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Abstract—In a multitude of real-world situations, resources must be allocated based on incomplete and noisy information. However, in

many cases, incomplete and noisy information render traditional resource allocation techniques ineffective. The decentralized Learning

Automata Knapsack Game (LAKG) was recently proposed for solving one such class of problems, namely the class of Stochastic

Nonlinear Fractional Knapsack Problems. Empirically, the LAKG was shown to yield a superior performance when compared to

methods which are based on traditional parameter estimation schemes. This paper presents a completely new online Learning

Automata (LA) system, namely the Hierarchy of Twofold Resource Allocation Automata (H-TRAA). In terms of contributions, we first of

all, note that the primitive component of the H-TRAA is a Twofold Resource Allocation Automaton (TRAA) which possesses novelty in

the field of LA. Second, the paper contains a formal analysis of the TRAA, including a rigorous proof for its convergence. Third, the

paper proves the convergence of the H-TRAA itself. Finally, we demonstrate empirically that the H-TRAA provides orders of magnitude

faster convergence compared to the LAKG for simulated data pertaining to two-material unit-value functions. Indeed, in contrast to the

LAKG, the H-TRAA scales sublinearly. Consequently, we believe that the H-TRAA opens avenues for handling demanding real-world

applications such as the allocation of sampling resources in large-scale web accessibility assessment problems. We are currently

working on applying the H-TRAA solution to the web-polling and sample-size detection problems applicable to the world wide web.

Index Terms—Nonlinear knapsack problems, hierarchical learning, learning automata, stochastic optimization, resource allocation.

Ç

1 INTRODUCTION

1.1 Motivation

IN a multitude of real-world situations, resources are often
to be allocated based on incomplete and noisy information.

Such resource allocation problems are particularly intriguing
because, in many cases, incomplete and noisy information
render traditional optimization techniques ineffective. In this
paper, we address one such model which can be translated
into a family of problems:

Imagine that you have to allocate a limited amount of time among
n different activities. The problem is such that spending a time
instant on an activity randomly produces one of two possible
outcomes—the time instant is either spent “fruitfully” or
“unfruitfully.” In this generic setting, your goal is to maximize
the expected amount of fruitfully spent time. Unfortunately, you are
only given the following information regarding the activities:

1. each instant of time spent on an activity has a certain
probability of being fruitful, and

2. this probability decreases with the amount of time spent
on the activity.

To render the problem even more realistic, you do not have access
to the probabilities themselves. Instead, you must rely on solving

the problem by means of trial-and-failure, i.e., by attempting
different allocations and observing the resulting random outcomes.

To pose the problem in a practical perspective, we
present below two simple applications of the problem in
time management and in monitoring webpages.

Example 1—Time Management. Students frequently en-
counter a real-life instantiation of the above intriguing
problem. A student that pursues several different topics
in a semester has to decide how to allocate his working
hours among the topics. After a day of work, the student
will have some idea of how much he has learned during
the day, allowing him to assess his current allocation of
working hours. Rather than over specializing in a single
topic and treating the other topics superficially, seeking
overall mastery of the topics could be a wise choice in
this situation. However, the amount of time required to
master a topic will vary, simply because the nature of a
topic influences the student’s “learning curve” for that
specific topic. Thus, finding an optimal allocation in this
problem must involve “trial and error,” and unknown
success probabilities, as in our present model.

Example 2—Webpage Monitoring. The problem also
appears in other settings. The world wide web is, for
instance, an extremely vast resource-thirsty field, which
probably consumes a major portion of the computing
resources available today. Searching, updating, and
examining webpages is, undoubtedly, one of the primary
tasks done by both individuals and companies today.
This, in turn, leads to numerous extremely interesting
real-life resource allocation and scheduling problems,
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and the problem studied here is pertinent to one such
problem, the so-called “web-polling” problem.

Webpage monitoring consists of repeatedly polling a
selection of webpages so that the user can detect changes that
occur over time. Clearly, as this task can be prohibitively
expensive, in practical applications, the system imposes a
constraint on the maximum number of webpages that can be
polled per time unit. This bound is dictated by the governing
communication bandwidth, and by the speed limitations
associated with the processing. Since only a fraction of the
webpages can be polled within a given unit of time, the
problem which the system’s analyst encounters is one of
determining which webpages are to be polled. In such cases,
a reasonable choice of action is to choose webpages in a
manner that maximizes the number of changes detected, and
the optimal allocation of the resources again involves “trial
and error.” As illustrated in Fig. 1, webpages may change
with varying frequencies (that are unknown to the decision
maker), and changes appear more or less randomly.

Furthermore, as argued elsewhere, [7], [8], the probability
that an individual webpage poll uncovers a change on its
own decreases monotonically with the polling frequency
used for that webpage. Consider that time is discrete, with
the time interval length T to be the atomic unit of decision
making. In each time interval, every single webpage i has a
constant probability ui of remaining unchanged. Further-
more, when a webpage is updated/changed, the update is
available for detection only until the webpage is updated
again. After that, the original update is considered lost. For
instance, each time a newspaper webpage is updated,
previous news items are replaced by the most recent ones.
By way of example, consider the scenario that a webpage
remains unchanged in any single time step with prob-
ability 0.5. Then, polling the webpage uncovers new
information with probability 1� 0:53 ¼ 0:875 if the webpage
is polled every third time step (i.e., with frequency 1

3 ) and
1� 0:52 ¼ 0:75 if the webpage is polled every second time
step. As seen, increasing the polling frequency reduces the
probability of discovering new information on each polling.

The problem that we study here has direct applications to
this web-polling problem, and to the problem of determin-
ing the optimal sample size required for estimation
purposes—both of which are addressed here briefly, but
in more detail elsewhere [9].

1.2 Formal Problem Formulation

The above problem instances can be formulated as Stochastic
Nonlinear Fractional Equality Knapsack (NEFK) Problems as
exemplified earlier [7], [8], [9]. Such a formulation permits
an analytically rigorous treatment of the problem.

In order to appreciate the qualities of the Stochastic
NEFK Problem, it is beneficial to view the problem in light
of the classical linear Fractional Knapsack (FK) Problem.
Indeed, the Stochastic NEFK Problem generalizes the latter

problem in two significant ways. Both of the two problems
are briefly defined below.

The linear fractional knapsack (FK) problem. The linear
FK problem is a classical continuous optimization problem
which also has applications within the field of resource
allocation. The problem involves n materials of different
value vi per unit volume, 1 � i � n, where each material is
available in a certain amount xi � bi. Let fiðxiÞ denote the
value of the amount xi of material i, i.e., fiðxiÞ ¼ vixi. The
problem is to fill a knapsack of fixed volume c with the
material mix ~x ¼ ½x1; . . . ; xn� of maximal value

Pn
1 fiðxiÞ [2].

The nonlinear equality FK (NEFK) problem. One
important extension of the above classical problem is the
Nonlinear Equality FK problem with a separable and concave
objective function. The problem can be stated as follows [13]:

maximize fð~xÞ ¼
Xn

1

fiðxiÞ;

subject to
Xn

1

xi ¼ c and 8i 2 f1; . . . ; ng; xi � 0:

Since the objective function is considered to be concave,
the value function fiðxiÞ of each material is also concave.
This means that the derivatives of the material value
functions fiðxiÞ with respect to xi (hereafter denoted f 0i),
are nonincreasing. In other words, the material value per
unit volume is no longer constant as in the linear case, but
decreases with the material amount, and so the optimization
problem becomes:

maximize fð~xÞ ¼
Xn

1

fiðxiÞ; where fiðxiÞ ¼
Z xi

0

f 0iðxiÞdxi;

subject to
Xn

1

xi ¼ c and 8i 2 f1; . . . ; ng; xi � 0:

Efficient solutions to the latter problem, based on the
principle of Lagrange multipliers, have been devised. In
short, the optimal value occurs when the derivatives f 0i of
the material value functions are equal, subject to the
knapsack constraints [3], [5]:

f 01ðx1Þ ¼ � � � ¼ f 0nðxnÞ;Xn
1

xi ¼ c and 8i 2 f1; . . . ; ng; xi � 0:

