
Telecommun Syst (2010) 44: 159–169
DOI 10.1007/s11235-009-9215-4

Fault-tolerant routing in adversarial mobile ad hoc networks:
an efficient route estimation scheme for non-stationary
environments

B. John Oommen · Sudip Misra

Published online: 10 November 2009
© Springer Science+Business Media, LLC 2009

Abstract Designing routing schemes that would success-
fully operate in the presence of adversarial environments in
Mobile Ad Hoc Networks (MANETs) is a challenging issue.
In this paper, we discuss fault-tolerant routing schemes op-
erating in a network with malfunctioning nodes. Most exist-
ing MANET protocols were postulated considering scenar-
ios where all the mobile nodes in the ad hoc network func-
tion properly, and in an idealistic manner. However, adver-
sarial environments are common in MANET environments,
and misbehaving nodes certainly degrade the performance
of these routing protocols. The need for fault tolerant rout-
ing protocols was identified to address routing in adversarial
environments in the presence of faulty nodes by exploring
redundancy-based strategies in networks. It turns out that
since the nodes are mobile, the random variables encoun-
tered are non-stationary, implying that estimation methods
for stationary variables are inadequate. Consequently, in this
paper, we present a new fault-tolerant routing scheme that

A preliminary version of some of the results here appeared in the
Proceedings of WiMob 2006, the 2006 IEEE International Conference
on Wireless and Mobile Computing, Networking and
Communications, Montreal, June, 2006.

B.J. Oommen
School of Computer Science, Carleton University, K1S 5B6,
Ottawa, Canada
e-mail: oommen@scs.carleton.ca

B.J. Oommen
Department of Information and Communication Technology,
University of Agder, Grooseveien 36, 4876, Grimstad, Norway

S. Misra (�)
School of Information Technology, Indian Institute
of Technology, 721302, Kharagpur, WB, India
e-mail: sudipm@iitkgp.ac.in

invokes a stochastic learning-based weak estimation proce-
dure to enhance a route estimation phase, which, in turn,
is then incorporated in a route selection phase. We are not
aware of any reported method that utilizes non-traditional
estimates to achieve the ranking of the possible paths. The
scheme, which has been rigorously tested by simulation, has
been shown to be superior to the existing algorithms.

Keywords Mobile ad hoc networks · Routing · Weak
estimation · Learning automata

1 Introduction

MANETs are characterized as an infrastructure-less coop-
erative engagement of mobile nodes forming networks with
continuously changing topologies. They do not have central-
ized network managers, access points, fixed base stations,
or a backbone network for controlling the network man-
agement functions and do not possess designated routers
for making routing decisions. All nodes in MANETs take
part in routing by acting as routers for one another. How-
ever, several hops are normally needed in such networks for
transmission of data from one node to another because of
the limited wireless transmission range associated with the
operation of the mobile nodes [2, 7, 9].

The above-mentioned characteristics of MANETs, par-
ticularly those arising due to the mobility of nodes, and
the continuously changing network topologies, pose sev-
eral challenges. Due to the continuously changing topolo-
gies, the routes that were once considered to be the “best”
routes may no longer remain the same at a later time in-
stant. This, therefore, requires a continuous re-computation
of routes, and there is no permanent convergence to a fixed
set of routes in such networks. So, any routing protocol that

mailto:oommen@scs.carleton.ca
mailto:sudipm@iitkgp.ac.in

160 B.J. Oommen, S. Misra

needs to operate in MANET environments should take these
issues into consideration.

Designing routing protocols poses further challenges
when one needs to design routing schemes in the presence
of adversarial environments in MANET networks. This is,
more precisely, the problem addressed in this paper. Specifi-
cally, we discuss fault-tolerant routing schemes where there
are malfunctioning nodes in the network. Most existing
MANET protocols were postulated considering scenarios
where all the mobile nodes in the ad hoc network function
properly, and in an idealistic manner. However, adversarial
environments are common in MANET environments, and
misbehaving nodes can, indeed, degrade the performance of
these routing protocols [11]. The need for fault tolerant rout-
ing protocols was identified to address routing in adversarial
environments, specifically in the presence of faulty nodes,
by exploring network redundancies [10, 11].

Despite the challenges mentioned above, it is appropriate
to highlight a few applications of MANETs which have ren-
dered them popular. One of the popular application domains
of MANETs is communication in moving battlefields [7].
Other applications involve communication in rural regions
where building up fixed wireline or wireless infrastructures
is both costly and difficult.

As discussed, due to the mobility of the nodes and
the rapidly changing topologies, the reliability of the cor-
rect transmission of messages is an important concern for
MANETs. Hence, strategies that would guarantee the deliv-
ery of packets in adversarial environments, and in the pres-
ence of node/link failures are sought for.

