
Model-driven and Compositional Service
Creation in the Internet of Services

Selo Sulistyo

Model-driven and Compositional Service
Creation in the Internet of Services

Doctoral Dissertation for the Degree Philosophiae Doctor (PhD) in
Infomation and Communication Technology

University of Agder
Faculty of Engineering and Science

2012

iii

Doctoral Dissertation by the University of Agder 45
ISBN: 978-82-7117-708-9
ISSN: 1504-9272

c©Selo Sulistyo, 2012

Printed in the Printing Office, University of Agder
Kristiansand

iv

Preface
This work was supported by the Norwegian Research Council (NFR) in the context
of the ISIS project that was done during the period of 2007-2011. I would like to
convey my sincere thanks to Reidar Martin Svendsen from Telenor ASA, the leader
of the ISIS project, for the things that made possible to run the research work.

Many other people have helped me through the course for the pursuing of my
doctoral degree. First of all, I would like to give my sincere thanks to my supervisor,
Professor Andreas Prinz and co-supervisor Professor Frank Reichert. Without their
guidance and help, the completion of the thesis would have been a mission impossi-
ble. I benefited from their rigorous style of work and their strict requirements on the
quality of research. Professor Andreas Prinz’s inspirations through discussions and
valuable feedbacks made the journey of research more effective and enjoyable. The
art of research and the skills of writing scientific papers have also been accumulated
through the journey.

I would also like to convey my sincere thanks to my parents for their unselfish
love and support for all the years, to my dearest wife Yunita Widyastuti for her
continuous supports and love, to our lovely children, Hanif, Irfan, Dania, and Safira
for all their smiles that can dismiss all the troubles and tiredness, to all my friends
and colleagues in UiA, Jan Pettersen Nytun, Terje Gjoesaeter, Liping Mu, Xuan,
Xin He, Yi Ren, and Jason for the very nice discussions, and last but not least, to
my colleagues in Department of Electrical Engineering Gadjah Mada University
Indonesia for letting me several years off.

Selo Sulistyo
Grimstad, September 2012

v

vi

Abstract
In the Future Internet, billions of devices will be connected to the Internet. De-
vices at any levels of hierarchy provide software functionality that can be used by
others. We can call the device’s functionality a service, which in turn, introduces
the concept of the Internet of Services. From the software developer perspectives,
a new service can be created by utilizing services in the Internet of Services. An
important issue of the creation of such service-based application is regarding their
deployment method on personalized and embedded devices. For each device with
different capability and configuration, different tailored code is required. For this,
a flexible method and tools that support an automatic code generation for a device
with a specific capability and configuration are mandatory.

This thesis proposes PMG-pro (Present, Model, Generate and provide), a langu-
age-independent, bottom-up and model-driven method for the service creation in
the Internet of Services. With this method, a service is created by providing the new
functionality of a service-based application as a service. By using existing service
frameworks and APIs, from a service description, PMG-pro generates an abstract
graphical service representation (service model) and source code implementing for
service invocations. Depending on the target modeling languages, different gra-
phical notations can be used to represent services. Similarly, different programming
languages can also be used to implement the service invocations. We call these
pairs (i.e., the service model and the source code) platform-specific models. With
these platform models, service composers use the graphical service representation
to model new service-based applications, while the machine (i.e., computer system)
uses the source code to generate code from the service-based application model.

This thesis contributes to the service engineering method that applies a model-
driven development approach. Three main contributions are a model-driven method
for service creation, an automatic service presentation of pre-made services, and a
new method of handling device capability and configuration. With these, service
creation in the Internet of Services can be done in a rapid and automatic manner.
Service designers can create a new service by defining a model of service-based
applications using pre-made service models, while code for a specific device can be
generated automatically from the model.

The PMG-pro method has been partly prototyped and validated on various case
studies in the domain of smart homes that have produced encouraging results. The
method promotes a rapid, language-independent, and unified process of software
service development.

vii

viii

Contents

List of Figures xv

List of Tables xvii

Definitions and Abbreviations xix

1 Introduction 1
1.1 An Introduction to the Area of Interest: the Future Internet 1
1.2 Motivation . 6
1.3 Main Contributions . 8
1.4 Thesis Structure . 11

2 Software Development in the Internet of Services 13
2.1 Service-based Applications . 13
2.2 Challenges and Problems . 16
2.3 Further Research Questions . 24

3 Background 29
3.1 Service-oriented Systems . 29
3.2 Model-driven Development . 44
3.3 Embedded Systems . 52
3.4 Software Product Lines . 55
3.5 The ISIS Project . 56

4 The PMG-pro Method 59
4.1 Overview of PMG-pro . 59
4.2 The Service Presentation and Abstraction Step 60
4.3 The Service Library and the Service Frameworks (APIs) Repository 72
4.4 The Modeling Step . 74
4.5 The Code Generation and Providing Step 78

ix

5 Proof-of-Concept 83
5.1 Overview . 83
5.2 Service Presenter . 84
5.3 The Service Library . 91
5.4 Code Generator . 92
5.5 Case Studies . 93

6 Evaluation 113
6.1 Evaluation of the Method and Case Studies 113
6.2 Evaluation against Research Questions 118
6.3 Evaluation against Related Work 120

7 Summary and Future Work 131
7.1 Summary . 131
7.2 Future Work . 133

REFERENCES 137

A List of Publications 149

B UPnP Light Service Description 151

C XMI Representation of ARCTIS Building Blok of UPnP Light 155

D Code for Invocation of UPnP Light services 161

E Presenting Embedded Services for End-user Composition 165

INDEX 170

x

List of Figures

1.1 The Service Engineering Domain [11] 6

2.1 Software-based Internet services (SBIS) and Software-enabled In-
ternet Services (SEIS). SEIS may use SBIS. 14

2.2 A conceptual model of service-based applications. New services
can be created by providing the new composite functionalities (com-
posite service) as a new service. 15

2.3 Different actors have different roles in the development and use of
service-based applications. To some extent, end-users are a type of
service composers. 17

2.4 A conceptual model of a service presented in [47]. In this model,
a service system may be developed by composing service compo-
nents, since service components provide services. 19

2.5 A conceptual model of a service presented in [103]. A service has
a service description. A service performs operations. 20

3.1 The historical perspective of the use of different models of a soft-
ware unit with regard to the abstraction levels of software unit. A
service is seen as a new model of a software unit. 31

3.2 An example of a service presentation using UML classes. 33

3.3 An example of service presentation using a SCA component. SCA
desribes events, operation, and parameters. This promotes both
request-reply based and event-based applications modeling. The
figure was taken from [40]. 34

3.4 An example of service presentation using a SoaML participant. The
picture is taken from [79]. 35

3.5 A conceptual model of UPnP devices presented in a UML class
diagram. A UPnP device has two different descriptions: device and
service descriptions. 37

xi

3.6 A meta-model of Web service description presented in a UML class
diagram. 38

3.7 An example of Web service description. The names of the services
(operations) are listed in the description. 39

3.8 An example generated classes from WSDL2Java in the AXIS web
service framework. The classes are used to invoke the actual ser-
vices that reside on a service provider. 40

3.9 An example of OSGi service description presented in XML. The
actual service description can only be seen at run-time. 42

3.10 OMG’s Model-driven architectures (MDA). Different actors have
different roles in the development of software systems. The idea is
to separate the problem with the solution. 45

3.11 An illustration picture showing the relation between systems, mo-
dels and languages. 48

3.12 A conceptual model of model transformation. 49

3.13 A concept of code generation process in the domain-specific model-
ing languages (DSM). The is a strong relation between the modeling
language, the domain framework and code generation. 51

3.14 A basic mechanism of information exchange between a UPnP de-
vice (Media Renderer) and a UPnP Control Point (mobile phone) -
Retrieving Device and Service Descriptions 53

3.15 The use of device identification for service customization. Differ-
ent devices need tailored code with respect to its capabilities and
configurations. 56

3.16 The service-driven development process that has been used in the
ISIS project. 58

4.1 The PMG-pro architecture. It consists of the presentation and ab-
straction step, the modeling step, and the code generation and pro-
viding step. 60

4.2 The service presenter and abstractor of the PMG-pro. The presents
and abstracts services so that service integrators can compose them
in a model-driven environment. 61

4.3 A simplified model of service descriptions in the PMG-pro. The
model is adapted from the conceptual model of services presented
in [103] and [47]. All service properties are described in the service
description. 62

xii

4.4 The relation between a service description, its model (graphical rep-
resentation) and source code. The concrete service itself is available
at run-time. Services users do not know how the service has been
implemented. 64

4.5 A simple building block model to represent a UPnP device (and its
service). A UPnP device has inputs (UPnP actions) and generates
events (UPnP state variables). A meta-model of UPnP devices is
presented in Figure 3.5 . 65

4.6 A conceptual model of ARCTIS building block - A basic element
of model in ARCTIS [53, 57, 65]. 66

4.7 An ARCTIS building block is used to visually represent the UPnP
Light service . 68

4.8 A SCA component is used to represent the UPnP light service. . . . 68
4.9 UML classes are used to represent the UPnP Light service. 69
4.10 A SoaML participant is used to represent UPnP Light service. . . . 69
4.11 A platform independent service models and its code. In this ex-

ample, a Lamp is a common model of different implementation of
services: UPnP Lamp, DPWS Lamp and UPnP Light services. . . . 70

4.12 An example of taxonomy of service models. Each model is con-
nected to source code. The source code itself can be at any pro-
gramming language. 73

4.13 A General formal ontology of smart homes devices used in PMG-pro. 74
4.14 A service-based application model is specified using an activity di-

agram. The figure shows a service-based application that uses three
existing services. Each service has internal activities. A swimlane
is representing a service . 75

4.15 A service-based application model specified is using a sequence di-
agram. In this figure, three different UPnP services are used to build
a service-based application. The application will play music when
a UPnPLight service is invoked, and will stop it on a certain value
of weather parameter. 76

4.16 The code generator. A template is used to generate source code. . . 78
4.17 A merge node. The figure shows an activities and three input data

flows. The activity will be executed all the data flows are arrived. . 79

5.1 The screenshot of the user interface of PMG-pro. 83
5.2 An example of a UPnP service description. The actions are listed in

the service description. See Appendix B for more detail. 85

xiii

5.3 The internal activity diagram of a simple ARCTIS building block
for UPnP services. The building block has one action (operation)
and one event out. This building block is used for the construction
the template for a UPnP ARCTIS building block. 86

5.4 XML representation of an ARCTIS building block for the construc-
tion of the template for a UPnP ARCTIS building block. 87

5.5 XML representation of the UPnP Light service in an ARCTIS buil-
ding block presented in Figure 4.7. The XML contains information
about operation names, xmi:id, arguments, type of arguments, di-
rections, etc. 89

5.6 Smart homes - Selected environment for the purpose of proof-of-
concept. All devices provide services that can be invoked. We have
three case studies based on this environment. Each case study has o
scenario of service-based application. 93

5.7 An abstract representation of the UPnP display service in an UML
class. 95

5.8 An UML sequence diagram of the alarm system in the scenario. . . 97
5.9 Events of the UPnP Light service on Intel’s SDK for UPnP-Device

Spy. 99
5.10 An extending scenario of the UPnP network. 101
5.11 The feelgood model is presented in an ARCTIS building block di-

agram. Three building blocks are used to describe the combined
application. 104

5.12 The ARCTIS model of the new application. The included service
models specify the structure of the application, while the interac-
tions between service models specify the behavior. 108

5.13 The new composite service at run-time. The new service-based ap-
plication is provided as a new UPnP service. 111

6.1 The present, model, and generate-provide method for building service-
based applications. 114

6.2 PMG-pro contribution to the ISIS method 124

C.1 An ARCTIS building block is used to represent run-time UPnP
Light services, see also Figure 4.7 155

E.1 A simplified UML class diagram of an ICE edge. An ICE edge can
be either an action or an trigger edge. 167

E.2 An ICE Puzzle represents UPnP MediaRenderer. 168

xiv

E.3 The models of the new application defined in the scenario. Two
puzzle compositions specify the structure and the behavior of the
application. 168

xv

xvi

List of Tables

4.1 Transformation rules between UPnP - ARCTIS Building Block . . . 67

5.1 A simple database for implementing the Service Library for the pur-
pose proof-of-concept. 91

5.2 Transformation rules between UPnP - UML class 95
5.3 A transformation of an UPnP service description into an UML class 96
5.4 A Transformation of an UPnP service description into an ARCTIS

building block . 103

6.1 Evaluation - A comparison . 129

E.1 Transformation rules between UPnP - ICE Edge 167

xvii

xviii

Definitions and Abbreviations

BPEL Business process execution language
Bundle Applications or components that can be remotely

installed, started, stopped, updated and uninstalled
without requiring a reboot.

CIM Computational independent model
Composite services Services that use other services.
Devices Any software-based entity that is connected

to the Internet.
DPWS Device profile for web services
DSML Domain-specific modeling language
DSL Domain-specific language
Edge An bunle that provides service functionality in the

form of triggers and actions.
Embedded services Services that embed on devices
Embedded devices Any microprocessor-based entities that

have input, output and process. It runs a program.
Examples are copy machines, washing machines
and mobile phones.

End user A person who uses services
ISIS Infrastructure for Integrated Services
MDD Model-driven development
MDA Model-driven architectures
Mobile devices Any portable microprocessor-based systems

with regard to the Internet connectivity.
It can be a laptop, mobile phones, etc.

OSGi Open Service Gateway initiative.
OSGi framework A module system and service platform

for the Java programming language that implements
a complete and dynamic component model.

Personalized devices Any configurable device according to the users
PIM Platform-independent model
PSM Platform-specific model
PMG-pro Present, Model, Generate and provide
SBA Service-based applications
SBIS Service-based Internet Services
SCA Service component architectures
SDP Simple description protocol

xix

SdS Software-driven Services
SEIS Service-enabled Internet Services
Service architect A person who specifies services, both simple and

composite services.
Service composer A person who composes services: end-users

or service integrators.
Service developer A person who implements basic services
Service description A description of the properties of a service. It contains

information about the services names, end points, etc.
Service integrator A type of software developers that create service by

composing services
Service provider A type of organization that runs and provides services

for service users
Service user A person or an organization or a device or an application

who use the services.
Simple services This is a relative term. They can be composed to create

service-based applications.
Smart homes It is automation of the home, housework or household activity.

It may include centralized control of lighting, HVAC, applian-
ces, and other systems, to provide improved convenience,
comfort, energy efficiency and security.

