
Performance Comparison of Residual Related
Algorithms for ToA Positioning in Wireless

Terrestrial and Sensor Networks

Lei Jiao1, Jianping Xing2, and Frank Y. Li1
1Dept. of Information and Communication Technology, University of Agder (UiA), N-4898 Grimstad, Norway

2School of Information Science and Engineering, Shandong University, Jinan, China

Email: {lei.jiao, frank.li}@uia.no, mct@sdu.edu.cn

Abstract—Time of Arrival (ToA) is a popular technique for
terrestrial positioning. This paper presents a comparison of
ToA based residual related positioning algorithms in wireless
terrestrial and sensor networks in both long range outdoor
and short range indoor environments. Using ToA distance mea-
surement error models in both environments, we compare the
performance of the Least Square Estimation (LSE), Residual
Weighting (Rwgh), Iterative Minimum Residual (IMR), Select
Residual Weighting (SRwgh) and Lower-Computational-Cost
Residual Weighting (LCC-Rwgh) algorithms. The latter three
algorithms are inherited from the Rwgh algorithm for wireless
sensor networks. Two aspects of the performance comparison are
addressed: computational complexity and positioning accuracy.
In performance comparison, the complexity comparison is done
by analyzing the number of LSE iterations while the accuracy
comparison is conducted through a set of simulations in both
environments.

Index Terms—performance comparison, positioning, ToA,
residual.

I. INTRODUCTION

In recent years, there has been a lot of interest in the

positioning of mobile terminals. For instance, providing the

accurate location information of the mobile terminal for

Emergent 911 call has become mandatory in the USA and

determining the physical positions of sensors is a fundamental

and crucial requirement in many wireless sensor network

applications.

Positioning techniques, such as Time of Arrival (ToA), Time

Difference of Arrival (TDoA), and Received Signal Strength

Indicator (RSSI) are often used to obtain distance information

(range measurements) between transmitters and receivers [1].

The location estimation can be computed based on a set of

range measurements. Of these, the ToA technique is the most

widely used one. A fundamental assumption in applying this

positioning technique is the receptions of signal propagation

through Line of Sight (LOS) path. Violation of this assumption

will introduce Non LOS (NLOS) errors in range measurements

and will lead to erroneous location estimation [2].

In two dimensional cases, at least three reference nodes

are needed for positioning in ToA method. If there are more

than three reference nodes, redundancies of reference nodes

can be adopted for NLOS error mitigation. There are several

positioning algorithms which have the ability of NLOS errors

mitigation by using redundancies of reference nodes without

identifying NLOS errors, such as Rwgh [2], IMR [3], SRwgh

[4], LCC-Rwgh [5] etc. With the redundancies of reference

nodes, the algorithms can avoid reiterative transmissions to

reference nodes to get enough information for NLOS error

mitigation, which can reduce power consumption during the

measurement stage and are suitable for power constrained

networks. The traditional one of these algorithms is Rwgh

which can mitigate NLOS errors efficiently. However, it is very

computationally complex when the number of reference nodes

is large and not suitable for wireless sensor networks where

there may have more reference nodes available. Recently,

there are some ramifications which need lower computational

complexity based on conventional Rwgh algorithm, such as the

IMR algorithm, SRwgh algorithm, LCC-Rwgh algorithm etc.

Since the algorithms mentioned above are all based on residual

and the principle of these algorithms is similar, the compu-

tational complexity and performance of these algorithms in

different environments need to be investigated.

The comparison of the algorithms includes two aspects:

computational complexity and positioning accuracy. In compu-

tational complexity comparison, the number of LSE is adopted

because LSE is used iteratively in these algorithms and it is

the major part in the positioning procedure. The positioning

accuracy of these algorithms mentioned above is compared in

three popular ToA-based NLOS error models, two long range

outdoor environments and one short range indoor environment

respectively. In long range outdoor environments, deterministic

and random NLOS error models [2, 6] are adopted in our

simulation. In short range indoor environment, the model [7,

8] is based on ToA-estimation techniques and characterizes

the distance errors as a function of the bandwidth of the

system in the presence of LOS, and Obstructed LOS (OLOS)

propagation conditions respectively.

The rest of the paper is organized as follows. Section II

undertakes a description of the algorithms compared. Section

III is devoted to discussions of the computational complexity.

Section IV presents the results of the performance evaluation

and the paper is concluded in Section V.