Different routing mechanisms have been proposed in the
literature for MANETs—primarily those that work under
the assumption of “ideally” behaving environments. Two
important schemes that we have used in our study use the dy-
namic source routing (DSR) [2, 4, 5], and the multipath rout-
ing [6, 8, 14] philosophies. Multipath routing protocols dis-
cover multiple routes between a pair of source-destination
nodes. In multipath routing, multiple redundant packets
are sent along different paths between a pair of source-
destination nodes. As opposed to this, DSR is a unicast dy-
namic on-demand routing protocol. It is a source routing
protocol, where the source explicitly provides a packet with
the complete information of the route to be followed, and
this route is used by the intermediary nodes to forward the
packet to the right destination node. In DSR, when two hosts
need to communicate with each other, the sender host deter-
mines a route based on the information stored in its cache,
or based on the results of a route discovery, depending on
whether or not the information about the destination node is
already available to the source node.

The well-known MANET routing algorithms (e.g., DSR,
multipath routing) are unsuitable as fault-tolerant routing al-
gorithms for MANETs. Since DSR chooses the shortest path

route for packet transmission in adversarial environments,
it can be shown that DSR will achieve a low packet deliv-
ery rate. On the other hand, multipath routing algorithms
are strong in their fault-tolerance ability, because they send
multiple copies of packets through all possible (disjoint)
routes between a pair of source-destination nodes. However,
the disadvantage with multipath routing algorithms is that
they introduce an unnecessary amount of overhead on the
network. Without a mechanism that “tolerates” route fail-
ures due to malfunctioning nodes while making routing de-
cisions, the performance of ad hoc network protocols will
necessarily be poor, and the routing decisions made by those
protocols would be erroneous.

Xue and Nahrstedt [10, 11] confirmed that devising a
fault-tolerant routing algorithm for ad hoc networks is in-
herently hard. This is because the problem itself is NP-
complete due to the unavailability of correct path informa-
tion in these environments. Xue and Nahrstedt [10] designed
an efficient algorithm, called the End-to-End Fault Tolerant
Routing (E2FT) Algorithm, which is capable of significantly
lowering the packet overhead, while guaranteeing a certain
packet delivery rate.

1.1 Motivation behind our work and our contributions

The spectrum of algorithms that attempt to solve the prob-
lem under consideration do so by:

1. Either “flooding” the network with multiple redundant
packets along different paths between a pair of source-
destination nodes (thus increasing the probability of the
successful transfer), or

2. Following a dynamic on-demand routing protocol, where
the source explicitly provides (a priori) the transmitted
packet with the complete information of the route to be
followed (thus minimizing the number of multiple redun-
dant packets being transmitted), or

3. Seeking a “happy” medium between the latter strategies,
namely by estimating the potential profitability of main-
taining selected paths.

Our strategy is a combination of all these three philoso-
phies. The rationale for the solution we seek can be cata-
logued as follows:

1. First of all, we opt to retain certain multiple redundant
paths, and thus follow the basic principles of the multi-
path families.

2. Secondly, we simultaneously seek a solution that mini-
mizes the “flooding”, thus pursuing the dynamic source-
routing philosophy.

3. Finally, we seek a solution which is akin to the one
proposed in [10, 11], except that we attempt to ex-
plicitly consider the nature of the random variables en-
countered. Observe that since the nodes are mobile,

Fault-tolerant routing in adversarial mobile ad hoc networks: an efficient route estimation scheme 161

these random variables are, by definition, non-stationary.
Thus, rather than use traditional maximum likelihood es-
timates, we argue that it is expedient to utilize weak esti-
mates, namely those that converge in distribution as op-
posed to those that converge with probability one. We
achieve this by invoking the recently-developed novel
weak estimation methods, that are built on the principles
of stochastic learning—as explained in [12, 13].

To the best of our knowledge, a scheme which collec-
tively uses all of these principles is new to the area of fault-
tolerant MANETs. Indeed, more particularly, we are not
aware of any reported method which utilizes non-traditional
estimates to achieve the ranking of the possible paths. These
are the primary contributions of this paper.

2 Problem model

The problem model that we have considered is similar to
that used by Xue and Nahrstedt [10], with a few differences
to simulate more realistic MANET scenarios. Our study,
however, incorporates the consideration of non-stationary
environments, as discussed later in this section. We con-
sider a graph G = (V ,E) consisting of V mobile nodes,
and E bi-directional links connecting different nodes. If
there are n mobile nodes in a path, the length of any path p

is denoted by L(p), in which p = {v1, v2, . . . , vn}, where
v1, v2, . . . , vn ∈ V , and (vi, vi+1) ∈ E, i ∈ {1,2, . . . , n − 1}.
The multipath routes between a pair of source-destination
nodes is denoted by π = {p1,p2, . . . , pm}, where m is the
number of paths between any pair of source-destination
nodes. In such a model, L(π) = ∑m

i=1 L(pi) is used to rep-
resent the length of the multipath route.

