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Abstract The focus of this paper is on the higher order statistics of spatial simulation
models for shadowing processes. Such processes are generally assumed to follow the
lognormal distribution. The proposed spatial simulation model is derived from a non-realizable
lognormal reference model with given correlation properties by using Rice’s sum-of-sinusoids.
Both exact and approximate expressions are presented for the level-crossing rate (LCR)
and the average duration of fades (ADF) of the simulation model. It is pointed out that
Gudmundson’s correlation model results in an infinite LCR. To avoid this problem, two
alternative spatial correlation models are proposed. Illustrative examples of the dynamic
behavior of shadow fading processes are presented for all three types of correlation models.
Emphasis will be placed on two realistic propagation scenarios capturing the shadowing
effects in suburban and urban areas.

Keywords Mobile fading channels · Shadowing effects · Spatial shadowing processes ·
Lognormal processes · Level-crossing rate

1 Introduction

Empirical studies in [1–4] have shown that long-term effects such as shadowing can be
modelled well by lognormal processes. A good understanding of lognormal process and its
parameterization is therefore important for the performance study of mobile communication
systems. To study the impact of combined slow and fast fading effects, lognormal processes
have been proposed as an integral part of many channel models, such as the Suzuki model
[5] and the Loo model [6]. Lognormal processes also play an important role in the perfor-
mance analysis of handover processes [7,8]. The problem of finding realistic parameters of
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lognormal processes was the subject of many measurement campaigns conducted in different
areas. In urban areas, it has been observed [9] that the standard deviation of shadowing ranges
from 6.5 to 8.2 dB, whereas in macrocells the standard deviation is between 5 and 12 dB [1–4].

The spatial correlation properties of shadowing have been studied in [10–12]. Gud-
mundson [10] has proposed a negative exponential correlation model, which has later been
improved in [12], where it was shown that shadowing cannot decorrelate exponentially with
distance in physical channels. Despite the problems stressed in [12], Gudmundson’s cor-
relation model has been adopted by many researchers and is even part of the evaluation
methodology of UMTS [13].

Although a variety of issues concerning the statistics of lognormal processes have been
discussed in the literature, there are still some untouched topics. For example, little is known
about the higher order statistics of shadowing processes. In [14], the level-crossing rate (LCR)
of a reference model for lognormal processes has been derived, but only an approximate solu-
tion has been presented for the corresponding simulation model. In this paper, we present
the exact solution that gives an insight into the influence of the model parameters on the
rate of fading caused by shadowing. The problem with Gudmundson’s correlation model
is that the LCR of the lognormal process becomes infinite if the correlation function of the
underlying Gaussian process equals the negative exponential function. To avoid this problem,
two alternative correlation models for shadowing in mobile radio systems are introduced. We
also present a user-friendly concept for the design of a lognormal channel simulator. The
flexibility and high performance of the simulation model is demonstrated by applying the
proposed design concept on all three types of presented correlation models.

The paper is structured as follows. Section 2 introduces a spatial lognormal process, which
is considered as reference model. From the reference model, we derive in Sect. 3 the corre-
sponding simulation model. Its LCR and average duration of fades (ADF) are analysed in
Sect. 4. In Sect. 5, we apply the proposed design procedure on three different spatial cor-
relation models and discuss the achieved theoretical and numerical results. Finally, Sect. 6
draws the conclusion.

2 The Reference Model

Here, it is assumed that the mobile station starts at the origin x = 0 and moves along the
x-axis with velocity v. During the movement of the mobile station, the transmitted signal
experiences fast fading and shadowing. It is widely accepted that the shadowing effects can
well be modelled in the spatial domain by a lognormal process

λ(x) = 10(σLν(x)+mL )/20 (1)

where the parameters σL and mL are called the shadow standard deviation and the area mean,
respectively, and ν(x) is a spatial Gaussian process with zero mean and unit variance. The
distribution of λ(x) follows the lognormal probability density function (PDF)

pλ(z) = 20√
2π ln(10) σL z

e
− (20 log(z)−mL )2

2σ2
L , z ≥ 0 . (2)