II. ALGORITHMS DESCRIPTION

In this section, we will give a brief description of all the

above mentioned algorithms. Assume there are two kinds of
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nodes: reference nodes and target nodes. Reference nodes,

equipped with Global Positioning System (GPS) or deployed

in a known position in advance, know their positions accu-

rately and can be used by the target nodes which do not know

their positions during the positioning procedure. The position

information received from the reference nodes, denoted as

range measurements, are treated the same, which means that

every reference node has the same priority. Assume that the

number of range measurements is equal to that of the reference

nodes, which means that the distances between target nodes

and reference nodes are measured only once for each reference

node.

A. LSE for Location Estimation

LSE is a basic technology in location estimation, which is

based on the criterion of least square. Although this method

does not use residual weighting and comparing, we still take

it into account in order to compare with other algorithms as

reference. The problem of distance-based location estimation

can be defined as follows [9]: Assume the target node is

located at some target location (x, y) and M reference nodes

are deployed at known locations (xi, yi), 1≤ i≤ M, with range

measurements Ri. For equation:

Y = AZ (1)
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The parameters in matrix Y and A could be found from

reference node locations and the corresponding range mea-

surements. Z is the value of location that we want to estimate.

If AT A is nonsingular, the LSE is obtained as follows:

Ẑ = (AT A)−1AT Y. (2)

LSE works well in LOS environments, but it can not

mitigate the NLOS error.

B. Residual Weighting Algorithm

The Rwgh algorithm, the traditional algorithm, works as

follows [2]:

1) Given M (M > 3) range measurements (from M different

reference nodes), N =
∑M

i=3 Ci
M range measurement sets are

formed. Each set is represented by a reference node index set

{Si, i = 1, 2, ..N}.

2) For each set, compute the intermediate LSE Ẑ and

normalized residual error, Res :

Res(Ẑ, Sk) = Res(Ẑ, Sk)/size of Sk, k ≤ N, (3)

where Res(Ẑ, Sk)=
∑

i∈Sk
(Ri-

∥∥Ẑ-Xi

∥∥)2, Xi is the coordinate

vector of the i-th reference node and Ri is the range measure-

ment from the i-th reference node.

3) Find the final estimation, X̂, as the weighted linear

combination of the intermediate estimations from step 2).

The weight is inversely proportional to Res of the estimation.

Mathematically,

X̂ =
N∑

k=1

Ẑk(Res(Ẑk, Sk))−1/

N∑
k=1

(Res(Ẑk, Sk))−1. (4)

Because the set of range measurements with smaller Res
has smaller chance contaminated by NLOS errors [2], the

reciprocal of the Res is used as the weight.

C. Iterative Minimum Residual Algorithm

The IMR [3] which is developed for wireless sensor net-

works is an iterative algorithm aiming at finding the result

from range measurements set with the minimum Res or when

the difference between Reses are small. Assume the parameters

of target node, reference nodes and their corresponding range

measurements are the same as in LSE. The steps of IMR are:

1) Initialization: Let n = M , D = {Ri, 1 ≤ i ≤ M} and

the tolerance δ to a small positive number. Define the number

of iterations as Ni.

2) Conventional LSE: Find the LSE Ẑ using the observation

data D and determine the corresponding normalized residual

error of the estimator Res(Ẑ). Set Ẑi = Ẑ, Resmin = Res(Ẑ).

3) Iteration: Find the LSE Ẑ(k) and the normalized residual

error Res(Ẑ(k)), 1 ≤ k ≤ n, for n sets of n range mea-

surements in D taking n-1 at a time. Denote the estimator

with the minimum normalized residual error in Ẑ(k) with Ẑm,

the set of range measurements used in Ẑm with Dm, and

Resm = Res(Ẑm). If Resmin − Resm > δ, then Ẑi = Ẑm;

else return Ẑi. If n > 4 and M-n + 1 < Ni, then n = n − 1,

D = Dm, Resmin = Resm, repeat 3); else return Ẑi.

In practice, tolerance δ can be determined based on location

estimation accuracy requirements and the number of iterations

Ni, can be determined based on the computational capacity of

individual sensor node. In fact, the number of iterations spec-

ifies the maximum number of erroneous range measurements

to be excluded by the IMR algorithm.

