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Abstract— Parallel rendezvous multi-channel MAC mecha-
nisms are regarded as an efficient method for media access
control in cognitive radio networks since they do not need
a control channel and use only one transceiver. However,
existing parallel rendezvous MAC mechanisms assume that
all channels have the same maximum capacity and channel
availability for secondary users. In this paper, we propose
a dynamic parallel rendezvous multi-channel MAC mecha-
nism for synchronized multi-rate cognitive radio networks
in which secondary users jump among different channels
according to their own distinct hopping sequences and a
node can adjust its hopping sequence according to channel
conditions, in order to achieve higher system capacity. A
Markov chain based model is designed to analyze the system
capacity of the proposed mechanism. Numerical results show
that the new mechanism can significantly improve system
capacity of cognitive radio networks, compared with the
traditional channel hopping MAC mechanisms.

Index Terms— Cognitive radio networks, MAC mechanism,
Dynamic parallel-rendezvous, Markov chain, Performance
evaluation.

I. INTRODUCTION

Electromagnetic radio spectrum is one of the most valu-

able resources in wireless communications. With rapid

increase of the wireless applications and products, unli-

censed bands such as Industrial, Scientific and Medical

(ISM) and Unlicensed National Information Infrastruc-

ture (UNII) have become over-crowded. On the other

hand, a large portion of the assigned spectrum is used

sporadically and a significant amount of the allocated

spectrum remains under-utilized. Cognitive Radio (CR)

[1], as a promising solution to efficiently utilize the

unused spectrum, has become a hot research topic these

days. However, the functions of cognitive radio devices

become very limited if they do not form a network.

Together with existing legacy infrastructure and/or ad hoc

networking devices, CRs can form a Cognitive Radio

Network (CRN). This new type of network is built based

on CR terminals and wireless networking technologies,

and can transport packets to facilitate emerging services

and applications.

To form a CRN, Media Access Control (MAC) mech-

anisms are of great importance, especially for multi-

channel CRNs. The MAC mechanisms for CRN can be
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grouped into two categories: centralized or distributed

MAC mechanisms. The most eminent approach for cen-

tralized CRN MAC is IEEE 802.22 [2]. In this study, we

focus on the distributed mechanisms. Existing distributed

multi-channel CRN MAC mechanisms can be further cat-

egorized into two classes: single- or parallel-rendezvous

MAC mechanisms [12].

For single-rendezvous MAC, it has a control channel

as the rendezvous channel and Secondary Users (SUs)

can exchange control information and negotiate parameter

configurations for data transmission on this channel [4]

- [11]. Furthermore, data channel combining technology

can be used in control channel based mechanisms. With

channel combining technology which can bind data chan-

nels that are not used by Primary Users (PUs) together,

the MAC mechanisms can use the free spectrum more

efficiently [7] [8] [11]. But these mechanisms usually

need more complicated hardware which have two radios

[7] or one radio and several spectrum sensors [11].

For other single-rendezvous multi-channel mechanisms

without using data channel combining technology [5]

[6] [9] [10], the control channel, however, can become

a bottleneck under operations [3], or they need more

transceivers on data channels, e.g., in [9].

Parallel rendezvous MAC mechanisms, on the other

hand, do not need a common control channel. The basic

idea behind parallel rendezvous mechanisms is that nodes

jump among different channels according to their own

sequences and the control information is exchanged at

different channels when nodes meet. It has been demon-

strated that parallel-rendezvous MAC mechanisms, like

Multi-channel MAC (McMAC) [12] and Slotted Seeded

Channel Hopping (SSCH) [13], generally outperform

control channel MAC mechanisms in multi-channel cases

[3]. Furthermore, parallel-rendezvous MAC mechanisms

do not have a bottleneck like in the single rendezvous

case and they are all based on a single transceiver.

Parallel-rendezvous MAC mechanisms are originally used

in multi-channel ad hoc networks, but have recently been

extended to CRN by the authors of [14].

However, existing multi-channel parallel-rendezvous

MAC mechanisms in multi-channel ad hoc networks

and CRNs do not consider heterogeneous channel con-

ditions. If the channels are unbalanced, for example,

when different parameters, like diverse bandwidth and
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maximum transmission power available for SUs and dis-

tinct transmission probabilities of PUs exist in different

channels, a method needs to be adopted to adjust the

communication according to these parameters. In this

paper, we propose a dynamic channel hopping based

parallel-rendezvous single transceiver MAC mechanism

for synchronized CRNs. The main idea behind this work

is to adjust the hopping sequence of SUs according to

the datarate and channel availability of these channels.

For comparison convenience, we refer to this method

as Dynamic Parallel-rendezvous MAC protocol (DPR-

MAC) while the method proposed in [14] is referred to

as Datarate Independent MAC protocol (DRI-MAC).

The rest of this paper is organized as follows. Section

II summarizes related work. Section III presents the

proposed MAC mechanism. The system capacity of the

proposed MAC mechanism is analyzed in Section IV

using a Markov chain model. In Section V, numerical

results and comparison with DRI-MAC are given. Finally,

the paper is concluded in Section VI.

II. RELATED WORK

In this section, we give more detailed descriptions on a

few related MAC mechanisms mentioned in Section I, cat-

egorized as distributed multi-channel MAC mechanisms:

single-rendezvous or parallel-rendezvous.

A. Single-rendezvous MAC mechanisms

In single-rendezvous MAC mechanisms, channels are

classified as either control channel or data channels.

1) C-MAC: Cognitive MAC (C-MAC) [10] is a time

slotted CR MAC based on one transceiver. Time slotted

here means that it splits a time period into different sub-

periods for different usages. In this design, super-frames

are defined for each channel which is further divided into

a data transfer period, beacon period and quiet period. In

different periods, nodes have different functions.

In this MAC, there are three type of channels: Ren-

dezvous Channels (RC), Backup Channels (BCs) and data

channels. This mechanism needs a control channel but not

a dedicated one. To operate this mechanism, the RC is

used as a control channel, and BC is the backup for RC.

The mechanism chooses the best channel as the RC based

on the traffic information obtained from the beacon. Data

transmission may occur over different data channels. As

a control channel is used, there exists a bottleneck. The

selection and rendezvous pattern of RC in multi-hop cases

is still a challenging task in C-MAC.

2) OS-MAC: Opportunistic Spectrum MAC (OS-

MAC) [6] is a single transceiver based CR MAC mecha-

nism. It needs a common control channel and uses SUs’

group formation. The SUs exchange control information

in the common control channel and communicate on

different data channels. Fixed durations are used to form

groups of SUs, to determine their channel occupancy

status, and to exchange channel traffic load. In this MAC,

there is a channel traffic balancing algorithm that can

balance the load among different channels. For new data

packets, the mechanism can choose a channel with less

load and establish communication on it. However, the

complexity of this mechanism is relatively high and the

group formation introduces certain amount of overhead

for the network.

3) KNOWS: KNOWS [11] is another CR MAC that

uses channel combination technology and targets for TV

bands. It also needs a dedicated control channel for

control information exchange. It demands one transceiver

and several spectrum sensors. The transceiver is in charge

of control and data packet communications, and the

spectrum sensors are responsible for gathering channel

information. For data transmission, it combines channels

that are not occupied by PUs as one data channel. The

advantage of this channel combination is that it can avoid

common control channel bottleneck, but the requirement

for hardware is much higher, compared with the OS-MAC

case.

From the above discussions, we can conclude that

the MAC mechanisms that based on single-rendezvous

channel (control channel) usually have problems like

transmission bottleneck or high demand for hardware

complexity.

B. Parallel-rendezvous MAC mechanisms

Different from single-rendezvous MAC mechanisms,

parallel-rendezvous MAC mechanisms do not need a

control channel and nodes establish communication si-

multaneously in different channels. The main motivation

of parallel-rendezvous is to overcome the single control

channel bottleneck problem [3].