The stochastic NEFK problem. In this paper, we
generalize the above nonlinear equality knapsack problem.
First of all, we let the material value per unit volume for any
xi be a probability function piðxiÞ. Furthermore, we consider
the distribution of piðxiÞ to be unknown. That is, each time an
amount xi of material i is placed in the knapsack, we are
only allowed to observe an instantiation of piðxiÞ at xi, and
not piðxiÞ itself. Given this stochastic environment, we
intend to devise an online incremental scheme that learns
the mix of materials of maximal expected value, through a
series of informed guesses. Thus, to clarify issues, we are
provided with a knapsack of fixed volume c, which is to be
filled with a mix of n different materials. However, unlike
the NEFK, in the Stochastic NEFK Problem the unit volume
value of a material i, 1 � i � n, is a random quantity—it
takes the value 1 with probability piðxiÞ and the value 0 with
probability 1� piðxiÞ, respectively. As an additional com-
plication, piðxiÞ is nonlinear in the sense that it decreases
monotonically with xi, i.e., xi1 � xi2 , piðxi1Þ � piðxi2Þ.
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Fig. 1. Webpage changes occurring over time. An “x” on the time lines
denotes that the respective webpage has changed. Observe that the
occurrence of this event is not observable to the outside world unless the
webpage is polled.
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Since unit volume values are random, we operate with
expected unit volume values rather than the actual unit
volume values. With this understanding, and the above
perspective in mind, the expected value of the amount xi of
material i, 1 � i � n, becomes fiðxiÞ ¼

R xi
0 piðuÞdu. Accord-

ingly, the expected value per unit volume1 of material i
becomes f 0iðxiÞ ¼ piðxiÞ. In this stochastic and nonlinear
version of the FK problem, the goal is to fill the knapsack so
that the expected value fð~xÞ ¼

Pn
1 fiðxiÞ of the material mix

contained in the knapsack is maximized. Thus, we aim to:

maximize fð~xÞ ¼
Xn

1

fiðxiÞ; where fiðxiÞ ¼
Z xi

0

piðuÞdu;

and piðxiÞ ¼ f 0iðxiÞ;

subject to
Xn

1

xi ¼ c and 8i 2 f1; . . . ; ng; xi � 0:

A fascinating property of the above problem is that the
amount of information available to the decision maker is
limited—the decision maker is only allowed to observe the
current unit value of each material (either 0 or 1). That is, each
time a material mix is placed in the knapsack, the unit value
of each material is provided to the decision maker. The actual
outcome probabilities piðxiÞ; 1 � i � n, however, remain
unknown. As a result of the latter, the expected value of the
material mix must be maximized by means of trial-and-
failure, i.e., by experimenting with different material mixes
and by observing the resulting random unit-value outcomes.

In the interest of posing our paper within the larger body
of scientific research, we present here, in all brevity, some
of the more recent studies on the stochastic knapsack
problem. The problem, in its virgin form, has been recently
studied by Gibson et al. [6], who proposed an intelligent
agent-based stochastic ruler approach for it. The interesting
feature of this result is that these authors have examined
the scenario in which the system has to execute a sequence
of resource allocation decisions over time, but the avail-
ability of the indivisible resources at future epochs is
uncertain due to the actions of the competitors. By utilizing
a multiperiod bounded multiple-choice knapsack frame-
work, these authors proposed a general discrete stochastic
optimization model that solved the corresponding knap-
sack problem with a nonlinear objective function. Similarly,
from a purely theoretical perspective, Lin et al. [14] studied
the stochastic knapsack problem when the system per-
mitted switch-over policies and dynamic pricing. A new
approximate solution which uses the benefits of adaptivity
was recently proposed by Dean et al. [4]. This result is
fascinating because the authors show that adaptivity
provides only a constant-factor improvement, and this is
done by demonstrating a greedy nonadaptive algorithm
that approximates the optimal adaptive policy within a
factor of 7. Dean et al. [4] have also designed an adaptive
polynomial-time algorithm which approximates the opti-
mal adaptive policy within a factor of 5þ �, for any
constant � > 0.

From a more practical standpoint, Perry and Hartman
[20] have modeled the multiperiod, single resource capacity
reservation problem as a dynamic, stochastic, multiple
knapsack problem, where the state space grows exponen-
tially with the number of knapsacks. The solution they
proposed led to a fast approximate solution inasmuch as
determining the optimal solution is computationally

intractable. In the same vein, Sachs [22] enforced a
stochastic knapsack model to solve the capacity evaluation
problem for multiradio access networks. The interesting
feature of his solution is that the model was able to consider
the nonuniform geographic distribution of both the radio
link capacity and the traffic load. The stochastic knapsack
formulation has also been used to distributing layered
encoded videos by caching [12].

1.3 State of the Art

To the best of our knowledge, prior to our work reported in
[9], our targeted stochastic NEFK problem was not ad-
dressed in the literature before. However, several studies on
related problems have been reported. For example, the
works of Dean et al. [4] and Steinberg and Parks [24] consider
solution policies for stochastic generalizations of the so-
called NP-hard linear integer knapsack problem. In these
papers, value distributions were considered known and
constant, making dynamic programming a viable solution.
Another variant of the knapsack problem is found in [21]
where a deterministic knapsack is used, however, with
objects arriving to and departing from the knapsack at
random times. The optimization problem considered was to
accept/block arriving objects so that the average value of the
knapsack content is maximized.

The first reported generic treatment of the stochastic NEFK
problem itself can be found in [9]. Various instantiations of
the problem have, however, appeared sporadically, particu-
larly within the web monitoring domain. In these latter
instantiations, the unknown parameters are estimated by
means of a tracking phase where webpages are polled mainly
for estimation purposes [19], [27]. One major disadvantage of
such an approach is that the parameter estimation phase
significantly delays the implementation of an optimal
solution. This disadvantage is further aggravated in dynamic
environments where the optimal solution changes over time,
introducing the need for parameter reestimation [7].

In contrast to the above approaches, we base our work
on the principles of Learning Automata (LA) [15], [25]. LA
have been used to model biological systems [26] and have
attracted considerable interest in the last decade because
they can learn the optimal actions when operating in (or
interacting with) unknown stochastic environments.
Furthermore, they combine rapid and accurate convergence
with low computational complexity.

The novel Learning Automata Knapsack Game (LAKG)
scheme that we proposed in [9] does not rely on estimating
parameters and can be used to solve the stochastic NEFK
problem in both static and dynamic settings. Indeed,
empirical results verify that the LAKG finds the optimal
solution with arbitrary accuracy, guided by the principle of
Lagrange Multipliers. Furthermore, the empirical results
show that the performance of the LAKG is superior to that
of parameter-estimation-based schemes, both in static and
dynamic environments. Accordingly, we believe that the
LAKG can be considered to represent the state of the art
when it concerns research on the stochastic NEFK problem.
This landmark is now extended to develop the Twofold
Resource Allocation Automaton (TRAA) (which, in itself is
the first reported LA which is artificially ergodic2), and its
hierarchical version, the H-TRAA.
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1. We, hereafter, use f 0iðxiÞ to denote the derivative of the expected value
function fiðxiÞ with respect to xi.

2. LA which have been artificially made absorbing to yield specific
properties, have been earlier reported [16]. However, we are not aware of
any LA which, in essence are absorbing, but which have been made
artificially ergodic.
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1.4 Contributions of This Paper

The contributions of this paper are the following:

1. We report the first analytical results for schemes that
solve the Stochastic NEFK Problem.

2. We propose a novel scheme for the two-material
resource allocation problem, namely the TRAA. As
mentioned, from the perspective of LA, the TRAA,
in itself, is the first reported LA which is artificially
rendered ergodic.

3. We prove that the TRAA is asymptotically optimal.
4. We report the first hierarchical solution to the

Stochastic NEFK Problem, based on a hierarchy of
TRAAs, namely the H-TRAA, which is also proven
to be asymptotically optimal.

5. We verify empirically that the H-TRAA provides
orders of magnitude faster convergence compared to
the LAKG.

As a result of the above contributions, we believe that the
H-TRAA is a viable realistic strategy for solving demand-
ing real-world problems such as the optimal allocation of
sampling resources in large-scale web accessibility assess-
ment [23] and other problems related to the world wide
web [9].

1.5 Paper Organization

The paper is organized as follows: In Section 2, we present
the TRAA for the two-material problem, and prove its
asymptotic optimality. We then propose how TRAAs can be
arranged in a hierarchy for solving multimaterial Stochastic
NEFK Problems. We proceed in Sections 3 and 4 to verify
empirically that the H-TRAA provides orders of magnitude
faster convergence compared to the LAKG when applied to
two specific detection functions, and to a specific applica-
tion domain, respectively. Indeed, we shall present results
that clearly demonstrate that the H-TRAA allows us to
tackle 32,768-material problems in real time. Finally, we offer
suggestions for further work (including those to the two
application domains alluded to earlier) before we conclude
the paper in Section 5.