It is worth mentioning that the distribution in (2) does not provide any information on how
fast the spatial lognormal process λ(x) changes with distance. However, this information is
provided by the LCR and the ADF.
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An Exact Solution for the LCR of Shadow Fading Processes 59

The LCR Nλ(r) of the spatial lognormal process λ(x) describes how often λ(x) crosses
a given level r from up to down (or from down to up) within a unit of length (usually 1 m).
In [14] it was shown that the LCR Nλ(r) of the reference model described by λ(x) [see (1)]
is given by

Nλ(r) =
√

γ

2π
e

− (20 log(r)−mL )2

2σ2
L , r ≥ 0 (3)

where the quantity γ is related to the ACF rνν(�x) of the underlying spatial Gaussian process

ν(x) according to γ = − d2

d�x2 rνν(�x)|�x=0 = −r̈νν(0).
The ADF Tλ−(r) is the expected value for the length of the spatial interval in which the

lognormal process λ(x) is below a given level r . If the LCR Nλ(r) is known, then the ADF
Tλ−(r) can readily be obtained from [15]

Tλ−(r) = Fλ−(r)

Nλ(r)
(4)

where Fλ−(r) designates the cumulative distribution function of the spatial lognormal pro-
cess λ(x) being the probability that λ(x) is less than or equal to the level r , i.e., Fλ−(r) =
Pr(λ(x) ≤ r) = ∫ r

0 pλ(z) dz.

3 The Spatial Shadowing Simulator

By applying the sum-of-sinusoids principle [16], a stochastic spatial simulation model for
lognormal processes λ(x) can be obtained from the reference model by substituting the spatial
Gaussian process ν(x) in (1) by a sum-of-sinusoids

ν̂(x) =
N∑

n=1

cn cos(2παn x + �n) (5)

with constant gains cn , constant spatial frequencies αn , and i.i.d. random phases �n , each
having a uniform distribution over the interval [0, 2π). The spatial autocorrelation function
(ACF) of ν̂(x), defined by r̂νν(�x) := E{ν̂(x)ν̂(x + �x)}, can be expressed as

r̂νν(�x) =
N∑

n=1

c2
n

2
cos(2παn�x) . (6)

Furthermore, the PDF of the sum-of-sinusoids ν̂(x) in (5) is given by [17]

p̂ν(y)=
⎧
⎨

⎩
2

∞∫

0

[
N∏

n=1
J0(2πcnz)

]

cos(2πyz) dz, |y| ≤ ν̂max

0, otherwise
(7)

where ν̂max = ∑N
n=1 |cn | and J0(·) denotes the 0th-order Bessel function of the first kind.

Our proposed stochastic simulation model for spatial lognormal processes is mathematically
described by the expression

λ̂(x) = 10(σL ν̂(x)+mL )/20 (8)

from which the structure shown in Fig. 1 can easily be derived.
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Fig. 1 Structure of the spatial shadowing simulator

4 LCR and ADF of the Shadowing Simulator

This subsection is concerned with the derivation of the LCR N̂λ(r) and the ADF T̂λ−(r) of
the stochastic simulation model for spatial lognormal processes λ̂(x) defined in (8). First,
recall that the LCR N̂λ(r) can be computed by using [18,19]

N̂λ(r) =
∞∫

0

ż p̂λλ̇(r, ż)dż, r ≥ 0 (9)

where p̂λλ̇(z, ż) denotes the joint PDF of λ̂(x) and its spatial derivative ˙̂
λ(x) = dλ̂(x)/dx at

the same point on the x-axis. Our starting point for finding the exact solution of N̂λ(r) is the
stochastic process ν̂(x) in (5) and its spatial derivative ˙̂ν(x), which is given by

˙̂ν(x) = −2π

N∑

n=1

αncn sin(2παn x + �n). (10)

The PDF p̂ν̇ (ẏ) of ˙̂ν(x) can be expressed as

p̂ν̇ (ẏ) =
⎧
⎨

⎩

∞∫

0

[
N∏

n=1
J0(4π2αncnz)