1) SSCH: In SSCH [13], nodes jump among channels

according to their hopping sequences. The sequences used

are uniquely determined by the seed of a pseudo-random

generator [3]. Each device picks multiple sequences and

follows them in a time-multiplexed manner. For example,

when node A has data to B, A waits until it is on the same

channel as B. If A frequently wants to send data to B, A

adopts one or more of B’s sequences, thus increasing the

time spend on the same channel. To let this mechanism

work, the sender learns the receiver’s current sequences

via a seed broadcast mechanism.

This MAC is based on multiple sequences and the

complexity of the MAC control is relatively high.

2) McMAC: McMAC is also proposed for multi-

channel cases initially and it works properly in the

802.15.4 based equipments [12]. The main idea of Mc-

MAC is similar to that of SSCH, but the hopping se-

quence generating strategy of McMAC is simpler. In

McMAC, each node has its own unique sequence and

the sequence is generated by a pseudo-random genera-

tor. The seed of the sequence is the node’s own MAC

address. The pseudo-random generator that is used in

McMAC is the Park-Miller random number generator:

X(t) = 16807 · X(t − 1)mod(231 − 1), where X(t)
means the current number and X(t − 1) means the

previous number.
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Nodes in the McMAC network switch across the chan-

nels following their hopping sequences. The sequence of a

node is broadcast and if other nodes want to communicate

with a particular node, it should follow to the node’s

sequence and tune to the same channel to establish

communication. Since the communication procedure in

McMAC is quite similar to the MAC mechanism dis-

cussed in the next paragraph, we will describe it in more

details there.

3) DRI-MAC: DRI-MAC is quite similar to McMAC

but the difference is that it has a quiet period in the

beginning of each time slot in order to check the presence

of PUs.

In DRI-MAC [14], each SU has its own pseudo-

random hopping sequence and switches across the chan-

nels following the hopping sequence. SUs decide their

own hopping sequence based on their unique ID and

share the same hopping sequence generating algorithm.

For a given SU, the hopping sequence is fixed. Each

SU periodically broadcasts beacons with its own hopping

sequences over an unused channel. Once a sender receives

the hopping pattern information of the receiver, it can

follow the receiver’s hopping sequence to meet it if the

sender has packets to the intended receiver. A quiet period

is introduced in the beginning of each slot. During this

period, every SU in difference channels keeps silence and

listens to the channel to check whether there is a PU. If

PUs are not there, the SUs deem it is proper to use the

channel.

Figure 1 illustrates the principle of this parallel-

rendezvous MAC mechanism. As illustrated in the figure,

the two SUs, A and B, are on Channel 1 and Channel

4 respectively in Time Slot 1 (TS1) and will jump to

Channel 3 and Channel 2 in TS2. In TS3, A would jump

to Channel 2 if it has no packets to send. As A has data to

send to B, A follows B’s sequence and jumps to Channel

4 in TS3, instead of jumping to Channel 2. They will stay

on the same channel till the transmission finished (as in

TS3-TS6). During the transmission period, if PU appears

(as in TS5), they will wait until the next slot and transmit

if then the channel is idle again (as in TS6).

Channel 1

Channel 2

Channel 3

Channel 4

A

A A

A

A

B B

B

BB A      BA   B A    BA
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A

A

A
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B B

B

B

TS1    TS2     TS3      TS4    TS5     TS6  TS7     TS8 t

Figure 1. Illustrations of DRI-MAC. The highlighted slots mean that
the time slots are used by PUs. A, B are SUs. TS1-8 mean time slots
respectively. A, B with a circle denote their predefined hoping pattern.

A common feature of the existing parallel-rendezvous

MAC mechanisms is that the sequences used are based

on a pseudo-random sequence generator and they are

statistically uniform distributed [17], regardless of channel

conditions. In the following sections, we will present

the DPR-MAC which can adjust the hopping sequence

according to the channel parameters considered in order

to achieve higher system capacity.

III. DPR-MAC MECHANISM DESCRIPTION

A. Channel model and system assumptions

Assume that each SU has only one transceiver. It means

that SUs cannot transmit and receive messages at the

same time. The transceiver of SU is Software Defined

Radio (SDR) based that can dynamically use the channels

assigned to PUs when they are not occupied. The same

as in [7], [14], we assume also that there are G channels

in the considered network and each channel assigned to

PUs follows independent ON/OFF random process. The

ON period means that the channel is occupied by the PU

and the OFF period presents that the channel is vacant.

Each licensed channel is time-slotted such that the PUs

communicate with each other in a synchronized manner.

The SUs, which are also synchronized with the PUs,

opportunistically access the licensed spectrum when it is

available [7]. The channel state for the ith channel can be

found in Figure 2.

Channel i

ON ON ON ON ONOFF OFF OFF t

Figure 2. The ON/OFF channel state for the ith channel.

Let αi be the probability that the ith channel transits

from state ON to state OFF and βi be the probability

that the ith channel transits from state OFF to state ON,

where 1 ≤ i ≤ G. Then the state can be modeled as

a simple two-state Markov chain as shown in Figure 3

[7], [14]. Theoretically, the availability of the ith channel

for SUs, denoted by γi, can be presented as the steady

state probability of the corresponding Markov Chain of

the OFF state, i.e., the channel is not occupied by the PUs,

which can be presented as γi = αi/(βi +αi), 1 ≤ i ≤ G.

ON OFF

i

i

1- i 1- i

Figure 3. ON/OFF channel state transferring model.

For the ON/OFF channel model, assume that the

transceiver of SU can sense precisely the signal of PUs’

it receives in a particular channel that it tunes in. It is

assumed that the statistic parameters of the PUs’, i.e., the

ON/OFF percentage in a channel is stable over a long

enough time period compared with beacon intervals. The

envisaged scenario for this investigation is that SUs are

located in a limited geographic area while the coverage

and distance scale of PUs are far larger than that of

SUs, hence the SUs are covered by the same set of PU

systems. This implies that the results of channel sensing

by each SU in a particular channel is the same for all SUs.

It is further assumed that all SUs are in close enough
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proximity to be able to communicate with each other

using the same modulation scheme within a channel. We

do not consider the mobility of SUs in this study.

Before giving the DPR-MAC mechanism description in

details, we first discuss the channel parameters considered

in DPR-MAC.

B. Channel parameters considered in DPR-MAC design

In conventional multi-channel cases, it is often assumed

that the channel conditions are the same, but in CRNs

the parameters among channels may be different. We

consider two parameters, maximum datarate Ri available

for SUs and channel availability γi in channel i in our

MAC design. In order to protect PUs, the transmission

power of SUs should be below a specific value so that the

interference generated could be lower than the threshold

at the PU receivers1. Since the PU equipments and

their locations could be different in different channels,

the maximum transmission power for SUs in different

channels could be different. Besides, the bandwidth that

SUs are allowed to utilize may be different from channel

to channel. Therefore, each of these channels may have

different maximum datarates Ri available for SUs [18].

In addition to Ri, the channel availability, γi, may be

different in different channels because the usage pattern

of these channels by PUs might be different. In real

implementation, γj in channel j can be estimated by an

SU in the following way [15]: γj = (ij(to)+1)/(ij(to)+
bj(to)+2), where ij(to) and bj(to) are the number of time

slots that channel j is idle and busy respectively during

time period to [15].

Considering the above two parameters, we define the

channel carrier capability, ηi, as the product of maximum

datarate of a channel and its availability for SUs:

ηi = Ri × γi. (1)

As defined above, the channel carrier capacity is an

indicator which reflects not only the maximum bits per

second an SU could transmit but also the percentage of

time when this channel can be used by SUs.

C. Dynamic parallel-rendezvous MAC

Like other multi-rendezvous MAC mechanism, the pro-

posed MAC mechanism does not need a control channel.

The channel sensing and data transmission strategies of

DPR-MAC are similar to that of DRI-MAC. The differ-

ence is, however, that the hopping pattern is designed

according to the channel carrier capability in our case.

