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Abstract While training and estimation for Pattern Recog-
nition (PR) have been extensively studied, the question of
achieving these when the resources are both limited and con-
strained is relatively open. This is the focus of this paper.
We consider the problem of allocating limited sampling re-
sources in a “real-time” manner, with the explicit purpose of
estimating multiple binomial proportions (the extension of
these results to non-binomial proportions is, in our opinion,
rather straightforward). More specifically, the user is pre-
sented with ‘n’ training sets of data points, S1, S2, . . . , Sn,
where the set Si has Ni points drawn from two classes
{ω1,ω2}. A random sample in set Si belongs to ω1 with
probability ui and to ω2 with probability 1 − ui , with {ui},
i = 1,2, . . . n, being the quantities to be learnt. The problem
is both interesting and non-trivial because while both n and
each Ni are large, the number of samples that can be drawn
is bounded by a constant, c. A web-related problem which
is based on this model (Snaprud et al., The Accessibility for
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All Conference, 2003) is intriguing because the sampling
resources can only be allocated optimally if the binomial
proportions are already known. Further, no non-automaton
solution has ever been reported if these proportions are un-
known and must be sampled.

Using the general LA philosophy as a paradigm to tackle
this real-life problem, our scheme improves a current so-
lution in an online manner, through a series of informed
guesses which move towards the optimal solution. We solve
the problem by first modelling it as a Stochastic Non-
linear Fractional Knapsack Problem. We then present a
completely new on-line Learning Automata (LA) system,
namely, the Hierarchy of Twofold Resource Allocation Au-
tomata (H-TRAA), whose primitive component is a Twofold
Resource Allocation Automaton (TRAA), both of which
are asymptotically optimal. Furthermore, we demonstrate
empirically that the H-TRAA provides orders of magni-
tude faster convergence compared to the Learning Automata
Knapsack Game (LAKG) which represents the state-of-the-
art. Finally, in contrast to the LAKG, the H-TRAA scales
sub-linearly. Based on these results, we believe that the H-
TRAA has also tremendous potential to handle demanding
real-world applications, particularly those dealing with the
world wide web.

Keywords Sample size determination · Training with
constrained resources · Constrained estimation for pattern
recognition · Nonlinear knapsack problems · Hierarchical
learning · Learning automata · Stochastic optimization

1 Introduction

In this paper we consider the fascinating problem of learning
distributions when the number of “Classes” is large, and the
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number of elements (i.e., data points) per class is also large,
but when the resources available for obtaining data points
are limited. In particular, we concentrate on methods which
are forced to resort to sampling techniques because of the
cardinalities of the set of classes and of the set of data points
per class.

The phenomenon of estimation, although central to al-
most all aspects of science, engineering, research and the
analysis of data, universally assumes that the observation
of the events whose properties are to be estimated is feasi-
ble. Thus, for example, if we intend to learn the parameters
of a Bernoulli distribution, we assume that we have access
to the “Number of Heads and Tails” that have occurred in
any experiment. At one extreme, such data points are abun-
dant, making it possible to obtain reliable estimates for all
involved parameters. However, in many cases (for example,
in the PR of medical conditions), data points are not abun-
dantly available. At the other extreme of the spectrum, we
encounter situations when the underlying events associated
with the estimation process may even be unobservable. In
an earlier paper [32], which to the best of our knowledge
was pioneering in this vein, we discussed how estimation
could be achieved and how the corresponding actions (de-
cisions) could be taken in such an “unobservable” setting.
In less severe, and perhaps more typical situations, however,
while observation of data points is feasible, the resources
available for performing the observations may be limited.
As a result, the data points must then be carefully obtained
within the available resource bounds, in order to ensure as
reliable estimates as possible. This is the primary focus of
this paper—which, to the best of our knowledge, is a rela-
tively little-studied problem.

We briefly explain the spectrum of problems alluded to
above. The theory of estimation has been studied for hun-
dreds of years [2, 5, 14, 22, 23, 25]. Besides, the learning
(training) phase of a statistical pattern recognition system is,
indeed, based on estimation theory [7, 9, 13, 29]. Estimation
methods generally fall into various categories, including the
Maximum Likelihood Estimates (MLE) and the Bayesian
family of estimates [2, 5, 7, 9] which are well-known for
having good computational and statistical properties. Con-
sider the strategy used for developing the MLE of the para-
meter of a distribution, fX(θ), whose parameter to be esti-
mated is θ . The input to the estimation process is the set of
points X = {x1, x2, . . . , xN }, which are assumed to be gen-
erated independently and identically as per the distribution,
fX(θ). The process involves deriving the likelihood func-
tion, i.e., the likelihood of the distribution, fX(θ), generat-
ing the sample points X given θ , which is then maximized
(by traditional optimization or calculus methods) to yield
the estimate, θ̂ . The general characteristic sought for is that
the estimate ̂θMLE converges to the true (unknown) θ with
probability one, or in a mean square sense. Bayesian and

MLE estimates generally possess this desirable phenom-
enon. Typically, at one end of the spectrum, the assumption
is that the data points are available so that the practitioner
can obtain “meaningful” estimates.

We emphasize though that, the whole process is mean-
ingless if we are not provided the sequence X . Requiring
the estimation of the parameters of the distribution generat-
ing X without being provided with any information1 about
X would be tantamount to “spinning gold out of straw”.
This constitutes the problem at the other end of the spec-
trum, namely, where one has to do training, learning and de-
cision making when the events themselves are unobservable,
which has been tackled in [32].

A problem in the middle of this spectrum is the one en-
countered when the points can be made available, but the re-
sources to accomplish the estimation/training are both con-
strained and limited. While this may sound hypothetical, it
truly is a relevant problem when one has to construct a good
training set when the observations themselves are expensive,
as in the medical domain. This situation also presents it-
self in cases when the domain is large, as in the problems
(explained later) that deal with the world-wide web. In this
paper we shall consider how we can extend learning (i.e.,
estimation and training) principles to the case when we are
permitted to include “Constrained Sampling” in the process.
However, to render the problem both interesting and non-
trivial, we concentrate on the scenario when the number of
classes and the size of the points per class is “large”, while
the number of samples that can be drawn is bounded by a
constant. The intricacy of the problem becomes even more
obvious if we note that a knowledge of the distributions for
each class automatically leads to the optimal allocation of
sampling resources—but these are the very quantities which
are to be estimated. Hence the paradox!

The problem studied in this paper can be stated as fol-
lows: We consider the case when the user is presented with
‘n’ sets of data points, S1, S2, . . . , Sn (see Fig. 1). The set
Si has Ni points drawn from two classes {ω1,ω2}. A ran-
dom sample in set Si belongs to ω1 with probability ui and
it belongs to ω2 with probability 1 − ui . The problem we
study involves estimating {ui} for i = 1,2, . . . , n. However,
to render the problem both meaningful and non-trivial, we
assume that we are allowed to sample a maximum of only
c points from the collective group of sets, {Si}, and thus
we have to determine how samples must be drawn (with re-
placement) from each set so that we can obtain both accu-
rate and efficient estimates of {ui}. The purpose is to make
the estimates as accurate as possible, and so, we will here

1It is possible to get very good estimates of θ if one is provided with
random occurrences of a known function of X. Thus, instead of receiv-
ing {Xi}, if we are provided with {Yi}, where, for example, if each
Yi = X2

i , an MLE can be easily devised to estimate θ by observing
the Yi ’s.
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Fig. 1 The figure shows three sets S1, S2 and S3 containing elements
of two classes ‘x’ and ‘o’. Since S1 is homogenous and contains ele-
ments of only one class (‘x’), a single sample is sufficient to determine
this. Sets S2 and S3 are non-homogenous, although the proportions of
the classes in each is different. The problem involves determining how
the sampling is to be done when the proportions are unknown

pursue the goal of minimizing the variance of the propor-
tion estimates when the total number of samples available
for estimating the proportions is bounded by c. While brute
force approaches to solve this problem can be easily de-
vised, our aim is to arrive at a solution without exhaustively
searching the search space, and by mapping it to a family of
well-known problems, namely the family of knapsack prob-
lems.