]

cos(2π ẏz)dz, |ẏ| ≤ ˙̂νmax

0, otherwise
(11)

where ˙̂νmax = 2π
∑N

n=1 |αncn |. The computation of the cross-correlation function (CCF) of
ν̂(x) and ˙̂ν(x), which is defined by r̂νν̇ (�x) := E{ν̂(x) ˙̂ν(x + �x)}, gives

r̂νν̇ (�x) = −π

N∑

n=1

αnc2
n sin(2παn�x). (12)

This result shows that ν̂(x) and ˙̂ν(x) are in general correlated. However, for the computa-
tion of the LCR, we can restrict our investigations to the behavior of ν̂(x1) and ˙̂ν(x2) at the
same point in space x = x1 = x2, i.e., �x = x2 − x1 = 0. Hence, we observe from (12)
that r̂νν̇ (�x) = 0 holds if �x = 0, i.e., ν̂(x) and ˙̂ν(x) are uncorrelated at the same point in
space. In case of Gaussian random processes, it follows that uncorrelatedness is equivalent
to independence [20]. Since the PDFs p̂ν(y) and p̂ν̇ (ẏ) in (7) and (11), respectively, are both
very close to the Gaussian distribution if N ≥ 7, we may assume that ν̂(x) and ˙̂ν(x) are
also independent at the same point on the x-axis. This allows us to express the joint PDF
p̂νν̇ (y, ẏ) of ν̂(x) and ˙̂ν(x) as

p̂νν̇ (y, ẏ) = p̂ν(y) · p̂ν̇ (ẏ) . (13)
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An Exact Solution for the LCR of Shadow Fading Processes 61

Now, after applying the method of transformation of random variables [20], we can express

the joint PDF p̂λλ̇(z, ż) of λ̂(x) and ˙̂
λ(x) as

p̂λλ̇(z, ż) = |J |−1 p̂νν̇

(
20 log(z) − mL

σL
,

20ż

σL ln(10)z

)

= |J |−1 p̂ν

(
20 log(z) − mL

σL

)

p̂ν̇

(
20ż

σL ln(10)z

)

(14)

where |J | is the absolute value of the Jacobian determinant, which is given here by |J | =
(σL z ln(10)/20)2. Finally, after substituting (14) in (9) and using (11), we find the following
exact solution for the LCR N̂λ(r) of λ̂(x)

N̂λ(r) = p̂ν

(
20 log(r) − mL

σL

)∞∫

0

[∏N
n=1 J0(4π2cnαn y)

]

2(πy)2

· [cos(2πy ˙̂νmax) − 1 + 2πy ˙̂νmax sin(2πy ˙̂νmax)]dy (15)

where ˙̂νmax = 2π
∑N

n=1 |αncn | . We mention without proof that N̂λ(r) → Nλ(r) as N → ∞.
In [14], it was shown that the LCR N̂λ(r) of the spatial shadowing simulator can be approx-
imated by

N̂λ(r) ≈
√

γ̂

2π
e

− (20 log(r)−mL )2

2σ2
L , r ≥ 0 (16)

where

γ̂ = − d2

d�x2 r̂νν(�x)|�x=0

= 2π2
N∑

n=1

(αncn)2 . (17)

By analogy to (4), the ADF T̂λ−(r) of the stochastic simulation model can be obtained
from T̂λ−(r) = F̂λ−(r)/N̂λ(r), where N̂λ(r) is given by (15) and F̂λ−(r) denotes the cumu-
lative distribution function of λ̂(x), which can easily be computed from the PDF p̂λ(z) of
λ̂(x) derived in [14] via F̂λ−(r) = ∫ r

0 p̂λ(z)dz.

5 Correlation Models and Results

To illustrate the correctness and usefulness of the exact solution found for the LCR N̂λ(r)

presented in (15), we develop a simulation model for a spatial shadowing channel in typical
suburban and urban areas. Altogether three spatial correlation models are considered. For
each of them, it will be shown how the parameters of the simulation model can be determined.

5.1 The Gudmundson Model

Supported by empirical studies in [10], Gudmundson has proposed to model the correlation
properties of ν(x) by the following negative exponential function

rνν(�x) = e −|�x |/D (18)
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Table 1 Model parameters of
the reference model (from [10])

Shadowing area D (m) �xmax (m) σL (dB) mL

Suburban 503.9 2500 7.5 0

Urban 8.3058 40 4.3 0

where the parameter D > 0 is called the decorrelation distance. Typical values for D and
the other parameters describing the reference model are listed in Table 1.