The packet delivery probability of a path is represented
as γ (p) = ∏m

i=1 γ (vi). If there are m paths in a multipath
route between a pair of source-destination nodes, the packet
delivery probability of a multipath route, γ (π), determines
the probability that when multiple copies of the packets are
sent along all the m paths between the source-destination
pair, at least one copy is received. γ (π) is calculated as
γ (π) = 1 − ∏m

i=1(1 − γ (pi)).
The problem that we address in this paper is that of de-

termining a mechanism for fault-tolerant routing that would
route packets through mobile nodes in the above environ-
ment (i.e., in the presence of faulty nodes) by providing a
certain packet delivery rate guarantee, and at the same time
by routing the least number of duplicate packets through
multiple routes between a pair of source-destination nodes.
The reader should note that “blind” multipath routing algo-
rithms are capable of achieving a high packet delivery rate
guarantee, because they utilize the benefits of network re-
dundancy. However, their disadvantage is that they route du-
plicate packets through the multipath routes to provide such

a high packet delivery guarantee. Therefore, we seek a so-
lution that would provide a certain optimum packet delivery
rate guarantee, which at the same time would also reduce the
“overhead” routing that could burden the network by virtue
of the packet duplication mechanisms adapted by the exist-
ing “blind” multipath routing algorithms.

Another objective of our work is to propose an algorithm
that would be efficient in non-stationary environments, i.e.,
environments where the fault probability of a mobile node
increases as it moves away from the center of the network
in which it is supposed to operate. In other words, as a node
moves away from the center of the region of operation, the
likelihood of dropping packets also increases. This is an en-
hancement over the work by Xue and Nahrstedt [10].

3 The E2FT algorithm

In the interest of brevity, our present survey of the E2FT al-
gorithm is necessarily brief. The algorithm involves two ma-
jor phases: A route estimation phase, and a route selection
phase. The route estimation phase is used to estimate the
packet delivery probability of all the routes at the disposal
of the algorithm at any time instant. As opposed to this, the
route selection phase is used to select those routes that are
confirmed to have satisfied a certain optimization constraint,
and drop those routes from further consideration that are es-
timated to be unnecessary among all the available multipath
routes between a pair of source-destination nodes.

In the route estimation phase, the number of packets sent
depends on the level of accuracy desired through the esti-
mation process. Note that a superior estimation is achieved
by sending a large number of packets, with a tradeoff of the
overall high network overhead. The accuracy of the estima-
tion is achieved progressively through iterations.

The route selection algorithm works as follows. At the
beginning, since no estimation results are obtained, all paths
between a pair of source-destination nodes are selected to
route the packets. By using a suitable estimation criterion,
when the associated estimates of the paths are guaranteed to
be accurate enough, the paths are reviewed to either be con-
firmed as one of the routes that “wins” the selection process,
and be permanently used for routing all future requests, or
be dropped from further routing considerations.

4 Proposed solution

As mentioned earlier, the objective of our work is to propose
an efficient routing algorithm for MANETs, which will be
able to minimize the overhead by sending the least possible
number of redundant packets, while guaranteeing a certain
rate for the delivery of packets. The reader should recall that

162 B.J. Oommen, S. Misra

there is a tradeoff between the rate of delivery of packets and
the overhead. It is possible to achieve a very high packet de-
livery rate if the number of packets sent is not a concern
(e.g., by using the multipath routing scheme). On the other
hand, it is possible to achieve a very low overhead if we do
not care about the number of packets that are successfully
delivered (e.g., by using the DSR scheme). Thus, attempt-
ing to increase one, will decrease another, and vice versa.
What is challenging is how we can achieve a “balance” be-
tween the two. In other words, we need an algorithm that
will be able to minimize the overhead by guaranteeing a cer-
tain level of efficiency of the packet delivery process.

To achieve our objectives, we propose a stochastic
learning-based weak estimation fault-tolerant routing
scheme.

4.1 Weak estimation learning

In statistical problems involving random variables, the qual-
ity, reliability, and accuracy of the estimation are impor-
tant considerations. Traditionally, there have been different
estimation schemes proposed in the literature, which can
broadly be classified as either belonging to the Maximum
Likelihood Estimator (MLE) class of algorithms [3, 4], or as
belonging to the Bayesian family of algorithms [1, 3]. Al-
though the above estimation schemes have been proven to
be quite efficient, they work under the premise that the un-
derlying distribution in the environment is stationary, i.e.,
the estimated parameter does not vary with time. Together
with Rueda, the first author studied this problem [12, 13],
and proposed a novel estimation scheme for learning in non-
stationary environments.1 They considered the case where
the Bernoulli trials yielding binomially distributed outcomes
of random variables changed with time to new random val-
ues.

In our fault-tolerant routing solution, we have used this
efficient procedure for the estimation of the packet deliv-
ery probability through available paths. It is called the Sto-
chastic Learning Weak Estimator (SLWE) scheme2 [12, 13],
and is based on the stochastic learning paradigm. It uses a
learning parameter, λ, which does not influence the mean of
the final estimate. On the other hand, the variance of the fi-
nal distribution, and the speed of convergence decrease with
the increase in the value of the learning parameter. We now
present below the weak estimation scheme.

1The theory of these estimates is presented here, briefly, and without
the respective proofs. The details and the proofs can be included if
requested by the Referees.
2The term “weak” used in the SLWE estimator scheme refers to the
weak convergence of the random variable with respect to the first and
second moments only.