1.1 Applications of these results

The world wide web is an extremely vast resource-thirsty
field, which probably consumes a major portion of the com-
puting resources available today. Searching, updating and
examining web-pages is, undoubtedly, one of the primary
tasks done by both individuals and companies today. This,
in turn, leads to numerous extremely interesting real-life re-
source allocation and scheduling problems, and the problem
that we emphasize in this paper is closely related to the so-
called “Web Monitoring” problem.

Web page monitoring consists of repeatedly polling a se-
lection of web pages (sites) so that the user can infer the
contents of the documents at the respective sites. Clearly, as
this task can be prohibitively expensive, in practical applica-
tions, the system imposes a constraint on the maximum num-
ber of documents at a web page that can be polled per unit
of time. This bound is dictated by the governing commu-
nication bandwidth, and by the speed limitations associated
with the processing. Since only a fraction of the web pages
can be polled within a given unit of time, the problem which
the system’s analyst encounters is one of determining which
web pages are to be examined, and the subset of documents
to be examined at the site (once it is being examined). For

example, consider the problem of investigating the number
of documents in a site which are written in English or Nor-
wegian. Clearly, it is not feasible to examine every single
document in every single site. However, if one resorts to
sampling, the question is one of knowing how documents
from any site should be drawn. If any set Si is homogenous
(i.e., all the documents are in a given language), it is suffi-
cient to examine only a single document in that class. The
other extreme is the trivial case, when all the proportions are
known. In such a case, the optimal sampling proportion is re-
lated to the latter proportions—which is the very quantity to
be estimated. We refer the reader to Fig. 1 which concerns
three classes. Clearly the number of samples to be drawn
from each set depends on the homogeneity of the respective
classes—which is what the learning problem entails.

The problem we study is also exactly the one encoun-
tered when, for instance, the task at hand is to determine the
proportion of a web site that is successfully validated by an
HTML validator [24] and/or a WCAG accessibility valida-
tor [31], and that n web sites are to be evaluated by only
accessing c web pages.

The analogous parallel for the medical domain would be
that of sampling individuals from different categories (for
example, smokers versus non-smokers), where individuals
of each category are found in different training sets. The is-
sue here is that the testing of the individuals for a specific
condition (say lung cancer) can be prohibitively expensive,
and so the system is constrained to examine at most c indi-
viduals.

Although this problem is quite general, we shall proceed
to solve it by suggesting that it falls within the model of
knapsack-based problems.

1.2 Formal formulation as a knapsack problem

We first formulate, in a fairly general setting, a set of
knapsack-based problems that are, in actuality, related to the
web-polling and web monitoring problems. Indeed, we ad-
dress one such model which can be translated into a family
of problems:

Imagine that you have to allocate a limited amount of
time among n different activities. The problem is such
that spending a time instant on an activity randomly
produces one of two possible outcomes—the time in-
stant is either spent “fruitfully” or “unfruitfully”. In
this generic setting, your goal is to maximize the ex-
pected amount of fruitfully spent time. Unfortunately,
you are only given the following information regard-
ing the activities:

1. Each instant of time spent on an activity has a cer-
tain probability of being fruitful, and
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2. This probability decreases with the amount of time
spent on the activity.

To render the problem even more realistic, you do not
have access to the probabilities themselves. Instead,
you must rely on solving the problem by means of trial-
and-error, i.e., by attempting different allocations, and
observing the resulting random outcomes.

Instances of the above problem can be formulated as in-
stantiations of the Stochastic Non-linear Fractional Equality
Knapsack (NEFK) Problem as clarified earlier [10–12], and
as further explained below.

1.3 Related work and state-of-the-art

In order to appreciate the qualities of the Stochastic NEFK
Problem, it is beneficial to view the problem in the light
of the classical linear Fractional Knapsack (FK) Problem,
which is what we shall do now.

1.3.1 Related foundational problems

The linear fractional knapsack (FK) problem The linear
FK problem is a classical continuous optimization prob-
lem which also has applications within the field of resource
allocation. The problem involves n materials of different
value vi per unit volume, 1 ≤ i ≤ n, where each material
is available in a certain amount xi ≤ bi . Let fi(xi) denote
the value of the amount xi of material i, i.e., fi(xi) = vixi .
The problem is to fill a knapsack of fixed volume c with
the material mix �x = [x1, . . . , xn] to yield a maximal value
∑n

1 fi(xi) [3].

The nonlinear equality FK (NEFK) problem One impor-
tant extension of the above classical problem is the Non-
linear Equality FK problem with a separable and con-
cave objective function. The problem can be stated as fol-
lows [15]:

maximize f (�x) =
n

∑

1

fi(xi)

subject to
n

∑

1

xi = c and ∀i ∈ {1, . . . , n}, xi ≥ 0.

Since the objective function is considered to be concave,
the value function fi(xi) of each material is also concave.
This means that the derivatives of the material value func-
tions fi(xi) with respect to xi (hereafter denoted f ′

i ), are
non-increasing. In other words, the material value per unit
volume is no longer constant as in the linear case, but de-
creases with the material amount, and so the optimization

problem becomes:

maximize f (�x) =
n

∑

1

fi(xi),

where fi(xi) =
∫ xi

0
f ′

i (xi)dxi

subject to
n

∑

1

xi = c and ∀i ∈ {1, . . . , n}, xi ≥ 0.

Efficient solutions to the latter problem, based on the prin-
ciple of Lagrange multipliers, have been devised. In short,
the optimal value occurs when the derivatives f ′

i of the ma-
terial value functions are equal, subject to the knapsack con-
straints [4, 8]:

f ′
1(x1) = · · · = f ′

n(xn),

n
∑

1

xi = c and ∀i ∈ {1, . . . , n}, xi ≥ 0.

The stochastic NEFK problem In this paper we general-
ize the above nonlinear equality knapsack problem. First of
all, we let the material value per unit volume for any xi be
a probability function pi(xi). Furthermore, we consider the
distribution of pi(xi) to be unknown. That is, each time an
amount xi of material i is placed in the knapsack, we are
only allowed to observe an instantiation of pi(xi) at xi , and
not pi(xi) itself. Given this stochastic environment, we in-
tend to devise an on-line incremental scheme that learns the
mix of materials of maximal expected value, through a se-
ries of informed guesses. Thus, to clarify issues, we are pro-
vided with a knapsack of fixed volume c, which is to be
filled with a mix of n different materials. However, unlike
the NEFK, in the Stochastic NEFK Problem the unit volume
value of a material i, 1 ≤ i ≤ n, is a random quantity—it
takes the value 1 with probability pi(xi) and the value 0 with
probability 1 − pi(xi), respectively. As an additional com-
plication, pi(xi) is nonlinear in the sense that it decreases
monotonically with xi , i.e., xi1 ≤ xi2 ⇔ pi(xi1) ≥ pi(xi2).

Since unit volume values are random, we operate with
the expected unit volume values rather than the actual unit
volume values themselves. With this understanding, and the
above perspective in mind, the expected value of the amount
xi of material i, 1 ≤ i ≤ n, becomes fi(xi) = ∫ xi

0 pi(u)du.
Accordingly, the expected value per unit volume2 of mate-
rial i becomes f ′

i (xi) = pi(xi). In this stochastic and non-
linear version of the FK problem, the goal is to fill the knap-
sack so that the expected value f (�x) = ∑n

1 fi(xi) of the

2We hereafter use f ′
i (xi ) to denote the derivative of the expected value

function fi(xi) with respect to xi .
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material mix contained in the knapsack is maximized as be-
low

maximize f (�x) =
n

∑

1

fi(xi),

where fi(xi) =
∫ xi

0
pi(u)du, and

pi(xi) = f ′
i (xi)

subject to
n

∑

1

xi = c and ∀i ∈ {1, . . . , n}, xi ≥ 0.