SOA Service-oriented architecture
SoaML Service-oriented Modeling Language - an UML profile
Software Developer A person or organization concerned

with facets of the software development process.
SSBS Software and Software-based Services
SSDP Simple service description protocol
UML Unified modeling language
UPnP Universal Plug and Play. An example of device coordination

framework.
XML eXtensible Markup Language
WSDL Web service description languages
WS-BPEL Web service - business process execution language

xx

Chapter 1

Introduction

This introductory chapter aims to give an overview of the thesis context, starting
with an introduction to the area of interest in Section 1.1, which focuses on the
Future Internet and software service engineering. This includes an introduction of
the definitions of a service, a service-based application and a composite service.
The aim is showing the position of software engineering in the Future Internet. A
presentation of the motivations for the thesis follows in Section 1.2, and the main
contributions of the thesis to the field of software service engineering are presented
briefly in Section 1.3. At the end of this chapter, in Section 1.4, the structure of the
thesis is outlined.

1.1 An Introduction to the Area of Interest: the Fu-
ture Internet

It is undeniable that the Internet is becoming an important infrastructure for the
growth of today’s economy and society, where the infrastructure itself is also grad-
ually becoming larger. Now, information technology is spreading into all areas of
daily life, leading to an increasing amount of information and applications. New
devices and technologies (e.g., protocol layers) are continually added, leading to an
increasing complexity of software systems. Surprisingly, today’s Internet that was
designed in 1970s is mainly built only for information sharing. There is a mismatch
between the original design goals and the current and future utilization of the Inter-
net technology. A new system is needed, and we call this system the Future Internet
[83].

In the Future Internet, Internet resources (people, media, services, devices, and
networks) will be converged in terms of connectivity. Various autonomous comput-

1

2 CHAPTER 1. INTRODUCTION

ing and networked devices, from small (mobile devices, embedded systems, etc.)
to powerful devices (desktops and servers) may be easily connected to the Internet
network, in a plug-and-play manner. These devices can communicate and cooperate
with each other to form a specific composite system or application. So, the coope-
ration is not only between people and devices, but also between devices. This is
supported by the fact that as on-going miniaturization allows small devices such as
sensors and actuators, to become autonomous, smart and powerful data-processing
engines of all kinds are emerging. In contrast, the more devices are connected to
the Internet the more applications are going to be diverged, leading to an increasing
complexity of software systems and their development.

1.1.1 The Concepts of the Future Internet

To illustrate the Future Internet, several terms and related concepts have been intro-
duced. In this section, three concepts are presented: the Internet of Things [105],
the Internet of Services [100] and the Cloud Computing [114]. We will shows how
the concepts are related to each other.

The first important concept illustrating the Future Internet is the Internet of
Things [105]. Different perspectives may have different definitions of the things
in the Internet of Things. However, in the context of the Internet technology, the
thing can be defined as a physical or virtual entity that exists in space and time,
and is capable of being identified and utilized according to its properties. Among
important properties are the ID, location, name and behavior.

In [105] it is stated that:

The Internet of Things allows people and things to be connected any-
time, anyplace, with anything and anyone, ideally using any path/net-
work and any service.

The definition above implies handling of several important issues. Two exam-
ples of the issues are how the connection between entities can be made seamlessly,
and which addressing mechanisms should be used. Obviously, in order to be able to
communicate with each other, each device requires a different address, an ID and a
name that must be unique.

Referring to the object-oriented perspective, the Internet of Things can also be
considered as the Internet of objects. The objects would be equipped with sensors
enabling them to detect the environment and to adapt if the environment is changed.
In a smart home environment [86, 22, 109] for example, all objects (devices) are

1.1. An Introduction to the Area of Interest: the Future Internet 3

considered to be equipped with minuscule identifying devices and they are con-
nected to the network. They are a kind of autonomous and smart objects that are
able to do self-adaptation to the network. It will be possible to develop combined
applications based on individual object’s behaviors.

The objects in the Internet of Things provide or/and use functionalities. We can
call the object’s functionalities services, which in turn, introduces the term Internet
of Services [100]. The vision of the Internet of Services is that everything is avail-
able on the Internet as a service, such as the software itself, the tools to develop the
software, and the platform (operating systems, hardware and networks) to run the
software. This is the main characteristic of the concept of the Internet of Services.

Another important concept of illustrating the Future Internet is Cloud computing
[114]. The concept is a relatively new model of Internet-based computing, where
resources in the Internet, e.g., servers, storage, networking, software, are provided
as services. Cloud computing can be defined as an architecture where IT resources
(hardware and software systems) are delivered to the users on demand without strict
dedicated associations between customers and resources [114]. The delivery model
for the resources is based on the utility using a pay-per-use pricing model. The
key is that any kind of user can access the services, even inexperienced users. The
main feature of all these service offering models is that they break up the previously
monolithic ownership and control of the resources in the various technology layers
and distribute them across multiple entities.

The concept of Cloud computing has a similarity with the concept of the Internet
of Services, in which everything is provided as a service. Based on target service
users, services in Cloud computing can be roughly divided into three main cate-
gories: infrastructure as a service (IaaS), platform as a service (PaaS) and software
as a service (SaaS).

In the IaaS category, machines are virtualized and provided as services. These
services include computational resources such as hardware and storage services in-
cluding services for managing groups of these resources. The PaaS service cate-
gory offers development platforms for various application domains. In the SaaS
category, software applications are provided as services. The users of these ser-
vices range from private users of services to enterprise customers operating entire
business processes.

The Cloud computing concept has also a similarity with the concept of the Inter-
net of Things. Cloud computing uses an implicit assumption that resources are of a
type of entities that is able to host and process data. However, this is the main issue
in the Internet of Things. In the Internet of Things, every device is a networked,

4 CHAPTER 1. INTRODUCTION

smart and self-adapted resource. The devices also host and process data.
A common similarity of the three concepts mentioned above is about functio-

nality (i.e., service) that is provided by an entity and can be used by others. The
literature provides many informal definitions of a service that were inspired mainly
by applications in the telecommunications domain. However, generally, a service
can be defined as functionality offered to a service user by a service provider. Both
service users and service providers can be human beings, enterprises, as well as
software and hardware entities (i.e. programs and devices). In the context of the
Internet of Things, services are software systems that are embedded on devices.
However, it must be noted that services are not only hosted on small and embedded
devices, but could also be hosted by more powerful devices, physically or virtually.
With this situation, the Internet will contain a huge amount of embedded services.

The problem is that there is no standard of formal method and language for
implementing services. The services may have been implemented in different pro-
gramming languages. They can also run on different unrelated environments. This
leads to a problem when the service users want to use the services in a composite
manner. To solve the problem, a service broker in terms of service-oriented archi-
tecture (SOA) [28] can be considered. However, SOA is only a concept. We need
tools and methods for implementing the concept. A rapid, flexible, high abstraction
level and efficient tools for the development software service is required.

1.1.2 The Software Engineering Perspective

The classic issue of software development concerns the development methodology
and languages (i.e. programming and modeling languages). There is still criticism
of software systems development languages and the methods employed, such as
high cost, long time-to-market, and poor flexibility. Software reuse is one of the
proposed solutions to the criticized development methodology as it promotes re-
ductions in cost and time-to-market. In this solution, a new software system can
be promoted (created) by means of collaboration of existing software units. An
example of this solution is the use of software components (i.e., software unit) in-
stead of manually handwritten code from scratch to develop a software system, that
was proposed by McIlroy in [62]. Based on his idea, several models of a software
unit were introduced. Modules, objects, components are examples of models of a
software unit.

However, the demand for software to live in an open world and to evolve contin-
uously as the world evolves, is leading to the evolution of software methodologies
and technologies. The evolution can be seen as a progressive journey from rigid

1.1. An Introduction to the Area of Interest: the Future Internet 5

to flexible, static to dynamic, centralized to distributed solutions [25]. The history
of software engineering shows a progressive departure from the strict boundaries
of the closed-world assumption toward more flexibility to support continuous evo-
lution [4]. Over the past years a major step of evolution in this direction has been
made possible by the birth of the concept of a service.

With regard to the software component models introduced in [62], we consider
that a service is only another type of model of a software unit. In this context,
a service has evolved considerably from the older models: modules, objects, and
components. They are only different in terms of abstractions, encapsulations and
ownerships. Among these models, the service is the highest abstraction level and the
most encapsulated model. Accordingly, depending on the models of software units,
software systems can be categorized as module-oriented systems, object-oriented
systems, component-oriented systems and service-oriented systems. The service-
oriented system is also known as a service-based application.

Unfortunately, traditional software engineering methods and approaches are not
fully appropriate for the development of service-based applications. In the context
of service-oriented systems, these limitations have led to the emergence of software
service engineering (SSE) as a new specialist discipline. However, research activi-
ties in this area are still immature, and many open issues remain. There is an urgent
need for the research community and industry practitioners to develop comprehen-
sive engineering principles, methodologies and tools support for the entire software
development lifecycle of service-based applications [106].

Service engineering can be defined as the set of methods, techniques and tools
to specify, design, implement, verify, and validate services that meet user needs and
deploy and exploit these services, over current or future networks [116]. For the
service development, service developers must be able to specify services so that
they can be discovered and used and must be able to test these services in such a
way that the tests reflect their complex and heterogeneous operating environment.
According to [116], service engineering covers three important domains:

1. Service creation and tools: A software engineering platform.
2. Service management: The way a service is run and accessed by the users.
3. Network architecture: The way a service is delivered to the users.

Similarly, in [11], see Figure 1.1, the first domain is introduced as service en-
gineering domain, the second domain is called service deployment and execution
domain, and the third domain is called a service platform. The service engineering
domain includes methods and tools (i.e., service creation environment, SCE) for

6 CHAPTER 1. INTRODUCTION

Figure 1.1: The Service Engineering Domain [11]

software services. This thesis addresses on the first domain of service engineering
[116], that is service creation method and tools [[11]].

1.2 Motivation

Only with appropriate software will it be possible that the Future Internet comes to
life as imagined. Within the context of the Internet of Services, creating service-
based applications using the huge amount of services is a challenge. This includes
the use of resources that are delivered in form of IaaS, PaaS and SaaS models in the
context of Cloud computing. Within the European community [1], software deve-
lopment by composing pre-made services has been proposed as one of the research
agendas during the years 2010-2015.

For the creation of service-based applications, different approaches and methods
may be used. However, the approaches and methods should meet the three criteria
below.

1. They must support for exploring the reusability of existing services.
2. The design processes should not depend on the target environment.
3. The service developers and service integrators should be shielded from com-

plexity.

1.2. Motivation 7

Two examples of approaches and methods are software composition approaches
[3](was originally introduced in [62]) and model-driven development approaches
(MDD) [76]. The first approach supports exploring the reusability of software com-
ponents. In the last decade, the approach has been adopted in several of today’s
large-scale software projects in the area of distributed systems. With regard to the
software component that was introduced in [62], we treat a software component as a
software unit. For the composition of software units, software composition systems
[3] can be applied.

The second approach uses models to specify, design, implement, verify, and
deploy software systems. When doing model-driven development, software develo-
pers will work on model levels in a platform independent manner. The reason is that
the MDD focuses on the separation of the problem domain from the implementation
domain. This enables software developers to focus on the problem solutions on a
high abstraction level rather than the implementation details. By doing this, they do
not need to pay attentions to how the service models will be implemented conside-
ring the fact that the implementation is done automatically by machines (i.e., code
will be generated automatically).

With regard to the complexity of software systems, the aims for both software
composition [62] [3] and model-driven development (e.g. MDA [76]) are similar
in which they are used for managing the complexity of software systems and their
development. Having benefited from these approaches, the author of this thesis has
been motivated to propose the use of MDD for the service creation in the Internet
of Services. Employing this idea, the composition of services can be done using
models at different abstraction levels, while the executable composite services can
be generated automatically.

In fact, the use of models for the development of software applications has been
done for a long time. For example, software developers often use high-level mo-
dels (e.g. instance, box, and arrow sketches) to reason and communicate about a
software system. The main problem with the use of high-level models is that they
are almost always inaccurate when the design models would be implemented using
specific programming languages manually [68]. This is a serious problem, since a
model in MDD is used as a formal specification of a software system. A software
system should be generated automatically from this formal specification, either by
model interpretation or code generation.

Services in the Internet of Services may be hosted by small devices. Of the
small devices, this thesis focuses on personalized and embedded devices which have
different capabilities and possible configurations. For the development of such em-

8 CHAPTER 1. INTRODUCTION

bedded services, concrete and low-level information about the device capability and
configuration is often required at the beginning of the development processes. In
contrast, within the MDD context, such low-level information will be given later
at the lowest level of design models, which is usually done at the end of the de-
velopment processes. This is because the MDD development process goes from
abstract (i.e., models) to concrete (i.e., implementations). If we want to apply MDD
approaches for the development of embedded services, then we have to abstract the
concrete information about the devices onto model levels. This abstraction process
goes from concrete to abstract. So, there is a mismatch between the MDD approach
and the software development approach for personalized and embedded devices.

The fundamental research question of this thesis is formulated as follows:

To what extent and how - can model-driven development approaches be
applied for the creation of composite services and their deployment on
personalized and embedded devices in the Internet of services?

The problems and challenges of the use of MDD for the development of service-
based applications will be further analyzed and presented in Chapter 2. Further-
more, the fundamental research question above will also be further decomposed,
and analyzed and presented into six sub questions in Section 2.3.

1.3 Main Contributions

Model-driven development is not a new methodology for software engineering.
However, the idea of applying the model-driven development methodology to ser-
vice creation in the Internet of Services is relative new. This thesis focuses on
service engineering as introduced in [11] which includes methods and service cre-
ation tools. More specifically, the thesis focuses on model-driven and compositional
methods for service creation. The thesis proposes a method for composing services
and for providing the composite functionality as a new service. The contributions
of the thesis are listed as follows:

1. A New Service Engineering Method for Service Creation in the Internet
of Services.
The main problem of service development in the Internet of Services is that
the things in the Internet of Things might implement services using different
technologies and might also use different programming languages. A metho-
dology to develop service-based applications using services that have been

1.3. Main Contributions 9

implemented using different technologies is needed. Furthermore, when the
service-based application has been developed, questions about how the ap-
plications can be provided as a new service and how the services will be
deployed in different devices with different capabilities and various device
configurations are interesting to be solved. The thesis contribution is a me-
thodology of service engineering that is independent of technologies and sup-
ports for exploring the reusability of existing services. The thesis proposes a
method called PMG-pro (present/abstract, model, generate and provide) to
answer the fundamental research question.

The method has been presented in the paper ”PMG-pro: A model-driven me-
thod for the development of service-based applications in a heterogeneous
services environment” [97] and is published in the Proceeding of IEEE In-
ternational Conference on Software Engineering and Service Sciences, IC-
SESS 2010 and the Proceeding of SDL Conference on Software 2011 [98]. A
poster ”Model-driven Approaches for Service-based Applications Develop-
ment” [96] of the method was presented in the Proceeding of 5th International
Conference on Software and Data Technologies, ICSOFT 2010.