In what follows, we will first describe the basic channel

hopping sequences and then propose the channel carrier

capability aware hopping sequence.

1Even if it is assumed that SUs can sense the signal of PUs’
transmission precisely, the transmission power of SUs should be limited
because PU receivers could be within SUs’ interference range but its
corresponding PU transmitters could be out of the SUs’ sensing range.
In this case, although a channel is sensed as idle, the transmission power
of SUs should be kept within a threshold in order to protect the potential
PU receivers in that channel.

1) Basic hopping sequence: We adopt the sequence

generation method that is used in McMAC [12] to gener-

ate basic sequences. To reduce computational overhead,

the length of the sequence should be fixed to a particular

value as at least 10 times larger than the number of

channels [12].

2) Channel carrier capability aware hopping se-

quence: SUs use their basic channel hopping sequences

to switch across different channels but they may deviate

from their basic sequences when the channel carrier capa-

bility ηi are different among channels. More specifically, a

portion of the basic hopping sequence should be adjusted

according to ηi, while the rest of the sequence will still

remain on the basic hopping sequences. For example,

there are two channels that offer different datarates for

SUs. The carrier capability of Channel 1, η1 is higher than

that in Channel 2, η2. Suppose a snapshot of an SU’s basic

hopping sequence is [1, 2, 2, 1, 2, 1, 1, 2], which means

that initially SUs will jump evenly between Channel 1

and Channel 2. According to DPR-MAC, however, as

η1 > η2, more hops will be preferred to be allocated

in Channel 1. The resulted sequence could then look like

[1, 2, 1, 1, 2, 1, 1, 1], which leads to higher chance for

channel access of Channel 1.

At the same time, the adjustment method must be care-

fully designed to avoid the phenomenon of co-behaviors

which means that most SUs may end up all adjustment to

the same channel which has the highest channel carrier

capability. This undesired phenomenon not only induces

congestion in that channel and degradation to throughput,

but also wastes channel vacancy. We present the following

method to avoid this phenomenon.

Assume that the carrier capability of the ith channel is

ηi, 1 ≤ i ≤ G. Let SU(i) be the SU that jumps onto the

ith channel according to its basic hopping sequences in

its next hop. Let η =
∑G

j=1 ηj/G and A = {Channel
j|ηj > η, j = 1 · · ·G}. The deviation method works as

follows:

1. If ηi ≥ η, SU(i)s which will jump onto channel i will

remain in the basic sequence and do not deviate from

channel i.
2. Else

(1) With probability ηi/η, SU(i)s which plan to jump onto

channel i will remain in the basic hop and do not deviate

from channel i.
(2)With probability (1− ηi/η) · (ηj − η)/

∑

k∈A(ηk − η),
SU(i)s will select channel j, j ∈ A.

Following above mentioned steps, SUs will jump ac-

cording to the channel carrier capability ηi instead of

equal chance access of the available channels, and the

co-behavior problem is also avoided. The proof is given

in Appendix A.

3) Beacons advertisement: An SU generates and uses

the basic hopping sequence first. Based on its own obser-

vation and the basic hopping sequence, the SU can make a

decision on which hops need to be adjusted according to

the above algorithm. It then needs to inform the others

the adjustment results in its periodical beacons. Since
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there is no control channel, the beacon message cannot

be received by SUs that are not in the current beacon-

sender’s channel. In order to let most SUs receive the

beacon message earlier with minimal overhead, we adopt

the following dissemination scheme considering two cases

according to the number of SUs in the network. Denote

the number of SUs as N . If the number of SUs is few, i.e.,

N ≤ 2G− 1, we adopt scheme one. When N > 2G− 1,

scheme two is adopted. The reason for distinguish these

two cases is that if the second scheme is adopted when

N < 2G−1, the number of beacons generated according

to scheme two will be larger than when scheme one is

used. The goal of the beacon dissemination scheme is to

inform as many SUs as possible in the network about

the adjusted sequence, within as short beacon intervals as

possible.

(1) N ≤ 2G− 1: An SU transmits beacon information

to all these SUs in a unicast way, i.e., informs its new

sequence to others one by one individually based on

each node’s hopping sequence. In this scheme, there are

altogether N − 1 beacons generated.

(2) N > 2G− 1: In this scheme, there are three steps:

a) An SU selects G − 1 other SUs according to its local

information about other SUs’ current hopping sequences

such that in a particular time slot, named as planned slot,

these SUs, including the original SU itself, can cover

all these G channels. If these SUs cannot cover all G
channels, it chooses a slot that SUs spread on different

channels to the largest extent.

b) The SU unicasts the beacon information to these

G− 1 selected SUs and let them re-broadcast the beacon

information on behalf of the original SU in the planned

slot. In this beacon information, the IDs of the channels

onto which the original SU wants the other SUs to

broadcast are also included.

c) When the planned time slot arrives, these SUs will re-

broadcast the beacon together on those channels. If there

are other packets waiting for transmission, the SU will

broadcast the beacon message first.

If a particular channel is occupied by PUs or on-going

SU transmissions, or the SUs which are responsible for

broadcasting on that channel are transmitting or receiving

on another channel at that planned slot, these SUs can

broadcast the beacon in the planned slot of the next

hopping sequence period. The new hopping sequence for

an SU is validated at the beginning of the next beacon

interval. With this scheme, there are altogether 2G − 1
beacons generated.

4) Negotiation and transmission: Each SU keeps a

queue for each destination to avoid head-of-line blocking

[12], which occurs whenever traffic waiting to be trans-

mitted prevents or blocks traffic destined elsewhere from

being transmitted. In each slot, if it is not occupied by a

PU, SUs can negotiate for data transmission. Negotiation

is needed because an intended receiver may be in another

channel as a transmitter. Therefore there is a risk of packet

loss if data is transmitted directly. Without negotiation,

furthermore, it is possible that two or more transmitters

jump onto the same channel for data transmission, re-

sulting in collision. Negotiation which is done after the

quiet period, can avoid such potential collisions. When

negotiations are successfully done, data transmission can

be carried out.

If two SUs cannot finish their transmission within a

time slot, they will continue using the same channel for

data exchange at the next time slot, which escapes the

switching penalty. An ongoing transmission between two

SUs may be interrupted by sudden channel occupancy of

PUs. In this case, the communicating pairs will pause

and hold transmission if the channel is occupied by

any PUs again during their data transmission. In order

to guarantee that the not-yet-finished transmission has

the highest priority, the unfinished transmission can start

immediately after the quiet period while new transmitters

will sense the channel after the quiet period and negotiate

for transmission.

IV. SYSTEM CAPACITY ANALYSIS

In this section, we analyze the system capacity of

the DPR-MAC. System capacity here means the total

amount of bits per second the SUs in this system can

obtain, considering injected traffic load into the system

and specific value of channel carrier capability. For ease

of expression, we assume there are two types of channels

with maximum datarate R1, R2 and channel availability

γ1, γ2 respectively, each type having M channels. Thus

the total number of channels is 2M . Furthermore, it is also

assumed in this analysis that there is no sensing failure

in the channel sensing stage. The analysis is based on

the situation when the adjustment information of SUs is

ideally distributed. Table I gives the parameters used in

the system capacity analysis.

Assume further that in different nodes, the average data

flow length generated in bytes is the same and that the data

flow length, which is integer multiples of the time slot

length follows independent geometrical distribution. Since

there are two type of channels with different datarates,

different channel datarates will introduce different data

flow length in number of time slots, i.e., different value of

µ in geometrical distribution, denoted as µ1 and µ2. The

probability of the length Li of a data flow in time slots

can therefore be expressed as P (Li = li)=µi(1−µi)
li−1,

i = 1, 2 for channel type 1 and 2 respectively. Since a

data flow is transmitted on the same channel, it has the

same µ during its transmission, no matter how many slots

it takes.

