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Abstract

In this paper, we present the novel concept of fractional
public keys and an efficient zero-round multi-party Diffie-
Hellman key agreement scheme that is based on fractional
public keys. Shared group keys are computed highly effi-
ciently by using the fractional public keys of multiple partic-
ipants as exponents. The scheme provides therefore an effi-
cient and elegant way of multi-party key agreement without
key establishment data transmissions. The presented cryp-
tographic scheme is collusion resistant to any number of
users.

1 Introduction

The simple and elegant two-party key agreement scheme

of Diffie and Hellman has to a large extent gotten the credit

for introducing the concept of public key cryptography. The

scheme has been the basis for a relatively large number

of cryptographic protocols. Since it lacks user authentica-

tion, a number of these schemes provide user authentica-

tion. Diffie-Hellman (DH) key agreement is also the ba-

sis for a number of group-oriented key agreement schemes

known as conference key agreement protocols. A common

characteristic of the schemes of this class of cryptographic

protocols is that they have a varying degree of efficiency in

terms of the number of rounds of message transmissions and

the number of computations and exponentiations for each

participant.

In this paper, we introduce a new approach for secure

group key computation that is in agreement with the Diffie-

Hellman key agreement paradigm, and that is mostly ben-

eficial concerning efficiency and elegancy. In contrast to

using public keys computed as exponentiations, our scheme

uses public keys that are computed on a fractional form.

The fractional public keys are used as exponents for com-

puting group keys according to a modified version of the

Diffie-Hellman scheme. Since public user keys are used as

exponents, any number of public keys can be used simulta-

neously, meaning that the presented scheme is a true multi-

party shared key establishment scheme providing conve-

nient and efficient group-oriented key agreement. Since

the value of the group key is based on the long-term public

keys of the participants, no data transmissions are required.

The scheme hence provides zero-round multi-party Diffie-

Hellman key agreement.

1.1 Related work

The concept of fractional public keys is influenced by the

cryptographic scheme proposed in [5]. In this paper, a col-

lusion resistant threshold cryptosystem is proposed by using

private user keys (user shares) that is computed on a fraction

form, where the numerator and denominator are secret poly-

nomials. As will be subsequently shown, fractional public

keys provide an efficient secure group key computation.

Public key cryptography has been credited W. Diffie

and M. Hellman for their classical two-party key agree-

ment scheme from 1976 [4]. This scheme has since been

used as basis for great number of subsequent cryptographic

schemes. The lack of user and/or key authentication in

the original Diffie-Hellman (DH) scheme has caused the

proposal of many extended DH schemes. These are basi-

cally key agreement protocols with user authentication, and

some others are user authentication protocols. An interest-

ing overview over this family of cryptographic schemes can

be found in Chapter 5 of [2].

Although the DH scheme is a two-party protocol, some

authors have proposed generalizations of the DH scheme

for conference key agreement (CKA). An early unauthen-

ticated DH-CKA protocol was proposed by Ingemarsson et

al. [6]. This scheme has a relatively high overhead concern-

ing computation and the number of transmitted messages.

Steiner et al. [11] presented three protocols named GDH.1,

GDH.2 and GDH.3, which can be regarded as variations

of [6]. They are more efficient concerning the number of
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computations and transmitted messages, but require more

rounds than [6].

Burmester and Desmedt [3] proposed an elegant multi-

party generalization of DH, which provides relatively high

efficiency, and requires only 2 rounds and 3 exponentia-

tions. Since each user broadcasts the message of the sec-

ond round to the others, it is highly suitably for wireless

networks.

Identity-based authenticated protocols have among oth-

ers been proposed by Koyoma and Otha [7, 8], and Saeednia

and Safavi-Naini whose DH-CKA protocol [10] is based on

the Burmester-Desmedt protocol [3]. Ateniese et al. [1]

extended the GDH.2 scheme [11] for user authentication.

Also see Chapter 6 of [2] for an excellent overview of DH-

CKA protocols and for comparisons.

2 Zero-round multi-party Diffie-Hellman
key agreement from fractional public keys

In this section, we present the new cryptographic group-

oriented key computation scheme. It consists of an initial-

ization phase requiring a trusted party providing each user

with a public/private long-term user key pair. The group

keys are computed as a function of the long-term user keys

of any given user coalition. Each user can therefore com-

pute group keys offline for any user coalition the given user

is a member of, without computing and transmitting key es-

tablishment messages.

Initialization. A Trusted Authority (TA) selects two large

secret primes p and q, where the product n = p · q is public.

According to the RSA public key cryptosystem [9], the TA

selects a public number e that is relatively prime to φ(n) =
(p − 1) · (q − 1), and computes a secret number d so that

e · d ≡ 1 (mod φ(n)). A public element α of high order in

Z
∗
n is also selected.