D. Select Residual Weighting Algorithm

The SRwgh [4] is based on Rwgh. It picks out the subsets

of range measurements with minimum Res and then calculates

the weighted mean, which can efficiently reduce the compu-

tational complexity. The steps are as follows:

1) Get all the range measurements sets which contain 3

range measurements from all the M range measurements. Let

the number of the sets be K, obviously, K = C3
M . Each set

is represented by reference nodes index set {Si, i = 1, 2, ..K}.
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For example, if M = 4, we can get K = C3
4 = 4 different sets,

S1−4 are (1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4). For each set,

compute the LSE Ẑ and corresponding Res. From the K sets,

find the one that has the minimum Res and let the set S be

Smin.

2) Let the number of elements in Smin be P, the complement

of Smin be Q. Put every element in Q into Smin respectively to

form M-P new range measurements sets, {Si, i = 1, 2, ..M-P}.
Now, the number of the elements in the new Si becomes P+1.

For the M-P new sets, compute the location estimations by

LSE and the corresponding Res, then find the one that has the

minimum Res and let the S be Smin.

3) If P < M , go to 2); if P = M , go to 4).

4) For all the computed location estimations and the corre-

sponding Res in steps 1) 2) 3), use the following equation to

get the final estimation of location,

X̂ =
V∑

k=1

Ẑk(Res(Ẑk, Sk))−1/

V∑
k=1

(Res(Ẑk, Sk))−1, (5)

where V is the number of the computed location estimations.

E. Lower-Computational-Cost Rwgh Algorithm

The LCC-Rwgh [5] is also based on Rwgh and has a

different way in range measurement sets selection from that

of SRwgh. The steps are as follows:

1) Get all the range measurements sets which contain M-1

range measurements from all the M range measurements. Let

the number of the sets be K, obviously, K = CM−1
M = M.

For each set, computes the LSE Ẑ and the corresponding Res.

From the K sets, find the one that has the minimum Res and

let the set S be Smin.

2) Let the number of elements in Smin be P. Pick out every

element in P respectively to form P new range measurements

sets, and the new index set is {Si, i = 1, 2, ..P}. For the P
new sets, compute the location estimations by LSE and the

corresponding Res, and then find the set that has the minimum

Res and let the S be Smin.

3) If P > 3, go to 2); if P = 3, go to 4). Note that

the minimum number of range measurements needed for

localization is three in 2-dimensional cases.

4) Using LSE, compute the location estimation and its Res
with all the range measurements.

5) For all the computed location estimations and the corre-

sponding Res in steps 1) 2) 4), use the following equation to

get the final estimation of location,

X̂ =
V∑

k=1

Ẑk(Res(Ẑk, Sk))−1/

V∑
k=1

(Res(Ẑk, Sk))−1, (6)

where V is the number of the computed location estimations.

III. COMPUTATIONAL COMPLEXITY ANALYSIS

The position computation in LSE, based on all the range

measurements available without any selection, has the lowest

computational complexity because it only needs to use LSE

once. Note that for other algorithms that are discussed above,

LSE is always needed for each iteration. In the Rwgh algo-

rithm, if three or more range measurements are available, i.e.,

M ≥ 3, the number of all possible sets with three or more

range measurements can be calculated as C =
∑M

k=3 Ck
M [2].

We can see that the number of sets becomes very large as

M increases. One LSE needs to be derived for each of the

sets with three or more range measurements. Therefore, the

computational complexity of this algorithm might be quite

high when a large number of reference nodes are available.

IMR [3] does not use residual weighting method. It is a

suboptimal, iterative implementation of the minimum residual

estimator (MRE) [2], which iteratively excludes erroneous

range measurements one-by-one and searches for the MRE

instead of conducting global search as in the MRE algorithm.

The reason for low computational complexity of this algorithm

is that it iteratively searches for the MRE among the LSEs

derived from a subset of all possible sets instead of conducting

global search. If more than three range measurements are

available, i.e., M ≥ 4, the possible maximum number of

iteration is M−3 and the number of LSEs needed in the IMR

algorithm can be derived as Ci ≤ 1 + (M− n + 1)(M + n)/2
[3], where n = max(M − ni + 1, 4), and the variable ni is

the predefined number of iterations.

From the algorithms described above, we can observe that

the computation of LCC-Rwgh algorithm is very similar to

that of the IMR. The difference is that the LCC-Rwgh gets

the residual weighted mean value of all the computed LSEs

from the subsets of all possible sets while IMR aims to find

the one with the minimum residual Resmin. Therefore, the

number of LSEs needed in the LCC-Rwgh algorithm can be

expressed as follows: C = (M2 + M)/2− 5.