2. An Automated Service Presenter and Service Abstractor.
Abstraction is an important key for the success of applying MDD. A service
model is an abstract representation of a concrete service. Using abstract ser-
vice models, new service-based applications can be modeled on model levels.
Thus, we need a service presenter to present services, and a service abstractor
to abstract services.

The presentation process involves model transformation methods [78, 8, 75].
The service presenter transforms a service description of a concrete service at
run-time, to an abstract graphical service model. Different notations or sym-
bols that conform to the chosen modeling languages can be used to present
the services. The service graphical representation is an abstract service mo-
del. A service abstractor is used to construct more abstract service models in
hierarchical service taxonomy.

The thesis contribution is an automated service presenter that is able to present
graphically (embedded-) services from service descriptions and a service ab-
stractor that constructs more abstract models. With the service presenter and
service abstractor, it would be possible to present concrete services as ab-
stract services. Using the abstract services, software developers can model
new service-based applications using different embedded software systems

10 CHAPTER 1. INTRODUCTION

on different devices, on the model level. The contribution of the service pre-
senter has been presented in the paper ”Presenting Reusable Service Models
in Model-driven Service Engineering” [93] and is published in the Proceeding
of International Conference on Future Information Technology, ICFIT 2010.

A special service presenter has been developed for supporting end-user ser-
vice compositions at run-time. The contribution has been presented in the
paper ”An Automated Services Presentation Method for Supporting End-user
Compositions” [91] and is published in the Proceeding of Conference on In-
formation Technology and Electrical Engineering, Yogyakarta, Indonesia.

3. A new method of handling device capabilities and configurations.
The promise with the model-driven development approaches for the deve-
lopment of software applications is that new applications can be specified,
designed, analyzed, and verified by models and thereby, code for specific
platforms of target devices can be generated automatically from the models
to have running applications. However, for small devices (mobile phones for
example), device capabilities and configurations of the target devices are un-
known at design-time. This introduces difficulties for the automated code
generation. To be able to have a fully-automated code generation, we need to
have knowledge of the underlying platforms.

In addition the graphical service model, the service presenter in PMG-pro
also generates source code conforming to a specific programming language.
The source code implements the service invocations to the concrete service.
We call these pairs (i.e., the service model and the source code) platform mo-
dels. The platform models are constructed in a hierarchical manner. Software
developers can use the service models to create new service-based applica-
tions, while the machine (i.e., code generator) use the source code to generate
tailored code for specific target device with a specific device capability and
configuration. With this, device capabilities and configuration can be mana-
ged.

The method has been partly presented in the paper ”PMG-pro: A model-
driven method for the development of service-based applications” and is pub-
lished in the Proceeding of SDL Conference on Software 2011 [98].

1.4. Thesis Structure 11

1.4 Thesis Structure

The thesis consists of 7 chapters where Chapters 2 and 3 present background in-
formation and studies which aim to identify the methodology and supporting tools
for the service creation in service engineering. Chapters 4 and 5- present the pro-
posed methods and proof-of-concepts. Evaluations of the proposed method and a
summary are presented in Chapters 6 and 7, respectively.

• Chapter 1,”Introduction” gives an introduction to the context of this thesis and
the area of interest. This includes a brief identification of the main problems
in the area and the motivations for the work. Based on the motivation, main
contributions of the work are also outlined in this chapter.

• Chapter 2 ”Software Development in the Internet of Services” gives further
explanation of challenges and problems of the use of model-driven develop-
ment for the service creation in the Internet of Services. This includes further
decomposition and analysis of the fundamental research question presented
in Section 1.2. The chapter also presents basic definitions used in the thesis.

• Chapter 3 ”Background” gives on an overview of the theoretical background
related to the software service development in the Internet of Services. It
presents briefly a theoretical background of service-oriented systems, model-
driven development, embedded systems and software product lines. A short
description about the ISIS project is also presented in this chapter. This thesis
was done in the context of the ISIS project.

• Chapter 4, ”The PMG-pro Method” presents a model-driven development
method of software service in the Internet of Services. It is started with an
overview of the PMG-pro method. PMG-pro consists of four steps: the ab-
straction and presentation step, the modeling step, the code generation step
and the providing step. These steps are presented in different subsections.
The method shows how the theory from Chapter 3 can be used to answer the
research questions.

• Chapter 5 ”Proof-of-Concept” presents a prototype which implements the
PMG-pro method presented in Chapter 4. It includes a presentation of three
case studies of the development of service-based applications in smart homes
environment.

• Chapter 6 ”Evaluation” presents evaluations of the proposed method. Firstly,

12 CHAPTER 1. INTRODUCTION

a general evaluation is presented in the first section. Evaluations against the
research questions and related work follow in the following sections.

• Chapter 7 ”Summary and Future Work” is the concluding chapter where the
proposed solution and contributions are summarized. The chapter also con-
tains some suggestion for future work in the area of model-driven service
development in the Internet of Services.

Chapter 2

Software Development in the Internet
of Services

A methodology and tool for the creation of services in the context of Internet of
Services are the focus of this thesis. This chapter presents more detailed challenges
and problems of software development in the Internet of Services that have been
presented in Chapter 1. Section 2.1 presents an overview of service-based appli-
cations. This includes also a short introduction of terms and definitions that are
used in this thesis. Section 2.2 discusses the identified challenges and problems of
creating services in the Internet of Services. From the discussed challenges and
problems, the fundamental research question presented in Section 1.2 is further de-
composed into seven sub research questions.

2.1 Service-based Applications

Over the last decade, the service sector has become the biggest and fastest-growing
business sector in the world [90]. In order for this growth to continue, services
should become more accessible and should also yield higher business productivity.
The advanced use of information technology can significantly help to achieve this
continuity. Many different companies and research institutes have started to explore
different aspects of the service sector to determinewhich services can be managed
through information technologies (IT). Here, we are talking about Software and
Software-based Services (SSBS).

In the enterprise context, SSBS will play important roles of keeping continuity
of business sector growth. According to [90], SSBS in the Internet of Services can
be either Software-based Internet Services (SBIS) or Software-enabled Internet Ser-
vices (SEIS). The differences between SBIS and SIES in terms of value generated

13

14 CHAPTER 2. SOFTWARE DEVELOPMENT IN THE INTERNET OF SERVICES

Figure 2.1: Software-based Internet services (SBIS) and Software-enabled In-
ternet Services (SEIS). SEIS may use SBIS.

for the end-users is shown in Figure 2.1. The figure is modified from figure in [90].
The aim of showing this figure is to illustrate that service can be defined differently.

SEIS are services that do not relate directly to IT. The value of such services
is mostly associated with the sale of the service itself, not with the software func-
tionalities. The end-users can use the service as it is. In contrast, SBIS services
cover capabilities for which the value to the service users is intrinsically related to
the IT resources that are delivered via the Internet. The services cannot be used by
end-users directly. To be able to use the service, a service integrator must compose
the SBIS as SEIS. SBIS includes services in the Cloud computing: Software as a
service, platform as a service, and Infrastructure as a service, see the ones that were
presented in Section 1.1.

Although SBIS and SEIS rely strongly on the same infrastructure (i.e., hard-
ware, software systems and applications) their value can be different. From the per-
spective of software developer, SBIS is more valuable since they can be composed

2.1. Service-based Applications 15

to gain value-added services. The composition can be done to promote (create) new
combined functionalities that a single service does not have.

In this thesis, we consider only the SBIS. In the context of the Internet of Ser-
vices, SBIS are embedded on devices with different levels of device hierarchy, from
sensors and actuators, to enterprise levels. The services provide functionalities that
can be used by service users. From the software developer perspectives, concep-
tually, the development of software applications can be done by composing SBIS
services. For this, the Service-oriented architecture (SOA) [28] can be adopted for
the developing of software applications in the Internet of Services.

Using SOA, architecturally, software applications are built from compound, het-
erogeneous, autonomous software units called services. If it is the case, service
compositions will be a common approach for the development of software applica-
tions in the Internet of Services. Software systems and applications are becoming
service-based. We call this a service-based application.

There are two types of service-based application. The first type is a service-
based application that combines services but is not to be provided as a new service,
and the second type are those service-based applications that provide the new com-
bined functionality as a new service. We call the second type composite services.

Figure 2.2: A conceptual model of service-based applications. New services
can be created by providing the new composite functionalities
(composite service) as a new service.

16 CHAPTER 2. SOFTWARE DEVELOPMENT IN THE INTERNET OF SERVICES

A conceptual model of a service-based application is presented in Figure 2.2. From
the figure, it can be seen that a service-based application may use more than one
service.

Different approaches and methods may be used to the creation of composite
services. Obviously, basic understanding about a service is required. As it can be
seen in Figure 2.2, a service may have one or more service description. It describes,
for examples, what a service can do, and where the service is located.

It is shown also that a service can be classified either as Simple or Composite.
In this thesis, all services that will be composed are considered as a simple service.
As mentioned earlier, a composite service is a type of a service-based application.
It composes services and provides the combined functionality as a new service.

A service can also be classified either as Abstract or Concrete. An abstract
service may have one or more concrete services or it may mean that the service
will be implemented in the future. But for the composition of services, this thesis
considers only Concrete services (run-time services).

Furthermore, services can also be classified either as a State-less or State-ful
service. Web services [69] can be considered as an example of stateless services,
while UPnP services [46] can be considered as a kind semi state-ful services. UPnP
devices use state variables to store the states of specific variables and inform those
state changes to other UPnP devices.

2.2 Challenges and Problems

Considering the use of model-driven approaches for the creation of composite ser-
vices, and the deployment of such composite services on personalized and embed-
ded devices, there are several issues that lead to challenges and problems. In this
section, we present five issues. From these five issues, seven research questions are
presented in the next section.

2.2.1 Different Roles and Different Service Users

Service development, in principle, involves solution architects, service developers,
and service integrator roles. Solution architects and service integrators are the ones
who are involved in the service development (i.e., composition at design-time). The
end-user, that is a special type of service users, is not included in the development
process. But to some extent, this type of service users is the one who have a possi-
bility to compose services at run-time. Figure 2.3 is a use case diagram that shows
actors and their roles in the development and use of service-based application.

2.2. Challenges and Problems 17

Figure 2.3: Different actors have different roles in the development and use of
service-based applications. To some extent, end-users are a type of
service composers.

18 CHAPTER 2. SOFTWARE DEVELOPMENT IN THE INTERNET OF SERVICES

It can be seen in the figure that solution architects use the service library to
find existing services that they can use as building blocks for building service-based
applications. They may also use service descriptions they find in the service library
to populate the set of building blocks. If they require a service that does not exist in
the service library, they can publish service metadata that describe interfaces of the
services. Service developers will then implement and deploy the required services.

Service developers are the implementers of simple services. They implement
(hard coding) new services using programming languages. However, the simple
service may include functionalities from existing services as part of their imple-
mentation. For this, they can browse the service library to find the required services
they could involve in the new services. Moreover, they can use the service library to
analyze the impact an envisioned change on a service might have on other services.

Service Integrators assemble solutions from new or existing services. A service
integrator is a special type of service composers. The service integrators are the ones
who create composite services while the end-users are the ones who use the created
services. They compose services at design-time by the use the service library to find
building blocks that they can use in their composite applications.

For the service composition, the different roles in Figure 2.3, may require dif-
ferent service presentations (service models). For example, business analysts (i.e.,
system architects roles) that are less interested in IT-level technical details of ser-
vices might need to present a service as a building block with high-level information
about the service. For the service integrators, complete information about a service
may be more important than the service presentation. For end-users, since they are
interested in the service composition at run-time, the use of a picture to present a
service may help to easily relate a service with the actual device.

Presenting run-time services using graphical representations for different ser-
vice users is a challenge. With regard to the use of model-driven approach for
the development of service-based applications, questions about what service model
should be used to present run-time services at design-time and how the presentation
processes can be done are necessary to be answered.

2.2.2 Various Implementations of Service-oriented Systems

There exist different standards, implementations, and adaptations of the concept of
service-oriented systems. Consequently, they may propose and use different con-
ceptual service models. In this sub section we present a discussion that focuses only
on what is a service and how a service is described. For this purpose, we present two
examples of conceptual service models copied from [47] and [103]. The first exam-

2.2. Challenges and Problems 19

Figure 2.4: A conceptual model of a service presented in [47]. In this model,
a service system may be developed by composing service compo-
nents, since service components provide services.

ple is a conceptual service model presented in [47], see Figure 2.4, while the second
example is a conceptual service models presented in [103], see Figure 2.5. The aim
is to show that different service-oriented system can be modeled and implemented
differently which influences the different ways of describing services. Information
about the service, that is a service description, is important for the service users in
order to be able to use the service.

A service according to [47], see Figure 2.4, is be provided by a service compo-
nent or a service system. A service system is a composition of two or more service
components. In terms of service-oriented systems a service system is well-known
as composite service. The service components itself have behaviors that can be
accessed by its defined interfaces.

A service has functional properties, life cycle concepts and non- functional
properties. Functional properties describe what a service can do, while the non-
functionality properties describe additional information about the services, such as,
quality of service, delay, price, availability, time, etc. Functional properties relates
to the provided services. Unfortunately, information about these properties is not
described in a specific class. In other words, the conceptual service model presented
in [47] does not provide any information about the description of a service that is
important for the service users in terms the concept of service-orientation systems.

20 CHAPTER 2. SOFTWARE DEVELOPMENT IN THE INTERNET OF SERVICES

Figure
2.5:

A
conceptualm

odelofa
service

presented
in

[103].A
service

has
a

service
description.A

service
perform

s
operations.

2.2. Challenges and Problems 21

The second example is a conceptual service model that is introduced in [103],
see Figure 2.5. A service is associated with service properties which are specified by
facets. Moreover, a service performs some operations. Referring to the conceptual
service model presented in Figure 2.4, the operations are corresponding to service
components that relate to the actual service execution. More explanation about the
conceptual service model can be found in [103].

This thesis is interested only on how a service is described in order to service
users can use it, and therefore the explanation discusses only this matter. An inter-
esting part of the conceptual service model presented in this figure is that a service
may have one or more service descriptions. Generally, a service description spec-
ifies its functional attributes such as inputs, outputs, preconditions and effects. As
it is also shown in the figure, a service description defines also its non-functional
attributes, such as, quality of service, delay, price, etc.

The two examples of a conceptual service (Figure 2.4 and 2.5) show that differ-
ent conceptual service models are exist. In terms of a technology for implementing
the SOA concept, different service models also exist, for example SOA Web ser-
vices and OSGi services. Consequently, different ways, languages and technolo-
gies for describing a service exist. For example, there are Web Service descrip-
tion language (WSDL) [69], device profiles for web services (DPWS) [115], XML
schema that is used to describe UPnP devices [46]. Originally, the UPnP concept
is not related to SOA, but conceptually we can develop service-based applications
using UPnP services.