A fascinating property of the above problem is that the
amount of information available to the decision maker is
limited—the decision maker is only allowed to observe the
current unit value of each material (either 0 or 1). That is,
each time a material mix is placed in the knapsack, the unit
value of each material is provided to the decision maker. The
actual outcome probabilities pi(xi),1 ≤ i ≤ n, however, re-
main unknown. As a result of the latter, the expected value
of the material mix must be maximized by trial-and-error,
i.e., by experimenting with different material mixes and ob-
serving the resulting outcomes.

1.3.2 State-of-the-art

To the best of our knowledge, prior to our work reported
in [12], the stochastic NEFK problem, which we address,
was not covered in the literature before. However, several
studies on related problems have been reported. For exam-
ple, the works of [6, 26] consider solution policies for sto-
chastic generalizations of the so-called NP-hard linear inte-
ger knapsack problem. In these papers, value distributions
were considered known and constant, making dynamic pro-
gramming a viable solution. Another variant of the knapsack
problem is found in [21] where a deterministic knapsack is
used, however, with objects arriving to and departing from
the knapsack at random times. The optimization problem
considered was to accept/block arriving objects so that the
average value of the knapsack is maximized.

The first reported generic treatment of the stochastic
NEFK problem itself can be found in [12]. Various instanti-
ations of the problem have, however, appeared sporadically,
particularly within the web monitoring domain. In these
latter instantiations, the unknown parameters are estimated
by means of a tracking phase where web pages are polled
mainly for estimation purposes [20, 30]. One major disad-
vantage of such an approach is that the parameter estimation
phase significantly delays the implementation of an optimal
solution. This disadvantage is further aggravated in dynamic
environments where the optimal solution changes over time,
introducing the need for parameter re-estimation [10].

In contrast to the above approaches, we base our work on
the principles of Learning Automata (LA) [16, 27]. LA have
been used to model biological systems [28], and have at-
tracted considerable interest in the last decade because they
can learn the optimal actions when operating in (or interact-
ing with) unknown stochastic environments. Furthermore,
they combine rapid and accurate convergence with low com-
putational complexity. The novel Learning Automata Knap-
sack Game (LAKG) scheme that we proposed in [12] does
not rely on estimating parameters, and can be used to solve
the stochastic NEFK problem in both static and dynamic set-
tings. Accordingly, we believe that the LAKG can be con-
sidered to represent the state-of-the-art when it concerns re-
search on the stochastic NEFK problem. This landmark is
now extended to develop the TRAA (which, in itself is the
first reported LA which is artificially ergodic),3 and its hier-
archical version, the H-TRAA.

With regard to the particular application domain, recent
approaches to resource allocation in web monitoring attempt
to optimize the performance of the system when the mon-
itoring capacity is restricted [20, 30]. The principle cited
in the literature essentially invokes Lagrange multipliers to
solve a nonlinear equality knapsack problem with a separa-
ble and concave objective function [15]. Thus, for example,
a basic web monitoring resource allocation problem may in-
volve n web pages that are updated periodically, although
with different periods. Clearly, each web page can be sam-
pled maximally—which would result in a sluggish system.
Thus, it would be fair to state that the problem which we
study has a direct potential application in the domain of opti-
mal web page sampling. Observe that this must be achieved
without exceeding the available monitoring capacity—e.g.,
the maximum number of pages that can be accessed per unit
of time as dictated by the governing bandwidth and process-
ing speed limitations.

1.4 Contributions of this paper

The contributions of this paper are the following:

1. We report the first analytical results for schemes that
solve the optimal sampling problem using a formal as-
ymptotically optimal solution to the Stochastic NEFK
Problem. The implications of the solution for estimation
and training in PR are both direct and clearly validated.

2. We propose a novel scheme for the two-set sampling
problem, namely, the Twofold Resource Allocation Au-
tomaton (TRAA). As mentioned, from the perspective of
LA, the TRAA, in itself, is the first reported LA which is
artificially rendered ergodic.

3LA which have been artificially made absorbing to yield specific
properties, have been earlier reported [17]. However, we are not aware
of any LA which, in essence are absorbing, but which have been made
artificially ergodic.
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3. We prove that the TRAA is asymptotically optimal.
4. We report the first hierarchical solution to the Stochastic

NEFK Problem, based on a hierarchy of TRAAs, namely,
the H-TRAA.

5. We verify empirically that the H-TRAA provides orders
of magnitude faster convergence when compared to the
LAKG, and demonstrate its power to solve the underly-
ing sampling problem.

As a result of the above contributions, we believe that the
H-TRAA is the first reported viable and realistic strategy
for solving the optimal sampling problem. Its applications in
real PR problems is straightforward. Further, it can also be
used to resolve other optimal resource allocation problems
in large-scale web accessibility assessment [24].

1.5 Paper organization

The paper is organized as follows. In Sect. 2 we present the
Twofold Resource Allocation Automaton (TRAA) for the
two-material problems, and prove its asymptotic optimal-
ity. We then propose how TRAAs can be arranged in a hi-
erarchy for solving multi-material Stochastic NEFK Prob-
lems. We proceed to empirically verify that the H-TRAA
provides orders of magnitude faster convergence compared
to the LAKG in Sect. 3 when applied to the optimal sam-
pling problem. Indeed, we shall present results that clearly
demonstrate that the H-TRAA allows us to tackle problems
involving up to 16,384-sets of Bernoulli parameters in real-
time, which we believe is no small achievement. Finally, we
offer suggestions for further work before we conclude the
paper in Sect. 4.

2 A hierarchy of twofold resource allocation automata
(H-TRAA)

2.1 Overview of the non-LA solutions

In order to put our work in the right perspective, we start
this section by providing a brief review of the concepts and
the solution found in [12]—which are also relevant for more
“primitive” variants of the knapsack problem.

As indicated in the introduction, solving the classical
linear FK problem involves finding the most valuable mix
�x∗ = [x∗

1 , . . . , x∗
n] of n materials that fits within a knapsack

of fixed capacity c. The material value per unit volume for
each material i is given as a constant vi , and each material
is available in a certain amount xi ≤ bi , 1 ≤ i ≤ n. Accord-
ingly, the value of the amount xi of material i, fi(xi) = vixi ,
is linear with respect to xi . In other words, the deriva-
tive of fi(xi)—i.e., the material value per unit volume—is
fixed: f ′

i (xi) = vi . Because a fraction of each material can
be placed in the knapsack, the following greedy algorithm

from [3] finds the most valuable mix: Take as much as pos-
sible of the material that is most valuable per unit volume. If
there is still room, take as much as possible of the next most
valuable material. Continue until the knapsack is full.

Let us now generalize this and assume that the material
unit volume values are random variables with constant and
known distributions. Furthermore, for the sake of concep-
tual clarity, let us only consider binary variables that either
instantiate to the values of 0 or 1. Since the unit volume
values are random, let pi denote the probability of the unit
volume value vi = 1 for material i, 1 ≤ i ≤ n, which means
that the probability of the unit volume value vi = 0 becomes
1 − pi . With some insight, it becomes evident that under
such conditions, the above greedy strategy can again be used
to maximize the expected value of the knapsack, simply by
selecting material based on the expected unit volume values,
E[vi] = 0× (1−pi)+1×pi , rather than actual unit volume
values.