Let us consider a binomially distributed random vari-
able X, such that:

X =
{

0 with probability s0

1 with probability s1
(1)

such that s0 + s1 = 1, where S = [s0, s1]T .
At any time t , let X assume the value x(t). In order to

estimate s0 and s1, WELA keeps track of the running esti-
mate pi(t) of si at time t , where i = 0,1. In such a setting,
the value of p0 is updated using the following multiplicative
scheme:

p0(t + 1) =
{

λ × p0(t) if x(t) = 1

1 − λ × p1(t) if x(t) = 0
(2)

where λ is a constant (0 < λ < 1), called the learning para-
meter, and p1(t + 1) = 1 − p0(t + 1).

We now present below, without proof, some of the inter-
esting results (taken from [12]) concerning WELA.

Theorem 1 Let X be a binomially distributed random vari-
able, and P(t) be the estimate of S at time ‘t’. Then,
E[P(∞)] = S.

Theorem 2 If the components of P(t + 1) are obtained
from the components of P(t) as per (2), E[P(t + 1)] =
MT E[P(t)], where M is a stochastic matrix. Thus the lim-
iting value of the expectation of P(.) converges to S, and the
rate of convergence of P to S is fully determined by λ.

Theorem 3 Let X be a binomially distributed random vari-
able governed by the distribution S, and P(t) be the esti-
mate of S at time ‘t’, obtained by (2). Then, the algebraic ex-
pression for the variance of P(∞) is fully determined by λ.

4.2 Proposed algorithm

We use the above-mentioned weak-estimation learning
scheme to propose a new fault-tolerant routing algorithm,
named Weak-Estimation-Based Fault Tolerant Routing
Algorithm (WEFTR), which is capable of efficiently estimat-
ing the probability of delivery of packets through the paths
available at any moment. Like the E2FT algorithm [10], the
WEFTR algorithm involves, among other steps, a route esti-
mation phase, and a route selection phase. The route estima-
tion phase is used to estimate the packet delivery probability
of all the routes at the disposal at any time instant, whereas
the route selection phase is used to select those routes that
are confirmed to have satisfied a certain optimization con-
straint, and drop the unnecessary multipath routes between
a pair of source-destination nodes.

Fault-tolerant routing in adversarial mobile ad hoc networks: an efficient route estimation scheme 163

In the route estimation phase, N packets are sent along
a path p. The source node estimates the fraction of pack-
ets delivered, γ̂ (p) from the number of packets N ′ that are
received along that path.3

In our strategy, the estimate of the packet delivery prob-
ability is refined with the increase in the number of it-
erations. In every iteration, a set of packets is transmit-
ted through each of the multipath routes between a pair of
source-destination nodes. We can have two possible scenar-
ios for any path: the nodes in a path either forward the pack-
ets correctly, or they do not. Consequently, we can use a
binomial estimation scheme (based on the above SLWE) as
follows:

γ̂0(p) =

⎧
⎪⎪⎨

⎪⎪⎩

λ × γ̂0(p) if the path does not forward
the packet correctly

1 − λ × γ̂1(p) if the path forwards
the packet correctly

(3)

where λ is the learning parameter, such that 0 < λ < 1, and
γ̂1(p) = 1 − γ̂0(p).

In our route selection algorithm, for a path to be con-
firmed, the following condition should be satisfied:
γ̂WE (p) ≥ γ ∗, where γ ∗ is the minimum packet delivery
probability required for a path to be confirmed, and γ̂WE (p)

is the packet delivery probability estimate using the weak-
estimation scheme presented in equation (3). Once a path
is confirmed, it is considered to be useful for routing future
requests, and so no further estimation is carried out on that
path.

The dropping algorithm selects a path, pmin, from all the
available paths, π , with the minimum packet delivery esti-
mation value, where the latter is examined to see if the fol-
lowing dropping condition [10] is satisfied:

γ̂
WE1/m

(π ′) ≥ γ ∗

where γ̂
WE1/m

(π ′) = 1 −
∏

p∈π ′
(1 − γ̂

WE1/m
(p))

and π ′ = π − {pmin} (4)

We present below a high level sketch of the proposed al-
gorithm.

Algorithm WEFTR

Input

• A graph (network) with a set of nodes, and a set of links
connecting the nodes.

• The nodes are mobile, and links connecting them can be
reset with the change in the position of the nodes.

3Traditionally, this is estimated as: γ̂ (p) = N ′
N

.

• Some of the nodes in the network are faulty with a certain
packet delivery rate dependent on the distance of the node
from the center of the area of mobility of the mobile nodes
(simulation area).

Output

• All the incoming packets are delivered from the source
node to the destination node (with the intention of maxi-
mizing the packet delivery rate, and minimizing the net-
work overhead).

Algorithm

BEGIN

Step 0 (initialization) Initialize a vector WEFTR_MP that
stores all the paths in use, and WEFTR_Nodes that stores
all the nodes in the graph, with information about their esti-
mated packet delivery probability.