2 A HIERARCHY OF TWOFOLD RESOURCE

ALLOCATION AUTOMATA (H-TRAA)

2.1 Overview of the H-TRAA Solution

In order to put our work in the right perspective, we start
this section by providing a brief review of the concepts and
the solution found in [9], which are also relevant for more
“primitive” variants of the knapsack problem.

As indicated in Section 1, solving the classical linear FK
problem involves finding the most valuable mix ~x� ¼
½x�1; . . . ; x�n� of n materials that fits within a knapsack of
fixed capacity c. The material value per unit volume for
each material i is given as a constant vi, and each material is
available in a certain amount xi � bi, 1 � i � n. Accord-
ingly, the value of the amount xi of material i, fiðxiÞ ¼ vixi,
is linear with respect to xi. In other words, the derivative of
fiðxiÞ—i.e., the material value per unit volume—is fixed:
f 0iðxiÞ ¼ vi. Because a fraction of each material can be placed
in the knapsack, the following greedy algorithm from [2]
finds the most valuable mix: Take as much as possible of the
material that is most valuable per unit volume. If there is still
room, take as much as possible of the next most valuable material.
Continue until the knapsack is full.

Let us now generalize this and assume that the material
unit volume values are random variables with constant and
known distributions. Furthermore, for the sake of conceptual
clarity, let us only consider binary variables that either
instantiate to the values of 0 or 1. Since the unit volume
values are random, let pi denote the probability of the unit
volume value vi ¼ 1 for material i, 1 � i � n, which means
that the probability of the unit volume value vi ¼ 0 becomes
1� pi. With some insight, it becomes evident that under
such conditions, the above greedy strategy can again be
used to maximize the expected value of the knapsack, simply
by selecting material based on the expected unit volume
values, E½vi� ¼ 0� ð1� piÞ þ 1� pi, rather than actual unit
volume values.

The above indicated solution is, of course, inadequate
when the pis are unknown. Furthermore, the problem
becomes even more challenging when the pis are no longer
constant, but rather depend on their respective material
amounts xi, 1 � i � n. Let piðxiÞ denote the probability that
the current unit volume value of material i is vi ¼ 1, given that
the amount xi has already been placed in the knapsack. Then,
the expected value per unit volume of material i, 1 � i � n,
becomesE½vi� ¼ 0� ½1� piðxiÞ� þ 1� piðxiÞ ¼ piðxiÞ, and ac-
cordingly, the expected value of the amount xi becomes
fiðxiÞ ¼

R xi
0 piðuÞdu.

Our aim, then, is to find a scheme that moves toward

optimizing the following NEFK problem online:

maximize fð~xÞ ¼
Xn

1

fiðxiÞ; where fiðxiÞ ¼
Z xi

0

piðuÞdu;

and piðxiÞ ¼ f 0iðxiÞ;

subject to
Xn

1

xi ¼ c and 8i 2 f1; . . . ; ng; xi � 0:

Note that we allow only instantiations of the material values
per unit volume to be observed. That is, each time an
amount xi of material i is placed in the knapsack, an
instantiation vi at xi is observed.

Because of the above intricacies, we approach the

problem by relying on informed material mix guesses, i.e.,
by experimenting with different material mixes and learn-

ing from the resulting random unit volume value outcomes.
We shall assume that xi is any number in the interval ð0; 1Þ.
The question of generalizing this will be considered later.

The crucial issue that we have to address, then, is that of
determining how to change our current guesses on

xi; 1 � i � n. We shall attempt to do this in a discretized
manner by subdividing the unit interval into N points

f 1
Nþ1 ;

2
Nþ1 ; . . . ; N

Nþ1g, where N is the resolution of the
learning scheme. We will see that a larger value of N will

ultimately imply a more accurate solution to the knapsack
problem.

At this juncture, it is pertinent to mention that although
the rationale for this updating is the stochastic point
location solution proposed by Oommen [17], the two
schemes are quite distinct for the following reasons:

1. The method proposed in [17] assumes the existence
of an Oracle which informs the LA whether to go
“right” or “left.” In our application domain, this now
has to be inferred by the system.
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2. The method proposed in [17] assumes that there is
only a single LA in the picture. Here, we specifically
understand that there are multiple LAs organized in
a hierarchy—each of them being constrained to work
together with the others.3

3. In [17], the problem of analyzing scenarios with space
varying responses from the environment was left
open. This problem is tackled in the present paper.

4. As opposed to the scheme in [17], our present
approach is also applicable to dynamic (time varying)
environments.

5. There is a “huge” fundamental difference between
the LA which we devise here and the work of [17].
Unlike the latter, in which the system is truly ergodic,
our present LA would be absorbing if the end-states of
the probability space are also included. However, to
forcefully render this present machine ergodic, we
have artificially made the LA ergodic by excluding
these states from the set of possible probability
values. This makes the analysis both distinct and
quite fascinating. As mentioned earlier, we are not
aware of any LA which, in essence are absorbing, but
which have been made artificially ergodic.

2.2 Details of the TRAA Solution

2.2.1 Design of the TRAA Solution

We first present our LA-based solution to two-material
Stochastic NEFK Problems. The two-material solution
forms a critical part of the hierarchic scheme for multiple
materials that is presented subsequently. As illustrated in
Fig. 2, our solution to two-material problems constitutes of
three modules:

1. a Stochastic Environment,
2. the TRAA itself, and
3. an Earliest Deadline First (EDF) Scheduler.

We first detail each of the three modules, before we
analyze the overall feedback connection between them.
Finally, we prove that the TRAA that we have developed
in this section is asymptotically optimal for two-material
Stochastic NEFK Problems.

Stochastic Environment. The Stochastic Environment for
the two-material case can be characterized by:

1. the capacity c of the knapsack; and
2. two-material unit volume value probability func-

tions p1ðx1Þ and p2ðx2Þ.
In brief, if the amount xi of material i is suggested to the
Stochastic Environment, the Environment replies with a
unit volume value vi ¼ 1 with probability piðxiÞ and a unit
volume value vi ¼ 0 with probability 1� piðxiÞ, i 2 f1; 2g. It
should be emphasized that to render the problem both
interesting and nontrivial, we assume that piðxiÞ is
unknown to the TRAA.

TRAA. The scheme which attempts to learn the optimal
allocation ~x� ¼ ½x�1; x�2� can be described as follows: A finite
fixed structure automaton with the states sðtÞ 2 f1; 2; . . . ; Ng
is used to decide the allocation of resources among the two
materials. Let the current state of the automaton be sðtÞ.
Furthermore, let qsðtÞ refer to the fraction sðtÞ

Nþ1 , and let rsðtÞ
refer to the fraction: 1� qsðtÞ. Then, the automaton’s current
guess is ~x ¼ ½qsðtÞ; rsðtÞ�.

If the Stochastic Environment tells the automaton that
the unit volume value of material i is viðtÞ at time t, the
automaton updates its state as follows:

sðtþ 1Þ :¼ sðtÞ þ 1 If randðÞ � rsðtÞ and viðtÞ ¼ 1 and

1 � siðtÞ < N and i ¼ 1;

ð1Þ

sðtþ 1Þ :¼ sðtÞ � 1 If randðÞ � qsðtÞ and viðtÞ ¼ 1 and

1 < siðtÞ � N and i ¼ 2;

ð2Þ

sðtþ 1Þ :¼ sðtÞ Otherwise: ð3Þ

Fig. 3 shows the resulting stochastic transition graphs for
resolution N ¼ 5. The upper graph shows the transitions for
feedback from the Stochastic Environment on material 1, and
the graph below shows the transitions for feedback on
material 2. Notice how the stochastic state transitions are
designed to offset the learning bias introduced by accessing
the materials with frequencies proportional to~x ¼ ½qsðtÞ; rsðtÞ�.
Also observe that the overall learning scheme does not
produce any absorbing states, and is, accordingly, ergodic
supporting dynamic environments. The effect of these
properties is analyzed in the next section.

Finally, after the automaton has had the opportunity to
change its state, it provides output to the EDF Scheduler.
That is, it outputs the material amounts ~x ¼ ½qsðtþ1Þ; rsðtþ1Þ�
that have been changed.

EDF Scheduler. The Scheduler takes material amounts
~x ¼ ½x1; . . . ; xn� as its input (for the two-material case the
input is ~x ¼ ½x1; x2�). The purpose of the Scheduler is:

1. to provide accesses to the Stochastic Environment in
a sequential manner, and

2. to make sure that the unit volume value functions
are accessed with frequencies proportional to ~x.