The above indicated solution is, of course, inadequate
when the pi ’s are unknown. Furthermore, the problem be-
comes even more challenging when the pi ’s are no longer
constant, but rather depend on their respective material
amounts xi , 1 ≤ i ≤ n. Let pi(xi) denote the probability
that the current unit volume value of material i is vi = 1,
given that the amount xi has already been placed in the knap-
sack. Then, the expected value per unit volume of material i,
1 ≤ i ≤ n, becomes E[vi] = 0×[1−pi(xi)]+1×pi(xi) =
pi(xi), and accordingly, the expected value of the amount xi

becomes fi(xi) = ∫ xi

0 pi(u)du.
Our aim, then, is to find a scheme that moves towards

optimizing the following NEFK problem on-line:

maximize f (�x) =
n

∑

1

fi(xi),

where fi(xi) =
∫ xi

0
pi(u)du, and

pi(xi) = f ′
i (xi)

subject to
n

∑

1

xi = c and ∀i ∈ {1, . . . , n}, xi ≥ 0.

Note that we allow only instantiations of the material values
per unit volume to be observed. That is, each time an amount
xi of material i is placed in the knapsack, an instantiation vi

at xi is observed.
Because of the above intricacies, we approach the prob-

lem by relying on informed material mix guesses, i.e., by ex-
perimenting with different material mixes and learning from
the resulting random unit volume value outcomes. We shall
assume that xi is any number in the interval (0,1). The ques-
tion of generalizing this will be considered later. The crucial
issue that we have to address, then, is that of determining
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how to change our current guesses on xi, 1 ≤ i ≤ n. We
shall attempt to do this in a discretized manner by subdivid-
ing the unit interval into N points { 1

N+1 , 2
N+1 , . . . , N

N+1 },
where N is the resolution of the learning scheme. We will
see that a larger value of N will ultimately imply a more
accurate solution to the knapsack problem.

At this juncture, it is pertinent to mention that although
the rationale for this updating is the stochastic point location
solution proposed by Oommen in [18], the two schemes are
quite distinct for the following reasons:

1. The method proposed in [18] assumes the existence of
an Oracle which informs the LA whether to go “right”
or “left”. In our application domain, this now has to be
inferred by the system.

2. The method proposed in [18] assumes that there is only a
single LA in the picture. Here, we specifically understand
that there are multiple LAs organized in a hierarchy—
each of them being constrained to work together with the
others.4

3. In [18] the problem of analyzing scenarios with space
varying responses from the environment was left open.
This problem is tackled in the present paper.

4. As opposed to the scheme in [18], our present approach is
also applicable to dynamic (time varying) environments.

5. There is a “huge” fundamental difference between the
LA which we devise here and the work of [18]. Unlike
the latter, in which the system is truly ergodic, our present
LA would be absorbing if the end-states of the probabil-
ity space are also included. However, to forcefully render
this present machine ergodic, we have artificially made
the LA ergodic by excluding these states from the set of
possible probability values. This makes the analysis both
distinct and quite fascinating. As mentioned earlier, we
are not aware of any LA which, in essence are absorbing,
but which have been made artificially ergodic.

2.2 Details of the TRAA solution

2.2.1 Design of the TRAA solution

We first present our LA based solution to two-material Sto-
chastic NEFK Problems. The two-material solution forms a
critical part of the hierarchic scheme for multiple materials
that is presented subsequently. As illustrated in Fig. 2, our
solution to two-material problems constitutes of three mod-
ules:

4It is conceivable that this problem can be resolved with a single LA
possessing an extended number of actions. But we do not recommend
it for scalability reasons—the action space would grow exponentially.

Fig. 2 The Twofold Resource Allocation Automaton (TRAA) inter-
acting with a Scheduler and an unknown Stochastic Environment

1. A Stochastic Environment
2. The TRAA itself, and
3. An Earliest Deadline First (EDF) Scheduler.

We first detail each of the three modules, before we ana-
lyze the overall feedback connection between them. Finally,
we prove that the TRAA that we have developed in this sec-
tion is asymptotically optimal for two-material Stochastic
NEFK Problems.

Stochastic environment The Stochastic Environment for
the two-material case can be characterized by:

1. The capacity c of the knapsack;
2. Two material unit volume value probability functions

p1(x1) and p2(x2).

In brief, if the amount xi of material i is suggested to the
Stochastic Environment, the Environment replies with a unit
volume value vi = 1 with probability pi(xi) and a unit vol-
ume value vi = 0 with probability 1 − pi(xi), i ∈ {1,2}. It
should be emphasized that to render the problem both inter-
esting and non-trivial, we assume that pi(xi) is unknown to
the TRAA.

Twofold resource allocation automaton (TRAA) The sche-
me which attempts to learn the optimal allocation �x∗ =
[x∗

1 , x∗
2 ] can be described as follows. A finite fixed struc-

ture automaton with the states s(t) ∈ {1,2, . . . ,N} is used
to decide the allocation of resources among the two materi-
als. Let the current state of the automaton be s(t). Further-
more, let qs(t) refer to the fraction s(t)

N+1 , and let rs(t) refer to
the fraction: 1 − qs(t). Then the automaton’s current guess is
�x = [qs(t), rs(t)].

If the Stochastic Environment tells the automaton that the
unit volume value of material i is vi(t) at time t , the automa-
ton updates its state as follows:
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s(t + 1) := s(t) + 1 If rand() ≤ rs(t) and vi(t) = 1 and 1 ≤ si(t) < N and i = 1, (1)

s(t + 1) := s(t) − 1 If rand() ≤ qs(t) and vi(t) = 1 and 1 < si(t) ≤ N and i = 2, (2)

s(t + 1) := s(t) Otherwise. (3)

Figure 3 shows the resulting stochastic transition graphs for
resolution N = 5. The upper graph shows the transitions for
feedback from the Stochastic Environment on material 1,
and the graph below shows the transitions for feedback on
material 2. Notice how the stochastic state transitions are de-
signed to offset the learning bias introduced by accessing the
materials with frequencies proportional to �x = [qs(t), rs(t)].
Also observe that the overall learning scheme does not pro-
duce any absorbing states, and is, accordingly, ergodic sup-
porting dynamic environments. The effect of these proper-
ties is analysed in the next subsection.

Finally, after the automaton has had the opportunity to
change its state, it provides output to the EDF Scheduler.
That is, it outputs the material amounts �x = [qs(t+1), rs(t+1)]
that have been changed.

Earliest deadline first (EDF) scheduler The Scheduler
takes material amounts �x = [x1, . . . , xn] as its input (for the
two-material case the input is �x = [x1, x2]). The purpose of
the Scheduler is:

1. To provide accesses to the Stochastic Environment in a
sequential manner, and

2. To make sure that the unit volume value functions are
accessed with frequencies proportional to �x.

The reader should note that our scheme does not rely on
accessing the unit volume value functions sequentially with
frequencies proportional to �x for solving the knapsack prob-
lem. However, this restriction is obviously essential for solv-
ing the problem incrementally and on-line (or rather in
a “real-time” manner). Note that since it, in some cases,
may be essential to access each unit volume value func-
tion with a constant period and not randomly (for example,
in the earlier-alluded-to problem which analyzes web page

polling), we use the Earliest Deadline First (EDF) Schedul-
ing to access the functions according to �x.

2.2.2 Analysis of the TRAA solution

In this section we characterize the optimal solution to a Sto-
chastic NEFK Problem. Thereafter, we analyze the feedback
connection of the TRAA and the Stochastic Environment—
we prove that the TRAA is asymptotically optimal in the
sense that it can find material allocations arbitrarily close to
the solution of the Stochastic NEFK Problem.