Denote the switching penalty as Tsw. The switching

penalty happens only at the first time slot of a successful

communication session. Therefore, the average switch-

ing penalty with the number of time slots that a data

transmission uses in channel type 1 and 2 is adopted

as T
i

sw = Tsw/Li, where Li is the average number

of slots that a data flow transmission takes in channel

type i, i = 1, 2. Denote the datarate, the length of time

slot, and the length of quiet period by Ri, Ts, and Tq.

The average flow length in bytes can be presented by
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TABLE I.

PARAMETERS FOR PERFORMANCE ANALYSIS.

Notation Parameters Description

The number of channels in 2 kinds;
2M M channels for R1 & R2 respectively. G = 2M .

N The number of SUs.

The total number of SUs that is ready to transmit or
Nr receive at the beginning of the tth slot on all channels.

The number of SU pairs that successfully negotiate in
ui the tth slot in channel type i, i = 1, 2.

The number of SU communication pairs that finish data
vi exchange at (t − 1)th slot in channel type i, i = 1, 2

and become ready at the beginning of the tth slot.

The number of channels which have at least
ci one idle potential receiver in the tth slot

in channel type i, i = 1, 2.

The number of idle channels in the tth slot
ei in channel type i, i = 1, 2.

The number of channels that are idle and have at
di least one idle potential receiver in them in the

tth time slot in channel type i, i = 1, 2.

The number of communication pairs in the (t − 1)th
ki slot in channel type i, i = 1, 2.

The number of communication pairs in the tth slot
mi in channel type i, i = 1, 2.

The number of SUs that have data to send
w in the tth slot.

λ The probability that an idle SU generates data flow.

The probability that a pair of transmitting SUs
µi finish data exchange and release the channel in

channel type i, i = 1, 2.

The probability that the PUs do not use the channels
γi in channel type i, i = 1, 2.

(Ts −Tq −Tswi) ·Ri/µi, where i = 1, 2. Given Ts>>Tq

and Ts>>T
i

sw, for the same average length of data flow

in bytes, we can ignore T
i

sw and approximately get that

Ri/Rj = µi/µj , ∀µ ≤ 1.

Based on the above discussions, in any time slot,

the system state can be presented by the number of

SU communicating pairs in two types of channels, i.e.,

(P1, P2). We can use a discrete-time Markov chain to

analyze the system capacity. State transfer happens when

at least one communication pair finishes transmission or a

pair begins to transmission in either of these two channel

types. Figure 4 presents a Markov chain in the case that

there are two types of channels, and each type has only

one channel in it. The first element presents the number

of communicating pairs in channel type 1 and the second

one presents that in channel type 2. For example, state 10

means that there is one communicating pair in channel

type 1 and no communicating pair in channel type 2. In

this example, there is only one channel of each type, the

number of each element is up to 1 and there are altogether

4 states. It is easy to extend it to two types of channels

with several channels in each type and the difference is

that the number of states of the Markov chain will be

much larger.

In the following subsections, we will deduce first the

state transfer probability of the Markov chain from t −
1 to t, i.e., P (m1,m2|k1, k2) and then get the steady

state probability πi,j , where i, j ∈ [0,M ]. Finally, based

on the probabilities obtained, the system capacity can be

calculated.
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P01,00 P01,10

P10,01

P11,00

P00,11

Figure 4. A Markov chain model for system capacity analysis.

A. State transition probability

Given the number k1 of communicating pairs in the

(t − 1)th time slot in channel type 1, the number v1

of communicating pairs that become ready at the begin-

ning of tth time slot follows binomial distribution, i.e.,

P (v1|k1) = (k1

v1
)(µ1)

v1(1 − µ1)
k1−v1 , 0 ≤ v1 ≤ k1.

The expression is similar for channel type 2. Then the

number of nodes that is ready to transmit or receive at the

beginning of the tth time slot Nr is: Nr = N − 2(k1 −
v1) − 2(k2 − v2), 0 ≤ k1, k2,≤ φ, φ = min(M,N/2).
The probability that w number of SUs have data to send at

the tth time slot can be presented as P (w|k1, v1, k2, v2) =
(Nr
w )λw(1 − λ)(Nr−w), where 0 ≤ w ≤ Nr. The number

of idle SUs which are ready to receive data, denoted by

potential receiver Xr, is Xr = Nr − w. Statistically, the

idle SUs in channel type 1 and 2 denoted as Xr1 and Xr2

will be Xr1 = ||η1/(η1 +η2) ·Xr|| and Xr2 = Xr −Xr1.

Denote by P (c1|k1, v1, Xr1) the conditional probability

of c1 number of channels onto which at least one idle

potential receiver will jump at the tth time slot, given

that there are Xr1 SUs potential receivers in channel type

1. This is analogous to put Xr1 balls into M urns and

then get the probability that there is c1 urns that are not

empty. The solution can be found in [14] even though

there is a slight difference2, as shown in Appendix B. As

the probability of c1 is not correlated to k1, v1, given

Xr1, we get P (c1|k1, v1, Xr1) = P (c1|Xr1). The same

result applies to channel type 2.
Denote by P (e1|k1, v1, Xr1, c1) the probability that

there are e1 number of the idle channels in channel
type 1, given that there are k1 communication pairs in
(t− 1)th time slot and v1 pairs of SUs that have finished
communications at the end of (t − 1)th time slot. Then,

P (e1|k1, v1, Xr1, c1) = P (e1|k1, v1)

= (M−k1+v1

e1
)γe1

1 (1 − γ1)
M−k1+v1−e1 . (2)

Denote by P (d1|k1, v1, Xr1, c1, e1) the conditional
probability that d1 number of the channels that are idle
and have at least one idle potential receiver, given e1
idle channels and c1 channels that have at least one idle

2In [14], capacity calculation of channel with exactly one transmitter
is considered. In our analysis, we consider the channels with one or more
available potential receivers, which include the situation that several
transmitters may contend for channel access at the same time slot on
the same channel. The successful communication pair will still be only
one after the negotiation process.
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potential receiver in channel type 1. According to the
hypergeometric distribution [3], [14], we obtain

P (d1|k1, v1, Xr1, c1, e1)

= P (d1|c1, e1) = (e1

d1
)(M−e1

c1−d1
)/(M

M−c1), (3)

where 0 ≤ d1 ≤ c1.
For channel type 1, combining the above two equations,

we get

P (d1|k1, v1, Xr1, c1) = P (d1|k1, v1, c1)

=

M−k1+v1
∑

e1=0

P (d1|c1, e1)P (e1|k1, v1) (4)

=

M−k1+v1
∑

e1=0

(e1

d1
)(M−e1

c1−d1
)

(M
M−c1

)
(M−k1+v1

e1
)γe1

1 (1 − γ1)
M−k1+v1−e1 .

We approximate the probability that a receiver has data
flow to be sent by a transmitter with w/(N − 1) [3].
Then we can approximately3 calculate the probability
that u1 number of the SUs pairs that successfully ne-
gotiate on these d1 channels at the tth time slot [14],
P (u1|k1, v1, w, c1, d1), as

P (u1|k1, v1, w, c1, d1) = P (u1|k1, v1, w, d1)

= (d1

u1
)(

w

N − 1
)u1(1 −

w

N − 1
)d1−u1 . (5)

Since u1 = m1 − (k1 − v1), we give the probability

P (m1|k1, v1, w, c1, d1) = (6)

(d1

m1−(k1−v1))(
w

N − 1
)m1−(k1−v1)(1−

w

N−1
)d1−(m1−(k1−v1)).