At each second, do the following:

Case 1: If the second is a simulation pause then
Step 1. Save the estimated packet delivery probability of

each node in the vector WEFTR_Nodes.
Step 2. Update the edges and probabilities in the graph

to reflect the current position of the nodes and
calculate the new paths from the source to the
destination.

Step 3. Use the values stored in WEFTR_Nodes in order
to calculate the estimated packet delivery proba-
bility of each path.

Case 2: At each second
Step 4. Try to confirm or drop paths. Paths dropped are

removed from the WEFTR_MP vector.
Step 5. Use all the paths in the WEFTR_MP vector to

send the packets, and calculate the number of
packets that are received for each path, and the
total number of non-duplicated packets that are
received.

END

4.3 Experimental details

In order to determine how the performance of the proposed
algorithm compares with other competing algorithms,4 we

4There are currently quite a few algorithms (and their variants) reported
in the literature that claim to solve the present problem. It is clearly im-
possible to compare any single algorithm with all of them. But we have
opted to compare our new algorithms with individual schemes that
represent the various “families” of strategies reported—as described
in Sect. 1.1. The rationale for choosing these is that we believe that
it represents a reasonably fair comparison against the entire spectrum
of philosophies motivating the algorithms. We are currently doing a
more comprehensive comparison (including the testing on “real-life”
network topologies).

164 B.J. Oommen, S. Misra

simulated an ad hoc network with mobile nodes, and dy-
namically changing topologies, and ran our proposed algo-
rithm along with the other benchmark algorithms (described
in the next section) in the simulated environment.

4.3.1 Simulation environment

The simulated environment that we considered consists of
a flat square of length 500 meters. There are 50 nodes in
the network, each having a different data delivery probabil-
ity which decreases as they move away from the center of
the square, and increases as they move closer to it. In other
words, if we fix a node in the centre of the square, the reli-
ability of data delivery to its peer nodes and vice versa de-
creases as those peer nodes move far away from it. This can
happen due to diminishing signal strength between any pair
of communicating wireless devices when they move away
from each other. Furthermore, to assume that things are done
in a systematic way as per the benchmark accepted “stan-
dards” we assume that each node moves randomly, follow-
ing the random waypoint model.5 If after a random move
as per equations (5) and (6), a node reaches the edge of the
square, then the move is canceled and a new random move
for the same is done until it lands in a valid position. In our
simulated ad hoc network, we assumed that the maximum
speed with which the mobile nodes can travel is 20 m/s. Ob-
serve that the nodes move at each time unit, but the links
between them are only recalculated at a simulation pause.6

The maximum speed of a node specified above (i.e., 20 m/s)
is needed to calculate how much a node can move in a sec-
ond. This is because the position of a node at the ith second
is calculated as:

Xpos(i) = Xpos(i − 1) + randnum (5)

Ypos(i) = Ypos(i − 1) + randnum (6)

In the above, Xpos(i − 1) and Ypos(i − 1) denote the
abscissa and ordinate of a node in the previous second (or
time instant), and Xpos(i) and Ypos(i) denote the abscissa
and ordinate, respectively, of the corresponding node at the
current second (or time instant). If the maximum speed is
20 m/s, the random shown above is a random number gen-
erated between −20 and +20.

5The details of this model can be found at http://www.netlab.tkk.fi/
~esa/java/rwp/rwp-model.shtml.
6Here we assume that the links between the nodes in the network do
not get “torn down” with every movement of the nodes in the network.
In other words, we assume that the links in the network remain con-
nected until a certain time (i.e., the pause time). The alternative could
have been to recompute the links in the network with a unit movement
of nodes. The former, according to our view (although debatable), is
more realistic. Additionally, recomputing the links with every move-
ment of the nodes in the network would lead to a prohibitively large
computational overhead.

The maximum distance two nodes can have for which
they are connected (they can deliver packets to each other) is
directly dependent on the simulation parameter “Sparsity”.
The Sparsity of the network is an attribute that signifies how
the nodes connect with one another. It denotes a coefficient
whose value ranges between 0 and 1: A value of 1 signifies
that very few edges (100% sparse coefficient) connect with
one another, whereas a value of 0 signifies that the maximum
possible number of nodes connect with one another (i.e., a
0% sparse coefficient). The reader should observe that in the
simulation there is no fixed number of links in the networks.
The links are recalculated at each simulation pause. This is
because two nodes are considered to have a link if they are
within a certain distance of each other. So the Sparsity di-
rectly influences this distance.

Another parameter that is used in the simulations is called
the pause time. It signifies how the algorithms accommodate
to node mobility. This parameter defines the time interval af-
ter which the links are recomputed. Each of the simulations
was run for 500 seconds. During the simulation period, ran-
domly bit rate (CBR) traffic was generated between a pair of
nodes randomly with a rate of 10 KB/s. Also, during the sim-
ulations the learning parameter was kept constant, although,
as mentioned earlier, the learning parameter does not influ-
ence the mean of the final estimate.

We determine how far a node is from the center of the
square, by measuring its Euclidean distance from the center.