Lemma 1 The material mix �x = [x1, . . . , xn] is a solution
to a given Stochastic NEFK Problem if (1) the derivatives
of the expected material amount values are all equal at �x,
(2) the mix fills the knapsack, and (3) every material amount
is positive, i.e.:

f ′
1(x1) = · · · = f ′

n(xn),

n
∑

1

xi = c and ∀i ∈ {1, . . . , n}, xi ≥ 0.

The above lemma is based on the well-known principle of
Lagrange Multipliers [4, 8], and its proof is therefore omit-
ted here for the sake of brevity. Instead, we will start by an-
alyzing the two-material problem and the TRAA. Multiple
TRAAs will then be organized in a hierarchy with the aim
of tackling n-material problems.

For the two-material problem, let �x∗ = [x∗
1 , x∗

2 ] denote
a solution, as defined above. Note that since x∗

2 can be ob-
tained from x∗

1 , we will concentrate on finding x∗
1 .

Theorem 1 The TRAA solution scheme specified by (1)–(3)
is asymptotically optimal.

Fig. 3 The stochastic transition
graphs of a TRAA with
resolution N = 5
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Proof Our aim is to prove that as the resolution, N , is in-
creased indefinitely, the expected value of the TRAA out-
put, x1(t), converges towards the solution of the problem,
x∗

1 , implying that:

lim
N→∞ lim

t→∞E[x1(t)] → x∗
1 .

We shall prove the above by analyzing the properties of
the underlying Markov chain, which is specified by the EDF
Scheduler, the rules (1)–(3) (the TRAA), and the Environ-
ment. As can be seen from (1)–(3), the states of the chain are
the integers j ∈ {1,2, . . . ,N}. In brief, rules (1)–(3), when
interacting with the EDF Scheduler and the Environment,
obey the Markov chain with transition matrix H = [hij ] ,
where

hj,j−1 = rj · p2(rj ) · qj , 1 < j ≤ N, (4)

hj,j+1 = qj · p1(qj ) · rj , 1 ≤ j < N, (5)

hj,j = 1 − hj,j−1 − hj,j+1, 1 < j < N, (6)

and, accordingly,

h1,1 = 1 − h1,2, (7)

hN,N = 1 − hN,N−1. (8)

Clearly, H represents a single closed communicating class
whose periodicity is unity. The chain is ergodic, and the
limiting probability vector is given by the eigenvector of
HT corresponding to eigenvalue unity. Let this vector be
� = [π1,π2, . . . , πN ]. Then, � satisfies:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

h1,1 h1,2 0 · · · · 0

h2,1 h2,2 h2,3 0 · · · 0

0 h3,2 h3,3 h3,4 0 · · 0

· · · · · · · ·
· · · · · · · ·
0 · · 0 hN−2,N−3 hN−2,N−2 hN−2,N−1 0

0 · · · 0 hN−1,N−2 hN−1,N−1 hN−1,N

0 · · · · 0 hN,N−1 hN,N

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

T
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

π1

π2

π3

·
·

πN−2

πN−1

πN

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

π1

π2

π3

·
·

πN−2

πN−1

πN

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (9)

The details of solving (9) are quite cumbersome, and we
undertake it now. Observe that our aim is to prove that the
probability mass of � lies arbitrarily close to the solution of
the knapsack problem, �x∗ = [x∗

1 , x∗
2 ], as N goes to infinity.

Before we go through the fine details, we outline the proof
strategy as follows. We first explicitly solve for the quan-
tities {πi} by solving the underlying difference equations.
We then define a function U that forms an upper bound for
�. We proceed to show that the upper bound goes to zero
outside an arbitrarily close vicinity of x∗

1 , as the resolution,
N , goes to infinity. Accordingly, since � is a probability
distribution, and since U is its upper bound, increasing the
resolution towards infinity, moves the probability mass of �

arbitrarily close to x∗
1 .

The details of the proof follow. Our first step is to refor-
mulate the individual row-wise equations from the matrix
(9) recursively. Expanding the first row of (9) yields:

π1 · h1,1 + π2 · h2,1 = π1

=⇒ π2 = (1 − h1,1) · π1

h2,1
= h1,2

h2,1
· π1. (10)

Expanding the second row of (9) and substituting (10)
yields:

π1 · h1,2 + π2 · h2,2 + π3 · h3,2 = π2

=⇒ π3 = h2,3

h3,2
· π2. (11)

Arguing in a similar way in a row-by-row manner, it can be
seen5 that

πk−1 = hk,k−1

hk−1,k

· πk (12)

for 0 < k ≤ N , which, on reversing the recursion, yields for
0 ≤ k < N ,

πk+1 = hk,k+1

hk+1,k

· πk. (13)

Let α(x1,N) =  x1
1

N+1
� and β(x1,N) = � x1

1
N+1

�. Clearly,

[α(x1,N)
N+1 ,

β(x1,N)
N+1 ] is the interval that most accurately ap-

proximate x1 given the resolution N . In particular, with

5We omit the laborious algebraic steps in the interest of readability.
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z = α(x∗
1 ,N), the solution x∗

1 is found in the interval
[ z
N+1 , z+1

N+1 ]. The crucial part of our proof is to reformulate
� in terms of πz and πz+1, using (12)–(13). More specifi-
cally, for j ∈ {1, . . . , z − 1} we have:

πj = πz ·
j+1
∏

k=z

hk,k−1

hk−1,k

. (14)

Correspondingly, and arguing in an analogous manner, for
j ∈ {z + 2, . . . ,N} we have:

πj = πz+1 ·
j−1
∏

k=z+1

hk,k+1

hk+1,k

. (15)

In other words, we represent � in terms of two of its com-
ponents: πz and πz+1.

We are now ready to define the upper bound U for �:

U [i, z] =
{

πz · Mz−i if i ≤ z,

πz+1 · Mi−(z+1) if i ≥ z + 1,
(16)

where:

M = max

[

max
k≤z

{

hk,k−1

hk−1,k

}

, max
k≥z+1

{

hk,k+1

hk+1,k

}]

. (17)

As seen, the definition of M clearly makes U an upper
bound for �.

Our final goal is to show that as the resolution N goes to
infinity, U goes to zero outside an arbitrarily close vicinity
of x∗

1 :

lim
N→∞U [α(x1,N),α(x∗

1 ,N)] → 0 if x1 �= x∗
1 . (18)

We shall argue that the latter is guaranteed to happen if we
have 0 <

hk,k−1
hk−1,k

< 1 for k ∈ {2, . . . , z} and 0 <
hk,k+1
hk+1,k

< 1 for
k ∈ {z + 1, . . . ,N − 1}, because then we get 0 < M < 1. We
argue this by considering the equilibrium (asymptotic) value
of E[π(t)] for any finite N . This argument can be separated
into three different cases as in [18]:

1. The first case is when z
N+1 is close to zero. In this case

the maximum is quickly reached and then geometrically
falls away.

2. When z
N+1 is close to 1, the value of πi geometrically

increases but when the maximum is reached it quickly
falls away. For both these cases when N → ∞, most of
the probability mass will be centered in a small interval
around z.

3. The third case is slightly more complex because it in-
volves z

N+1 being away from either end. This case must
be broken down into two distinct geometric series, one
representing the geometric series from π1 to πz and the
other from πz+1 to πN . The first series increases until

it reaches the maximum at πZ . The increase is geomet-
ric (or rather, exponential as N → ∞), and the geomet-
ric ratio is bounded by the bound given by the quantity
M above. The second series starts at the maximum at
the value πz+1 and then decreases until πN is reached.
Again, the decrease is geometric (i.e., exponential as
N → ∞), and the geometric ratio is bounded by the
quantity M above. In this case the probability mass will
be centered within a small interval around z

N+1 and z+1
N

as N → ∞ because of the law of the sum of the elements
of a geometric series possessing a common ratio which
is greater than unity.