The reader should note that our scheme does not rely on
accessing the unit volume value functions sequentially with
frequencies proportional to ~x for solving the knapsack
problem. However, this restriction is obviously essential for
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Fig. 2. The TRAA interacting with a Scheduler and an unknown
Stochastic Environment.

3. It is conceivable that this problem can be resolved with a single LA
possessing an extended number of actions. But we do not recommend it for
scalability reasons—the action space would grow exponentially.
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solving the problem incrementally and online (or rather in a
“real-time” manner). Note that since it, in some cases, may
be essential to access each unit volume value function with
a constant period and not randomly (for example, in the
earlier-alluded-to problem which analyzes webpage poll-
ing), we use the EDF Scheduling to access the functions
according to ~x.

2.2.2 Analysis of the TRAA Solution

In this section, we characterize the optimal solution to a
Stochastic NEFK Problem. Thereafter, we analyze the feed-
back connection of the TRAA and the Stochastic Environ-
ment—we prove that the TRAA is asymptotically optimal in
the sense that it can find material allocations arbitrarily close
to the solution of the Stochastic NEFK Problem.

Lemma 1. The material mix ~x ¼ ½x1; . . . ; xn� is a solution to a
given Stochastic NEFK Problem if 1) the derivatives of the
expected material amount values are all equal at ~x, 2) the mix
fills the knapsack, and 3) every material amount is positive, i.e.:

f 01ðx1Þ ¼ � � � ¼ f 0nðxnÞ;Xn
1

xi ¼ c and 8i 2 f1; . . . ; ng; xi � 0:

The above lemma is based on the well-known principle
of Lagrange Multipliers [3], [5], and its proof is, therefore,
omitted here for the sake of brevity. Instead, we will start by
analyzing the two-material problem and the TRAA. Multiple
TRAAs will then be organized in a hierarchy with the aim
of tackling n-material problems.

For the two-material problem, let ~x� ¼ ½x�1; x�2� denote a
solution, as defined above. Note that since x�2 can be
obtained from x�1, we will concentrate on finding x�1.

Theorem 1. The TRAA solution scheme specified by 1)-3) is
asymptotically optimal.

Proof. Our aim is to prove that as the resolution, N , is
increased indefinitely, the expected value of the TRAA
output, x1ðtÞ, converges toward the solution of the
problem, x�1, implying that:

lim
N!1

lim
t!1

E½x1ðtÞ� ! x�1:

We shall prove the above by analyzing the properties
of the underlying Markov chain, which is specified by

the EDF Scheduler, the rules 1)-3) (the TRAA), and the
Environment. As can be seen from 1)-3), the states of the
chain are the integers j 2 f1; 2; . . . ; Ng. In brief, rules 1)-
3), when interacting with the EDF Scheduler and the
Environment, obey the Markov chain with transition
matrix H ¼ ½hij�, where

hj;j�1 ¼ rj � p2ðrjÞ � qj; 1 < j � N; ð4Þ

hj;jþ1 ¼ qj � p1ðqjÞ � rj; 1 � j < N; ð5Þ

hj;j ¼ 1� hj;j�1 � hj;jþ1; 1 < j < N; ð6Þ

and, accordingly,

h1;1 ¼ 1� h1;2; ð7Þ

hN;N ¼ 1� hN;N�1: ð8Þ

Clearly, H represents a single closed communicating

class whose periodicity is unity. The chain is ergodic, and

the limiting probability vector is given by the eigenvector

of HT corresponding to eigenvalue unity. Let this vector

be � ¼ ½�1; �2; . . . ; �N �. Then, � satisfies:

h1;1 h1;2 0 � � � � 0

h2;1 h2;2 h2;3 0 � � � 0

0 h3;2 h3;3 h3;4 0 � � 0

� � � � � � � �
� � � � � � � �
0 � � 0 hN�2;N�3 hN�2;N�2 hN�2;N�1 0

0 � � � 0 hN�1;N�2 hN�1;N�1 hN�1;N

0 � � � � 0 hN;N�1 hN;N

2
66666666666664

3
77777777777775

T

�1

�2

�3

�
�

�N�2

�N�1

�N

2
66666666666664

3
77777777777775
¼

�1

�2

�3

�
�

�N�2

�N�1

�N

2
66666666666664

3
77777777777775
:

ð9Þ
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Fig. 3. The stochastic transition graphs of a TRAA with resolution N ¼ 5.
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The details of solving (9) are quite cumbersome, and
we undertake it now. Observe that our aim is to prove
that the probability mass of � lies arbitrarily close to the
solution of the knapsack problem, ~x� ¼ ½x�1; x�2�, as N goes
to infinity. Before we go through the fine details, we
outline the proof strategy as follows: We first explicitly
solve for the quantities f�ig by solving the underlying
difference equations. We then define a function U that
forms an upper bound for �. We proceed to show that
the upper bound goes to zero outside an arbitrarily close
vicinity of x�1, as the resolution, N , goes to infinity.
Accordingly, since � is a probability distribution, and
since U is its upper bound, increasing the resolution
toward infinity, moves the probability mass of �
arbitrarily close to x�1.

The details of the proof follow. Our first step is to
reformulate the individual row-wise equations from the
matrix (9) recursively. Expanding the first row of (9) yields:

�1 � h1;1 þ �2 � h2;1 ¼ �1 ) �2 ¼
ð1� h1;1Þ � �1

h2;1
¼ h1;2

h2;1
� �1:

ð10Þ

Expanding the second row of (9) and substituting (10)

yields:

�1 � h1;2 þ �2 � h2;2 þ �3 � h3;2 ¼ �2 ) �3 ¼
h2;3

h3;2
� �2: ð11Þ

Arguing in a similar way in a row-by-row manner, it

can be seen4 that

�k�1 ¼
hk;k�1

hk�1;k
� �k; ð12Þ

for 0 < k � N , which, on reversing the recursion, yields

for 0 � k < N ,

�kþ1 ¼
hk;kþ1

hkþ1;k
� �k: ð13Þ

Let

�ðx1; NÞ ¼
�
x1

1
Nþ1

�
and �ðx1; NÞ ¼

�
x1

1
Nþ1

�
:

Clearly, ½�ðx1;NÞ
Nþ1 ; �ðx1;NÞ

Nþ1 � is the interval that most accurately

approximate x1 given the resolution N . In particular,

with z ¼ �ðx�1; NÞ, the solution x�1 is found in the interval

½ z
Nþ1 ;

zþ1
Nþ1�. The crucial part of our proof is to reformulate

� in terms of �z and �zþ1, using (12) and (13). More

specifically, for j 2 f1; . . . ; z� 1g we have:

�j ¼ �z �
Yjþ1

k¼z

hk;k�1

hk�1;k
: ð14Þ

Correspondingly, and arguing in an analogous manner,

for j 2 fzþ 2; . . . ; Ng we have:

�j ¼ �zþ1 �
Yj�1

k¼zþ1

hk;kþ1

hkþ1;k
: ð15Þ

In other words, we represent � in terms of two of its
components: �z and �zþ1.

We are now ready to define the upper bound U for �:

U ½i; z� ¼ �z �Mz�i; if i � z;
�zþ1 �Mi�ðzþ1Þ; if i � zþ 1;

�
ð16Þ

where:

M ¼ max max
k�z

hk;k�1

hk�1;k

� �
; max
k�zþ1

hk;kþ1

hkþ1;k

� �� 	
: ð17Þ

As seen, the definition of M clearly makes U an upper
bound for �.

Our final goal is to show that as the resolution N goes
to infinity, U goes to zero outside an arbitrarily close
vicinity of x�1:

lim
N!1

U ½�ðx1; NÞ; �ðx�1; NÞ� ! 0; if x1 6¼ x�1: ð18Þ

We shall argue that the latter is guaranteed to happen if

we have

0 <
hk;k�1

hk�1;k
< 1 for k 2 f2; . . . ; zg

and 0 <
hk;kþ1

hkþ1;k
< 1 for k 2 fzþ 1; . . . ; N � 1g, because then

we get 0 < M < 1. We argue this by considering the

equilibrium (asymptotic) value of E½�ðtÞ� for any finite

N . This argument can be separated into three different

cases as in [17]:

1. The first case is when z
Nþ1 is close to zero. In this

case, the maximum is quickly reached and then
geometrically falls away.

2. When z
Nþ1 is close to 1, the value of �i

geometrically increases but when the maximum
is reached it quickly falls away. For both these
cases when N !1, most of the probability mass
will be centered in a small interval around z.