4.3.2 Benchmark algorithms

In order to establish how our algorithm performs when com-
pared to the existing algorithms, we selected three algo-
rithms, all of which were executed together with our pro-
posed algorithm in the simulated environment. The three al-
gorithms we chose as benchmark algorithms are:

1. DSR Algorithm
2. Multipath Routing Algorithm
3. E2FT Algorithm7

Of all these three algorithms, E2FT represents the state-
of-the-art in the area of fault tolerant routing in MANETs,
and so, we reckoned that the performance comparison be-
tween our algorithm, and E2FT is crucial. However, since
DSR and the multipath routing algorithms are currently
widely used in deployed MANETs, they were also consid-
ered. Although DSR is a simple routing algorithm, it is weak
when it concerns routing information in the presence of mal-
functioning nodes. On the other hand, the multipath routing
is, perhaps, a very strong routing algorithm in terms of rout-
ing information when there are misbehaving nodes. But, as

7In our study, to be fair to the competition, we consider the optimized
version of E2FT that provides an optimization methodology—namely
one that takes the mobility of the nodes into account.

http://www.netlab.tkk.fi/~esa/java/rwp/rwp-model.shtml
http://www.netlab.tkk.fi/~esa/java/rwp/rwp-model.shtml

Fault-tolerant routing in adversarial mobile ad hoc networks: an efficient route estimation scheme 165

mentioned earlier, the greatest limitation of multipath rout-
ing is that it brings with it a large network overhead, as it
loads all relevant routes between a pair of source-destination
nodes with redundant packets, so as to ensure that the desti-
nation node receives at least one correct copy of the packet
sent from the source.

4.3.3 Performance metrics

Two metrics were used for evaluating the performance of the
algorithms invoked in the experiments:

1. Percentage of packets delivered: This represents the rate
of successful delivery of packets to the destination. This
is calculated as follows. At each second, the packet deliv-
ery probability of all the paths in use is calculated. Then,
for each packet sent at that time unit, a random number
between 0 and 1 is generated. If the number is lower than
the packet delivery probability, the packet is considered
as delivered. After all the iterations, the percentage of de-
livered packets is calculated as follows:

percentage delivered packets

= total number of delivered packets

total number of sent packets

2. Overhead: This represents the overall number of packets
sent. The overhead is calculated as the product of the total
length of all paths in use, and the number of packets sent
per second.

4.3.4 Experimental results

Several experiments were conducted to assess the perfor-
mance of WEFTR (the proposed algorithm) with respect to

the benchmark algorithms. The results of the following three
sets of experiments are presented below:

• Variation in pause time
• Variation in sparsity
• Variation in faultiness of nodes

Variation in pause time As noted earlier, the pause time is
a parameter specific to the simulation, which indicates how
much an algorithm is capable of accommodating the mobil-
ity of the nodes. As seen from Fig. 1, we notice that just
with respect to the overhead, the blind multipath routing is
the worst, the DSR the best, and the E2FT somewhere in be-
tween the DSR and multipath curves. This is, of course, un-
derstandable. Our proposed algorithm further improves on
the performance of E2FT by decreasing the overhead by 25–
50%. For example, when the pause time is 250 seconds, the
overhead for the multipath routing is 19,790, that for E2FT
is 8,740, and for WEFTR it is 7,225. On the other hand, from
Fig. 2, we observe that WEFTR achieves an almost similar
order of performance when compared to E2FT. By examin-
ing Figs. 1 and 2 together, we can infer that our proposed
algorithm (WEFTR) is capable of significantly reducing the
overhead of the currently best available fault tolerant rout-
ing algorithm (E2FT), while achieving a performance packet
delivery guarantee of at least 80%. Considering both these
issues, it is clear that our algorithm always performs much
better than both the DSR and the blind multipath routing
schemes.

Variation in sparsity In the second set of experiments,
we intended to study how the algorithms compare with re-
spect to one another with the variation in the Sparsity of
the nodes in the network. The value of Sparsity ranges be-
tween 0 and 1, where 0 represents the least percentage of

Fig. 1 Plot of overhead versus
pause time for the various
algorithms tested

166 B.J. Oommen, S. Misra

Fig. 2 Plot of percentage
packets delivered versus pause
time for the various algorithms
tested

Fig. 3 Plot of overhead versus
sparsity for the various
algorithms tested

Sparsity, and 1 represents the greatest percentage of Spar-
sity. Since the nodes are mobile, how often they connect de-
pends on how close they can get to one another, and this is
thus directly related to the Sparsity. The different Sparsity
values used in our experiments indicate the relative number
of edges between the nodes in the network.

Figures 3 and 4 show the performance comparison of all
the examined algorithms with respect to the overall over-
head, and the percentage of packets successfully routed by
the algorithms. From Fig. 3, we can clearly observe that even
at different values of Sparsity, E2FT is capable of signif-
icantly reducing the overall overhead. For example, when
the value of Sparsity is 0.25, the overhead for the multipath
routing is 32,320, that of the E2FT scheme is 11,410. As

opposed to this, the overhead for our proposed algorithm is
5,570. It should also be observed that the performance of
E2FT is much better at lower Sparsity values than at the
higher ones. On the other hand, if we look at Fig. 4, we
can observe that, in general, the percentage of packets de-
livered by both E2FT and WEFTR are similar. Thus, for
this set of experiments as well, we observe that WEFTR
significantly reduces the overhead when compared to both
the E2FT and blind multipath routing algorithms. This is
done while achieving performance comparable to that of the
E2FT or the schemes multipath (and certainly much better
performance than that of the DSR algorithm) with respect to
the number packets successfully routed.