First of all, since the difference between k
N+1 and k−1

N+1
goes to zero as N goes to infinity, and since p1(x) is contin-
uous, we have:

lim
N→∞

hk,k−1

hk−1,k

= lim
N→∞

rk · p2(rk) · qk

qk · p1(qk) · rk (19)

= lim
N→∞

p2(rk)

p1(qk)
. (20)

Secondly, from Lemma 1 we can conclude that p1(qk) >

p2(rk) for k ∈ {2, . . . , z}. Therefore, 0 <
hk,k−1
hk−1,k

< 1 for k ∈
{2, . . . , z} as N goes to infinity.

Showing that we have 0 <
hk,k+1
hk+1,k

< 1 for k ∈ {z +
1, . . . ,N − 1} follows analogously, and the proof is left out
here for the sake of brevity.

Accordingly, � must go to zero outside an arbitrarily
close vicinity of x∗

1 as the resolution N goes to infinity. This,
in turn, means that the probability mass of � will lie arbitrar-
ily close to x∗

1 . In other words, the TRAA is asymptotically
optimal. �

2.3 Details of the H-TRAA solution

2.3.1 Design of the H-TRAA solution

In this section we propose a hierarchical scheme for solv-
ing n-material problems. The scheme takes advantage of the
TRAA’s ability to solve two-material problems asymptoti-
cally, by organizing them hierarchically.

Construction of hierarchy The hierarchy of TRAAs, which
we hereafter will refer to as H-TRAA, is constructed as fol-
lows.6 First of all, the hierarchy is organized as a balanced
binary tree with depth D = log2(n). Each node in the hi-
erarchy can be related to three entities: (1) a set of materi-
als, (2) a partitioning of the material set into two subsets of

6We assume that n = 2γ , γ ∈ N
+, for the sake of clarity. If the number

of materials is less than this, we can assume the existence of additional
materials whose values are “zero”, and who thus are not able to con-
tribute to the final optimal solution.
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Fig. 4 A Hierarchy of Twofold
Resource Allocation Automata
(H-TRAA) interacting with a
Scheduler and an unknown
Stochastic Environment as
explained in Example 1

equal size, and (3) a dedicated TRAA that allocates a given
amount of resources among the two subsets.

Root node The hierarchy root (at depth 1) is assigned the
complete set of materials S1,1 = {1, . . . , n}. These n ma-
terials are partitioned into two disjoint and exhaustive sub-
sets of equal size: S2,1 and S2,2. An associated TRAA, T1,1,
decides how to divide the full knapsack capacity c (which,
for the sake of notational correctness will be referred to as
c1,1) among the two subsets. That is, subset S2,1 receives
the capacity c2,1 and subset S2,2 receives the capacity c2,2,
with c2,1 + c2,2 = c1,1. Accordingly, this TRAA is given
the power to prioritize one subset of the materials at the
expense of the other.

Nodes at depth d Node j ∈ {1, . . . ,2d−1} at depth d (where
1 < d ≤ D) refers to: (1) the material subset Sd,j , (2) a par-
titioning of Sd,j into the subsets Sd+1,2j−1 and Sd+1,2j ,
and (3) a dedicated TRAA, Td,j . Observe that since level
D + 1 of the H-TRAA is non-existent, we use the con-
vention that SD+1,2j−1 and SD+1,2j refer to the primitive
materials being processed by the leaf TRAA, TD,j . As-
sume that the materials in Sd,j has, as a set, been assigned
the capacity cd,j . The dedicated TRAA, then, decides how
to allocate the assigned capacity cd,j among the subsets
Sd+1,2j−1 and Sd+1,2j . That is, subset Sd+1,2j−1 receives
the capacity cd+1,2j−1 and subset Sd+1,2j receives the ca-
pacity cd+1,2j , with cd+,2j−1 + cd+1,2j = cd,j .

At depth D, then, each individual material can be sepa-
rately assigned a fraction of the overall capacity by way of
recursion, using the above allocation scheme.

Interaction of H-TRAA with EDF scheduler and environ-
ment As in the single TRAA case, H-TRAA interacts with

an EDF Scheduler, which suggests which unit volume value
function pi(xi) to access next. A response is then gener-
ated from the Stochastic Environment using pi(xi). This re-
sponse is given to all the TRAAs that were involved in de-
termining the material amount xi , that is, the TRAAs in the
hierarchy that have allocated capacity to a material subset
that contains material i. Finally, a new candidate material
mix �x = [x1, . . . , xn] is suggested by the H-TRAA to the
EDF Scheduler.

Example 1 Consider a 4-material problem. Figure 4 shows
the associated hierarchy, constructed as described above. At
the root level the TRAA T1,1 divides the knapsack capac-
ity among the two material subsets {1,2} and {3,4}, re-
spectively related to TRAA T2,1 and T2,2. At the level be-
low, then, the TRAA T2,1 allocates its share of the capacity
among material 1 and material 2, while TRAA T2,2 assigns
its share of the capacity to material 3 and material 4. Based
on the present assignment at time t , the EDF Scheduler se-
lects material i, suggesting the amount xi(t) to the Stochas-
tic Environment. The Stochastic Environment, in turn, re-
sponds with a randomly drawn material unit volume value,
vi(t), using the probability value function pi(xi). By way
of example, if i = 2, the latter feedback is given to TRAAs
T1,1 and T2,1, which update their states accordingly, and the
feedback loop continues.

2.3.2 Analysis of the H-TRAA solution

In the previous section we proved that an individual TRAA
is asymptotically optimal. We will now consider the H-
TRAA and prove its optimality. More specifically, we shall
show that if each individual TRAA in the hierarchy has
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solved its own two-material problem, a solution to the com-
plete n-material Knapsack Problem has also been produced.

Theorem 2 Let Td,j be an arbitrary TRAA at level d of the
H-TRAA associated with the node whose index is j . Then, if
every single TRAA, Td,j , in the H-TRAA has found a local
solution with proportions cd+1,2j−1 and cd+1,2j satisfying

f ′
d+1,2j−1(cd+1,2j−1) = f ′

d+1,2j (cd+1,2j ),

the overall Knapsack Problem involving n materials that are
hierarchically placed in log2 n levels of TRAAs, also attains
the global optimum solution.

Proof We intend to prove the above theorem by means of
induction, using the hierarchical H-TRAA structure defined
in the paragraph titled Construction of Hierarchy.

Basis The Basis case concerns the nodes at the leaves,
which, indeed, deal with the primitive materials them-
selves. Let a and b (a, b ∈ {1, . . . , n}) be any two materials
processed by a TRAA, TD,u, at a leaf node (i.e., at depth
D = log2 n) in the H-TRAA. The latter decides how to al-
locate an assigned capacity cD,u among the two materials a

and b, with relative proportions xa and xb respectively. Ob-
serve that since a and b are the only two materials relevant
to this TRAA, by virtue of the construction of the TRAA,

xa

xa+xb
and xb

xa+xb
are the conditional probabilities of choos-

ing a and b respectively, conditioned on the event that the
knapsack had only to be filled with these primitive materials.
Since, by virtue of Theorem 1, we know that the TRAA will
find a local solution [xa, xb], the foundation of the solution
determined by the Lagrangian yields:

f ′
a(xa) = f ′

b(xb)

=⇒ f ′
D+1,2u−1(cD+1,2u−1) = f ′

D+1,2u(cD+1,2u),

with cD+1,2u−1 + cD+1,2u = cD,u,

thus proving the basis of the induction.