In case of Gudmundson’s model, the parameters of the simulation model can be computed
by using the method of equal areas (MEA) [16], which results in the following closed-form
expressions:

cn = √
2/N (19)

αn = 1

2π D
tan

(
π(n − 1/2)

2N

)

(20)

for n = 1, 2, . . . , N . Choosing N = 25 and substituting (19) and (20) in (6), results in the
spatial ACFs r̂νν(�x) illustrated in Figs. 2 and 3 for suburban and urban areas, respectively.
The problem with Gudmundson’s model is that the LCR Nλ(r) of the reference model is
infinite. This is because the second derivative of the spatial ACF rνν(�x) in (18) is indefinite
at the origin, which was first observed in [12]. However, the LCR N̂λ(r) of the simulation
model is limited for finite values of N , but N̂λ(r) approaches infinity as N → ∞. We con-
sider N = 25 as an appropriate choice and substitute (19) and (20) in (15), which gives the
exact result of the simulation model’s LCR N̂λ(r) shown in Fig. 4. This figure also illustrates
the simulation results of the LCR obtained from the simulation of (8) and averaging over
100 trials. It can be observed that the simulation results confirm the correctness of the exact
solution (15), whereas the approximate solution (16) becomes less accurate at high (and low)
signal levels r .

0 500 1000 1500 2000 2500
−0.2

0

0.2

0.4

0.6

0.8

1.0

Spatial separation, ∆x (m) 

Sp
at

ia
l A

C
F,

 r
νν

 (
∆x

)

Reference model (N →∞ )
Simulation model (MEA, N = 25)
Simulation (MEA, N = 25)

Suburban area

Fig. 2 Spatial ACFs rνν(�x) (reference model) and r̂νν(�x) (simulation model) for suburban areas (Gud-
mundson’s model, MEA with N = 25)
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Fig. 3 Spatial ACFs rνν(�x) (reference model) and r̂νν(�x) (simulation model) for urban areas (Gudmund-
son’s model, MEA with N = 25)
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Fig. 4 Comparison of the exact and approximate solutions for the LCR N̂λ(r) of the simulation model for
shadow fading processes in suburban and urban areas (Gudmundson’s model, MEA with N = 25)

5.2 The Gaussian Model

As an alternative to Gudmundson’s model, we propose here the Gaussian model. In this case,
the spatial correlation properties of ν(x) are described by

rνν(�x) = e −(�x/D)2
(21)

where D > 0. Since the above spatial correlation function has a definite second derivative
in the origin, it follows that the LCR Nλ(r) of the reference model exists. The quantity γ is
given by γ = −r̈νν(0) = 2/D2, so that the behavior of Nλ(r) can easily be analysed using
(3).

For the computation of the parameters of the simulation model, we again apply the MEA
[16]. This method provides the same expression for the gains cn as in (19), whereas the spatial
frequencies αn have to be computed by using
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Fig. 5 Spatial ACFs rνν(�x) (reference model) and r̂νν(�x) (simulation model) for suburban areas (Gauss-
ian model, MEA with N = 25)
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Fig. 6 Spatial ACFs rνν(�x) (reference model) and r̂νν(�x) (simulation model) for urban areas (Gaussian
model, MEA with N = 25)

αn = 1

π D
erf −1

(
n − 1/2

N

)

(22)

for n = 1, 2, . . . , N , where erf −1(·) denotes the inverse error function. Choosing again
N = 25 and substituting (19) and (22) in (6) gives the spatial ACF r̂νν(�x) of the simu-
lation model shown in Figs. 5 and 6. Figure 7 illustrates both the exact solution (15) and
the approximate solution (16) for the LCR N̂λ(r) of the simulation model. For comparative
purposes, the LCR Nλ(r) of the reference model using (3) is also shown.