Let U denote a group of an arbitrary number of users,

where T ⊆ U denotes an arbitrary user subset. The cryp-

tosystem allows all members of T ⊆ U to securely com-

pute a shared secret group key. Hence, the scheme provides

secure multi-party key agreement with the advantage that

secret group keys can be computed without user interaction

and key establishment data transmissions.

Public/private user key computation. The TA generates

for each participant Pi ∈ U a random secret number xi ∈
Zφ(n). The TA selects for each Pi ∈ U a public number Ii,

so that (d + Ii) is relatively prime to φ(n). The public Ii

could for example represent a meaningful identity of Pi.

The TA computes the public key for Pi ∈ U as

yi =
xi

d + Ii
(mod φ(n))

and the corresponding private key

ki = αxi·dM−1
(mod n)

where M denotes the maximum possible size of any user

coalition T . (The coalition max size must consequently be

the same as or less than the total number of users assigned

such long-term user keys.) The private key ki is transmitted

to Pi ∈ U through a secure channel.

Group key computation. At this stage, the participants of

a user coalition T ⊆ U compute the shared group key KT

according the following method:

Let IT,i = {j |Pj ∈ T\{Pi}}. Let t = |T |. Given a

polynomial

gi(d) =
∏

j∈IT,i

(
Ij + d

)

each participant Pi ∈ T computes the corresponding poly-

nomial coefficients ci,j , 0 ≤ j ≤ t − 1, so that

gi(d) =
t−1∑

j=0

ci,j · dj

Note that the values of ci,j are independent of the value of

the secret d. It can also be noted as a matter of form that the

value of d is fixed although gi(d) refers to a polynomial.

For j ∈ {0, . . . , t − 1}, let

wi,j = keM−1−j

i (mod n)

= (αxi·dM−1
)eM−1−j

(mod n)

= αxi·dM−1·d−M+1+j

(mod n)

= αxi·dj

(mod n)

Each Pi ∈ T computes the secret group key KT for that

coalition T ⊆ U according to

KT =
( t−1∏

j=0

w
ci,j

i,j

)∏
j∈IT,i

yj (mod n)

=
( t−1∏

j=0

αxi·dj ·ci,j
)∏

j∈IT,i
yj (mod n)

=
(
α

xi·
∏

j∈IT,i
(d+Ij))∏ j∈IT,i

xj
d+Ij (mod n)

= α
∏

j∈IT
xj (mod n)

where IT = {j |Pj ∈ T}.

3 Security analysis

In this section, we present the relevant security assump-

tions and security requirements of the presented scheme,

and then we show that the actual security of the scheme is

in agreement with the given security requirements.
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3.1 Security requirements

We assume that there exists a set U of an arbitrary num-

ber of users. A group key KT is computed as a function of

the long-term user keys of any user subset T ⊆ U . It can be

assumed an adversary A that is equivalent with a user coali-

tion A ⊆ U , where A ∩ T = ∅ for any coalition T ⊆ U .

Adversary assumptions. We assume that A may hold the

following information:

• The private user keys ki = αxi·dM−1
(mod n) for

each Pi ∈ A.

• The group keys KT∗ = α
∏

j|Pj∈T∗ xj (mod n) for

any T ∗ ⊆ U , where T ∗ �= T .

• The public user key yi for each Pi ∈ U .

Security requirements. There is no communication required

to compute group keys KT , which are computed as a func-

tion of the long-term user keys of the user coalition T ⊆ U .

Data to be communicated confidentially is encrypted by

means of a secure symmetric key cryptographic algorithm

using the secret group key as cryptokey. Assuming that the

symmetric key cryptographic algorithm used is secure, the

security of the scheme is based on the difficulty for an ad-

versary (or coalition of adversaries) A, to violate the fol-

lowing security requirements:

Security Requirement 1. Secrecy of private keys. It must

be computationally infeasible to obtain private user keys.

Security Requirement 2. Secrecy of group keys. No other

than the members of a given coalition T ⊆ U must be able

to compute the shared secret group key KT corresponding

to the long-term user keys of the given participants.

Security Requirement 3. Coalition resistance. It must be

prevented that any colluding user coalition A ⊆ U may vi-

olate the two former security requirements.

The security of the presented scheme is based on the se-

crecy of φ(n), d and xj (for any Pi ∈ U). We will now in

this regard present some relevant observations:

Observation 1. Secrecy of the secret parameters d and xj

(for any Pi ∈ U) concerning fractional public keys. The

public keys are computed according to

yi =
xi

d + Ii
(mod φ(n))

which corresponds to the equation

xi = yi · d + yi · Ii ⇔ yi · Ii = xi − yi · d
Since d and xi (for each yi) are unknown, the equation sys-

tem is underdefined and can clearly not be solved, thereby

effectively prohibiting deduction of the secret xi and d.

Accordingly, two or more yj correspond likewise to un-

derdefined linear equation systems, which hence cannot be

solved.