3. The third case is slightly more complex because it
involves z

Nþ1 being away from either end. This case
must be broken down into two distinct geometric
series, one representing the geometric series from
�1 to �z and the other from �zþ1 to �N . The first
series increases until it reaches the maximum at �Z .
The increase is geometric (or rather, exponential as
N !1), and the geometric ratio is bounded by the
bound given by the quantity M above. The second
series starts at the maximum at the value �zþ1 and
then decreases until �N is reached. Again, the
decrease is geometric (i.e., exponential asN !1),
and the geometric ratio is bounded by the quantity
M above. In this case, the probability mass will be
centered within a small interval around z

Nþ1 and
zþ1
N as N !1 because of the law of the sum of the

elements of a geometric series possessing a
common ratio which is greater than unity.

First of all, since the difference between k
Nþ1 and

k�1
Nþ1 goes to zero as N goes to infinity, and since p1ðxÞ
is continuous, we have:

lim
N!1

hk;k�1

hk�1;k
¼ lim

N!1

rk � p2ðrkÞ � qk
qk � p1ðqkÞ � rk

ð19Þ
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4. We omit the laborious algebraic steps in the interest of readability.
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¼ lim
N!1

p2ðrkÞ
p1ðqkÞ

: ð20Þ

Second, from Lemma 1, we can conclude that p1ðqkÞ >
p2ðrkÞ for k 2 f2; . . . ; zg. Therefore, 0 <

hk;k�1

hk�1;k
< 1 for k 2

f2; . . . ; zg as N goes to infinity.
Showing that we have 0 <

hk;kþ1

hkþ1;k
< 1 for k 2 fzþ

1; . . . ; N � 1g follows analogously, and the proof is left
out here for the sake of brevity.

Accordingly, � must go to zero outside an arbitrarily
close vicinity of x�1 as the resolution N goes to infinity.
This, in turn, means that the probability mass of � will
lie arbitrarily close to x�1. In other words, the TRAA is
asymptotically optimal. tu

2.3 Details of the H-TRAA Solution

2.3.1 Design of the H-TRAA Solution

In this section, we propose a hierarchical scheme for solving
n-material problems. The scheme takes advantage of the
TRAA’s ability to solve two-material problems asymptoti-
cally, by organizing them hierarchically.

Construction of hierarchy. The hierarchy of TRAAs,
which we, hereafter, will refer to as H-TRAA, is constructed
as follows5: First of all, the hierarchy is organized as a
balanced binary tree with depth D ¼ log2ðnÞ. Each node in
the hierarchy can be related to three entities: 1) a set of
materials, 2) a partitioning of the material set into two
subsets of equal size, and 3) a dedicated TRAA that allocates
a given amount of resources among the two subsets.

Root node. The hierarchy root (at depth 1) is assigned the
complete set of materials S1;1 ¼ f1; . . . ; ng. These n materials
are partitioned into two disjoint and exhaustive subsets of
equal size: S2;1 and S2;2. An associated TRAA, T1;1, decides
how to divide the full knapsack capacity c (which, for the sake
of notational correctness will be referred to as c1;1) among the
two subsets. That is, subset S2;1 receives the capacity c2;1 and
subset S2;2 receives the capacity c2;2, with c2;1 þ c2;2 ¼ c1;1.
Accordingly, this TRAA is given the power to prioritize one
subset of the materials at the expense of the other.

Nodes at depth d. Node j 2 f1; . . . ; 2d�1g at depth d
(where 1 < d � D) refers to: 1) the material subset Sd;j, 2) a
partitioning of Sd;j into the subsets Sdþ1;2j�1 and Sdþ1;2j, and
3) a dedicated TRAA, Td;j. Observe that since level Dþ 1 of
the H-TRAA is nonexistent, we use the convention that
SDþ1;2j�1 and SDþ1;2j refer to the primitive materials being
processed by the leaf TRAA, TD;j. Assume that the
materials in Sd;j has, as a set, been assigned the capacity
cd;j. The dedicated TRAA, then, decides how to allocate the
assigned capacity cd;j among the subsets Sdþ1;2j�1 and
Sdþ1;2j. That is, subset Sdþ1;2j�1 receives the capacity cdþ1;2j�1

and subset Sdþ1;2j receives the capacity cdþ1;2j, with
cdþ;2j�1 þ cdþ1;2j ¼ cd;j.

At depth D, then, each individual material can be
separately assigned a fraction of the overall capacity by
way of recursion, using the above allocation scheme.

Interaction of H-TRAA with EDF scheduler and
environment. As in the single TRAA case, H-TRAA
interacts with an EDF Scheduler, which suggests which

unit volume value function piðxiÞ to access next. A response
is then generated from the Stochastic Environment using
piðxiÞ. This response is given to all the TRAAs that were
involved in determining the material amount xi, that is, the
TRAAs in the hierarchy that have allocated capacity to a
material subset that contains material i. Finally, a new
candidate material mix ~x ¼ ½x1; . . . ; xn� is suggested by the
H-TRAA to the EDF Scheduler.

Example 1. Consider a four-material problem. Fig. 4 shows
the associated hierarchy, constructed as described above.
At the root level, the TRAA T1;1 divides the knapsack
capacity among the two-material subsets f1; 2g and
f3; 4g, respectively, related to TRAA T2;1 and T2;2. At
the level below, then, the TRAA T2;1 allocates its share of
the capacity among material 1 and material 2, while
TRAA T2;2 assigns its share of the capacity to material 3
and material 4. Based on the present assignment at time t,
the EDF Scheduler selects material i, suggesting the
amount xiðtÞ to the Stochastic Environment. The Stochas-
tic Environment, in turn, responds with a randomly
drawn material unit volume value, viðtÞ, using the
probability value function piðxiÞ. By way of example, if
i ¼ 2, the latter feedback is given to TRAAs T1;1 and T2;1,
which update their states accordingly, and the feedback
loop continues.

2.3.2 Analysis of the H-TRAA Solution

In the previous section, we proved that an individual TRAA
is asymptotically optimal. We will now consider the H-TRAA
and prove its optimality. More specifically, we shall show
that if each individual TRAA in the hierarchy has solved its
own two-material problem, a solution to the complete
n-material Knapsack Problem has also been produced.

Theorem 2. Let Td;j be an arbitrary TRAA at level d of the
H-TRAA associated with the node whose index is j. Then, if
every single TRAA, Td;j, in the H-TRAA has found a local
solution with proportions cdþ1;2j�1 and cdþ1;2j satisfying

f 0dþ1;2j�1ðcdþ1;2j�1Þ ¼ f 0dþ1;2jðcdþ1;2jÞ;
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Fig. 4. A H-TRAA interacting with a Scheduler and an unknown
Stochastic Environment as explained in Example 1.

5. We assume that n ¼ 2� ; � 2 INþ, for the sake of clarity. If the number of
materials is less than this, we can assume the existence of additional
materials whose values are “zero,” and who thus are not able to contribute
to the final optimal solution.

Authorized licensed use limited to: UNIVERSITY OF AGDER. Downloaded on May 07,2010 at 11:09:23 UTC from IEEE Xplore.  Restrictions apply. 



the overall Knapsack Problem involving n materials that are
hierarchically placed in log2 n levels of TRAAs, also attains the
global optimum solution.

Proof. We intend to prove the above theorem by means of
induction, using the hierarchical H-TRAA structure
defined in the paragraph titled Construction of Hierarchy.