For channel type 1, by using the Eqs. (4) and (6), and
P (c1|Xr1), we can obtain that

P (m1|k1, v1, w, Xr1)

=

M
∑

c1=0

c1
∑

d1=0

P (m1|k1, v1, w, c1, d1)

× P (d1|k1, v1, Xr1, c1)P (c1|Xr1). (7)

Similar expression for Eqs. (2)-(7) can be easily found

for channel type 2.
Note that P (m1|k1, v1, w,Xr1) and the corresponding

P (m2|k2, v2, w,Xr2) are probabilities analyzed in differ-
ent types of channels and they are independent. Thus the
joint probability can be expressed as

P (m1, m2|k1, v1, k2, v2, w, Xr1, Xr2)

= P (m1|k1, v1, w, Xr1) · P (m2|k2, v2, w, Xr2). (8)

With our hopping sequence adjustment method, statis-
tically, the probability of Xr1 and Xr2 can be expressed
as

P (Xr1 = j, Xr2 = Nr − w − j)

= (Nr−w
j )(η1/(η1 + η2))

j(η2/(η1 + η2))
Nr−w−j . (9)

3For simplicity, we approximate that the utilization probability of idle
channels with more than one potential receiver is the same as the case
with only one potential receiver in the analysis, since differentiating
channels according to the number of potential receivers will introduce
extreme complexity in the analysis. However, we are aware of that it
is less likely that several intended receivers will be unavailable at the
same time in practice.

Then, we can obtain

P (m1, m2|k1, v1, k2, v2, w)

=

Nr−w
∑

j=0

P (m1, m2|k1, v1, k2, v2, w, Xr1, Xr2)

× P (Xr1 = j, Xr2 = Nr − w − j). (10)

It is obviously that P (v1|k1) and P (v2|k2) are indepen-
dent, then it is found that

P (v1, v2|k1, k2) = P (v1|k1)P (v2|k2). (11)

With the help of P (w|k1, v1, k2, v2), we can finally com-
pute

P (m1, m2|k1, k2)=

k1
∑

v1=0

k2
∑

v2=0

Nr
∑

w=0

P (m1, m2|k1, v1, k2, v2, w)

×P (w|k1, v1, k2, v2)P (v1, v2|k1, k2). (12)

B. Steady-state probability

Known the transition probabilities, we can calculate
the probability for steady-state of the Markov chain. The
steady-state probability is given by

Π = ΠP, (13)

where Π is a row vector whose elements, πi,j , sum to 1 as
shown in Eq. (14), and πi,j is the steady-state probability
with i and j communicating pairs in channel type 1
and 2 respectively. P is the transition matrix, formed by
P (m1,m2|k1, k2), as

P=









P (0, 0|0, 0) P (0, 1|0, 0) · · · P (M, M |0, 0)
P (0, 0|0, 1) P (0, 1|0, 1) · · · P (M, M |0, 1)

...
...

...
...

P (0, 0|M, M) P (0, 1|M, M) · · · P (M, M |M, M)









.

The sum of all probabilities would be unity, as
∑

i,j

πi,j = 1. (14)

By solving Eqs. (13) and (14), we can find all steady-

state probabilities, πi,j , for 0 ≤ i, j ≤ M .
If the Markov chain is irreducible and aperiodic, then

there is a unique stationary distribution. In this case, Pκ

converges to a rank-one matrix in which each row is the
steady distribution Π, i.e.,

limκ−→∞P
κ = EΠ, (15)

where E is the column vector with all entries equaling to

1 and κ is the exponent of P. This character of Markov

chains can be used to verify the validity of our analysis4.

C. System capacity

The transmissions that are not finished in (t − 1)th
time slot may be buffered in the tth time slot because
of the presence of PUs. Denote Nt1(k1, v1, γ1) as the
average number of ongoing communication pairs of SU
that exchange data in tth time slot in channel type 1 [14]
as,

Nt1(k1, v1, γ1) =

k1−v1
∑

i=0

i(k1−v1

i )γi
1(1 − γ1)

k1−v1−i. (16)

4Indeed, we calculated limκ−→∞Pκ and find that it converges to
Π and

∑

i,j πi,j = 1 from the numerical results. The validity of the

analysis is therefore verified.
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Then the total system capacity, denoted as S which is
the sum of data transmitted over channel type 1 and 2,
denoted as S1 and S2, can be expressed as:

S = S1 + S2. (17)

where

S1 = (Ts − Tsw1 − Tq) · R1/Ts×
φ

∑

k1=0

φ
∑

k2=0

φ
∑

m1=0

φ
∑

m2=0

k1
∑

v1=0

k2
∑

v2=0

P (k1, m1, v1, k2, m2, v2)×

[Nt1 + m1 − (k1 − v1)], (18)

and

P (k1, m1, v1, k2, m2, v2) = P (m1, v1, m2, v2|k1k2)πk1,k2

= P (v1, v2|k1, k2, m1, m2)P (m1, m2|k1k2)πk1,k2

= P (v1, v2|k1, k2)P (m1, m2|k1k2)πk1,k2
. (19)

Similar expressions can be found for S2 from Eqs. (16),

(18) and (19).

The above analysis result can also be extended to a

more general case where there are more than two types

of channels. That is, denote Nc as the number of channel

types, we can form a Markov chain with Nc elements and

each element stands for the number of communicating

pairs on channels with the same datarate. In this case,

Eq. (9) should be revised as a multinomial distribution

instead of binomial distribution, as shown in Eq. (20).

P (Xr1
= xr1

, Xr2
= xr2

, · · ·XrNc
= xrNc

) (20)

=



















(Nr−w)!
xr1

!···xrNc
! ( η1

η1+···ηNc
)xr1 · · · (

ηNc

η1+···ηNc
)xrNc ,

when
∑Nc

i=1 xri
= Nr − w.

0, otherwise.

Correspondingly, Eq. (10) can be expressed as:

P (m1, · · ·mNc |k1, v1, · · · kNc , vNc , w) (21)

=
∑

∑Nc
i=1

xri
=Nr−w

P (Xr1
= xr1

, Xr2
= xr2

, · · ·XrNc
= xrNc

)

× P (m1, · · ·mNc |k1, v1, · · · kNc , vNc , w, Xr1
, · · ·XrNc

).

Other parts of the analysis when there are more than

two types of channels are quite similar to that of two types

of channels. With the analysis of probability, we can find

the steady state of Markov chain and finally get the total

system capacity in this more complicated case.

D. An estimation of beacon messages dissemination

In this subsection, the probability of the beacon mes-

sages dissemination after a given period is estimated, and

the probability of a particular node that can receive the

beacon information after a certain numbers of beacon

intervals is also given. In this estimation, we focus on the

second scheme in Subsection III. C. 3), when N > 2G−1.

Assume that there are two types of channels with the

same channel availability γ but different datarates R1 and

R2, and R1 > R2. Let Pog,2 be the probability of an SU

transmission that has not finished in the previous time

slot in channel type 2. Given the same flow length in

bytes and traffic load in both of the channel types, the

same probability for channel type 1, Pog,1, could be ex-

pressed as Pog,2R2/R1. For the simplicity of estimation,

we consider the stage when uniform distributed hopping

sequences are used in our following calculation.

1) Probability for successful beacon dissemination:

Since the second step in scheme 2 consumes time in

slots scale while the third step uses time in hopping

sequence periods scale, we consider the dissemination

period used for SUs broadcasting beacon messages in the

planned slot on behalf of the original SU. As the beacon

dissemination time is determined by the latest distributed

beacon on a channel, we analyze the probability for

channel type 2, i.e., the low datarate channel. On a

low-datarate channel, the probability that a channel is

occupied could be expressed as Pocc = 1 − γ + γPog,2.

The probability, Psucc|idle, that an SU can successfully

broadcast the beacon in the planned slot when the channel

is idle is Psucc|idle = (1 −
2MPog,1+2MPog,2

N
)Paccess,

where Paccess = min(1, G
N−2MPog,1−2MPog,2

), and it

is the probability that the SU can successfully access

the channel in the worst case when all the SUs within

that channel are receivers, given the equal channel access

probability of each SU on that channel. Then the success-

ful beacon transmission probability in a planned slot can

be obtained by Psucc = Psucc|idlePidle = Psucc|idle(1 −
Pocc). The successful transmission probability after ι
planned slots, i.e., ι hopping sequence periods, Psucc,ι

could be expressed as Psucc,ι = 1 − (1 − Psucc)
ι. Given

the length of hopping sequence and time of each slot, the

probability of the beacon messages dissemination after a

particular time can then be estimated.