Induction step Consider any interior-node TRAA Td,j

whose index at depth d is j in the H-TRAA hierarchy.
The TRAA associated with this node decides how to al-
locate an assigned capacity cd,j among two disjoint sub-
sets Sd+1,2j−1 = {α1, . . . , αm} and Sd+1,2j = {β1, . . . , βm}
of composite materials, where each αi and βi is, in it-
self, a primitive material. To simplify notation, let �α =
{α1, . . . , αm} and �β = {β1, . . . , βm}. Observe that the union
of the sets �α and �β is the input to the present TRAA, and the
task of this TRAA is to assign the current knapsack capac-
ity, cd,j , so as to satisfying the Lagrangian solution for these
two mutually exclusive and exhaustive subsets. Let Td,j as-
sign the relative proportions to �α and �β by the quantities x�α
and x �β . Observe that since �α and �β are the only two mate-

rials7 relevant to this TRAA, by virtue of the construction
of the TRAA, x�α

x�α+x �β
and

x �β
x�α+x �β

are the conditional proba-

bilities of choosing �α and �β respectively, conditioned on the
event that the knapsack had only to be filled with these com-
posite materials �α and �β . The solution to this TRAA will
thus satisfy:

f ′
�α(x�α) = f ′

�β(x �β) where, (21)

f ′
�α(x�α) =

∑

αi∈�α

xαi
∑

αj ∈�α xαj

f ′
αi

(xαi
) and (22)

f ′
�β(x �β) =

∑

βi∈ �β

xβi
∑

βj ∈ �β xβj

f ′
βi

(xβi
). (23)

Since each αi and βi is a primitive material, and we are
working our way up the H-TRAA hierarchy, we can invoke
the inductive hypothesis to relate xαi

and xβi
for all i. By

virtue of the inductive hypothesis and the Lagrangian solu-
tion at every level up the H-TRAA till level d , we know that
for both of the material subsets Sd+1,2j−1 and Sd+1,2j the
following are true:

f ′
α1

(xα1) = · · · = f ′
αm

(xαm), (24)

f ′
β1

(xβ1) = · · · = f ′
βm

(xβm). (25)

To simplify the notation, let each of the quantities in (24)
equal f ′

α(xα), and each of the quantities in (25) equal
f ′

β(xβ).
Substituting (24) and (25) (which represent the induction

hypothesis) into (22) and (23), the latter become:

f ′
�α(x�α) = f ′

α(xα)
∑

αi∈�α

xαi
∑

αj ∈�α xαj

and (26)

f ′
�β(x �β) = f ′

β(xβ)
∑

βi∈ �β

xβi
∑

βj ∈ �β xβj

. (27)

The summations on the RHSs of both of (26) and (27)
can be trivially seen to sum to unity since they represent
probabilities (in the conditioned spaces), implying that:

∀i : f ′
�α(x�α) = f ′

αi
(xαi

) and (28)

∀i : f ′
�β(x �β) = f ′

βi
(xβi

). (29)

Combining the above with Equation (21) yields:

f ′
α1

(xα1) = · · · = f ′
αm

(xαm) = f ′
β1

(xβ1) = · · ·
= f ′

βm
(xβm) (30)

implying that the global optimum required by the La-
grangian has been found. Hence the theorem! �

7The fact that these are composite materials is irrelevant to the present
TRAA. It merely treats �α and �β as individual materials.
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Remarks Theorem 2 has some very interesting conse-
quences listed below:

1. The proof of Theorem 2 has tacitly assumed that all the
automata have converged before the global convergence
can be asserted. This implies that the TRAA Td,j is aware
of its capacity, and that this is a known quantity to the
TRAAs Td+1,2j−1 and Td+1,2j . In other words, if all the
individual TRAAs converge to their local optimum, The-
orem 2 states that the global optimum is attained. Con-
ceptually, this can pose a small implementation-related
problem. The fact is that the TRAAs of the lower level
are converging even while the TRAA at the higher level is
attempting to find its capacity. Therefore, essentially, the
lower level TRAAs are working in a non-stationary envi-
ronment. The strategy by which we can resolve this is to
ensure that the higher level automata converge at a slower
rate than the lower ones (thus guaranteeing a certain level
of stationarity). In practice, however, we have observed
that if the resolution parameter N is large enough (in the
order of hundreds) the time varying phenomenon is mar-
ginal, and the TRAAs at all the levels tend to converge
simultaneously.

2. Theorem 2 claims that the solution obtained by the con-
vergence of the individual TRAAs leads to the global
convergence of the overall optimization problem. But this
claim means that the ordering of the materials at the leaf
nodes does not carry any significance. This is, indeed,
true! It turns out that if the nodes at the leaves are ordered
in such a way that “more precious materials” lie in the
same sub-tree, the weight associated with the sub-tree of
the composite material containing these “more precious
materials” will have a much larger weight, and the weight
of the other sub-trees will be much smaller. As opposed
to this, if the “more precious materials” lie in distinct sub-
trees, the weights associated with the respective sub-trees
will be correspondingly compensated for.

3 Application: sample size determination
for constrained estimation

In this section we consider the problem of estimating the
proportion of a population having some specific character-
istic. Specifically, we assume that n populations are to be
evaluated, and that each population i is characterized by an
independent unknown binomial proportion ui . We will here
pursue the goal of minimizing the variance of the proportion
estimates when the total number of samples available for es-
timating the proportions is restricted to c. The purpose is to
make the estimates as accurate as possible. The PR implica-
tions of this were explained earlier, and will not be visited
again to avoid repetition. However, in the interest of clarifi-
cation, the task at hand could, for instance, be to determine

the proportion of a web site that is successfully validated by
an HTML validator [24] and/or a WCAG accessibility val-
idator [31], assuming that n web sites are to be evaluated by
only accessing c web pages.

3.1 Problem specification

Let xi be the number of elements sampled randomly from
population i and let the count Yi be the number of the sam-
pled elements that possess a chosen characteristic. For large
xi and when ui is not too near 0 or 1, the estimator ûi = Yi

xi

is approximately normal with mean ui and standard devia-

tion si =
√

ui(1−ui)
xi

[1]. This standard deviation can be re-
duced (and the estimate accuracy increased) by increasing
the number of samples xi . In the problem targeted in this
section, n different populations can be sampled c times and
the goal is to distribute the samples among the populations
to minimize the aggregated variance of the estimates. The
problem can be reformulated as follows:

maximize
n

∑

i=1

−ui(1 − ui)

xi

subject to
∑

xi = c,

0 ≤ xi, i = 1, . . . , n.

The above optimization problem is an NEFK problem with
concave and separable objective function. Since the ui ’s are
assumed unknown, we apply our H-TRAA to find a near-
optimal solution incrementally and online.

3.2 The H-TRAA solution

We must first define the Stochastic Environment that the
H-TRAA is to interact with. That is, we must define the
stochastic functions F ′ = {F ′

1(x1),F
′
2(x2), . . . ,F

′
n(xn)}. By

applying the principles of Lagrange multipliers we find the
following conditions that characterize the optimal solution:

u1(1 − u1)

x1
2

= · · · = un(1 − un)

xn
2

,

∑

xi = c,

0 ≤ xi, i = 1, . . . , n.