Fault-tolerant routing in adversarial mobile ad hoc networks: an efficient route estimation scheme 167

Fig. 4 Plot of percentage of
packets delivered versus sparsity
for the various algorithms tested

Fig. 5 Plot of overhead versus
faultiness parameter for the
various algorithms tested

Variation in faultiness Faultiness is an internal simulation
parameter that indicates how many nodes will be faulty8 in
a given environment. It influences the faultiness behavior of
the nodes, given their distance from the center of the region
of operation of the nodes. Figures 5 and 6 show the vari-
ation in overhead, and the percentage of delivered packets,
with the variation in the faultiness parameter. In our exper-
iments, we have used the faultiness parameter to vary in a
scale from a very low value to a very high value (i.e., on a
scale of 0 to 1). We observe that, even in this set of exper-
iments, our proposed algorithm demonstrates a much better

8In our simulations, we assume that the faulty nodes do not deliver any
packets at all.

performance as compared to the other algorithms. For ex-
ample, at the faultiness parameter value of 0.25, the over-
head for blind multipath routing is 13,690, for the E2FT it
is 5,240, while it is 3,150 for the case of the WEFTR. Thus,
in this case, our algorithm shows an improvement of about
62% over multipath routing, and an improvement of about
40% over E2FT algorithm. All of these algorithms, how-
ever, in general, show comparable performance with respect
to the percentage of successfully delivered packets.

5 Conclusions

In this paper we have reported the results of the study of an
interesting, yet challenging, problem of fault tolerant rout-

168 B.J. Oommen, S. Misra

Fig. 6 Plot of percentage of
delivered packets versus
faultiness parameter for the
various algorithms tested

ing in MANETs. The problem is that of efficiently routing
packets in MANETs, in adversarial environments particu-
larly, when there are misbehaving nodes present in the net-
work. Thus, in essence, we have attempted to devise an al-
gorithm, which is able to successfully route packets by “tol-
erating” faults in the network. There are two principal met-
rics that characterize any fault tolerant routing algorithm de-
signed for MANETs: (1) The overhead, and (2) The percent-
age of successfully delivered packets. The traditional algo-
rithms, the DSR and the multipath routing, have the poten-
tial to attain two extremes of each goal metric. While the
multipath routing is a very strong algorithm for maximizing
the number of successfully delivered packets, it introduces
an extremely large overhead on the network. On the other
hand, the DSR has a low overhead, but it simultaneously is
a very poor fault tolerant routing algorithm, because it will
drop packets if there are problems in the route identified by
the algorithm. The E2FT algorithm proposed by Xue and
Nahrstedt [10] is capable of minimizing the overhead when
compared to the multipath routing algorithm, while achiev-
ing a similar order of performance (slightly inferior, to be
precise) with respect to the number of packets successfully
delivered.

Since the nodes are mobile, it turns out that the random
variables encountered are non-stationary, implying that es-
timation methods for stationary variables are inadequate.
Consequently, in this paper, we have presented a new fault-
tolerant routing scheme that invokes a stochastic learning-
based weak estimation procedure to enhance a route es-
timation phase, which, in turn, is then incorporated in a
route selection phase. Our algorithm significantly reduces
the overhead over the E2FT algorithm, while achieving a
performance comparable (as far as the number of success-
fully delivered packets are concerned), and simultaneously

minimizing the overhead. By rigorous simulation, we have
shown that our algorithm was successful in achieving the
above goal.

In the future, we intend to test our proposed scheme on
more realistic networks and topologies, and to also consider
how alternate sequence-based estimates can also be utilized
advantageously to solve the same problem.

References

1. Bickel, P., & Doksum, K. (2000). Mathematical statistics: basic
ideas and selected topics (Vol. 1, 2nd ed.). New York: Prentice
Hall.

2. Caro, G. D., Ducatelle, F., & Gambardella, L. M. (2004). AntHoc-
Net: an ant-based hybrid routing algorithm for mobile ad hoc net-
works. Technical Report No. IDSIA-25-04-2004, Dalle Molle In-
stitute for Artificial Intelligence, Switzerland, August 2004. (Also
appeared in The Proceedings of parallel problem solving from na-
ture VIII. LNCS (Vol. 3242, pp. 461–470), Springer, Berlin, 2004.

3. Duda, R., Hart, P., & Stork, D. (2000). Pattern classification
(2nd ed.). New York: Wiley.

4. Herbich, R. (2001). Learning kernel classifiers: theory and algo-
rithms. Cambridge: MIT Press.

5. Johnson, D. B., & Maltz, D. A. (1996). Dynamic source routing
in ad hoc wireless networks. In Mobile computing (pp. 153–181).
Dordrecht: Kluwer Academic.