The different implementations of the service-oriented system introduce the in-
teroperability problems. But, it is also a challenge to compose services that were
created using different technologies from device levels (e.g., DPWS and UPnP
services) to enterprise levels (e.g., Web services). For the success in applying
model-driven technology for service creation, a standardized service description
is required. The service description should contain information for service catego-
rization. The service categorization will help service users to find similar services
or help service integrators to develop scenarios in case when desired services are
becoming unavailable.

2.2.3 Various Choices of Modeling Languages

Specifying service interactions is one possible ways of building service-based ap-
plications. For this, composition techniques and languages are required. Different
modeling languages for software and system modeling exist. For example, the Uni-
fied modeling language (UML) is a de facto standard for the modeling language. In

22 CHAPTER 2. SOFTWARE DEVELOPMENT IN THE INTERNET OF SERVICES

the context of Web services, choreography and orchestration languages such as Web
Services - Business Process Execution Language (WS-BPEL) [41] are promising
steps towards specifying web service interactions and protocols. A BPEL model,
representing business processes as an interaction of services, can be executed by us-
ing BPEL engines. The BPEL and Business Process Modeling Notations (BPMN)
are proposed as a standard language to model business processes.

The existing modeling languages can be used for the current models of software
systems. However, the structure of future service-orientation systems will be way
more complex than most systems designed and implemented with current service
technologies. This complexity is created by several factors such as the need to create
flexible and configurable solutions, the need for loose coupling between the services
in a service-based application, and the involvement of a multitude of stakeholders
and their roles. This particular nature of future service-based applications gravi-
tates towards having to deal simultaneously with dynamicity, openness and global
reach. Obviously, this has several important implications to the way of how the
services are modeled. Accordingly, a new modeling language is required. The new
modeling languages should provide capability to model run-time of a service-based
application. This is important since at run-time service, based application should
be able to adapt to environment changes. It could be adaptation to, overcoming the
mismatches between aggregated services, be able to repair faults, or re-configure
the applications in order to better meet their requirements.

However, we will not discuss about such new modeling languages as they are
still under development. The point is that, for the modeling of service-based appli-
cations it will require modeling languages offering new modeling concepts and suit-
able notations for modeling software services on different levels of abstraction. The
modeling languages should construct abstract away from concrete technologies as
much as possible. For this, both existing general and domain specific modeling lan-
guages (DSML) can be used. They have their own benefits and drawbacks. DSML
supports for fully automated code generation because of its domain specificity fea-
ture, but they are only useful on a specific domain. In contrast, general modeling
languages may be used for any domain of modeling, but it is often difficult to have a
fully automated code generation. There is a question of having a general modeling
language but support for an automated code generation. Semantics of the modeling
languages are considering the main problem of automated code generation. Incor-
rect semantics lead to ambiguous machine interpretations. For this reason, research
in this area is required. Best practices are sometime the only solution for this issue.

2.2. Challenges and Problems 23

2.2.4 Software Development Method for Embedded Systems

Embedded systems play an important role in the Internet of Things. The embed-
ded systems in this case are all kinds of microprocessor-based device that are able
to run a program. In the context of Internet of Services, embedded systems are
considered to provide simple services that have been developed by software deve-
lopers. Mobile phones, microprocessor-based sensor and actuator systems, con-
trollers, microprocessor-based home appliances, and entertainment systems are ex-
amples among them. It is not necessarily that the devices have a specific operating
system.

Moreover, personalized and embedded devices such as mobile phones are pro-
mising devices for end-user interfaces to access services in the Internet of Services.
The International Telecommunication Union (ITU) has reported [42] that by at the
end of 2010, there are about 5 billion mobile cellular subscribers worldwide. The
increasing popularity of mobile devices and embedded networked devices is bring-
ing the promise of pervasive computing [108] closer to reality. Therefore, offering
value-added services to mobile users has challenged technology developers, busi-
ness developers, and mobile services developers.

One of the problems of developing software application for personalized and
embedded devices is regarding with the device capabilities and its configuration.
On the client side, it is often that when it comes to the deployment, it needs adapta-
tions to which devices the applications will be deployed. For example in the mobile
phone domain, the large number of different mobile phones and the significant vari-
ability between model of mobile phones makes it hard to create a single application
variant that can function correctly across all mobile phones. Not only on the client
side, is a problem also found on the server side. On the service provider side, service
customizations for each specific device model are also required. In other words, a
method of handling device capability and configuration in the development of soft-
ware embedded systems is required.

2.2.5 Handling Complexity using models

MDD promotes handling of complexity takes using models at higher levels of ab-
straction and describes software systems using models. However, the main artifact
of software systems is an executable program. Therefore, a transformation mecha-
nism of models into executable program is required.

With regard to the use of models in software development there are two perspec-
tives. The first perspective assumes that the models should be a complete model and

24 CHAPTER 2. SOFTWARE DEVELOPMENT IN THE INTERNET OF SERVICES

is executable. It must describe completely the structure and the behaviors of a soft-
ware system. Code is only another representation of a model. Having a formal and
complete semantic description is the only way to achieve this perspective. This is
not a case for the second perceptions. The second perspective assumes that model
do not necessary completed since the implementation (into code) is another problem
of modeling. With this perspective, source code is not necessary to be generated au-
tomatically. It can be manually implemented by software developers or an (semi-)
automated code generation to improve the productivity. Code generation by model
transformation is the best example of code generation approaches. This is a kind of
a vertical model transformation.

High-level modeling constructs abstract away from concrete technologies as
much as possible. There is no clue how the mapping of those high-level descrip-
tions into implementation levels and low-level modeling concepts are done. To gen-
erate code automatically it is needed an automated mapping that will help to bridge
the gap between high-level modeling notations and low-level implementation code
which runs on service platforms.

In MDD, code is only considered to be generated from low-level models (i.e.,
platform-specific models) as the models are often detail and near to the solution.
In contrast, in more general context we want to use high-level models to specify
software and at the same time we want to have automated code generation. The
question is how an executable code can be generated from high-level models in an
automated manner.

2.3 Further Research Questions

We have mentioned that the motivation of this thesis is to use the MDD approach for
the creation of composite service and their deployment on personalized and embed-
ded devices in the Internet of services. For this, we have analyzed the fundamental
question presented in Section 2.1 and identified that the fundamental question cov-
ers four areas which are related, as follows:

A. Model-driven development(MDD)
B. Creating composite services
C. Deployment on personalized and embedded devices
D. The use of existing services.

Out from the four areas above and their relations, we identified five sub problems
that have been discussed in Section 2.2, and listed as follows:

2.3. Further Research Questions 25

1. A+D: MDD and the use of existing services. This sub problem has been
discussed in 2.2.1.

2. B+D: Creating composite services and the use of existing services. This sub
problem has been discussed in Section 2.2.2.

3. A+B: MDD and creating composite services. This sub problem has been
discussed in Section 2.2.3.

4. C: Deployment on personalized devices. This sub problem has been discussed
in Section 2.2.4.

5. A+C: MDD and deployment on personalized and embedded devices. This
sub problem has been discussed in Section 2.2.5.

To succeed in applying the MDD approach, all the sub problems listed above
must be solved. To guide to the solution of these sub problems, seven sub ques-
tions that cover all the identified sub problems are presented. Other sub questions
may arise, but it will be covered by these seven questions. Therefore, answer to
these seven sub questions implies to answer the fundamental question. More details
analysis and the formulated sub questions are presented as follows:

2.3.1 Questions 1 and 2

At the end of Section 2.2.1 it has been discussed the possibility of different types
of service users and different roles; service developers, service integrators and end
users. In order to service developers and integrators are able to apply the MDD ap-
proach for composing services at model levels, run-time services must be presented
into service models at design time. For the success in applying MDD, the two first
important questions are:

What models should we use to present run-time services for different
service users? (Q1)
How can the presentation of run-time services into service models be
done? (Q2)

2.3.2 Question 3

Having a complete and formal service description leads to a un-ambiguity interpre-
tation and gives complete information of how the service will be visually presented
as models. To be able to present run-time services, the only available information
is service description. As it has been discussed at the end of Section 2.2.2, there are

26 CHAPTER 2. SOFTWARE DEVELOPMENT IN THE INTERNET OF SERVICES

several service description standards and technologies that can be used to describe
run-time services. An important question is:

Which service description technology should we use to present run-time
services? (Q3)

2.3.3 Question 4

For the modeling of service-based applications, it requires modeling languages.
Within the context of MDD, the modeling process should construct abstract away
from concrete technologies as much as possible. At same time automation of code
generation is one of the indicators for the success of the use MDD for software
development. Therefore, the chosen modeling languages influences the success in
applying the MDD for software development. It is often only DSL that can provide
the automation.

It has been discussed at the end of Section 2.2.3 that different modeling lan-
guages are available. A new important question is:

Which modeling languages should be used to model service-based ap-
plications? (Q4)

If we can use any existing modeling languages, then it will answer the sub ques-
tion that somehow implies to answer the fundamental question.

2.3.4 Questions 5

In the software development of embedded systems, information about device ca-
pability and configuration may be introduced at the beginning of the development
process. In contrast, in the perspective of MDD, this information will be given to
the lowest model level, which is often done at the last step of the modeling pro-
cess. However, as it has been discussed in the end of Section 2.2.4, the variability
of targeted devices is also a problem. Since the MDD approach will bring up the
problems at model levels, the question is:

To what extent should device capability and configuration be included
in the design-time (modeling step)? (Q5)

2.3. Further Research Questions 27

2.3.5 Questions 6 and 7

The important artifact of software engineering is an executable model which is in
this case represented by code. To be able to fully apply MDD for the development
of service-based applications, modeling tools must support for an automated code
generation. In contrast, as it has been discussed at the end of Section 2.2.5, it is often
difficult to have an automated code generation from models at a high abstraction
level. If it works, then it is often restricted to specific application areas using domain
specific languages (DSL). Two more important questions for the success in applying
MDD are:

How can code generation from a high-level model of service-based ap-
plication be automated? (Q6)

Should we add a platform model or at least some platform patterns?
(Q7)

As mentioned earlier, an automation of code generation is one of the indicators
for the success of the use of MDD for the development of service-based applica-
tion. Thus, answering to these questions implies to the answer of the fundamental
questions.

28 CHAPTER 2. SOFTWARE DEVELOPMENT IN THE INTERNET OF SERVICES

Chapter 3

Background

This section presents the background of the thesis. It starts with an overview of the
theoretical background of service-oriented systems in Section 3.1. This includes the
definition of a service and service descriptions, and an overview of existing service-
oriented technologies with its frameworks. Section 3.2 presents state-of-the-art of
model-driven development approaches. Brief overviews of embedded systems and
software product lines follow in Section 3.3 and Section 3.5. Since the thesis was
done in the context of the ISIS project, a brief overview of the project will also be
presented in Section 3.5.

3.1 Service-oriented Systems

The service-oriented system is a more general concept than service-oriented archi-
tectures (SOA). It is essentially a collection of services that interact with each other
to function as a composite system. The interactions can involve either simple data
passing or it could involve two or more services coordinating some activities.

SOA represents an architectural model that aims to enhance the agility and cost
effectiveness of an enterprise while reducing the burden on IT and on the overall
organization. It accomplishes this by positioning services as the primary means by
which the solution is represented. The OASIS SOA reference model [73] defines
SOA as follows:

Service-Oriented Architecture is a paradigm for organizing and utiliz-
ing distributed capabilities that may be under the control of different
ownership domains. It provides a uniform means to offer, discover, and
interact with, use capabilities to produce desired effects consistent with
measurable preconditions and expectations.

29

30 CHAPTER 3. BACKGROUND

The definition above indicates that there are two main areas where SOA dif-
fers from other approaches to information technologies. SOA reflects the reality
that service ownership must be considered in the design of software applications.
In the service-oriented systems, services can be provided by thirds parties. This is
something different with regard to the older concepts (such as component-oriented
systems) in terms of ownership and control. In contrast with the component-based
applications, services will normally be provided by third parties, which are not
necessarily the owner of the service-based applications. Moreover, the owner of
service-based applications does not have control over the execution of included ser-
vices.

A number of studies and publications about SOA are concentrating on the defi-
nition and implementation of individual (simple) services. However, in the context
of the Internet of Services, building enterprise solution(s) typically requires com-
posing multiple existing services at any levels from device services to enterprise
services. Moreover, these composite services can again be composed with other
services, in a recursive manner. Such recursive service composition is considered
as one of the most important SOA features. This feature allows to rapidly build new
solutions based on existing pre-made services that can be from third parties. As the
amount of simple and composite services grows, the easier it becomes to implement
new enterprise solutions.

3.1.1 Definition of a Service

A service can be defined in different ways. In [89] for instance, a service is defined
as asset of functions provided by a (server) software or system to client software or
system, usually accessible through an application programming interface. Similar
definitions as the one above appear in the context of middleware technologies such
as Jini [19], .NET [48], or JXTA [112]. These definitions recognize services as a
central element in the system implementation.

In this thesis, referring to [3] and [62] a service is defined as a model of soft-
ware unit. To get an overview of this definition, we have to look at the history of
managing the complexity of software systems. It started with the use of software
component for managing the complexity of software system and their development.
A component-oriented architecture is considered as the solution for the complexity
problem. Szyperski [101] stated that components are the way software technology
has to go because all other engineering disciplines have introduced components as
they became mature. Following, [88] stated that software components and appro-
priate composition mechanisms provide the means for systematic software reuse.

3.1. Service-oriented Systems 31

In general, a software component can be defined as a software part that must be
composed with other component using software composition systems to form a final
system. A software component can be defined also as an element of a component
framework. Although this definition seems to be circular it captures an essential
characteristic of components. Components of a system or of a modular system are
only components because they have been designed to be assembled and composed
with other components. Thus, a basic (and single) component that does neither be-
long to a component system nor is compostable in any way is a contradiction in
terms. More importantly, a component cannot function outside a defined frame-
work.

Within the software engineering discipline, a software component model is rep-
resenting a software unit. The idea of using software component as defined in [62],
can be considered as the birth of today’s software component and can be seen as an
architectural approach of building software systems. Figure 3.1 illustrates a histor-
ical perspective of the use of different models to represent a software unit.

Figure 3.1: The historical perspective of the use of different models of a soft-
ware unit with regard to the abstraction levels of software unit. A
service is seen as a new model of a software unit.

With regard to the software component introduced in [62], a component was
viewed as families of routines which are constructed based on so-called rational
principles so that these families fit together as building blocks. McIlroy stated that

32 CHAPTER 3. BACKGROUND

these families constitute components which are black-box entities. Software ab-
straction, encapsulation and reuse are the key points. Software units can appear in
different software component models.

When Assembler was the only available programming language, a routine was
considered the first model of software units. As the complexity of software systems
was increasing a new model of a software unit called a module was introduced.
A module is a simple model. However, a module is more abstract than a routine.
Accordingly, objects, components and services can also be seen as models of a
software unit. The differences between them are their abstraction levels, means of
encapsulation and ownership.