2) Probability of beacon information reception for an

SU: In this paragraph, we estimate the probability of

a particular node that can successfully receive beacon

information after a beacon broadcast period. According to

the scheme, we can imagine that the best case is that the

beacon could be sent in the planned slot simultaneously

on all these channels, and all the SUs can hear it. The

worst case happens when beacons on different channels

occur in planned slots in different sequence periods.

When an SU unicasts the beacon to another SU, the

probability that an SU on the same channel happens to

overhear the beacon, Poh, is (1 −
2MPog,1+2MPog,2

(N−1) )/G.

After this procedure, the probability, Punic, which indi-

cates the cases when an SU does not receive the beacon

is
N−1−(G−1)

N−1 (1 − Poh)G−1. When an SU broadcasts

the beacon on the SU’s channel according to the SU’s

sequence in a planned slot, the probability, Pno hm,

that the SU happens not to be on that channel is
2MPog,1+2MPog,2

N−1 + λo(1 −
2MPog,1+2MPog,2

N−1 ), where λo

is the probability that the SU leaves the sequence denoted

channel. The probability, Pout, that when the same beacon

is broadcast on other channels and the SU happens to

hear it is λo(1 −
2MPog,1+2MPog,2

N−1 ) 1
N−1

N
G

. Then the

probability, Pno recv that an SU cannot recieve a beacon

can be expressed as: PunicPno hm(1 − Pout)
G−1. The

probability that a beacon was received after a beacon
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interval is 1-Pno recv. Then the probability that after U
intervals could be approximated5 by 1 − PU

no recv .

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, based on the analysis in IV, the nu-

merical results and comparison of DPR-MAC and DRI-

MAC are given. We investigate the performance in term of

system capacity with respect to channel datarate, channel

availability, and channel carrier capability. In the first

part we assume that the two kinds of channels have the

same value of channel availability γ, i.e., γ1 = γ2, and

the results are according to the channel datarate Ri. In

the second part we will show the results that the two

types of channels have the same datarate but different

channel availabilities γi. In the third part we give the

results with both different channel availabilities γi and

different datarates Ri, namely, channel carrier capability.

The last part is the overhead and the beacon dissemination

estimation.

A. Performance evaluation given identical channel avail-

ability γ

1) Parameters configuration: In this section, we will

give the results when the two kinds of channels have the

same channel availability γ but with different datarates

Ri. The parameters used to calculate the system capacity

is as follows: Ts = 1000 µs, Tq = 10 µs, Tsw = 100 µs,

R1 = 2 Mbps, and R2 = 10 Mbps. With this time slot

and datarate, it is enough to finish negotiation in a small

portion of a time slot [3] and we have also Ts >> Tq and

Ts >> T
i

sw, which are in accordance with the discussions

in Section IV.

2) System capacity as a function of λ: Fig. 5 depicts

the system capacity according to λ by using the DPR-

MAC and DRI-MAC protocols, where the number of

channels at each carrier capability is set as M = 3
and M = 4 respectively. Other parameters are fixed

as N = 20, γ = 0.7 and µ1 = 0.05, µ2 = 0.25.

With these parameter settings, we can estimate that the

average data flow length is 2Mbps ∗ (1000µs − 10µs −
100µs/20)/0.05/8 ≈ 5KB. This implies that the time

slots needed for transmitting this data flow are respec-

tively 20 slots at R1 and 4 slots at R2, on average.

From Fig. 5, one can observe that the system capacity

is 0 when λ = 0 or 1. This is because that when

λ = 0, there is no traffic and in the case of λ = 1,

there are no receivers. When λ = 1, all SUs have data

to transmit. SUs will leave their own channels and come

to the intended receivers’ channels for communication. In

this case, theoretically, every SU deviates from its hopping

sequence denoted channel thus these SUs cannot find

each other. When λ is small, SUs do not generate many

data flows. This means that the totally generated traffic

load by SUs is so light that it does not even saturate the

channels that have lower datarate. As a result, the system

capacity difference between these two MAC protocols

5Since after the first beacon interval, the SU will use the new adjusted
sequence, then the probability is an approximation.
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Figure 5. System capacity comparison of DPR-MAC and DRI-MAC as
a function of λ.

is not significant in this case, with both M = 4 and

M = 3. However, when traffic load becomes heavier,

the advantage of the proposed mechanism is evident. As

shown in Fig. 5, over a wide range of λ, significant

system capacity improvement has been achieved by DPR-

MAC, compared with what is obtained by its counterpart,

DRI-MAC. For example, at λ = 0.5, DPR-MAC reaches

capacity of 16 Mbps while 14 Mbps is obtained by DRI-

MAC, indicating that an improvement of 14% has been

achieved.

Comparing the difference between M = 3 and M = 4,

one can observe that when the channel number is larger,

the enhancement is more significant. This is because that

when M is greater, more channels with high datarate

are available for SUs. With our proposed method, SUs

get better chance to transfer their data flows over the

higher datarate channel, leading to increased total system

capacity.

Note also that in [14], the peak value of system capacity

is achieved around λ = 0.25 and the system capacity

becomes lower when λ gets larger. It is because that in

[14] it calculates the channels with exact one transmitter

in P (c1|k1, v1, Xr1). When the sending probability (λ)

becomes larger, the probability of channels with exact

one transmitter will be lower. Consequently, the system

capacity is lower. In contrast, in our scheme, we consider

the channel with one or more potential receivers (see

footnote 2), which means that the number of channels

that has two or more transmitters are also counted in,

because after negotiation these channels can also be

used. Consequently, the DRI-MAC curves shown in Fig.

5 are also obtained considering one or more receivers.

Therefore, the peak value is obtained when λ is around

0.55 for DRI-MAC.

3) Impact of PUs channel occupancy on system capac-

ity: Fig. 6 shows the performance with different value

of channel availability γ, when λ = 0.7, N = 20 and

µ1 = 0.05, µ2 = 0.25. The differences between the

system capacity achieved by DPR-MAC and DRI-MAC

grow with the rising of γ. The enhancement between the

two methods when M = 4 is larger than that when
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M = 3, which means the proposed method is more

beneficial when the number of channels is larger.
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Figure 6. System capacity comparison of DPR-MAC and DRI-MAC as
a function of γ.

When γ = 1, which means that there are no PUs

in the channels, the maximal system capacity and the

enhancement between the two methods are observed. In

this case, when all channels are available for SUs, an

improvement of 17.5% and 11.2% has been observed for

M = 4 and M = 3 respectively.

4) Impact on system capacity by the number of SUs:

Fig. 7 shows the system capacity of DPR-MAC and DRI-

MAC with the number of SUs N when λ = 0.7, γ = 0.7,

µ1 = 0.05, µ2 = 0.25. In Fig. 7, DPR-MAC outperforms
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Figure 7. System capacity comparison of DPR-MAC and DRI-MAC as
a function of N .

DRI-MAC for all ranges of the investigated values. This

is because that more SUs jump to the higher datarate

channels according to the proportion of datarate in two

types of channels rather than uniform hopping sequences,

leading to higher total system capacity. Interestingly in

this case, larger differences are observed when N is

smaller, with both M = 3 and M = 4. It is because that

when the number of SUs is smaller, the system is far from

saturation. At the same time, idle SUs have many data

flows to send since λ = 0.7 which indicates a high trans-

mission probability for SUs. Once one communication

pair is re-allocated from the low datarate channel to high

datarate channel, it contributes more to the achieved total

system capacity. For instance, assume that there are four

ongoing data flows in the system, two of each type. If one

of the two low datarate flows is re-allocated to the high

datarate channel, the total capacity will be significantly

increased since we have now three out four flows using

the high capacity channel. When the number of SUs gets

larger, the probability that more channels are occupied by

communicating pairs will be higher. In other words, with

a large N the channels are close to saturation and there is

less room for capacity improvement no matter how you

balance the hop sequences of the SUs. This explains why

the difference between the two methods becomes smaller

as N increases.