Basis. The Basis case concerns the nodes at the leaves,
which, indeed, deal with the primitive materials them-
selves. Let a and b (a; b 2 f1; . . . ; ng) be any two materials
processed by a TRAA, TD;u, at a leaf node (i.e., at depth
D ¼ log2 n) in the H-TRAA. The latter decides how to
allocate an assigned capacity cD;u among the two
materials a and b, with relative proportions xa and xb,
respectively. Observe that since a and b are the only two
materials relevant to this TRAA, by virtue of the
construction of the TRAA, xa

xaþxb and xb
xaþxb are the

conditional probabilities of choosing a and b, respec-
tively, conditioned on the event that the knapsack had
only to be filled with these primitive materials. Since, by
virtue of Theorem 1, we know that the TRAA will find a
local solution ½xa; xb�, the foundation of the solution
determined by the Lagrangian yields:

f 0aðxaÞ ¼ f 0bðxbÞ ) f 0Dþ1;2u�1ðcDþ1;2u�1Þ ¼ f 0Dþ1;2uðcDþ1;2uÞ;
with cDþ1;2u�1 þ cDþ1;2u ¼ cD;u;

thus proving the basis of the induction.
Induction step. Consider any interior-node TRAA Td;j

whose index at depth d is j in the H-TRAA hierarchy. The
TRAA associated with this node decides how to allocate
an assigned capacity cd;j among two disjoint subsets
Sdþ1;2j�1 ¼ f�1; . . . ; �mg and Sdþ1;2j ¼ f�1; . . . ; �mg of com-
posite materials, where each �i and �i is, in itself, a
primitive material. To simplify notation, let ~� ¼
f�1; . . . ; �mg and ~� ¼ f�1; . . . ; �mg. Observe that the
union of the sets ~� and ~� is the input to the present
TRAA, and the task of this TRAA is to assign the current
knapsack capacity, cd;j, so as to satisfying the Lagrangian
solution for these two mutually exclusive and exhaustive
subsets. Let Td;j assign the relative proportions to ~� and ~�
by the quantities x~� and x~�. Observe that since ~� and ~� are
the only two materials6 relevant to this TRAA, by virtue
of the construction of the TRAA,

x~�
x~� þ x~�

and
x~�

x~� þ x~�
are the conditional probabilities of choosing ~� and ~�,
respectively, conditioned on the event that the knapsack
had only to be filled with these composite materials ~�
and ~�. The solution to this TRAA will thus satisfy:

f 0~�ðx~�Þ ¼ f 0~�ðx~�Þ; where ð21Þ

f 0~�ðx~�Þ ¼
X
�i2~�

x�iP
�j2~� x�j

f 0�iðx�iÞ and ð22Þ

f 0~�ðx~�Þ ¼
X
�i2~�

x�iP
�j2~� x�j

f 0�iðx�iÞ: ð23Þ

Since each �i and �i is a primitive material, and we
are working our way up the H-TRAA hierarchy, we can
invoke the inductive hypothesis to relate x�i and x�i for
all i. By virtue of the inductive hypothesis and the
Lagrangian solution at every level up the H-TRAA till
level d, we know that for both of the material subsets
Sdþ1;2j�1 and Sdþ1;2j the following are true:

f 0�1
ðx�1
Þ ¼ � � � ¼ f 0�mðx�mÞ; ð24Þ

f 0�1
ðx�1
Þ ¼ � � � ¼ f 0�mðx�mÞ: ð25Þ

To simplify the notation, let each of the quantities in (24)
equal f 0�ðx�Þ, and each of the quantities in (25) equal f 0�ðx�Þ.

Substituting (24) and (25) (which represent the induc-
tion hypothesis) into (22) and (23), the latter become:

f 0~�ðx~�Þ ¼ f 0�ðx�Þ
X
�i2~�

x�iP
�j2~� x�j

and ð26Þ

f 0~�ðx~�Þ ¼ f
0
�ðx�Þ

X
�i2~�

x�iP
�j2~� x�j

: ð27Þ

The summations on the RHSs of both of (26) and (27)
can be trivially seen to sum to unity since they represent
probabilities (in the conditioned spaces), implying that:

8i : f 0~�ðx~�Þ ¼ f 0�iðx�iÞ and ð28Þ

8i : f 0~�ðx~�Þ ¼ f
0
�i
ðx�iÞ: ð29Þ

Combining the above with (21) yields:

f 0�1
ðx�1
Þ ¼ � � � ¼ f 0�mðx�mÞ ¼ f

0
�1
ðx�1
Þ ¼ � � � ¼ f 0�mðx�mÞ; ð30Þ

implying that the global optimum required by the

Lagrangian has been found. Hence, the theorem! tu
Remarks. Theorem 2 has some very interesting conse-

quences listed below:

1. The proof of Theorem 2 has tacitly assumed that all
the automata have converged before the global
convergence can be asserted. This implies that the
TRAA Td;j is aware of its capacity, and that this is a
known quantity to the TRAAs Tdþ1;2j�1 and Tdþ1;2j.
In other words, if all the individual TRAAs converge
to their local optimum, Theorem 2 states that the
global optimum is attained. Conceptually, this can
pose a small implementation-related problem. The
fact is that the TRAAs of the lower level are
converging even while the TRAA at the higher level
is attempting to find its capacity. Therefore, essen-
tially, the lower level TRAAs are working in a
nonstationary environment. The strategy by which
we can resolve this is to ensure that the higher level
automata converge at a slower rate than the lower
ones (thus, guaranteeing a certain level of stationar-
ity). In practice, however, we have observed that if
the resolution parameter N is large enough (in the
order of hundreds) the time varying phenomenon is
marginal, and the TRAAs at all the levels tend to
converge simultaneously.
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6. The fact that these are composite materials is irrelevant to the present
TRAA. It merely treats ~� and ~� as individual materials.

Authorized licensed use limited to: UNIVERSITY OF AGDER. Downloaded on May 07,2010 at 11:09:23 UTC from IEEE Xplore.  Restrictions apply. 



2. Theorem 2 claims that the solution obtained by the
convergence of the individual TRAAs leads to the
global convergence of the overall optimization
problem. But this claim means that the ordering of
the materials at the leaf nodes does not carry any
significance. This is, indeed, true! It turns out that if
the nodes at the leaves are ordered in such a way
that “more precious materials” lie in the same
subtree, the weight associated with the subtree of
the composite material containing these “more
precious materials” will have a much larger weight,
and the weight of the other subtrees will be much
smaller. As opposed to this, if the “more precious
materials” lie in distinct subtrees, the weights
associated with the respective subtrees will be
correspondingly compensated for.

3 EMPIRICAL RESULTS I: LINEAR AND

EXPONENTIAL UNIT-VALUE FUNCTIONS

The H-TRAA solution has been rigorously tested for
numerous cases and the solutions obtained have been, in
our opinion, categorically remarkable. Its performance in
terms of speed, convergence accuracy, and scalability have
consistently been far more than we initially anticipated.

3.1 Problem Specification

In order to achieve a comprehensive test suite, we have
conducted our experiments for two parametric objective
functions (referred to as EiðxiÞ and LiðxiÞ) being optimized.

These functions can be seen as representative for the class
of concave objective functions that we address. We have also
conducted experiments with a number of other objective
functions, including those found in [10] and [11]. However,
it turns out that EiðxiÞ and LiðxiÞ are particularly useful in
the sense that they permit us to appropriately model a large
range of distinct material unit-value functions. This, in turn,
allows us to construct arbitrarily difficult and large
knapsack problems, simply by means of a material index
i. Furthermore, the findings presented here encompasses
the findings obtained using other objective functions.
Additionally, as will become clear below, the function
LiðxiÞ does not have a double derivative, and consequently,
the feedback given will not be smoothly changing with xi, as
is typical in the applications we have considered [10], [11].
Thus, we believe that EiðxiÞ and LiðxiÞ are together
sufficiently powerful to enable us to explore the perfor-
mance of the H-TRAA for a diverse range of indexes, i.

More specifically, these objective functions have been
given below for a material with index i as:

Ei ¼
0:7

i
ð1� e�ixiÞ; ð31Þ

Li ¼ 0:7 � xi �
1

2
i � x2

i ; If xi �
0:7

i
; ð32Þ

¼ 0:72

i
; If xi >

0:7

i
: ð33Þ

In the above, the constants are based on the boundary
conditions due the contributions ofxi at the boundary values.
These constants, however, are not crucial in the optimization
because the corresponding unit-value functions are obtained

as their respective derivatives. These are two probability
functions given below for a material with index i as E0iðxiÞ
andL0iðxiÞ, respectively, which fall exponentially and linearly
as per (34) and (35):

E0iðxiÞ ¼ 0:7 � e�i�xi ; ð34Þ

L0i ¼ Max½0:7� i � xi; 0�: ð35Þ

To clarify how these functions work, consider the functions
E0iðxiÞ. Then the relative profitability of material i decreases
with xi, its presence in the mixture, exponentially. Thus, if
x2 ¼ 0:3 (i.e., material 2 fills 30 percent of the knapsack), the
marginal profitability of increasing the amount of x2 is
e�2�ð0:3Þ ¼ e�0:6. Observe that with the notation, the profit-
ability of materials that have a smaller index decreases slower

than the profitability of materials that have a higher index.
One should also observe that unlike the exponential function,
the linear function, L0iðxiÞ has an interesting peculiarity—the
function for material i touches the X-axis at a finite point.
This implies that the function being optimized is quadratic
and that it attains a maximum at this point—after which it
remains constant. Thus, after attaining this point, it is futile to
add any additional quantity of material i.