With software component-orientation in mind, a single software component
might not work as an application. Therefore a composition system is needed. With
this idea, architecturally, software systems that were built by composing pre-made
modules are called module-based systems. Accordingly, we have object-based sys-
tems, component-based systems and service-oriented systems for the objects, com-
ponents and services.

According to [3], a software composition system has three aspects: compo-
nent models, composition techniques and composition languages. Depending on
the models of software unit, see Figure 3.1, different composition techniques and
languages are required. These two aspects have influenced the development ap-
proaches and paradigms. For example, when we use objects as a model of a soft-
ware unit to build a software system we call the paradigm object-oriented deve-
lopment. Accordingly, we have component-oriented development for component
oriented-systems and service-oriented development for service-oriented systems.

3.1.2 Services Visual Representation

Different possible ways can be used to visually represent a service. It can be a
graphical or textual visually representation. These different ways may use different
languages. The languages can be a domain specific language (DSL) or a general
modeling language such as UML.

It must be noted that the visual service representation is only the structure part.
The internal behavior is invisible, but they can be accessed through the defined
ports. The structure is connected to the real implementation of the service (code).
The code itself is only a proxy to the actual service implementation that resides in a
service provider. In this section we present an example of visual representation of a
service using three different graphical representations (of three different modeling
languages).

3.1. Service-oriented Systems 33

Figure 3.2: An example of a service presentation using UML classes.

• UML Classes.
The first example of graphical representation of a service is using a general
modeling language, UML. As a general modeling language, the UML can be
used to model any things, including services. For example, in [71] UML is
used to model Web services, by presenting Web services as a class diagram.

Figure 3.2 shows an example of graphical representation of a service using
a class diagram. The problem of using class diagram is its capability to de-
scribe the dynamicity of the services since a class diagram can be used only
to represent the structure which is static. For this, interfaces are used to rep-
resent that a service can be used by other classes. Internal implementation of
the service is invisible for the service users.

• SCA Components.
Service Component Architecture (SCA) [40] is another example of possible
ways to represent a service. SCA is a set of specifications which describe
a model for building software applications. An SCA component has inter-
faces and references, where we can use them to model service-based appli-
cations. A SCA component consists of a configured implementation, where
an implementation is the piece of program code implementing software func-
tionalities. SCA emphasizes the decoupling of service implementation and
of service assembly from the details of infrastructure capabilities, and from
the details of the access methods used to invoke services. One basic arti-
fact of SCA is a component, which is the unit of construction for SCA. A
component consists of a configured instance of an implementation, where an
implementation is the piece of program code providing business functions.
In the context of enterprise services, the business function is offered for use

34 CHAPTER 3. BACKGROUND

Figure 3.3: An example of service presentation using a SCA component. SCA
desribes events, operation, and parameters. This promotes both
request-reply based and event-based applications modeling. The
figure was taken from [40].

by other components as services. Figure 3.3 shows an example of the use of
SCA component to represent a service.

SCA allows for a wide variety of implementation technologies, including
”traditional” programming languages such as Java, C++, and BPEL, but also
scripting languages such as PHP and JavaScript and declarative languages
such as XQuery and SQL.

Implementations may depend on services provided by other components. These
dependencies are called references. Implementations can have settable pro-
perties, which are data values which influence the operation of the business
function. The component configures the implementation by providing values
for the properties and by wiring the references to services provided by other
components.

With SCA components, a service-based application is defined as interactions
of SCA components using the wiring techniques. But unfortunately, SCA
does not explicitly specify events and therefore it is difficult to model service-
based systems that use event-based interactions.

• SoAML Participants.
SoaML [79] is a specification for the UML Profile and Meta-model for Ser-
vices. SoaML is a standard extension to UML 2 that is meant to facili-

3.1. Service-oriented Systems 35

Figure 3.4: An example of service presentation using a SoaML participant. The
picture is taken from [79].

tate services modeling. A basic element of SoAML is a participant. A
SoAML participant is the type of a provider and/or user of services. As it
considered an extention of UML class, a SoaML participant uses a stereotype
<<Participant>>. Accordingly, it also uses a stereotype <<RequestPoint>>

to describe the provided functionality.

In the business domain a SoAML participant may be a person, organization
or system. In the systems domain a participant may be a system, application
or component. Figure 3.4 shows an example of the use of SoAML participant
to represent a service.

Services are provided by participants who are responsible for implementing
and using the services. Services implementations may be specified by me-
thods that are owned behaviors of the participants expressed using interac-
tions, activities, state machines, or opaque behaviors. Participants may also
delegate service implementations to parts in their internal structure which rep-
resent an assembly of other service participants connected together to provide
a complete solutions, perhaps specified by, and realizing a services architec-
ture.

However, events which are fundamental properties of service-based are not
described in the SoaML specification. This means that the SoML cannot be
used to model service-based applications that use event-based style of inter-
actions.

3.1.3 SOA Implementations and Similar Technologies

The openness of the concept of service-orientation systems leads to different ways
and technologies for the implementation and adoption of the concept. The different
implementations of service-oriented systems may use different ways and technolo-

36 CHAPTER 3. BACKGROUND

gies of describing services. They may also use specific description languages. A
universal service description language (USDL) is often used to describe services.
In this section we present examples of service-oriented technologies that include its
related frameworks and API.

A common framework and APIs identify specific functions that need to be ad-
dressed in order to achieve decentralized interoperability. The framework does not
determine the particular technologies used to fulfill the functions but rather divides
the problem space into sub-problems with specified relationships. This functional
decomposition allows differing solutions to sub-problems without overlaps, con-
flicts or omitted functionality. This is not to say that all applications must offer
the same facilities, rather that when a feature is offered it should fit into a common
framework and preferably have a standard expression.

3.1.3.1 Universal Plug and Play, UPnP

The Universal Plug and Play (UPnP) [46][32], technologies are not neither an im-
plementation nor adoption of service-oriented architecture concepts. However, their
concepts are similar in which a service is a basic entity. In terms of SOA, UPnP con-
trol points can be seen as service users while UPnP devices can be seen as service
providers. There is no service registry in the UPnP technology. However, a specific
UPnP control point can be built to function as a service registry. A model of UPnP
devices can be described in a UML class diagram as shown in Figure 3.5.

The UPnP specifications can be divided into: Architecture and Profiles. The
UPnP Device Architecture (UDA) is the core upon which the device and service
specifications are built. The UDA defines two types of hosts: control points (which
are service users) and devices (service providers). UPnP devices may have several
services. UPnP devices may also be embedded within other devices. In addition,
UPnP technology has very strong roots in standard Web technologies. As explained
previously in this chapter, the UPnP is based on IP, HTTP, XML and SOAP.

Using UPnP services, new composite applications can be built by composing
available UPnP services. Moreover, the new application can be provided as a new
UPnP services in an incremental manner.

There several UPnP framework and API available in the market. This is because
UPnP specification is open and uses open network protocols. By providing a set
of defined network protocols, UPnP allows devices to build their own APIs that
implement these protocols - in whatever language or platform they choose. One
example of UPnP frameworks is Cybergarage from Cyberlink [52]. The framework
provides an environment for building UPnP devices and its services. Other example

3.1. Service-oriented Systems 37

Figure 3.5: A conceptual model of UPnP devices presented in a UML class
diagram. A UPnP device has two different descriptions: device and
service descriptions.

is a framework from Intel that based on C++ and run on both Linux and Windows.

3.1.3.2 Web Services

The popularity of Web Services [69] has fostered the massive adoption of the SOA
paradigm. However, despite its huge success, it is important to clarify that Web Ser-
vices are only one type of possible implementation of SOA concept. A Web service
is described using Web service description language (WSDL). Thus, A WSDL doc-
ument defines services as collections of network endpoints, or ports. Web services
can be modeled using a class diagram shown in Figure 3.6.

A Service is a collection of related endpoints. The abstract definition of end-
points and messages is separated from their concrete network deployment or data
format bindings. This allows the reuse of abstract definitions: messages, which are
abstract descriptions of the data being exchanged, and port types which are abstract
collections of operations. The concrete protocol and data format specifications for
a particular port type constitute a reusable binding. A binding is a concrete proto-
col and data format specification for a particular port type. A port class is defined
by associating a network address with a reusable binding, and a collection of ports
define a service.

WSDL also describes Operation, an abstract description of an action supported
by the service. This is the actual service functionality that can be accessed through a

38 CHAPTER 3. BACKGROUND

Figure 3.6: A meta-model of Web service description presented in a UML class
diagram.

Port, a single endpoint defined as a combination of a binding and a network address.

Similar with UPnP, the Web services stack is composed of several protocols,
such as HTTP, XML, and SOAP. In addition, the stack makes use Web Services
Description Language (WSDL) and Universal Description, Discovery, and Integra-
tion (UDDI). The WSDL is used to describe the technical details of how a Web
service can be accessed and invoked over the Web. The description details techni-
cal requirements such as Internet addresses, ports, service names, argument names,
and data types used by a Web service. Thus, it emphasizes on the technical and
implementation aspects of a service.

A WSDL describes the service that can be used by a service requester. However,
in contrast with UPnP services that embed on devices, Web services were designed
for enterprise services. Within the context of the Internet of services, this leads to
the heterogeneous services from device levels to enterprises service levels. Figure
3.7 shows an example of (a part of) a service description in WSDL.

For the framework, there are several available frameworks such as Apache Axis,
Java for Web Service, Web Service Invocation framework, JSON-RPC-Java, XFire.
Among them are open sources. The framework provides a simple, easy and fast
development of Web services.

In Web services technology, in order to be able to invoke a Web service, a ser-
vice user (client) must implement a code for service invocations. A useful class in
Apache Axis is wsdl2Java class that generates Java classes from an existing WSDL
document. The generated classes represent client stubs, server skeletons and data

3.1. Service-oriented Systems 39

Figure 3.7: An example of Web service description. The names of the services
(operations) are listed in the description.

40 CHAPTER 3. BACKGROUND

Figure 3.8: An example generated classes from WSDL2Java in the AXIS web
service framework. The classes are used to invoke the actual ser-
vices that reside on a service provider.

types that will helps service developers to implement code for service invocations
on the client side. Figure 3.8 shows a Web service end-point interface generated by
the wsdl2Java. As it can be seen in the figure there is a service endpoint implemen-
tation (concrete) class and a service endpoint interface definition.

3.1.3.3 Devices Profile for Web Services, DPWS

Devices Profile for Web Services (DPWS) [115] [74] is a Web Services profile that
enables plug-and-play for networked devices. The purpose of DPWS is similar to
UPnP, but it employs the popularity of Web Services. Similar with UPnP, a service
user (PC or other devices) can detect DPWS-enabled devices on a network, then
discover and invoke the provided service functionality.

DPWS is based on existing Web Services standards, including XML, WSDL,
SOAP, MTOM, and HTTP. Current version (2010) of DPWS was based on the core
Web Services standards the include WSDL 1.1, SOAP 1.2, XML Schema, WS-
Addressing, and further comprises WS-Policy, WS-Security, WS-Discovery, WS-
Eventing WS-Metadata Exchange and WS-Transfer. With these standards, DPWS
supports dynamic discovery mechanism. Just like UPnP, DPWS also supports for
home automation environments such as an application to communicate security
cameras, a motorized television mount, etc.

Within the context of Microsoft technology, DPWS for the .NET Micro Frame-
work also incorporates this functionality. For example, there are classes in the .NET

3.1. Service-oriented Systems 41

Micro Framework that are used for reading and writing XML documents, including
the XML parsing functionality. With these classes the service implementations and
the development of DPWS-based applications can be easier.

DPWS concept provides the following functionality between compatible de-
vices:

1. Discovering DPWS-capable devices and the services they offer
2. Sending messages to DPWS-capable devices and receiving replies
3. Describing a Web service by providing a WSDL file
4. Interacting with a service using its description
5. Subscribing to and receiving events from a Web service

Within the context of service-oriented system, devices can be DPWS clients
(service users), servers (service provider), or both. DPWS specifies an architecture
in which devices run two kinds of services that are hosting services and hosted
services. The hosting services are a service that are associated to a device, and is
a key important part in the device discovery mechanism. The hosted services are
mostly functional and depend on their hosting device for discovery.

DPWS also specifies a set of built-in services for service discovery, eventing,
publishing, and meta-data. The discovery service is used by a device to adver-
tise itself and to discover other devices. The Metadata exchange services provide
dynamic access to a device’s hosted services and to their metadata. The publish/-
subscribe eventing services are allowing other devices to subscribe to asynchronous
event messages produced by a given service.

An example of DPWS framework is the Microsoft .NET Micro Framework [50].
The framework is a powerful and flexible platform for rapidly creating embedded
device firmware with Microsoft Visual Studio. The framework brings essential ben-
efits of the Microsoft .NET platform to devices that do not need the full functionality
that is available in the .NET Framework and the .NET Compact Framework.

Another example of DPWS framework is the Web Services for Devices (WS4D)
framework [115]. The WS4D framework is Java-based framework. Originally, it
applies the Service-Oriented Architecture (SOA) and Web services technologies
to the application domains of industrial automation, home entertainment, automo-
tive systems and telecommunication systems. WS4D advances results of the ITEA
project SIRENA and is managed by the University of Rostock, University of Dort-
mund and MATERNA [115].

WS4D is all about using internet technologies like XML, HTTP and Web Ser-
vices to connect resource-constrained devices in ad hoc networks and still conserve

42 CHAPTER 3. BACKGROUND

interoperability with Web services as specified by the W3C. This enables the us-
age of high level concepts for Web services also in low level distributed embed-
ded systems. So WS4D provides technologies for easy setup and management of
network-connected devices in distributed embedded systems.

3.1.3.4 Open Service Gateway initiative, OSGi

The OSGi Alliance was originally initiated and founded by Ericsson, IBM, Mo-
torola, and Sun Microsystems in March 1999 [60]. Among other members of the
alliance are (as of May 2007) big companies from quite different business areas, for
example IONA Technologies, Deutsche Telekom, etc.

The OSGi service platform brings service-oriented architecture principles to
single nodes. OSGi has evolved from its initial concept as a residential gateway
to becoming the Java-based. A residential gateway is often used in smart homes
to control/manage different devices (and their services). Using OSGi framework,
devices (and their services) can be easily installed, run, stopped, and installed.

Deployable OSGi components are called bundles. A bundle is composed of a
jar archive with additional metadata for clearly defining the requirements for the
component to work and the additional resources offered to the platform. The OSGi
platform defines a local service registry where bundles can register services and
query for implementations. Dynamic bundle interactions are performed through
services. This way, the SOA paradigm can be adopted also inside the applications.

The description of the service in OSGi is specified by a Java interface and a set
of properties. All services provided by a bundle are declared in an Export-Package
statement, as shown in Figure 3.9 below.

Figure 3.9: An example of OSGi service description presented in XML. The
actual service description can only be seen at run-time.