5) Impact on system capacity by channel datarate:

Fig. 8 depicts the differences between DPR-MAC and

DRI-MAC when the datarate of R1 is fixed into 2 Mbps
and λ = 0.7, γ = 0.7, N = 20, while datarate of R2

is as a variable. In order to ensure the average length of

data flows in bytes on different channels are the same,

µ1 is fixed as 0.05 while µ2 is 0.05, 0.1, 0.15, 0.2,

0.25, 0.3 when R2 equals to 2, 4, 6, 8, 10, 12 Mbps
respectively. Fig. 8 illustrates that the improvement of the

2 4 6 8 10 12
4

6

8

10

12

14

16

18

20

R
2
 (Mbps)

S
y
s
te

m
 C

a
p
a
c
it
y
 (

M
b
p
s
)

6 channels DPR−MAC

6 channels DRI−MAC

8 channels DPR−MAC

8 channels DRI−MAC

Figure 8. System capacity comparison of DPR-MAC and DRI-MAC as
R2 varies.

new method increases when the datarate of R2 increases

because the difference between channels is larger. Note

that when R2 = R1, the capacity of different methods is

the same because in this case, the hops according to the

new strategy is also uniform distributed, which implies

that DRI-MAC is actually a special case of DPR-MAC.

The enhancement is evident when R2 is three or more

times larger than R1. When R2 is two times larger than

R1, the improvement is not obvious. Considering the

beacon overhead, if the R2 is less than two times of R1,

the DRI-MAC can be adopted.

B. Performance evaluation given identical datarate

1) Parameters configuration: In this subsection, we

give the results when the two types of channels have the

same datarate Ri but different channel availabilities γi.

The parameters used are as follows: R1 = R2 = 10
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Mbps, µ = 0.2, γ1 = 0.9, γ2 = 0.6,. Ts = 1000 µs,

Tsw = 100 µs, and Tq = 10 µs.
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Figure 9. System capacity comparison of DPR-MAC and DRI-MAC
with λ.

2) System capacity as a function of λ: Fig. 9 shows

the system capacity of different MAC mechanisms as

λ varies, when N = 20, M = 3 and 4 respectively.

From the figure we can observe that the trend of Fig.

9 and Fig. 5 is quite similar, but the difference is that for

the performance between the two MAC mechanisms, the

difference in Fig. 9 is slight. The reason is as follows.

From the adjustment method we proposed, in statistic

sense, it has a probability of γ1/(γ2 + γ2) = 3/5 for

each SU to jump into the higher γ side. Compared with

the probability in different datarates cases, like 2 Mbps
in channel type 1 and 8 Mbps in channel type 2 which

introduce R1/(R1 + R2) = 4/5, the probability in the

first case is lower. On the other hand, from Eq. (18),

we can see that if the datarate in channel type 2 is four

times higher than that in channel type 1, the improvement

will be more significant compared with the different

channel availabilities cases when the datarates on different

channels are equal. Consequently, the improvement of the

new method in the case with identical Ri is not as much

as that when Ri is different.
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Figure 10. System capacity comparison of DPR-MAC and DRI-MAC
with N .

3) Impact on system capacity by the number of SUs:

Fig. 10 gives the system capacity with the variable of the

number of SUs. The trend of these curves is close to that

in Fig. 7, but the difference between these curves in Fig.

10 is smaller than that in Fig. 7. The reason for the similar

performance between these curves in Fig. 10 is the same

as we discussed in the above paragraph.

Fig. 10 also illustrates that when the number of SUs

gets larger, the performance between these two MAC

mechanisms gets closer, and it is more evident than that

in Fig. 7. The reason for this is the same as we discussed

above that with the increasing number of N , the channels

are close to saturation and there is less room for capacity

improvement no matter how to balance the hop sequences

of the SUs.

4) Impact of PUs channel occupancy on system capac-

ity : In this case, the system capacity as a function of γ2 is

given in Fig. 11 when γ1 is fixed as 0.9. From this figure

we can see that when γ2 is smaller, which means the

difference between γ1 and γ2 is larger, the performance

of DPR-MAC is much better than that of DRI-MAC.

The reason is quite obvious, since the larger difference

between the channels’ availabilities, the more benefit the

MAC can get if it can adjust there hop sequences to the

higher availability channel rather than the equal chance

hopping sequence.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
18

20

22

24

26

28

30

32

34

36

γ
2

S
y
s
te

m
 C

a
p
a
c
it
y
 (

M
b
p
s
)

6 channels DPR−MAC

6 channels DRI−MAC

8 channels DPR−MAC

8 channels DRI−MAC

Figure 11. System capacity comparison of DPR-MAC and DRI-MAC
with γ2.

From Figs. 9-11, as a whole, it can be observed that

the improvement of DPR-MAC is not as significant as

that in Figs. 5-8. This is because that the datarate Ri

between different channels could be quite large and its

effect is more straightforward in different datarates cases

while the difference of channel availabilities γ between

channels in real cases is not often so large.

Furthermore, in all the above numerical results and

discussions, there has been an important assumption that

the channel sensing is accurate. If there are any sensing

errors, say, SUs failed to sense the existence of PUs’

activities, there will be a high probability of transmission

failure due to packet collision. In this case, the channel

availability will affect the performance more than what

is observed from our analysis. In a more constrained
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case, if a successful transmission of a packet needs

several consecutive time slots that is not occupied by

PUs, the system capacity is more sensitive to channel

availability. For example, if a packet needs 3 consecutive

free time slots for successful transmission and if γ = 0.9,

the approximate successful transmission probability is

0.93 = 0.729 while for γ = 0.6 this probability would

be only 0.216. Then in this case, channel availability

would have higher impact on the total system capacity.

Correspondingly, the channel hopping adjustment strategy

should also be revised in order to adapt to this situation.

C. System capacity with channel carrier capability

The above results are either from given identical chan-

nel availability or from given identical channel datarate,

which are special cases of channel carrier capability. In

the following paragraphs, the results of system capacity

as a function of the combined parameters are given.

1) Parameters configuration: The parameters used to

calculate the system capacity is as follows: N = 20, M =
4, Ts = 1000 µs, Tsw = 100 µs, Tq = 10 µs, µ1 = 0.05,

µ2 = 0.25, R1 = 2 Mbps, and R2 = 10 Mbps. In this

subsection, we only examine the system capacity as a

function of λ.

2) System capacity as a function of λ: Fig. 12 il-

lustrates the results of DPR-MAC and DRI-MAC when

Ri and γi are different and channel carrier capability

is adopted. For comparison, it also shows the results of

adjusting hopping sequences according to one of these

two parameters, i.e., Ri and γi in this case. In Fig. 12,

Channel availability only means that SUs adjust the hop-

ping sequences according to channel availability without

considering Ri. It is the same case with datarate only. In

this figure, we have γ1=0.6 and γ2=0.9. It is shown that
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Figure 12. System capacity comparison among different hopping
strategies when R1 < R2 and γ1 < γ2 .

the hopping adjustment according to the channel carrier

capability η is the most efficient mechanism and the DRI-

MAC is the worst one. Note that both the datarate and the

channel availability of channel type 2 are higher than that

in channel type 1, the results of adjustment according to

channel availability and datarate are better than the DRI-

MAC. Adjusting according to datarate is more efficient

than adjusting according to channel availability because

the former one leads to larger difference in carrier capa-

bility. But both of them are not as good as the adjustment

according to channel carrier capability η.