Given the above considerations, our aim is to find ~x, the
amounts of the materials that have to be included in the
knapsack so as to maximize its value. In the first instance,
we aim to:

maximize Eð~xÞ ¼
Xn

1

EiðxiÞ; where EiðxiÞ ¼
Z xi

0

piðuÞdu;

and piðxiÞ ¼ E0iðxiÞ;
ð36Þ

subject to
Xn

1

xi ¼ c and 8i 2 f1; . . . ; ng; xi � 0; ð37Þ

where E0iðxiÞ is given by (34).
Similarly, in the second case we aim to:

maximize Lð~xÞ ¼
Xn

1

LiðxiÞ; where LiðxiÞ ¼
Z xi

0

piðuÞdu;

and piðxiÞ ¼ L0iðxiÞ;
ð38Þ

subject to
Xn

1

xi ¼ c and 8i 2 f1; . . . ; ng; xi � 0; ð39Þ

where L0iðxiÞ is given by (35). Note that in general
application domains, we may not be able to observe f 0iðxiÞ
directly—examining a potential solution may be the only
way to reveal the success of the chosen allocation.

3.2 H-TRAA Solution

In order to find an H-TRAA Solution to the above problem,
we must define the Stochastic Environment that the LA are
to interact with. As seen in Section 2, the Stochastic
Environment consists of the unit volume value functions
F0 ¼ ff 01ðx1Þ; f 02ðx2Þ; . . . ; f 0nðxnÞg, which are unknown to
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H-TRAA. We identify the nature of these functions by
applying the principle of Lagrange multipliers to the above
maximization problems. In short, after some simplification,
it can be seen that the following conditions characterize the
optimal solution for the exponential function of (34):

E01ðx1Þ ¼ E02ðx2Þ ¼ � � � ¼ E0nðxnÞ;Xn
1

xi ¼ c and 8i 2 f1; . . . ; ng; xi � 0:

Similarly, after some simplification, it can also be seen that
the following conditions characterize the optimal solution
for the linear function of (35):

L01ðx1Þ ¼ L02ðx2Þ ¼ � � � ¼ L0nðxnÞ;Xn
1

xi ¼ c and 8i 2 f1; . . . ; ng; xi � 0:

3.3 Experimental Setup

In this section, we evaluate our learning scheme by
comparing it with three classical policies using synthetic
data. We have implemented the following classical policies:

Uniform. The uniform policy allocates resources uni-
formly. This is the only classical policy that can be applied
directly in an unknown environment.

Optimal. The optimal policy finds the optimal solution
based on the principle of Lagrange multipliers [19], [27].

LAKG. The state-of-the-art solution for the nonlinear
knapsack problem which is based on the so-called LAKG
described in [9].

As we will see in the following, it turns that one of the
strengths of the H-TRAA is its ability to take advantage of
so-called spatial dependencies among materials. As men-
tioned earlier, in the above experimental setup, materials
are spatially related in the sense that the updating
probabilities decreases with the rank-index k. In order to
starve the H-TRAA from this information, we opted to
perturb this spatial structure. Each perturbation swapped
the updating probabilities of a randomly selected material
and the material succeeding it in the ranking. Based on the

above, we conducted our experiments with 103, 104, 105,
and 106 perturbations.

The results of our experiments are truly conclusive and
confirm the power of the H-TRAA. Although numerous
experiments were conducted (for various settings) and the
number of automata, we report, for the sake of brevity, the
results when the numbers of primitive materials was 512,
2,048, 8,192, and 32,768, and for the following environments:

. In the first case, the material unit-value function was
the exponential function given by (34).

. In the second case, the material unit-value function
was the linear function given by (35).

For these values, an ensemble of several independent
replications with different random number streams was
performed to minimize the variance of the reported results.

3.4 Configuring H-TRAA
The H-TRAA can be configured by various means. First of
all, the material amount space ð0; 1Þ need not be discretized
uniformly. Instead, a nonlinear material amount space can
be formed, as done for the LAKG in [9]. Furthermore, the
discretization resolution, N , must also be set for each TRAA,
possibly varying from TRAA to TRAA in the hierarchy. In
short, the performance achieved for a particular problem
can be optimized using these different means of configuring
the H-TRAA. In this section, however, our goal is to evaluate
the overall performance of the H-TRAA, without resorting
to fine tuning. Therefore, we will only use a linear material
amount space, as specified in Section 2. Furthermore, in the
experiments reported here, we have chosen to use the same
resolution, N ¼ 2;000, for all the TRAAs in the hierarchy,
independent of the specific knapsack problem at hand.
Thus, our aim is to ensure a fair comparison with the present
state of the art, namely the LAKG scheme.

While the focus of the previous section was on learning
only from material units of value 1 (rewards), with some
simple modifications the H-TRAA scheme clearly supports
the three well-established updating approaches:

1. Reward-Inaction: In this case, the H-TRAA updates
its state only when a material unit volume value of
“1” is given as the feedback from the Stochastic
Environment, which is the case studied in the
previous section.
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Fig. 5. Plots of the convergence of the H-TRAAs for the Exponential and Linear functions given by (34) and (35), respectively, for the Linear Reward-
Penalty, Inaction-Penalty, and Reward-Inaction schemes. (a) The graph for the Exponential function, and (b) the graph for the Linear function. Using
the same resolutions, we observe that the Reward-Penalty and the Inaction-Penalty updating schemes are the most accurate, even though a
Reward-Penalty updating philosophy converges more quickly.
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2. Inaction-Penalty: In this case, the H-TRAA updates
its state only when a material unit volume value of
“0” is given as feedback. Here, the reader will
observe that the state transitions of the individual
TRAAs from Section 2 are inverted.

3. Reward-Penalty: In this case, the H-TRAA updates
its state in both of the above cases.

From Fig. 5, we see that while interacting with the
respective environments, the Reward-Penalty and Inaction-
Penalty updating schemes are almost equiaccurate. How-
ever, the Reward-Penalty updating converges more quickly,
since the state is updated both on rewards and on penalties.
Further, merely relying on rewards to achieve updates
seems to be slightly inferior to the other two approaches.
Since we are emphasizing, in this paper, the speed of
learning, we will, for the rest of this paper, utilize only the
Reward-Penalty updating philosophies, even though the two
other approaches produce almost similar results.

3.5 Static Environments
In this section, we present the results of the H-TRAA,
LAKG, and the other schemes for static environments.

We see from Fig. 6 that the optimal policy provides a
solution superior to the uniform policy solution. The figure
also shows that the performance of the H-TRAA increases
significantly quicker than the LAKG, the uniform and the
optimal schemes. However, when the number of perturba-
tions is increased, the performance of the H-TRAA tends to
fall. Note that even with 106 perturbations, the H-TRAA
provides a performance equal to the LAKG if each TRAA in
the hierarchy is given a resolution N that is twice as large as
the resolution applied by any of its children. Furthermore,
the H-TRAA is more flexible than the LAKG, performing
either better or similar to the H-TRAA configuration when it
is optimized for the problem at hand. Observe too that the
performance of both the H-TRAA and LAKG improve
online (in a real-time manner) without invoking any
parameter estimation phase. Both the LAKG and H-TRAA
approach the performance boundary set by the optimal
policy, and converge toward near-optimal solutions. How-
ever, the H-TRAA converges faster than the LAKG.

3.6 Scalability
One of the motivations for designing the H-TRAA was the
improved scalability obtained by means of hierarchical
learning. As seen in Fig. 7, extending the number of materials
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Fig. 6. Plots of the convergence of the H-TRAAs for the Exponential and Linear functions given by (34) and (35), respectively, for the Linear
Reward-Penalty scheme. (a) The graph for the Exponential function, and (b) the graph for the Linear function. Under identical settings, we observe
that the H-TRAA scheme is the most superior of the schemes.

Fig. 7. Plots of the convergence of the LAKG for the Exponential and Linear functions given by (34) and (35) as the number of materials is increased
significantly. (a) The graph for the Exponential function, and (b) the graph for the Linear function. Observe that the LAKG becomes prohibitively
sluggish as the number of materials becomes very large.
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significantly increases the convergence time of LAKG. An
increased initial learning phase may be unproblematic in
cases where the system will run correspondingly longer,
adapting to less dramatic changes as they occur. Fig. 8
displays the performance of the H-TRAA under identical
settings. The reader should observe that increasing the
number of materials does not significantly increase its
convergence time. It is not at unfair to assert that under
identical settings, the H-TRAA scheme is far superior to the
LAKG. Indeed, the H-TRAA scales sublinearly with the
number of materials.