OSGi can be considered a mini application server comprising a rich service-
orientation system. OSGi is the global standard for creating and assembling modu-

3.1. Service-oriented Systems 43

lar software built with Java technology. It provides a modular services framework
and component based architecture. OSGi has its roots in embedded home gateways
but matured to a technology that is being adopted in various markets such as au-
tomotive, telematics, mobile, e-Health/assisted living and last but not least, Java
enterprise servers. One of the smallest OSGi solutions is ProSyst mBS that uses
embedded low power hardware with an ARM9 CPU at 156 MHz and 8 MB RAM
and flash memory.

Software components (i.e. middleware, apps, services, etc.) can be plugged into
the OSGi framework at any point in time and each component has its own lifecy-
cle. In other words, OSGi enables concurrent multi-services and multi-application
execution in just one virtual machine. Moreover, all components and APIs are fully
manageable and accessible from remote.

The core component of the OSGi Specifications is the OSGi Framework. The
Framework provides a standardized environment to applications (called bundles).
The Framework is divided in a number of layers. Different vendors have imple-
mented the framework. Three well-known OSGi frameworks are Equinox (www.e-
clipse.org/equinox), Felix (www.felix.apache.org) and Knopflerfish (www.knopfler-
fish.org).

3.1.3.5 Jini

A Jini system [19] is a distributed system based on the idea of federating groups of
users and the resources required by those users. The focus of the Jini concept is to
make the network a more dynamic entity that better reflects the dynamic nature of
service-oriented architecture. This is done by enabling the ability to add and remove
services flexibly.

Jini uses the term federation to imply coordination between devices with embed-
ded services. In this context, a federation is defined as a collection of autonomous
devices which can become aware of one another and cooperate if necessary and
valuable. To achieve this, a Jini subsystem implements a set of lookup services that
maintain the dynamicity of information about available devices.

A service description in Jini is similar to OSGi in which the service is defined
by an interface. Jini is strong related to the SOA concept where the dynamicity
of services is important behaviors. Jini has the same concept of a service registry,
a service provider, and service users. Jini devices can act as service provider and
service users.

Jini’s architecture is based on the principle of that the system is dynamic. This
is contrast to other SOA technologies such as J2EE and .NET. They use a static

44 CHAPTER 3. BACKGROUND

approach to installing the software with its appropriate stubs and skeletons. One of
Jini’s strongest features is downloadable service-proxies that communicate with the
Jini service.

Jini from Sun Microsystems, underneath all the hype, is but a coordination
framework evolved and adapted from academic research and tailored specifically
to Java. The original inspiration comes from the works of David Gelernter (Yale
University) and Nick Carriero who built the Linda [14]. An inspired result was the
JavaSpaces technology with its later evolution into Jini.

PRINCEPS [21] is a Jini adoption that makes it possible to dramatically im-
prove service flexibility by federating services in a dynamic and self-healing net-
worked community. The framework provides the clients with a (web-based) mech-
anism for selecting services according to functional requirements (i.e., the service
interface) and non-functional requirements (the quality of service, i.e., reliability,
performance). PRINCEPS provides service substitutability at various levels. In
fact, any kind of service can be plugged in PRINCEPS: CORBA-based services,
socket-based services, and centralized services. PRINCEPS also supports service
developers with its own mechanism to integrate existing services. Preliminary per-
formance experiments and lessons learned from the PRINCEPS prototype are also
discussed.

3.2 Model-driven Development

There exist different approaches, techniques, and languages for the development
of software systems. Model driven development (MDD) is a kind of innovative
software development that meets general industry requirements for software deve-
lopment, such as reduction the operating costs, reductions in time to market, and
the need for open solutions. One example is OMG Model Driven Architecture,
MDA [64]. Figure 3.10 shows the model-driven development approach proposed
by OMG.

Software development using OMG’s MDA framework implies creation of mo-
dels of the following kinds (see Figure 3.10): the computation independent model
(CIM) at the business system model level, the platform independent model (PIM)
at the information system model level, the platform-specific model (PSM) at the
software model level, and finally, the code which will automatically be generated
from the PSM at the software model level.

3.2. Model-driven Development 45

3.2.1 Models and the Use of Models

In general, a model is an abstract representation of a system and it might come in
different abstraction levels. The higher the abstraction level the less the information
the model contains, since abstractions will only present the essential information.
Different view points or model views might be used to model a system, as shown in
the following equation.

System≡
n⋃

i=1

modelviewi

modelview⇒ (abstractioni,notationi)

Different notations can be used to present the different model views at different
abstraction levels. Using UML, for example, there are 9 different views of a system
that are the structure models (class diagrams, collaboration diagrams, component
diagrams and deployment diagram) and behavioral models (activity diagrams, se-
quence diagrams, use case diagrams, and state chart diagram). For different model
views they use different notations.

In software development, models are used to specify software systems. In this

Figure 3.10: OMG’s Model-driven architectures (MDA). Different actors have
different roles in the development of software systems. The idea
is to separate the problem with the solution.

46 CHAPTER 3. BACKGROUND

case, models are used to describe the structures and the behaviors of the software
systems. The structure specifies what the instances of the model are; it identifies
the meaningful components of the model construct and relates them to each other.
The structure consists of the classes that can appear in the system as well as their
mutual dependencies given as associations between the classes. The structure given
by a model is used at runtime to allow the creation of several runtime objects as
instances of the structure model. The structure model in UML emphasizes the static
structure of the system using objects, attributes, operations, and relationships.

The behavioral model emphasizes the dynamic behavior of a system, which can
essentially be expressed in three different types of behavioral models; interaction,
activity diagrams, and state machine diagrams. Interaction diagrams are often used
to specify how the instances of model elements are to interact with each other (roles)
and to identify the interfaces of the classifiers.

The UML activity diagrams are used mostly to model data/object flow systems.
It is good to model the behavior of systems which do not greatly depend on external
events, mostly having steps that run to completion, rather than being interrupted by
events and requiring object/data flow between steps. Activity diagrams in UML 2.0
specified notations communicate with external systems using receive and send sig-
nals. For model-driven engineering state-machines diagrams are considered as the
most executable models [35]. In [70] [66], it is proofed that for example, sequence
diagrams [70] and activity diagrams [66] are transformable into state chart or state
machine diagrams.

Formalism is one of the serious problems in the use of models to specify soft-
ware systems. Message sequence charts (MSCs) [44] constitutes an attractive vi-
sual formalism that is widely used to capture system requirements during the early
design stages. MSC is a graphical and textual language for the description and
specification of the interactions between objects or system components.

A version of MSCs called sequence diagrams is one of the behavioral diagram
types adopted in the UML. It can be used to capture the typical inter-working of pro-
cesses or objects. The standard defines the allowed syntactic constructs rigorously,
and is also accompanied by a formal semantics [43] that provides unambiguous
meaning to basic MSCs in a process algebraic style. Other efforts at defining a
rigorous syntax and semantics for MSCs have been made [13, 58], and some tools
supporting their analysis are available [2, 6].

However, it was found that MSCs have two important weaknesses with regard
to their using for specifying software system. In [24] it is listed two of the weak-
nesses. The first is that it proposes a weak partial ordering semantics that makes it

3.2. Model-driven Development 47

impossible to capture some behavioral requirements. The second weakness is that
the relationship between the MSC requirements and the executable specification is
not clear. To solve these, [24] also proposed an extension on the MSC standard
called Live Sequence Charts(LSCs).

LSCs can be viewed as a multi-modal version of MSCs, with various means for
distinguishing between possible, necessary and forbidden behavior. Using LSCs,
one can start to look more seriously at the relationships and possible automated tran-
sitions between requirements, as captured by use cases and LSCs, and executable
specifications, as captured by, for example, state charts.

3.2.2 Modeling Languages

Expressing a software system by a model requires a language. A common approach
is by using programming languages. With programming languages, a software sys-
tem is presented in form of source code. Another way of representing models of a
software system is using modeling languages. However, in order to have working
software, the models must be transformed into source code. So, in respect to the fact
that both programming languages and modeling languages aim to produce code at
the end of modeling, then we consider that they are similar. In [99], the similarities
and differences between them are discussed. They have identified that modeling
languages use higher abstraction, mostly use graphical representation and they are
often not executable. In contrast, programming languages are executable, mostly
using text representation, and of lower abstraction level.

Different modeling languages can be used to model a system at different ab-
straction levels and using different representations. It depends on the purpose of
the language. It can be a general modeling language or domain-specific modeling
language (DSML). UML is an example of a general modeling language. UML ad-
dresses the modeling of architecture, objects, interactions between objects, data
modeling aspects of the application life cycle, as well as the design aspects of
component-based development including construction and assembly. UML is pow-
erful enough to be used to represent artifacts of legacy systems captured in terms
of Classes, Interfaces, Use Cases, Activity, Graphs, etc. UML models can be easily
exported to other tools in the life cycle chain using XMI.

DSL is an executable specification language that offers, through using of appro-
priate notations and abstractions, expressive power restricted to a particular problem
domain. The domain specificity of a language is a matter of degree. Any language
has a certain scope of applicability, but some of them are more focused than others.

48 CHAPTER 3. BACKGROUND

3.2.3 The relation between Systems, Models, and Languages

In model-driven development, models are used to specify a software system. In
this case, models are used to describe the structure and the behavior of the software
system. The specification (models) might be an executable or non-executable. In
case the models are not executable, code for implementing the software system
might be generated either partly or fully automated using code generator.

To describe a software system by models, we need a language. Figure 3.11
shows relations between systems, models, and languages. To be useful, i.e. capable
to be used for describing structures and behaviors of a software system, a modeling
language should facilitate a way to present the structures and the behaviors (with
their constraints) of the software system.

Figure 3.11: An illustration picture showing the relation between systems, mo-
dels and languages.

It is necessary to note that the term model is relative to the system which is
described. To explain the case, we use Figure 3.11 that shows relations between
systems, models, and languages. It is depicted in the figure that we might use
view1 or view2 to see the relations between them. The view1 is a two levels view
(system-model), while the view2 is a three levels view (tsystem-model-language).
Since the term of a system is relative, obviously, we can use the view1 to see the
model-to-language relation as a system-to-model relation, by considering the mo-
dels in the model-to-language relation as a system while the language as a model.

The fact that we can consider models as a system and describe them with an-
other model, has introduced a concept of meta-model. So, a meta-model is only

3.2. Model-driven Development 49

another model that describes models and that can be written using another model-
ing language. In the area of domain specific languages (DSLs), meta-models are
often used as an approach for defining a DSL. Interesting question is when a model
can be considered as a language. To answer this question, it is meaningful to check
how languages aspects are handled in models and meta-models.

3.2.4 Model Transformation

An important aspect of Model Driven Development (MDD) is model transforma-
tions, which allows automatic transformations of models into another models. An
important emerging standard for transformations language is OMG’s QVT (Queries,
Views, and Transformations) [78] that is instances of the MOF meta-model. This
standard aims to provide a language for expressing transformations between mo-
dels. Because of the generic nature of MOF, it is also being used as the means of
expressing the QVT language itself.

There are four different model transformations; M2M (Model-to-Model trans-
formation), T2M (Text-to-Model) transformation, M2T (Model-to-Text) transfor-
mation and T2T (Text-to-Text) transformation. For each of the transformation there
it may need a transformation language. Examples for such language are MOFScript

Figure 3.12: A conceptual model of model transformation.

50 CHAPTER 3. BACKGROUND

[75], JET and Acceleo for M2T, Xtext and TCS for T2M [27] and ATL [8] for
M2M. The T2T transformation is often used for the processing of the M2M, M2T
and T2M.

Within the context of MDA, the transformation language is basically used to
create model transformations between languages or for model refinements, as mo-
del transformation have two main types of transformation; vertical transformation
and horizontal transformation. In a vertical transformation the source model is at a
different level of abstraction than the target model. Examples of a vertical transfor-
mation are refinement (specialization), PIM-to-PSM transformations and abstrac-
tion (generalization). Generalization could mean also an abstraction of platforms
or a transformation from code into models (reverse engineering). A concrete exam-
ple of model refinement is a transformation of service models into executable state
machines, which is also a model, is presented in [54].

In a horizontal transformation the source model has the same level of abstraction
as the target model. Examples of a horizontal transformation are refactoring and
merging. In this type of transformation one or more source models are transformed
into one or more target models, based on the languages (meta-model) of each of
these models. In other words, instances of one meta-model are transformed into
instances of another meta-model.

Figure 3.12 illustrates the concept of model transformation. In the figure, model
A which is made by a language for platform AX must be transformed into model B
in order to code for platform BX can be generated.

3.2.5 Code Generation

An executable program is the most important artifact of software system. Therefore
it is important to execute the models that specify the software systems. There are
two ways of model execution; model interpretation and code generation.

In order to support the model execution, OMG has developed several additional
specifications to the UML that will help tailoring UML to support MDA. Three of
these specifications are: 1) Action Semantics for UML specification that will en-
hance the language’s representation of behavior, 2) the human-readable UML Tex-
tual Notation that will enable a new class of UML editor programs and enhance the
way UML models can easy be manipulated, and 3) standard Software Process Engi-
neering Meta-model that used to define a framework for describing methodologies
in a standard way. This standard will not standardize any particular methodology,
but will enhance interoperability from one methodology to another.

The realization of model-driven software development requires effective tech-

3.2. Model-driven Development 51

Figure 3.13: A concept of code generation process in the domain-specific mod-
eling languages (DSM). The is a strong relation between the mod-
eling language, the domain framework and code generation.

niques for implementing code generators for domain-specific languages. In [39],
a technique for improving separation of concerns in the implementation of genera-
tors is proposed. The core technique is code generation by model transformation,
that is, the generation of a structured representation (model) of the target program
instead of plain text. Their approach enables the transformation of code after gene-
ration, which in turn enables the extension of the target language with features that
allow better modularity in code generation rules. The technique can also be applied
to internal code generation for the translation of high-level extensions of a DSL to
lower-level constructs within the same DSL using model-to-model transformations.

Domain-specific modeling (DSM) provides a modern solution to demands for
higher productivity by constricting the gap between problem and solution modeling.
In DSM the models are constructed using concepts that represent things in the appli-
cation domain, not concepts of a given programming language. The most important
part of the using of model-driven development method is having running applica-
tion. In a number of cases the final products can be automatically generated from
these high-level specifications with domain-specific code generators. The code ge-
neration process in DSM is shown in Figure 3.13 Code generation process in DSM.

The automation in DSM is possible because of domain-specificity: both the

52 CHAPTER 3. BACKGROUND

modeling language and code generators fit to the requirements of a narrowly defined
domain. Domain-specific languages are a key component of code generation. While
we have ample experience building code generators and compilers, modern software
developers expect integrated development environments such as Eclipse and Visual
Studio to boost their productivity.

