following lower bound for the major matrix
elements in the first row:

I
[|N|−1]
i ≤

⎛
⎝ |N|∑

j=2

O
[|N|−1]
j

⎞
⎠ − O

[|N|−1]
i

I
[|N|]
i − W1,i ≤

⎛
⎝ |N|∑

j=2

O
[|N|]
j − Wj,1

⎞
⎠ −

(
O

[|N|]
i − Wi,1

)

W1,i ≥ I
[|N|]
i −

⎡
⎣

⎛
⎝ |N|∑

j=2

O
[|N|]
j

⎞
⎠ − I

[|N|]
1

⎤
⎦

−
(
O

[|N|]
i − Wi,1

)
. (14)
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Hence, the first row elements are drawn W1,i ∼ U(Wmin
1,i , Ii)

for i = 2, . . . , |N|, where Wmin
1,i is the right-hand side

in (14).
This process continues down to the 3 × 3 matrix. In this case,

there will be six elements to be chosen in the matrix and 3 + 3
constraints in the row and column sums. Essentially, this is a
fully determined set of linear equations. However, since the sum
of the row sums is equal to the sum of the column sums, there
is one degree of freedom. Given the matrix

W[3] =

⎛
⎝ 0 W1,2 W1,3

W2,1 0 W2,3

W3,1 W3,2 0

⎞
⎠

the element W3,2 is taken as the free element randomly chosen
within a region defined by the row and column sums. Then, the
rest of the elements follow from solving the linear system.

C. Process Communication

A process allocated to a node has two types of communi-
cation: node external communication with processes assigned
to other nodes and node internal communication with the
processes on the same node.

With the node communication matrix W given, the total
amount of outbound traffic from Ni to Nj given by Wi,j is split
randomly over the processes on Ni in a two-step process:

1) A random vector with as many elements as there are
processes on Ni is formed and normalized and then
scaled with Wi,j , giving each process’ share of the ex-
ternal communication.

2) The process is repeated for each process on Ni, forming
a normalized random vector with as many elements as
there are destination processes hosted by Nj and scaling
this vector to the process’ share of Ni’s external commu-
nication with Nj .

Since a process should be allowed to be a single process
on any node without violating the capacity constraints, nei-
ther its total outbound communication nor its total inbound
communication can exceed unity. The problem is hard if the
total communication is exactly unity in both directions for all
processes and relaxed otherwise.

With the upper limit for the communication given for all
processes, the node external part can be subtracted, leaving the
process’ capacity for communicating with the other processes
on the same node. Knowing these capacities, the node internal
communication among the processes can be allocated essen-
tially by solving the same constrained flow problem previously
solved for the nodes, producing a process-to-process communi-
cation matrix w.

VIII. DISCUSSION

Fig. 10 shows the number of times any process is moved
from one node to another before the feasible configuration
has been found. The FSSA algorithm converges for all system
sizes and manages to find a feasible configuration even when

Fig. 10. Median number of moves, with the 95% quantiles, necessary to
achieve a feasible mapping using the described FSSA algorithm.

the number of possible configurations is huge.6 The “level” is
mainly given by the number of nodes involved, and, as expected
from Section II-B, there is an exponential increase in the
number of moves necessary to find a solution with the system
size. Remarkably is also the fact that the number of moves
needed seems to be fairly constant over all the 1000 simulations
performed, with a slightly longer tail in the distribution. This
implies that, for all systems, a minimal number of moves must
be expected before the convergence starts; however, this is a
general aspect of all learning algorithms.

It is surprising that the best learning method gives unaccept-
able results while an older FSSA method converged perfectly
on a feasible solution. From the results, it is evident that the
approaches based on the variable-structure pursuit automata,
although novel, are efficient only for very small class sizes.
In their current form, they do not scale well and fail to find
solutions even for moderate system sizes (which could possibly
be solved with exact integer programming methods). There
may be several reasons for this phenomenon, and this section
examines the most obvious ones while describing subjects for
further investigations.