The method that the SRwgh algorithm uses to select subsets

from range measurement sets is quite different from that

of LCC-Rwgh. In the first step, the LCC-Rwgh derives M
LSEs based on all possible sets of M measurements taking

M − 1 at a time. Then, it determines the best estimator in

terms of minimum normalized residual error Res. The range

measurement which is not employed in the derivation of the

best estimator is eliminated from the observation data. Then it

takes M−2 from M−1 measurements and so on. The SRwgh

algorithm derives C3
M LSEs based on all possible sets of M

range measurements taking 3 at a time. Then, determine the

best estimator in terms of minimum normalized residual error

Res. By adding every rest measurement into the best estimator,

it can form M − 3 new range measurements sets and derives

the M−3 LSEs. By determining minimum normalized residual

errors, we can get another best estimator and use the rest M−4
measurements to form M− 4 new sets and so on. Therefore,

the number of LSEs needed in the SRwgh algorithm can be

expressed as C = C3
M + (M2 − 5M + 6)/2.

Table I shows the number of the iterations for range

measurements in which the LSE needs to be derived in the

Rwgh, SRwgh, LCC-Rwgh, IMR algorithms as a function

of the total number of range measurements, i.e., reference

nodes. Because IMR uses an iterative way to search the MRE,

the number of LSEs of this algorithm is not an accurate
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TABLE I
COMPARISONS OF NUMBER OF LSES BETWEEN DIFFERENT ALGIRITHMS.

Number of LSEs
Number of range measurements

4 5 6 7 8 9

Algorithms

Rwgh 5 16 42 99 219 466
SRwgh 5 13 26 45 71 105

LCC-Rwgh 5 10 16 23 31 40
IMR 5 6-10 7-16 8-23 9-31 10-40

number but a range depended on δ and Ni. From Table I, we

conclude that the number of LSE iterations of these algorithms

ranking from largest to smallest with respect to the number of

range measurements is: IMR, LCC-Rwgh algorithm, SRwgh

algorithm, Rwgh algorithm. IMR and LCC-Rwgh algorithms

may have the same number when IMR algorithm gets its

largest number of LSEs.

IV. SIMULATIONS AND NUMERICAL RESULTS

The performance of the algorithms described in Section II is

evaluated through simulations using Matlab 7. The simulation

has been carried out for both long range outdoor and short

range indoor environments. The performance criterion for the

accuracy of these algorithms is chosen as the Root Mean

Square Error: RMSE = sqrt(E[(x− x̂)2 + (y− ŷ)2]), where

x, y are the true value of position, and x̂, ŷ are the estimated

value.

Considering that the IMR algorithm is a suboptimal im-

plementation of MRE [3], which means that sometimes the

performance is as good as that of MRE and sometimes it is

not in sense of minimum residual, we use the result of MRE

instead of IMR in the performance comparisons in order to

achieve consistency.

A. In Long Range Outdoor Environments

In long range environment, range measurement is con-

taminated by two types of errors [10]: measurement errors

that can be modeled as a Gaussian random variable with

zero mean and a small standard deviation and NLOS error

that has a complicated distribution with positive mean and a

relative large standard deviation which is verified in experi-

ments [11]. Therefore, we model the measurement errors as

a Gaussian distribution with zero mean and 30 m standard

deviation. To remove the target nodes location dependence

in the performance evaluation, all the results presented here

are the average results of 100 target nodes that distribute

uniformly in a 2500 m×2500 m square and the reference nodes

are also distributed uniformly in the area. In the following

discussion, the performance of different algorithms is given in

both deterministic and random NLOS error models. We define

“case m/n” to be that n out of m range measurements are

contaminated by NLOS errors. For example, “case 5/1” means

that one out of five range measurements is contaminated by

NLOS error.

1) NLOS Error as a Deterministic Variable: In order to see

the relationship between the RMSE of these algorithms and

value of NLOS error(s), we give the RMSE comparisons of

these algorithms with the NLOS error(s) as the same constant

although in real environments the situation is quite different.

We vary NLOS errors from 100 m to 1200 m and calculate

the RMSE as a function of NLOS error(s).