There is a 1:1 mapping from every model notation in the modeling language
to one unit of code in the framework. Therefore it is possible to achieve a fully
automated code generation. An example of code generation method that aligns
UML state machines and Temporal logic to generate code from service models is
introduced in [55].

In model-driven development, the generated code might have different types for
different purposes. It might be in a form of programs (source code), configuration
files, scripts, html files, etc.

3.3 Embedded Systems

With the advance of microprocessor technologies, most of today’s electronic equip-
ment are microprocessor-based. An embedded system is defined as a specialized
and microprocessor-based system that is part of a larger system or machine. For
the end-users, an embedded system is a computer system that is integrated within
other equipment in such a way that the user is often unaware that a computer system
is inside that equipment. Examples of such embedded systems are electronic sys-
tems that are installed in cars, mobile phones, home entertainment devices, home
appliances, handheld game consoles, and sensors modules.

Some embedded systems might include an operating system, but in many cases
they are designed to work in a specialized area such that the entire logic can be
implemented as one single program. An example of embedded systems with an
operating system is SunSPOT [45]. SunSPOT has a small Java ME virtual machine
called ”Squawk VM” to run Java classes. With regards to the Internet of Things,
embedded devices such as SunSPOT, can help to speed the onset of the Internet
of Things by providing networked devices and tools to software developers and
researchers.

An embedded software system often provides software functionalities that can
be used by end-users. In the context of the Internet of Services and SBSS that have
been presented in Section 2.1, the functionalities are not only intended for end-users
but it will be also provided as software-based internet services (SBIS).

It is expected that devices in the Internet of Things are able to communicate with

3.3. Embedded Systems 53

each other. It is therefore important to consider the device communication issues in
the design of embedded software system. We are interested in two important issues:
device coordination frameworks and communication protocols. We present a short
discussion of these issues in the following subsections.

Considering that devices in the Internet of Services provide and/or use embed-
ded services, a coordination mechanism between devices has become an important
research area. A number of architectures addressing mobile and specialized em-
bedded services have emerged recently. These architectures are essentially coordi-
nation frameworks that propose certain ways and means of device interaction with
the ultimate aim of simple, seamless, and scalable device inter-operability. Device
coordination essentially means providing a subset of the following device capabili-
ties:

• An ability to advertise its presence to the network,
• Automatic discovery of other devices in the network, locally and remotely,
• Ability to describe its capabilities as well as understand the capabilities of

other devices, and
• Seamless inter-operability with other devices.

Among the well-known device coordination standards coming from industry
are Universal Plug and Play (UPnP), Device profile for devices (DPWS), Jini and
Salutation. In this section, we present only UPnP. We consider that other device
coordination technologies will be similar. The aim is to show how devices can
communicate with each other.

Figure 3.14: A basic mechanism of information exchange between a UPnP de-
vice (Media Renderer) and a UPnP Control Point (mobile phone)
- Retrieving Device and Service Descriptions

54 CHAPTER 3. BACKGROUND

UPnP is independent of any particular technology such as operating systems,
programming languages, or even communication medium. At present, UPnP is
only being developed and implemented for home entertainment systems, but de-
velopment is underway to extend UPnP to include industrial machines (devices) as
well. It includes the industrial area such as equipment in power plant controls, entire
manufacturing plant processes, large transportation systems, etc.

Devices that implement UPnP specifications can act as a device or a control
point. A control point has a capability to control other devices but not necessarily to
provide a service. Figure 3.14 is an illustration of the basic idea of a UPnP control
point discovers a device’s capabilities.

As it shown in the Figure 3.14, there are 4 steps of how a UPnP control point
controls a UPnP device. Before a control point can invoke a service it must have
necessary information in the service description, by listen to the presence advertise-
ments. When a device first comes online, it announces its presence to the network
by a broadcast message. Control points can then address the device to obtain a
description of the services, determine its current status, and transmit commands to
control its behavior.

The design, implementation, and deployment of embedded services are a chal-
lenge, in particularly for small devices that have limited capabilities and often dif-
ferent configurations. Several researches on methodologies of software develop-
ment of embedded systems have been done. For example, ARTEMIS [84] that was
initiated by the European Union, is one of the research and development program
that focuses on design methods and tools for embedded systems. This includes lan-
guages and development methodologies. In [56], reusable building blocks are used
to construct embedded applications. A dedicated building block provides a mecha-
nism to access platform-specific functionality of Sun SPOTs devices. The building
blocks can be used in combination with other blocks realizing other functionalities
such as communication protocols.

With regard to languages for the development of embedded systems, an alterna-
tive approach is to implement software functionality is modular programs written in
standard, more widely used programming languages. Several research projects and
proposals on languages for the development of embedded systems have been done.
Esterel [7] is an example of them. SysML from OMG is another example of such
languages.

3.4. Software Product Lines 55

3.4 Software Product Lines

Software product lines (SPL) refer to engineering techniques for creating a portfolio
of similar software systems from a shared set of software assets using a common
means of production. Manufacturers have long used analogous engineering tech-
niques to create a product line of similar products using a common factory that
assembles and configures parts designed to be reused across the varying products
in the product line. For example, automotive manufacturers can now create tens
of thousands of unique variations of one car model using a single pool of carefully
architected parts and one factory specifically designed to configure and assemble
those parts.

Similar to the concept of component-orientation, SPL emphasizes software reuse.
The characteristic that distinguishes software product lines from the reuse concept
of previous efforts is predictive versus opportunistic software reuse. Rather than to
put general software components into a library in hopes that opportunities for reuse
will arise, software product lines only call for software artifacts to be created when
reuse is predicted in one or more products in a well-defined product line.

Within the context of small devices, the SPL approach is promising to help de-
velopers to manage the complexity of the variability between devices. With regard
to embedded software services, SPL approaches enable the development of a group
of embedded software services that can be retargeted for different requirement sets
by leveraging common device capabilities and configurations.

A common architecture of SPL, product-line architectures (PLAs) was intro-
duced in [61]. Using a PLA, developers can create software architectures that can
be rapidly retargeted to the capabilities of different embedded devices. In a service-
based application environment, however, the retargeting of a software application to
produce a valid variant for a specific device must also happen at run-time. When a
service-based application enters a particular situation, such as included services are
changed, the service-based application must very quickly adapt and create a variant
for the changed services.

In [20] SCV (scope, commonality, and variability) analysis was introduced as
guidance for the design of a PLA. SCV captures key characteristics of software
product-lines, including their scope, which defines the domains and context of the
PLA, the commonalities, which describe the attributes that recur across all members
of the family of products, and the variability, which describe the attributes unique
to the different members of the family of products.

In fact, managing multiple devices is not a new problem; even a few solutions
have been developed over the years. At run-time, the Composite Capabilities/Pref-

56 CHAPTER 3. BACKGROUND

erence Profile (CC/PP) [51] technology provides a standard way to manage device
capability information. Figure 3.15 shows an example of a run-time service delivery
with regard to the difference of device capabilities on the user’s side. In this case,
different types of mobile device with different device capabilities want to access the
same service, on a mobile service provider.

In order to the mobile service provider to be able to customize services and
deliver them to the users, a detection mechanism of device type (and its capability
information) is required. There are a number of methods for this. An example is
to use UAProf that was defined by the Open Mobile Alliance [102] for user agent
detection and user’s device capabilities detection. Obviously, the run-time solution
of services customization and delivery will influence the service development at
design-time. SPL is a good solution for it.

3.5 The ISIS Project

Most parts of this section were taken directly from the ISIS proposal [110] and
report as they were used as the basis of the thesis work. The ISIS project was done
during 2007 - 2010 and collaboration between universities, software companies and
telecommunication companies.

The background for the project is the Internet of Things that is hampered by
a fragmented world of standards and players in the field. The different and many
proprietary standards can easily lock an end user to a solution that may be outdated

Figure 3.15: The use of device identification for service customization. Differ-
ent devices need tailored code with respect to its capabilities and
configurations.

3.5. The ISIS Project 57

quickly. It may also be very expensive to add new functionality to these systems.
Along with it is the lack of a solution where developers, operators and end users can
interact with each other in a fruitful cooperation. The ISIS project has been looking
into these challenges, and seeking ways to tackle them by introducing:

1. A user-friendly and special targeted development solution
2. A marked place for components to the Internet of Things
3. A runtime environment where different standards are able to interact with

each other
4. An end user composition environment which makes it easy for an end user to

create its own services and compositions for the Internet of Things

The real world look of ISIS has been shaped by both ongoing industry trends
and readily accessible tools and methodologies that belong to ISIS partners. The in-
novative part of ISIS is that it has come up with a complete tool chain that supports
the design, compose, deploy and execution of services. These tools are well inte-
grated in a seamless manner and they realize an industry process. Alone with the
tools, a number of good engineering methodologies emerges as a result of extensive
user study. We would like to stress that it is the existence of such tools (some of
which have good enough quality to be commercialized) and the existence of such
engineering methodologies (based on extensive user study) that makes ISIS truly
standing out.

ISIS addresses the integration challenges in Internet-of-Things. The main ob-
jective of ISIS project is to create a service-driven development process with tools
and service execution platforms that substantially improve industrial service engi-
neering from requirements to execution on seamless infrastructures.

The envisaged process Figure 3.16 represents a big step forward in terms of
being truly model-driven. Services are identified and modeled-based on captured
requirements. Service Models are treated as ”first class citizens”, underpinning the
whole process from requirements to Service Execution. Supported by the tools, de-
sign models based on communicating state machines are derived from the service
models. Code generators for the selected execution platform(s) then produce exe-
cutable code, ready for immediate deployment onto the service execution environ-
ment(s). The target execution platform, Service Frame, enables rich and responsive
high performance services on a wide range of distributed platforms from mobile
units to application servers.

ServiceFrame [63] is a service execution framework developed by Ericsson and
commercialized by TellU in order to support convergent services in general. In ad-

58 CHAPTER 3. BACKGROUND

Figure 3.16: The service-driven development process that has been used in the
ISIS project.

dition to provide runtime support for communicating state machines it has architec-
tural support for stable domain concepts such as users and terminals, for distributed
service execution and for service composition. ServiceFrame runs on a range of
platforms from small mobile devices to large application servers, and allow appli-
cations to be transparently distributed among them.

ISIS has chosen home automation as the domain for a proof-of-concept. The
reason is that there are many services run on a smart home, for example services to
control of doors and window shutters, security and surveillance systems, services to
control the multi-media home entertainment systems, services for automatic control
of plant watering and pet feeding, and services for automatic scenes for dinners and
parties. ISIS also assumes that there are several different embedded devices that are
connected to the residential gateway.

ISIS project produced several important results. Two of them are an integrated
composition environment (ICE) for end users [110] and NTNU’s ARCTIS [53][57].
Both of them are used for composing services. ICE is intended for end user while
ARCTIS is intended for service developers. With ICE, end user can compose run-
time services. Using ARCTIS, at design-time service developers can specify and
analyze new services on model levels, and then generate code automatically from
the models for different target platform.

Chapter 4

The PMG-pro Method

This chapter presents the proposed PMG-pro (abstract, model, generate, and pro-
vide) method. Section 4.1 presents an overview of PMG-pro. The following sections
present steps and parts of the PMG-pro: the presentation and abstraction step in
Section 4.2, the service library and the frameworks repository in Section 4.3, the
modeling step in Section 4.4 and the code generation step in Section 4.5. At the end
of each section, a short summary is presented.

4.1 Overview of PMG-pro

For the development of service-based applications, we propose a new method called
PMG-pro (Present, Model, Generate, and provide). The architecture of the PMG-
pro is shown in Figure 4.1. The PMG-pro architecture consists of three main parts:
the presenter/abstractor that is used at the presenting step, the modeling editor that
is used at the modeling step, and the code generator/provider that is used at the
generating/providing step. There is also a library that is used to store the generated
source code and service models at the presenting step. Each service model (abstract)
stored in the library binds to source code (concrete).

As it is indicated in the name, the PMG-pro method has four steps: presenting,
modeling, generating, and providing. The first step is used to present existing pre-
made services graphically that conforms to a specific modeling language. Existing
services are run-time services that can be accesses employing their descriptions.

In addition to a graphical presentation, this first step generate also code that
implements and that acts as a proxy class between the combined service and the
concrete services in the service provider. This kind of re-engineering process is
possible since the services are often described using open and standard description
technologies, for example UPnP, DPWS, WSDL, etc. Moreover, several frame-

59

60 CHAPTER 4. THE PMG-PRO METHOD

Figure 4.1: The PMG-pro architecture. It consists of the presentation and ab-
straction step, the modeling step, and the code generation and pro-
viding step.

works/API for these technologies are also already available, such as UPnP Cyber-
link for Java [52] for UPnP, Ws4d [115] for DPWS and Axis (WSDL2Java) [36] for
Web Services. After we presented all existing pre-made services and stored them
in a service library, the modeling step of new service-based applications can be
started. The new application would be specified as interactions of abstract services.
Depending on the modeling language, different symbols and notations can be used
to present these interactions. We can use for example activity diagrams or sequence
diagrams to specify the interactions. Obviously, the interactions from one abstract
service to another would mean service invocations.

The last step is used to automatically generate code that conforms to a specific
programming language. Of course the language must be the same with the one
used in the presenting step. The code should be generated automatically. A native
compiler can be used to compile the generated code. In the next sections, we will
present the three steps of the PMG-pro method. We will start with the presentation
step, the modeling and code generation step at the end.

4.2 The Service Presentation and Abstraction Step

In this section we present the first step of the PMG-pro that is used to present pre-
made services into graphical service representations. For this we need a service
presenter and a service abstractor. The architecture of the service presenter and
abstractor is shown in Figure 4.2.

4.2. The Service Presentation and Abstraction Step 61

Figure 4.2: The service presenter and abstractor of the PMG-pro. The presents
and abstracts services so that service integrators can compose them
in a model-driven environment.

4.2.1 Overview

For the development of a service-based application, defining a model of the service-
based application (which is a composite service) is only possible if the models of
the included (i.e. existing) services are in place. The first part of the PMG-pro is the
service Abstractor/Presenter. The abstractor/presenter is used to generate code and
a graphical representation of the services. It presents the real services as graphical
presentation. This step might be a kind of abstraction and/or presentation step. The
difference between them is that the presentation is only a process that transforms
one model to another model without reducing the information. In contrast, the
abstraction will reduce some information on the target model. The abstraction will
always include the presentation process.

In PMG-pro, the presentation consists of a transformation mechanism that trans-
forms service descriptions into graphical representations and source code. It in-
volves re-engineering or reverse engineering processes. The source code is used
as a proxy for service invocations to the concrete services that reside in the service
providers. For the transformation procees, different existing tools and framework
can be used. For example, in the context of Web services, we can use WSDL2Java
[36] to re-engineer service description in WSDL into source code (Java classes). In
order to be a service model, what we need is then visualizing this source code using
notations conforming to modeling languages and binding it to the source code.