Accordingly, we define F ′
i (xi) as follows. First of all, each

time F ′
i (xi) is accessed by the H-TRAA, population i is

sampled once and the proportion estimate ûi is updated ac-
cordingly.8 After ûi has been updated, we instantiate F ′

i (xi)

8For a dynamic environment we would utilize a “window-based” strat-
egy and only use the last c samples to estimate the ui ’s. However, we
are currently studying how recently proposed weak estimators can be
used in this setting [19].
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by a random draw—F ′
i (xi) is instantiated to the value 0 with

probability 1 − ûi (1−ûi )

xi
2 and to the value 1 with probability

ûi (1−ûi )

xi
2 . In other words, we keep running estimates of the

ui ’s in order to calculate the outcome probabilities of the
F ′

i (xi)’s.9

The H-TRAA can be configured by various means. First
of all, the material amount space (0,1) need not be dis-
cretized uniformly. Instead, a nonlinear material amount
space can be formed, as done for the LAKG in [12]. Fur-
thermore, the discretization resolution N must also be set
for each TRAA, possibly varying from TRAA to TRAA
in the hierarchy. In short, the performance achieved for a
particular problem can be optimized using these different
means of configuring the H-TRAA. In this section, how-
ever, our goal is to evaluate the overall performance of the
H-TRAA, without fine tuning. Therefore, we will only use a
linear material amount space, as specified in Sect. 2. Further-
more, we will use the same resolution N = 500 for all the
TRAAs in the hierarchy, independent of the specific knap-
sack problem at hand. Thus, our aim is to ensure a fair com-
parison with the present state of the art, namely, the LAKG
scheme.

3.3 Empirical results

3.3.1 Experimental set-up

In this sub-section we evaluate our learning scheme by com-
paring it with the optimal and uniform policies using simu-
lated data. These policies are described as follows:

1. Uniform: The uniform policy allocates the sampling re-
sources uniformly across all ‘n’ training sets. This is the
only classical policy that can be applied directly in an
unknown environment.

2. Optimal: The optimal policy requires that the binomial
proportions are known a priori. The optimal solution is
then determined by using the principle of Lagrange mul-
tipliers [20, 30].

The reader should appreciate that, in practice, we can only
apply the uniform policy, because the optimal policy re-
quires that the ui ’s are known.

The data used in the experiment is summarized in Ta-
ble 1. The table shows the true population proportions used,
and the number of populations associated with each propor-
tion. The first set of experiments encompasses 512 popula-
tions, and the corresponding proportions are to be estimated
by allocating 50,000 samples (window based). We have then
proceeded to consider a whole suite of experimental settings

9Because the outcome probabilities are always available for the popu-
lations, we can normalize the outcome probabilities to speed up con-
vergence.

Table 1 The true population proportions used in the experiment, and
the number of populations associated with each proportion

True Proportion Populations

0.5 6

0.750/0.250 5

0.900/0.100 41

0.990/0.010 51

0.999/0.001 409

(for example, using up to 16,384 populations), the results of
which are conclusive.

As we will see in the following, it turns that one of the
strengths of the H-TRAA is its ability to take advantage of
so-called spatial dependencies among materials. To be more
specific, as seen in Table 1, the materials are spatially or-
dered in the sense that the proportion of each material de-
creases/increases with its row-index in the table. In order to
starve the H-TRAA from this information, we have rather
opted to perturb this spatial structure, and present the per-
turbed information to the learning algorithm. We empha-
size though that the algorithm is unaware of the ordering,
or the fact that such a perturbation has taken place in the
background! Each perturbation swapped the proportions of
a randomly selected material and the corresponding propor-
tion of a material succeeding it in the ordering. To enable us
to conduct experiments with increasing orders of complex-
ity, we have done our experiments with 103, 104, 105 and
106 perturbations. For each of these values, an ensemble of
several independent replications with different random num-
ber streams was performed so as to minimize the variance of
the reported results.

The results of our experiments are truly conclusive and
confirm the power of the H-TRAA. Although several ex-
periments were conducted using various setting for various
numbers of automata, we report, in the interest of brevity, a
brief overview of the results obtained.

Figure 5 plots the variance of the current solution (as a
function of time) each time a unit volume value function
f ′

i (xi) has been sampled. The graphs show the results of
applying the H-TRAA with 500 states and the LAKG with
12,500 states (where the amount of the material added on a
transition in the latter is not fixed but varying in a nonlinear
manner).10

As seen in the figure, the H-TRAA steadily reduces the
variance of the initial solution in which the populations are
sampled uniformly. Indeed, even by the first 50,000 samples,
one can observe a very significant reduction. The reader
should notice that the H-TRAA converges to a near opti-
mal allocation more expediently and far quicker than the

10The details of this are omitted. They can be found in [12].
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Fig. 5 The H-TRAA steadily
reduces the total variance of the
initial solution (the uniform
policy) as it moves towards
near-optimal solutions

Fig. 6 The confidence interval
of each estimated proportion is
reduced as the total variance is
minimized

LAKG-scheme, expect for the case with 1,000,000 perturba-
tions where the H-TRAA initially converges faster but sub-
sequently in a more conservative manner.

Figure 6 plots the length of the widest 95% confidence
interval among the n estimates after each sampling. We also
plot the length of the 5th widest interval (1st percentile),
whence we see that the confidence interval of each estimated
proportion is reduced by minimizing the total variance.

To conclude, our experimental results demonstrate that
the H-TRAA is superior to LAKG in spatially structured en-
vironments.

3.3.2 Scalability

One of the motivations for designing the H-TRAA was the
improved scalability by means of hierarchical learning. As
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Fig. 7 From the figure we see
that extending the number of
sets significantly increases the
convergence and adaption time
of the LAKG

Fig. 8 From the figure we see
that the H-TRAA scales
sub-linearly with the number of
materials. Observe the ability of
the H-TRAA to emerge out of
local optima

seen in Fig. 7, extending the number of materials signif-
icantly increases the convergence time of the LAKG. By
comparing Figs. 7 and 8, we further observe that while the
LAKG does not even converge, the H-TRAA scales sub-
linearly in every case with the number of materials. How-
ever, the most interesting phenomenon that we observe from
Fig. 8 is the ability of the H-TRAA to emerge out of lo-
cal optima. The H-TRAA first decreases to a minimum, but
when it “discovers” that there is a better solution (which in

this cases implies a superior partitioning of the nodes in the

tree to their left and right subtrees), it is capable of unlearn-

ing the inferior configuration and converging to a superior

solution. This, we believe, is quite remarkable, especially

because the size of the underlying tree is very large, imply-

ing that the number of possible binary trees (which grows

exponentially with the size), is even larger. However, by ar-

riving at the global optimum, we see that the H-TRAA has



Optimal sampling for estimation with constrained resources using a learning automaton-based solution 19

succeeded in learning the best tree structure to resolve the
sampling proportions!

4 Conclusions

In this paper, we have considered a problem with real-life
PR implications, namely that of allocating limited sampling
resources in a “real-time” manner with the purpose of es-
timating multiple binomial proportions. More specifically,
the user is presented with ‘n’ sets of data points, and with
each set containing points drawn from two classes {ω1,ω2},
with probabilities ui and 1 − ui respectively. The problem
we have considered involves the interesting and non-trivial
cases when both n and each Ni are large, but the number
of samples that can be drawn is bounded by a constant, c.
The applications of the problem in PR have been alluded to,
and (by way of a specific example) shown to be closely re-
lated to a world-wide-web application. The problem is fur-
ther shown to be particularly intriguing because the sam-
pling resources can only be allocated optimally if the bino-
mial proportions are known a priori.

Using the general LA philosophy as a paradigm to tackle
this real-life problem, our scheme improves a current so-
lution in an online manner, through a series of informed
guesses which move towards the optimal solution. To solve
the problem, we first modelled it as a Stochastic Non-
linear Fractional Knapsack Problem. We then presented a
completely new on-line Learning Automata (LA) system,
namely, the Hierarchy of Twofold Resource Allocation Au-
tomata (H-TRAA), whose primitive component is a Twofold
Resource Allocation Automaton (TRAA). Both the TRAA
and the H-TRAA have been proven to be asymptotically op-
timal.

Comprehensive experimental results demonstrated that
performance of the H-TRAA is superior to the previous
state-of-the-art scheme, namely, the LAKG. Finally, we
have also provided empirical evidence to show that the H-
TRAAs possess a sub-linear scaling property, capable of
emerging out of local optima.
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