Fig. 1 (a)-(d) shows the comparisons of RMSE as a

function of NLOS error(s) among 5 different algorithms in

four scenarios. From all figures, we can see that the LSE

algorithm which is linearly proportional to the NLOS error(s)

results in the poorest RMES performance because it uses

all the range measurements available equally, without doing

any NLOS error(s) mitigation procedure. The other algorithms

have similar performance, but the MRE (IMR) is worse than

Rwgh and SRwgh. That is because the results from the

range measurements set with minimum Res are not always

the best estimation. When the number of NLOS errors is

small, it also misses the other sets of range measurements

without NLOS error. The performance of SRwgh and Rwgh

is almost the same and in some cases the performance of

SRwgh is slightly worse than that of the Rwgh. From the

description of SRwgh algorithm, we can see that it uses the

range measurements set with minimum Res to generate the

sets for next steps. Because the range measurements sets with

smaller Res have larger weights in the process of weighted

mean, SRwgh gets the main part in Rwgh. Even SRwgh needs

only half of the LSE compared to Rwgh when there are 7 range

measurements, the performance of SRwgh and Rwgh is close.

The performance of LCC-Rwgh is much more complicated

compared with other algorithms. In cases 5/1 and 7/1, the

performance of LCC-Rwgh is much better than the others.

In case 7/2, the performance of the LCC-Rwgh has a similar

performance to that of the Rwgh, which is worse than that

in cases 5/1 and 7/1. But in case 5/2, the performance of

LCC-Rwgh descends dramatically. The smaller the numbers

of the NLOS errors, the better performance of the LCC-Rwgh

algorithm. When the percentage of NLOS errors becomes

larger, the performance of LCC-Rwgh algorithm will not be

stable, as shown in Fig. 1 (b). The reason is that the range

measurements set choosing procedure of LCC-Rwgh is from

large number of range measurements to small number of range

measurements. If there is only one NLOS error, this method

is quite efficient because the one it chooses in the first step

is the one most likely not to be contaminated by NLOS error

and the corresponding subsets of range measurements are also

with LOS. So the sets of LOS range measures contain the

major parts. While if there are more than one NLOS range

measurements, this procedure is not that efficient.

2) NLOS Error as a Random Variable: Random NLOS

errors can be derived from the delay profiles described by

a probability density function of excessive propagation delay

with respect to a direct path [2]. By multiplying excessive

delay τ and the speed of light, we can obtain the NLOS

errors. Three frequently used delay profiles are an exponen-

tial, a uniform, and a delta random variable. In this study,

the exponential model is adopted and the parameter of the

exponential model is τrms, where τrms is the delay spread

which depends on the propagation environments. τrms is log
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(a) case5/1 (b) case5/2

(c) case7/1 (d) case7/2

Fig. 1. RMSE comparisons of different algorithms for deterministic NLOS
error model in long range environment.

normal distributed [6]:

τrms = T1dεξ, (7)

where T1 is is the median value of τrms at d = 1 km, d
is the distance between the reference node and target node

in kilometers, ε is an exponent that lies between 0.5-1.0, ξ
is a log normal variable and 10logξ is a Gaussian random

variable having zero mean and a standard deviation, σε, that

lies between 2-6 dB. For four typical environment types, Bad

urban, Urban, Suburban and Rural, the value of T1 are 1.0,

0.4, 0.3, and 0.1 [6] respectively. ε is 0.5 and σε is 4dB in all

above environments.

Fig. 2 (a)-(d) shows the simulation results in random delay

model. From Fig. 2 (a)-(d), in different environments, the

performance of the algorithms varies a lot with the number

of NLOS errors. As demonstrated in Fig. 2, the more number

of range measurements and less number of NLOS errors, the

more accurate the estimated location is. In rural, the perfor-

mance of algorithms is the best while in Bad urban where there

are more severe NLOS propagations the performance is the

worst compared to other cases. As for the algorithms compared

and the NLOS error model used, the ranking order from the

best to the worst is LCC-Rwgh, Rwgh, SRwgh, MRE(IMR),

LSE in most cases. The performance of SRwgh and Rwgh

is almost the same while in some cases the performance

of SRwgh is slightly worse than that of the Rwgh. The

performance of LCC-Rwgh algorithm is not stable in cases 5/2

and 7/2, namely, in some environments it is better than Rwgh

but in some environments it is not, as shown in Fig. 2 (b) and

(d). That is because in deterministic NLOS error environment,

in cases 5/2 and 7/2, two NLOS errors are in the same value

(a) case5/1 (b) case5/2

(c) case7/1 (d) case7/2

Fig. 2. RMSE with random delay model in long range environment.

but in random cases which is from true propagation situations,

the chance that 2 NLOS errors have the same value is small.