Observation 2a. Secrecy of the secret parameters d and xj

(for any Pi ∈ U) concerning private keys. Regarding the

private key ki = αxi·dM−1
(mod n) (and hence the corre-

sponding wi,j = αxi·dj

(mod n)), the secret d and xi are

accordingly protected due to the Discrete Logarithm Prob-

lem.

Observation 2b. Secrecy of xj (for any Pj ∈ U) concerning

group keys. Regarding the group key KT = α
∏

j|Pj∈T xj

(mod n), the secret xi (for any Pi ∈ U) is accordingly

protected due to the Discrete Logarithm Problem.

Observation 2c. The secrecy of d given the public e and n
is in agreement with the RSA public key cryptosystem [9].

Observation 3. Let Wj = αwj

. An adversary Pi ∈ A,

holding the private user key ki,0 can by means of the corre-

sponding public user key yi compute

W1 = αd = k
y−1

i mod φ(n)
i,0 ·α−Ii = α

xi· d+Ii
xi ·α−Ii (mod n)

Given Wj−1, 1 < j < M , the following computations can

be carried recursively out:

Wj = αdj

= k
y−1

i mod φ(n)
i,j · W−Ii

j−1 (mod n)

= α
xi·dj · d+Ii

xi · α−dj−1·Ii (mod n)

This attack requires computation of inverses modulo

φ(n). Since n is a large composite number, computing φ(n)
is equivalent of solving the Factorization Problem, which is

known to be computationally infeasible.

3.2 Security requirements

We will now provide the security proofs of the security

requirements.

Proof of Security Requirement 1. Security of private keys.
According to Observations 1 and 2a-c, it is infeasible to de-

duce both d and xi (for any Pi ∈ U) from public/private

keys and group keys. Since the private keys are on the form

wi,j = αxi·dj

, private keys can thus not be obtained by this

computation since d and xi (for any Pi ∈ U) are secret.

According to Observation 3, computation of Wj = αdj

(mod n) (for 1 ≤ j ≤ M − 1) is prevented since φ(n) is

unknown. Accordingly, it is computationally infeasible to

obtain Wj = αdj

given wi,j = αxi·dj

(mod n) for any

Pi ∈ U due to the Discrete Logarithm Problem.
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It can be noted that given Wj and Wj+1 would allow

computation of private keys according to

wi,j =
(
Wj+1 · W Ii

j

)yi (mod n)

=
(
αdj ·(d+Ii)

) xi
d+Ii = αxi·dj

(mod n)

It is therefore computationally infeasible to compute private

keys by this computation without knowledge of the secret

φ(n), where computing φ(n) is equivalent of solving the

Factorization Problem. Thus, disclosure of private keys is

prevented, and the scheme is secure in agreement with Se-

curity Requirement 1.

Proof of Security Requirement 2. Group key security. A

group key can be computed given disclosure of the secret

d, xi (for any Pi ∈ U) and φ(n), since this would enable

computation of private user keys. In agreement with Secu-

rity Requirement 1, an adversary is prevented to obtain any

private key of users in T . The adversary is accordingly pre-

vented from using such a key to compute the corresponding

group key KT .

Let us assume that A possesses a group key KT∗ for any

T ∗ ⊆ U , T ∗ �= T , and a group key KT∗∗ for any T ∗∗ ⊆
U , T ∗∗ �= T , where T = T ∗ ∪ T ∗∗ and T ∗ ∩ T ∗∗ = ∅.

Computing KT given KT∗ and KT∗∗ is hence equivalent to

solving the Diffie-Hellman Problem, which is known to be

computationally infeasible. Thus, disclosure of group keys

is prevented, and the scheme is secure in agreement with

Security Requirement 2.

Proof of Security Requirement 3. Collusion resistance.
Regarding disclosure of numbers, where the difficulty of

achieving this based on a number theoretical problem like

the Factorization Problem or DLP, the number of collud-

ing participants does not affect the hardness of such prob-

lems. This leaves the problem of solving the linear equa-

tion system corresponding to a set of any number of public

user keys, as pointed out in Section 3.1, where the equa-

tion xi = yi · d + yi · Ii corresponds to the public key yi.

Accordingly, since two or more public keys yj for Pj ∈ U
correspond likewise to an underdefined linear equation sys-

tem, it is not possible to solve such an equation system. The

scheme is thus collusion resistant to any number of collud-

ing parties. The scheme is therefore collusion resistant, and

the scheme is secure in agreement with Security Require-

ment 3.

4 Conclusions

In this paper, we have presented the novel concept of

fractional public keys and an efficient zero-round multi-

party Diffie-Hellman key agreement scheme based on frac-

tional public keys. The fractional keys enable public keys to

be used as exponents, thereby allowing a novel variation of

Diffie-Hellman key agreement with no key data transmis-

sions.
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