Fig. 13 shows the results of DPR-MAC and DRI-

MAC when Ri and γi are different when channel carrier

capability is adopted. The different parameters used in

Fig. 13 compared with that in Fig. 12 are that the channel

availabilities in two types of channels are exchanged, i.e.,

γ1= 0.9 and γ2=0.6. It is illustrated in the figure that

the adjustment according to γ alone is not as good as

the DRI-MAC because the adjustment according to γ
leads more SUs to low carrier capability channels, i.e.

channel type 1. On the other hand, the result of adjustment

according to datarate which brings more SUs to jump

onto the channels with higher channel carrier capability

is quite close to that of the DPR-MAC. Even if adjustment

according to the datarate brings more SUs in the type of

channels with higher channel carrier capability, the result

of this adjustment is not better than in the way of adjusting

according to the channel carrier capability, which verifies

the rationale of adjusting hopping sequence according to

channel carrier capability η.
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Figure 13. System capacity comparison among different hopping
strategies when R1 < R2 but γ1 > γ2.

D. Extra overhead estimation of DPR-MAC

Now we approximately calculate the extra overhead

introduced by DRA-MAC due to the required dissemi-

nation of the hop sequence adjustment information. In

the estimation, the calculation is based on an assump-

tion that the whole hopping sequence is disseminated,

which reflects the highest possilbe overhead for beacon

information dissemination. Assume that there are 20

SUs, 4 channels with 2 Mbps and 4 channels with

10 Mbps, the hopping period is 128 hops and beacon

interval is 5 seconds. We can get the average overhead

as [128*3*1+(128*3+3)*7+(128*3+48)*7]*20/5=24.468

Kbps, where 128 means that there are 128 hops, 3 means

that 8 channels can be presented in 3 bits. The calculation

has three parts. The first part presents the beacons that

are broadcast by the SU itself. The second part presents

beacons in the unicast procedure by the original SU.
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The third part presents the beacons that are re-broadcast

by other SUs. Since the other SUs that re-broadcast the

beacon in the planned slot have to attach the MAC address

of original SU, it has extra 48 bits due to the length of a

MAC address.

From the above estimation, we can conclude that the

extra overhead introduced by DPR-MAC is pretty small.

This indicates that the additional mechanism cost by

the proposed MAC is pretty low, typically in the order

of a few Kbps, in order to achieve possibly a few

Mbps capacity improvement. Anyhow, it is beneficial to

consider this effect for our mechanism design, so that

further improvement can be achieved.

E. Beacon dissemination of DPR-MAC

Now we estimate the dissemination time of a beacon

and the probability an SU can receive a beacon after

beacon intervals. The parameters used in this analysis is

as follows: γ = 70%, Pog,2 = 70%, R1 = 10 Mbps,

R2 = 2 Mbps, G = 2M = 8, N = 20, λo = 50%, the

sequence has 128 hops and Ts = 1 ms.

From our estimation in IV. D, the probability that a

beacon is delivered on the low datarate channel after 2,

3, 4, 5, 6 seconds is 73.18%, 86.71%, 93.41%, 96.73%,

98.23% respectively. The probability of an SU that can

receive such beacon information can after 1, 2, 3, 4 bea-

con intervals is 82.51%, 96.94%, 99.47%, 99.91% respec-

tively. Note that the probability is calculated considering

the worst case. In the normal cases, the same probability

could be achieved in shorter time. These values indicate

that the beacon information could be delivered with a

high probability within 5 seconds, and in this case, an

SU could receive this information with a high probability

within two beacon intervals, i.e., 10 seconds.

VI. CONCLUSIONS

In this paper we have proposed a channel-hopping

based dynamic parallel-rendezvous channel carrier capa-

bility aware MAC mechanism for cognitive radio net-

works with one transceiver. Based on our scheme, SUs

can adjust their hopping sequences according to either

datarate, channel availability or a combination of them

(as carrier capability) in order to improve system per-

formance. A mathematical model has been developed to

analyze the performance of the proposed MAC mecha-

nisms. Numerical results and comparison between DPR-

MAC and DRI-MAC show that our proposed mechanism

generally outperforms the existing one. The difference

of the achieved system capacity between DRI-MAC and

DPR-MAC is more obvious in the case of identical

channel availability than in the case of identical datarate.

Moreover, adjusting the channel sequence according to

channel carrier capability leads to the best system capacity

gain in the examined cases. The improvement compared

with DRI-MAC is more significant when more channels

are available for SUs, fewer SUs are in the network, and

the carrier capabilities between difference channels are

larger.

APPENDIX I

PROOF OF CHANNEL HOPPING MECHANISM

Proposition: Let Li be the likelihood of an SU that will

hop onto the channel i after using the above mentioned

method. For every channel i, L1:L2· · · LG=η1:η2· · · ηG.
Proof: Because the SUs jumps according to the uni-

formly generated sequence before adjustment, the prob-
ability of an SU jumps onto channel i, 1 ≤ i ≤ G, is
equal. Let us arrange the set of G channels according to
the value of ηj as {1, 2, · · · , l, l + 1, · · · , G} such that
ηj ≤ η⇔j ≤ l and ηj ≤ ηi⇔i < j. Let B ∈ {channel
j|ηj < η, j = 1, 2, · · ·G}. After the adjustment, we can
see that

L1,2···l = η1,2···l/η and

Ll+1,l+2···G = 1 +

∑

i∈B(1 − ηi/η) · (ηl+1,l+2,···G − η)
∑

k∈A(ηk − η)
.

We should prove that

1 +

∑

i∈B(1 − ηi/η) · (ηl+1,l+1,···G − η)
∑

k∈A(ηk − η)
= ηl+1,l+2···G/η.

When j > l, we can see that

1 +
∑

i∈B

(1 − ηi/η) · (ηj − η)/
∑

k∈A

(ηk − η)

= 1 +

∑

i∈B(η − ηi)
∑

k∈A(ηk − η)
·
ηj − η

η

=

∑

i∈η(η − ηi)
∑

k∈A(ηk − η)
·
ηj

η
+ 1 −

∑

i∈B(η − ηi)
∑

k∈A(ηk − η)

=

∑

i∈B(η − ηi)
∑

k∈A(ηk − η)
·
ηj

η
+

∑

k∈A(ηk − η) +
∑

i∈B(ηi − η)
∑

k∈A(ηk − η)

=

∑

i∈B(η − ηi)
∑

k∈A(ηk − η)
·
ηj

η

=
ηj

η
.

Now we can conclude that:

L1:L2· · ·LG=η1/η:η2/η· · · ηG/η =η1:η2· · · ηG.

APPENDIX II

We give the solution for the probability, P (c|ϑ,M),
that there is c non-empty urns if we put ϑ balls into M
urns by the model given in [14].

Let o(ϑ) be the stochastic process representing the

number of urns each of which has exactly one ball given

there are ϑ balls, and n(ϑ) as the stochastic process

representing the number of urns each of which has at least

two balls. Then, we obtain a two-dimensional process

{o(ϑ), n(ϑ)} that is a discrete-time Markov chain as

shown in Fig. 14 [14].
The one-step transition probabilities are as follows [14]:















p(i, j|i, j) = j

M
, 0 ≤ i, j ≤ M

p(i + 1, j|i, j) = 1 − i+j

M
, 0 ≤ i ≤ (M − 1), j ≥ 0

p(i − 1, j + 1|i, j) = i
M

, 0 ≤ i ≤ M, 0 ≤ j ≤ (M − 1)
p(x, y|i, j) = 0; |x − i| ≥ 2 or |y − j| ≥ 2

where (i + j) ≤ M holds.
Then the probability that c non-empty urns given ϑ

balls and M urns can be calculated as:

P (c|ϑ, M) =
∑

o(ϑ)+n(ϑ)=c

Pϑ(o(ϑ), n(ϑ)),

where Pϑ(o(ϑ), n(ϑ)) is the state probability of {o(ϑ),
n(ϑ)} after ϑ steps.
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Figure 14. The two-dimensional Markov chain for the probability that
there is c non-empty urns if we put ϑ balls into M urns [14].
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