So in random NLOS cases, LCC-Rwgh can also find out the

range measurements set with smaller NLOS errors when the

number of NLOS errors is larger than 1 thus the performance

of it is better than the other method discussed above in some

cases in 5/2 and 7/2.

B. In Short Range Indoor Environment

We adopt a model for the estimated distance from ToA of

the first path in an indoor multipath environment typically

used for WPAN applications [7,8]. It presents the effect of

bandwidth on distance estimation error because increasing the

bandwidth makes the channel impulse response closer to the

ideal case and decreases the distance error [8]. The behavior

of the channel under LOS and OLOS environment is very

different. The range measurements can be modeled by using

the equation: d̂ = d(1 + r), where r is a random variable,

whose distribution depends on the particular channel scenario.

From [7] we can see that for the LOS case, r follows a

Gaussian distribution with a zero mean, and a variance that

depends on system bandwidth. For the OLOS case, it has

been shown that r has a hybrid distribution, which is a linear

combination of Gaussian and exponential distributions. The

Gaussian parameters can be found in Table II. The exponential

distributions parameter is 2.6 m−1 according to [7]. Since

the ratio of Gaussian and exponential distribution is 504:137

when system bandwidth is 100 MHz in OLOS cases [8],

we adopt 21% as the percent of exponential distribution in

OLOS cases. The performance of the algorithms discussed

is evaluated through the following simulations: All the 100

target nodes distribute randomly in a 15 m×15 m square,

the reference nodes distribute uniformly in this area. System

bandwidth varies from 50 MHz to 1000 MHz, as a parameter

of distance error models.
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TABLE II
TYPICAL ERROR PARAMETERS IN LOS AND OLOS CASES ACCORDING TO

SYSTEM BANDWIDTH.

System Bandwidth (MHz) 50 100 200 500 1000
Standard deviations in LOS 19.06 6.48 2.6 0.83 0.27

Standard deviations in OLOS 9.27 2.67 0.78 0.29 0.15

(a) 5 reference nodes (b) 7 reference nodes

Fig. 3. Performance comparison in LOS channel.

Figs. 3 and 4 show the comparison of RMSE as a function

of system bandwidth among 5 different algorithms for the 4

scenarios in short range indoor environment. Fig. 3 (a)-(b)

shows the performance in LOS condition while Fig. 4 (a)-(b)

shows the performance in OLOS condition with 5 reference

nodes and 7 reference nodes respectively. From Fig. 3 (a)

and (b), we can see that all the algorithms discussed have

similar performance because the range measurements are all

LOS cases. From Fig. 4 (a) and (b), the performance of

LSE becomes the worst one while the others have similar

performance. The performance of MRE (IMR) algorithm is

worse than that of the Rwgh and SRwgh which have very

similar performance. The LCC-Rwgh has the best performance

in the OLOS cases. In OLOS cases, the larger OLOS measure-

ment error is from exponential distribution. Since the ratio

of exponential distribution in the OLOS cases is about 21%,

which is close to the case 5/1 in deterministic NLOS error

in long range environments, LCC-Rwgh works well in OLOS

cases. From Figs.3 and 4, we notice that the wider the system

bandwidth, the more coherent the trends of the performance

of the algorithms except LSE. Therefore in system design,

we can make a trade off between the system bandwidth and

the algorithms. If the system bandwidth is wide enough, we

(a) 5 reference nodes (b) 7 reference nodes

Fig. 4. Performance comparison in OLOS channel.

can choose the algorithm with the smallest computational

complexity except LSE, i.e. IMR.

V. CONCLUSIONS

In this paper, we give a comprehensive performance com-

parison between different residual related positioning algo-

rithms and get the following conclusions. The computational

complexity ranges from high to low is Rwgh, SRwgh, LCC-

Rwgh, IMR, LSE. Rwgh and SRwgh have close performance

and the performance of SRwgh is slightly worse than that

of the Rwgh. MRE (IMR) has the same trend as Rwgh and

SRwgh, but it is not as good as the former two algorithms

in most cases and they are all robust to both the number

and the value of NLOS errors compared with LSE and LCC-

Rwgh. LCC-Rwgh performs well in indoor environment and

in outdoor environments when the number of NLOS errors

is small. But its robustness to the number of NLOS errors

is weak in deterministic model in outdoor environment. In

indoor environment, since the OLOS error is a function of

system bandwidth, we can make a trade-off between system

bandwidth and positioning algorithms when designing a sys-

tem.
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