5.3 The Butterworth Model

As a second alternative to Gudmundson’s model, we propose to describe the power spectral
density (PSD) Sνν(α) of the stochastic process ν(x) by a function having the shape of the
kth-order Butterworth filter

Sνν(α) = Ak

1 + (αDk)2k
(23)
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Fig. 7 Comparison of the exact and approximate solutions for the LCR N̂λ(r) of the simulation model for
shadow fading processes in suburban and urban areas (Gaussian model, MEA with N = 25)

where Ak and Dk are positive constants. The constant Ak is to be chosen such that the mean
power of ν(x) equals unity, i.e.,

∫ ∞
−∞ Sνν(α)dα = 1. Recall that the ACF rνν(�x) is obtained

from the inverse Fourier transform of the PSD Sνν(α). From the Fourier transform relation-
ship, it follows that the Gudmundson model is included in the Butterworth model as a special
case, namely if k = 1, A1 = 2D, and D1 = 2π D. Let us restrict our investigations to the
2nd-order Butterworth model, i.e., k = 2. In this case, A2 equals

√
2D2/π and the spatial

correlation properties of ν(x) are described by

rνν(�x) = √
2 e −π

√
2|�x |/D2 sin

(

π
√

2
|�x |
D2

+ π

4

)

. (24)

Using the above result, the quantity γ = −r̈νν(0) can be expressed as γ = (2π/D2)
2.

Notice that the 2nd-order Butterworth model and the Gaussian model result in the same LCR
Nλ(r) if we choose D2 = π

√
2D. In the following, however, our choice falls on the relation

D2 = π
√

2D/1.2396, which guarantees that the spatial ACFs rνν(�x) in (18) and (24) are
identical at �x = D.

When using the Butterworth model of order 2, the parameters of the simulation model
can also be computed by using the MEA [16]. For the gains cn , we obtain again the same
expression as in (19), whereas the spatial frequencies αn have to be determined for all n =
1, 2, . . . , N from the following equation by means of numerical integration and root-finding
techniques

αn∫

0

D2

1 + (αD2)4 dα − (n − 1
2 )π

2
√

2N
= 0 . (25)

After computing the parameters cn and αn , the ACF r̂νν(�x) and the LCR N̂λ(r) of the simu-
lation model can be analysed by using the general expressions (6) and (15), respectively. The
results obtained for the spatial ACF r̂νν(�x) are illustrated in Figs. 8 and 9. In these figures,
the corresponding curves found for the reference model are also plotted for comparative
purposes. Finally, we mention that the results obtained for the LCR N̂λ(r) are very similar
to those shown in Fig. 7.

123



66 M. Pätzold, K. Yang

0 500 1000 1500 2000 2500
−0.2

0

0.2

0.4

0.6

0.8

1.0

Spatial separation, ∆x (m) 

Sp
at

ia
l A

C
F,

 r
νν

 (
∆x

)

Reference model (N → ∞)
Simulation model (MEA, N = 25)
Simulation (MEA, N = 25)

Suburban area

Fig. 8 Spatial ACFs rνν(�x) (reference model) and r̂νν(�x) (simulation model) for suburban areas (2nd-
order Butterworth model, MEA with N = 25)
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Fig. 9 Spatial ACFs rνν(�x) (reference model) and r̂νν(�x) (simulation model) for urban areas (2nd-order
Butterworth model, MEA with N = 25)

6 Conclusion

In this paper, we have studied the higher order statistics of spatial simulation models for
lognormal processes. The concept of Rice’s sum-of-sinusoids has been applied to derive the
lognormal channel simulator from a non-realizable reference model with given spatial corre-
lation properties. The exact solution for the LCR of the simulation model has been derived.
By comparing the exact solution to an approximation, it was shown that the approximate
solution is less accurate at high and low signal levels. Furthermore, it was confirmed that
Gudmundson’s model is not a reasonable correlation model, since the LCR of the refer-
ence model is infinite. To avoid this problem, two alternative correlation models have been
introduced, which were called the Gaussian model and the Butterworth model. Illustrative
examples of the dynamic behavior of shadow fading processes were given for all three types
of correlation models. The proposed concept enables a quick design of a simulation model
that is capable to emulate efficiently the shadowing effects in suburban and urban areas with
high precision.
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