6. Marina, M. K., & Das, S. R. (2001). On-demand multipath dis-
tance vector routing in ad hoc networks. In Proceedings of the 9th
international conference on network protocols, Riverside, Califor-
nia (pp. 14–23).

7. Mueller, S., Tsang, R.P., & Ghosal, D. (2004). Multipath rout-
ing in mobile ad hoc networks: issues and challenges. In M. C.
Calzarossa & E. Gelenbe (Eds.), Lecture notes in computer sci-
ence (Vol. 2964). Berlin: Springer.

8. Nelakuditi, S., & Zhang, Z.-L. (2001). On selection of paths for
multipath routing. In LNCS: Vol. 2092. Proceedings of the 9th in-
ternational workshop on quality of service. London: Springer.

9. Perkins, C. E., & Royer, E. M. (1999). Ad-hoc on-demand dis-
tance vector routing. In Proceedings of the 2nd IEEE workshop

Fault-tolerant routing in adversarial mobile ad hoc networks: an efficient route estimation scheme 169

on mobile computing systems and applications, New Orleans,
Louisiana (pp. 207–218).

10. Xue, Y., & Nahrstedt, K. (2003). Fault tolerant routing in mo-
bile ad hoc networks. In Proceedings of the IEEE wireless com-
munications and networking conference (WCNC), New Orleans,
Louisiana, March 2003 (pp. 1174–1179).

11. Xue, Y., & Nahrstedt, K. (2004). Providing fault-tolerant ad hoc
routing service in adversarial environments. Wireless Personal
Communications, 29, 367–388.

12. Oommen, B. J., & Rueda, L. (2006). Stochastic learning-based
weak estimation of multinomial random variables and its applica-
tions to pattern recognition in non-stationary environments. Pat-
tern Recognition, 39, 328–341.

13. Oommen, B. J., & Rueda, L. (2004). A new family of weak es-
timators for training in non-stationary distributions. In Proceed-
ings of the 2004 international symposium on structural, syntactic,
and statistical pattern recognition, Lisbon, Portugal, August 2004
(pp. 644–652).

14. Wu, K., & Harms, J. (2001). On-demand multipath routing for
mobile ad hoc networks. In Proceedings of EMPCC, Vienna, Feb-
ruary 2001 (pp. 1–7).

B. John Oommen was born in
Coonoor, India on September 9,
1953. He obtained his B.Tech. de-
gree from the Indian Institute of
Technology, Madras, India in 1975.
He obtained his M.E. from the In-
dian Institute of Science in Banga-
lore, India in 1977. He then went
on for his M.S. and Ph.D. which
he obtained from Purdue University,
in West Lafayettte, Indiana in 1979
and 1982 respectively. He joined the
School of Computer Science at Car-
leton University in Ottawa, Canada,

in the 1981–82 academic year. He is still at Carleton and holds the rank
of a Full Professor. Since July 2006, he has been awarded the honorary
rank of Chancellor’s Professor, which is a lifetime award from Car-
leton University. His research interests include Automata Learning,
Adaptive Data Structures, Statistical and Syntactic Pattern Recogni-
tion, Stochastic Algorithms and Partitioning Algorithms. He is the au-
thor of more than 320 refereed journal and conference publications,
and is a Fellow of the IEEE and a Fellow of the IAPR. Dr. Oommen is
on the Editorial Board of the IEEE Transactions on Systems, Man and
Cybernetics, and Pattern Recognition.

Sudip Misra is a Doctoral stu-
dent at Carleton University, in Ot-
tawa, Canada. Prior to this, he re-
ceived his Masters and Bachelors
Degrees from the University of New
Brunswick (Fredericton, Canada),
and the Indian Institute of Technol-
ogy (Kharagpur, India) respectively.
He has several years of experience
working in academia, government
and the private sectors. Sudip has
worked in R&D projects in project
management, architecture, software
design, and product engineering

roles at Nortel Networks (Ottawa, Canada), Atreus Systems Corpo-
ration (Ottawa, Canada), and the Government of Ontario (Toronto,
Canada). His current research interests include algorithm design and
experimentation for high-performance, and high-speed Telecommuni-
cation Networks (with a special inclination towards technologies like
SNMP, ATM, MPLS/GMPLS, and DWDM for optical networks). His
other research interests include Learning Automata, Empirical Soft-
ware Engineering, and Software Quality. He has published several re-
search papers in journals and international conferences, and also re-
ceived a few research awards.

	Fault-tolerant routing in adversarial mobile ad hoc networks: an efficient route estimation scheme for non-stationary environments
	Abstract
	Introduction
	Motivation behind our work and our contributions

	Problem model
	The E2FT algorithm
	Proposed solution
	Weak estimation learning
	Proposed algorithm
	Experimental details
	Simulation environment
	Benchmark algorithms
	Performance metrics
	Experimental results
	Variation in pause time
	Variation in sparsity
	Variation in faultiness

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