A possible problem with the estimators used is that they
only update the estimates in response to a reward. Given that
most of the possible configurations are infeasible and that it
is increasingly harder to find a better configuration than the
present one, selecting a new host node will most likely give
an unfavorable response. The same is the case when trying
to select another process in a group or to estimate inbound
relations since most of the inbound relations carry a relatively
small weight because the weights of all the outbound relations
from an object are limited by unity. Hence, by virtue of such
an updating strategy, most of the information obtained in an
iteration will be ignored, rendering the convergence slower.
This may partially explain the poor results seen.

A further complication is that most estimators assume that
the observations are independent and identically distributed.
This is not the case when the estimator values are used to select
the next configuration, which, in turn, generate the feedback

6Evaluating (3) for the largest system yields approximately 9.75993 ×
10156 configurations, and finding a feasible configuration in about 10 000
iterations as indicated in Fig. 9 is impressive.
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and the next observation for the estimator. In other words, a
new observation is conditioned on the past history of obser-
vations. This in-loop estimation violates the premises of the
estimators.

The present authors are therefore currently working to de-
velop learning-based estimators that may explore both rewards
and penalties and that are suitable for in-loop estimation where
the estimated values are used to make decisions that influence
future system configurations.

A potential issue with the digraph estimation or with having
the processes as actions of the automata is that there is no
direct way to assign the new host node to a moving process.
Making this assignment only on the grouping of processes
seems insufficient in larger systems. When forming the node
probability vector for finding the next host for a process, the
nodes with insufficient capacity were either excluded or given
very low probabilities. This may confine the allocation of the
processes to a limited region, preventing a full exploration of all
possible configurations. In other words, it might be necessary to
overload temporarily a node for the system to be able to pass to
a better configuration.

The aforementioned strategies for moving processes seem to
indicate that the game of independent automata may not con-
verge for this problem. Thathachar and Sastry [21] prove that
a game of automata will converge even in the case when they
are given individual feedback on their choices. A fundamental
assumption in that work, when transcribed to the setting of our
current problem, is that the automata should select a single
configuration. With combinatorial growth in the number of
possible configurations, even enumerating them is intractable.

Finally, all processes were allowed to move all the time for
all the VSSA approaches. This may not be the ideal strategy
since there is no reason why a process should be moved
away from a node that is neither overloaded nor exceeding its
communication capacity. Rather, it is probably advantageous to
move only the processes on the overloaded nodes. Note that
this violates the original motivation for the VSSA approaches
to find completely decentralized algorithms that are capable of
solving the partitioning problem without central coordination.
The FSSA solution has an element of global coordination since
the processes are moved away only from the most overloaded
node. The need for coordination has long been recognized for
multiagent systems [29], and future improvements of the algo-
rithms presented here could benefit from existing frameworks
[30] and consensus protocols [31]. LA can be considered a
special branch of reinforcement learning [32], and, although
distributed reinforcement learning is in its infancy, the need for
central coordination is already recognized [33].

Abandoning the idea that one game of moving objects may
be capable of identifying a feasible configuration (except by
pure chance) opens several avenues for further research. One
avenue would be to regard this as a game with two groups
of learning players in which the processes attempt to learn
the digraph of relations, while the nodes, at the same time,
actively move the processes between themselves. In such a
model, learning can possibly be applied to the selection of the
process that has to move out of a node if the node is overloaded.
This too is currently being investigated.

IX. CONCLUSION

This paper considered the problem of partitioning a set P of
|P| elements (or objects) into |N| mutually exclusive classes
(or groups), with the goal of having “similar” elements cluster
with each other in the same class. The objects could be linked
together in a multiconstraint (and possibly, contradictory) man-
ner. This was motivated and illustrated by the SMP of assigning
a set of processes of a parallel application to a set of computing
nodes.

After formalizing the problem, we first presented an FSSA
algorithm to solve it. The solution, although elegant and ef-
ficient, required some centralized coordination. In an attempt
to determine a solution that is void of a centralized control
mechanism, we subsequently proposed three different VSSA
algorithms. However, by virtue of gaining these advantages,
they forfeit some of the scalability features of the fixed-
structure algorithm.

Our conjecture is that a fully decentralized LA solution does
not exist. Rather, since it is doubtful that a fully distributed
algorithm can be found, the question of arriving at a scalable
solution by utilizing some form of coordination (i.e., achieving
the goal with the minimum centralized control) remains open.
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