4 EMPIRICAL RESULTS II: OPTIMAL SAMPLE-SIZE

DETERMINATION

To demonstrate the potential of the solution for practical
applications, in this section, we consider the problem of
estimating the proportion of a population possessing some
specific characteristics. Specifically, we assume that
n populations are to be evaluated, and that each
population i is characterized by an independent unknown
binomial proportion ui. We will here pursue the goal of
minimizing the variance of the proportion estimates when
the total number of samples available for estimating the
proportions is restricted to c. The purpose is to make the
estimates as accurate as possible. As mentioned earlier, for
instance, the task at hand could be to determine the
proportion of a website that is successfully validated by
an HTML validator [23], and that n websites are to be
evaluated by only accessing c webpages.

4.1 Problem Specification

Let xi be the number of elements sampled randomly from
population i and let the count Yi be the number of the
sampled elements that possess a chosen characteristic.
For large xi and when ui is not too near 0 or 1, the
estimator ûi ¼ Yi

xi
is approximately normal with mean ui

and standard deviation [1]

si ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uið1� uiÞ

xi

s
:

As seen, the standard deviation can be reduced (and the
estimate accuracy increased) by increasing the number of
samples xi. In the problem targeted in this section, ndifferent
populations can be sampled c times and the goal is to
distribute the samples among the populations to minimize
the aggregated variance of the estimates. The problem can be
reformulated as follows:

maximize
Xn
i¼1

� uið1� uiÞ
xi

;

subject to
X

xi ¼ c;
1 � xi; i ¼ 1; . . . ; n:

The above optimization problem is an NEFK problem with
concave and separable objective function. Since the uis are
assumed unknown, we apply our H-TRAA to find a near-
optimal solution incrementally and online.

4.2 The H-TRAA Solution

We must first define the Stochastic Environment that the
H-TRAA is to interact with. That is, we must define the
stochastic functions F0 ¼ ff 01ðx1Þ; f 02ðx2Þ; . . . ; f 0nðxnÞg. By ap-
plying the principles of Lagrange multipliers, we find the
following conditions that characterize the optimal solution:

u1ð1� u1Þ
x1

2
¼ � � � ¼ unð1� unÞ

xn2
;X

xi ¼ c;
1 � xi; i ¼ 1; . . . ; n:

Accordingly, we define f 0iðxiÞ as follows: First of all, each
time f 0iðxiÞ is accessed by H-TRAA, population i is
sampled once and the proportion estimate ûi is updated
accordingly.7 After ûi has been updated, we instantiate
f 0iðxiÞ by a random draw—f 0iðxiÞ is instantiated to the
value 0 with probability

1� ûið1� ûiÞ
xi2
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Fig. 8. Plots of the convergence of the H-TRAA for the Exponential and Linear functions given by (34) and (35) for the Linear Reward-Penalty
scheme, as the number of materials is increased significantly. (a) The graph for the Exponential function, and (b) the graph for the Linear function.
Observe that the H-TRAA scales sublinearly with the number of materials.

7. For a dynamic environment, we would utilize a “window-based”
strategy and only use the last c samples to estimate the uis. However, we are
currently studying how recently proposed weak estimators can be used in
this setting [18].
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and to the value 1 with probability ûið1�ûiÞ
xi2

. In other words,

we keep running estimates of the uis in order to calculate the

outcome probabilities of the f 0iðxiÞs.8

4.3 Experimental Setup

In this section, we evaluate our learning scheme by

comparing it with the optimal and uniform policies using

synthetic data. The reader should appreciate that, in practice,

we can only apply the uniform policy, because the optimal

policy requires that the uis are known.
The data used in the experiment are summarized in

Table 1. The table shows the true population proportions

used and the number of populations associated with each

proportion. The experiment encompasses 512 populations,

and the corresponding proportions are to be estimated by

allocating 50,000 samples.

4.4 Static Environments

We first report the results obtained for environments which

are static, i.e., where the uis, although unknown, do not

change with time. As we will see in the following, it turns

that one of the strengths of the H-TRAA is its ability to take

advantage of so-called spatial dependencies among materi-

als. As mentioned earlier, in the above experimental setup,

materials are spatially related in the sense that the updating

probabilities decreases with the rank-index k. In order to

starve the H-TRAA from this information, we opted to

perturb this spatial structure. Each perturbation swapped

the probabilities of a randomly selected material and the

material succeeding it in the ranking.
We conducted our experiments with 103, 104, 105, and 106

perturbations. For each of these values, an ensemble of
several independent replications with different random
number streams was performed so as to minimize the
variance of the reported results. The results of our experi-
ments are truly conclusive and confirm the power of the
H-TRAA. Although several experiments were conducted
using various setting for various numbers of automata, we
report, in the interest of brevity, a brief overview of the
results obtained.

Fig. 9 plots the variance of the current solution (as a
function of time) each time a unit volume value function
f 0iðxiÞ has been sampled. The graphs show the results of
applying the H-TRAA with 5,000 states and the LAKG with
12,500 states (where the amount of the material added on a

transition in the latter is not fixed but varying in a nonlinear
manner9).

As seen in the figure, the H-TRAA steadily reduces the
variance of the initial solution in which the populations
are sampled uniformly. Indeed, even by the first 50,000
samples, one can observe a very significant reduction. The
reader should notice that the H-TRAA converges to a
near-optimal allocation more expediently and far quicker
than the LAKG scheme, expect for the case with 1,000,000
perturbations where the H-TRAA initially converges faster
but subsequently in a more conservative manner.

Also note that the confidence interval of each estimated
proportion is reduced by minimizing the total variance.

4.5 Scalability

Again, as seen in Fig. 10, extending the number of materials
increases the convergence time of the LAKG. The H-TRAA,
however, is far less affected by the number of materials.

From Fig. 10, we observe that while the LAKG does not
even converge (see the figure on the left), the H-TRAA
scales sublinearly in every case with the number of materials
(the figure on the right). However, the most interesting
phenomenon that we observe from Fig. 10 is the ability of
the H-TRAA to emerge out of local optima. The H-TRAA
first decreases to a minimum, but when it “discovers” that
there is a better solution (which in this case implies a
superior partitioning of the nodes in the tree to their left
and right subtrees), it is capable of unlearning the inferior
configuration and converging to a superior solution. This,
we believe, is quite remarkable, especially because the size
of the underlying tree is very large, implying that the
number of possible binary trees (which grows exponen-
tially with the size) is even larger. However, by arriving at
the global optimum, we see that the H-TRAA has
succeeded in learning the best tree structure to resolve the
sampling proportions!

5 CONCLUSIONS AND FURTHER WORK

In this paper, we have considered the fractional knapsack
problem and extended the non-LA state of the art in two
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8. Because the outcome probabilities are always available for the
populations, we can normalize the outcome probabilities to speed up
convergence. 9. The details of this are omitted. They can be found in [9].

TABLE 1
The True Population Proportions Used in the Experiment, and
the Number of Populations Associated with Each Proportion

Fig. 9. The performance of LAKG and H-TRAA in the static environment
for the optimal sample-size determination problem.
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ways. First of all, we have treated the unit volume values of

each material as a stochastic variable whose distribution is

unknown. Second, we have worked with the model that the

expected value of a material may decrease after each addition

to the knapsack. The learning scheme we proposed for

solving this knapsack problem was based on a hierarchy of

so-called TRAA. Each TRAA works with two materials and

moves along the probability space discretized by a resolution

parameter,N , with a random walk whose coefficients are not

constant. The asymptotic optimality of the TRAA has been

proven. We have then presented a formal theory by which an

ensemble of TRAAs (the H-TRAA) can be structured in a

hierarchical manner to deal with a very large number of

materials, and its asymptotic optimality has also been

proven. Comprehensive experimental results have demon-

strated that performance of the H-TRAA is superior to the

previous state-of-the-art schemes, including the so-called,

LAKG [9]. Additionally, for a given precision, our scheme

determines the material fractions of maximal expected value

by invoking online interactions with the knapsack. We have

also provided empirical evidence to clearly demonstrate the

H-TRAAs sublinear scaling property.
In our further work, we first of all intend to utilize the

H-TRAA solution to resolve the web-polling problem, and

the problem of determining the optimal sample size

required for estimation purposes. Some preliminary results

for this are already available, and will be presented else-

where [10], [11]. We also aim to develop alternate LA-based

solutions for different classes of knapsack problems,

including the NP-hard integer knapsack problem. Essen-

tially, we propose to do this by enhancing the concepts

introduced in this paper with a branch-and-bound-based

relaxation capability. Finally, we are also currently investi-

gating how other classes of LA can form the basis for solving

knapsack-type problems.
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