The service presentation and abstraction step consists of an XML parser, a Code
Generator and a Graphical Builder. They are used to handle the XML service de-

62 CHAPTER 4. THE PMG-PRO METHOD

Figure 4.3: A simplified model of service descriptions in the PMG-pro. The
model is adapted from the conceptual model of services presented
in [103] and [47]. All service properties are described in the service
description.

4.2. The Service Presentation and Abstraction Step 63

scription, XMI and code. Based on the target modeling languages, the graphical
presentation of a service can be different. For example, if we use UML as a model-
ing language then the service can be presented as a class. The class is presented in
XMI as a standard exchange between UML tools. The transformation process from
XML service description to XMI is a presentation process and not an abstraction
process since they contain the same information. Moreover, the process does not
reduce the information.

4.2.2 Service Descriptions

Services can be concrete and abstract. A run-time service is a concrete service.
Information about a run-time service is given in a service description (Sk). Thus, a
service description is an abstract service since it describes the service. The actual
service resides on the service provider.

The fact that the concept of service-orientation systems can be defined, imple-
mented, and described in several ways has introduced different types of implemen-
tation of the concept. For example, there exist Web services, OSGi services, UPnP
services, DPWS services, Jini services, and other implementations. Obviously, dif-
ferent ways can be used to describe the service functionalities. PMG-pro uses the
XML-based service descriptions, which is a service that is described using XML.
We consider that XML-based service description is the best one as it is a platform
independent. Figure 4.3 shows a conceptual model of service description that is
used in this thesis.

From Figure 4.3 it can be seen that a service has one or more service descrip-
tion. We propose a category description and capability descriptions. The category
description enables service categorization in the abstraction process. The capability
descriptions give information to the service user about the capabilities of services. It
can be the capability of service on the service provider or the minimum requirement
of capability on the client side to run the services.

4.2.3 The Service Presenter

The development process of service-based applications requires the description of
the existing services (service models). However, it is not necessary to have com-
plete service models that describe the structure and the behavior of the existing
services. For example, in Web service technology, the Operation descriptions are
the important part of the WSDL to compose Web services. The operations describe
actions (functionality) supported by the service. The actual behavior of the services

64 CHAPTER 4. THE PMG-PRO METHOD

that reside in service providers (the actions) are not necessary known. For this rea-
son, PMG-pro only presents the structure and not the behavior part. The structure
is connected to the real implementation of the service (code). The code itself is
only proxy to the actual service implementation that resides in the service provider.
Their static description is enough information to be able to compose them. Thus, a
service can be seen as an object that abstract the details behaviors, but describe the
description of the object properties.

The service presentation step is done based on the concept of text-to-model
transformation. For example, in the case of transforming UPnP service description
into UML class, the presentation involves the transformation of XML (text) into
UML class which is stored in XMI. The main consideration is that a service can
be presented using any graphical notations/symbols conforming to a specific mod-
eling language. From a service description (sk), the abstractor/presenter generates
a graphical service model (Msk) conforming to a selected modeling language and
source code (Csk) conforming to a selected programming language. Depending on
the selected modeling language, different graphical representations (i.e., notations)
can be used to represent the existing services. For example, UML classes, CORBA
components, Participants in SoaML, or SCA components are among them. On the
system levels, for example SysML [81], a UML profile for system modeling, a buil-
ding block can be used to represent an existing service.

It must be noted that the service graphical representation must relate to the real
services which in this case is done through the code that implements the service
invocations. Therefore, it is important to keep the connection (bindings) between

Figure 4.4: The relation between a service description, its model (graphical rep-
resentation) and source code. The concrete service itself is available
at run-time. Services users do not know how the service has been
implemented.

4.2. The Service Presentation and Abstraction Step 65

graphical representations (i.e. service models) and source code (i.e. implementa-
tion for the service invocations). Figure 4.4 shows the relation between a service
description, its model, and source code. The concrete service itself (the implemen-
tation) is invisible from the service user’s point of view.

From the Figure 4.4 it can be seen that there is a 1:1..* relation between graph-
ical representation and source code which means that a graphical representation of
a service may have several variants of source code for implementing the service
invocations. They may be implemented using different programming languages on
different platforms.

4.2.4 Examples

In a model-driven environment, for the development process of service-based appli-
cation using existing services, again, it is not necessary to have a complete service
model that describes the structure and behavior of the services. For this reason,
PMG-pro only presents the structure and not the behavior part. But they can be
accessed through ports. The structure is connected to the real implementation of the
service (code). The code itself is only proxy to the actual service implementation
that resides in the service provider.

Different notations conforming to existing modeling languages can be used to
present/model a service. In this section we present four examples showing the use
of different modeling languages to describe (to model) a UPnP service. For these
examples, a UPnP Light service is used. See Appendix B for the XML service
description of the Intel’s UPnP Light service.

The first example is presenting the UPnP Light service using an ARCTIS buil-
ding block [53][57]. This is a transformation of XML-UPnP into XMI-ARCTIS

Figure 4.5: A simple building block model to represent a UPnP device (and its
service). A UPnP device has inputs (UPnP actions) and generates
events (UPnP state variables). A meta-model of UPnP devices is
presented in Figure 3.5

66 CHAPTER 4. THE PMG-PRO METHOD

building blocks. Before we present the transformation process, a conceptual model
of UPnP building block is constructed, see Figure 4.5. This conceptual UPnP buil-
ding block is created based on the UPnP conceptual model presented in Figure 3.5.
As it shown in the figure, a general building block of a UPnP device (and its service)
has inputs and outputs. The UPnP actions can be used as inputs of building block.
For the outputs of building block, we can use the UPnP state variables. In UPnP, a
notification of changed state variables (type of evented) will be sent to others UPnP
devices that subscribe the services. With this, we use the outputs as events. Another
type of output is constructed by using the UPnP actions that have return value. This
type of output generates output when the UPnP action is invoked.

Using ARCTIS, the conceptual model of UPnP building block presented in Fig-
ure 4.5 can be implemented. ARCTIS is a modeling editor that is based on UML.
More than that ARCTIS is supporting a model-based engineering technique for
reactive systems [66]. Software developers can use ARCTIS to specify, analyze,
and verify software system using models [57]. ARCTIS has also model checking
supporting for automated model correctness. Instead of UML classes ARCTIS uses
building blocks as a basic entity. An ARCTIS building block is considered as a kind
of activities encapsulation which can be accessed through its ports. In this case, one
building block can be used to represent one service. A service-based application
in ARCTIS is then can be specified as a building block diagram. A service-based
application can be, again, encapsulated and presented as a new building block. Ob-
viously, this new building block can be used to build a new building block diagram
as new specification of a software system. With this, an incremental development
of a large service-based application can be achieved. About ARCTIS, interested
readers should refer to [65, 53, 57].

Figure 4.6: A conceptual model of ARCTIS building block - A basic element
of model in ARCTIS [53, 57, 65].

4.2. The Service Presentation and Abstraction Step 67

To be able to present a UPnP light service using an ARCTIS building block,
we need to transform the XML-UPnP service description into XMI data (the XML
format used in ARCTIS). The XML stands for eXensible Markup Language. Thus,
the XML is a language. By considering this, an XML UPnP service description is
a model since the description is an instance of the language. Similarly, an ARCTIS
building block is also a model as it is an instance of ARCTIS that is based on UML
2.0 [53, 57, 65]. With these facts, the theory of model transformation presented in
Section 3.2.4 can be applied.

To automate the transformation process, the concept of model-to-model trans-
formation can be applied. For this, it requires the conceptual models of the source
and target modeling languages. These conceptual models are used to construct the
transformation rules. Figure 3.5 shows the conceptual model of the UPnP devices
and its services, while Figure 4.6 shows the conceptual models of ARCTIS building
block in a UML class diagram.

Using the UPnP conceptual model (Figure 3.5), the ARCTIS conceptual model
(Figure 4.6) and the conceptual model of UPnP building block (Figure 4.5), trans-
formation rules for transforming an UPnP service description into a UPnP-ARCTIS
building block can be constructed as presented in Table 4.1.

Table 4.1: Transformation rules between UPnP - ARCTIS Building Block

UPnP Device ARCTIS Building Block
Device name Building block name
Action Input event and output event a

Action argument Type of input event
State variable Output event
Type of state variable Type of output event

aOutput event for actions that have return value

Using the constructed transformation rules an UPnP service description can be
transformed into ARCTIS building block automatically. Figure 4.7 shows a repre-
sentation of a UPnP service in a ARCTIS building block as a result of the transfor-
mation process. It must be noted that the process in only for visually representing
existing services. It can use graphical or textual representation. The internal behav-
ior of the service is invisible.

Similar with the transformation process of UPnP-ARCTIS above, the UPnP
Light service above can be presented using a SCA Component, a UML class di-
agram, a SoaML Participant that are shown in Figure 4.8, Figure 4.9 and Figure

68 CHAPTER 4. THE PMG-PRO METHOD

4.10, respectively. It can be seen that the presentation process is only done for
the purpose of visualization of existing services. The service is not static, but the
description is static. UML classes, for example, can represent static entities with
dynamic behavior. It is handled in a static way during composition at runtime and
design time.

Figure 4.7: An ARCTIS building block is used to visually represent the UPnP
Light service

In these examples we also consider that all the service models are connected to
the same source code for the service invocations. Listing 5.3 shows a Java source
code for the invocations of the UPnP Light service. In PMG-pro the source is gen-
erated automatically during the abstraction/presentation step. A complete source
code is presented in Appendix D.

Figure 4.8: A SCA component is used to represent the UPnP light service.

4.2. The Service Presentation and Abstraction Step 69

Figure 4.9: UML classes are used to represent the UPnP Light service.

Figure 4.10: A SoaML participant is used to represent UPnP Light service.

70 CHAPTER 4. THE PMG-PRO METHOD

4.2.5 The Service Abstractor

A service model can appear in different abstraction levels. For example, end-users
may use an icon to model a service, while a developer may use a class to model a
service. In PMG-pro, a service abstractor is used to abstract services at different
abstraction levels.

4.2.5.1 A Common Service Model

Existing run-time services might have been implemented using different standards
and technologies. Consequently, they use different ways of describing services,
even the services with similar functionalities. In PMG-pro, from a service descrip-
tion a pair of code and its graphical representation of the service are generated. For
similar services, there will be a common service model. An example of a common
service model, which is a platform independent model, is illustrated in Figure 4.11.

In Figure 4.11, three Lamp services that provide the same functionalities are
shown. The UPnP Lamp service and the UPnP Light use UPnP schema to describe

Figure 4.11: A platform independent service models and its code. In this ex-
ample, a Lamp is a common model of different implementation of
services: UPnP Lamp, DPWS Lamp and UPnP Light services.

4.2. The Service Presentation and Abstraction Step 71

services while the DPWS Lamp uses DPWS to describe the service. All the Lamp
services provide functionalities to switch ON-OFF the lamp even though they use
different operation names. From these different service models a Lamp service
which has ON and OFF functionalities can be defined.

All the service models are connected to its code, and so code for the Lamp
service model. Obviously, the code may vary in terms of programming languages.
In the Java context, we can use an interface or an abstract class to declare the code.
Listing 4.1 shows an example of the code for a common service model of the Lamp
service, when an abstract class is used to declare the Lamp code. It can be seen that
the abstractLamp class is an abstract class with two abstract methods. Later, in the
code generation step of PMG-pro when the class is used in a model, implementation
class of the class will be generated automatically based on a template.

Listing 4.1: Lamp Code

p u b l i c a b s t r a c t c l a s s a b s t r a c t L a m p {
. . .
p u b l i c vo id a b s t r a c t L a m p (){
}

p u b l i c a b s t r a c t vo id ON (S t r i n g s e l e c t e d S e r v i c e) ;

p u b l i c a b s t r a c t vo id OFF (S t r i n g s e l e c t e d S e r v i c e) ;

.
}

It must be noted that the generalization is one way up. The generalization pro-
cess is more like a classification process, where similar service models will have
one general class. Subclasses will not be modified. However, to show the case we
present an example of the modified UPnP Lamp class that is shown in Listing 4.2.
The information about super and subclasses is stored in the Service Library.

Listing 4.2: Modified UPnP Lamp Code

p u b l i c c l a s s UPnP Lamp e x t e n d s Lamp{

p u b l i c vo id s e t T a r g e t (b o o l e a n newTarge tVa lue){
/ / a c t i o n code

}
.
}

72 CHAPTER 4. THE PMG-PRO METHOD

4.2.6 Summary

In PMG-pro, the presentation step is used to present services into graphical repre-
sentation and code implementing service invocations. We consider that XML is a
language therefore XML UPnP service description is a model since it is an instance
of XML. Transforming the model into another models for example UML class can
employing the concept of model-to-model transformation (M2M).

By developing different abstractor/presenter different notations conforming to
modeling languages can be chosen. In addition to graphical service representation,
the presentation step generates source code conforming to a selected programming
language. For this, the concept of model-to-text (M2T) transformation is used.
The service graphical representations are used by service developers to model the
new service-based application while the code is used to generate code in the code
generation step.

4.3 The Service Library and the Service Frameworks
(APIs) Repository

The Service Library and the Service Frameworks (APIs) Repository is the central
structure of the PMG. Three of other parts of the PMG-pro (the service abstractor,
the model editor and the code generator) are connected this part.

The Service Frameworks (APIs) Repository contains service frameworks and
API’s that are used by the service abstractor as a foundation for the transformation
of service descriptions into notations conforming to a modeling language (for ex-
ample, UML classes) and to generate implementation class. Examples of existing
service frameworks are [52] for UPnP and [36] for Web Services. Other frameworks
for embedded systems may also be included in the service repository and library.

The service library contains service models and its connected code. The service
library is used by the service integrator. By the use of a model editor, a service
integrator use the stored graphical service models in the service library to specify
service-based application, while the code generator use the service library for the
purpose of code generation from a service-based application model. We will present
the code generation method later, in the code generation step.

The service library is also used by service abstractor to store service graphical
representation and its code in a hierarchical manner. It is built based on ontology.
One important assumption that we use to build the service hierarchy is that, the
service description must contain enough information for a service categorization.

4.3. The Service Library and the Service Frameworks (APIs) Repository 73

Figure 4.12 shows an example of service taxonomy in a smart home domain,
where different implementation of MediaRenderer services (e.g. UPnP and
DPWS) are categorized under the MediaRenderer services, Entertainment
Services, and Smart homes services, respectively. All of the MediaRenderer

services at level 0 of hierarchy have graphical representation (with <<PSM>> stereo-
type). A MediaRenderer services at level 1 of hierarchy is defined as a common
model to represent all the media renderer services. It should be noted that the code
will be used by the code generator and the models will be used by modelers to
specify new service-based applications.

At the level 1 and above, there is a similar relation between model and code. The
source code binds to the service models at level 1 and above is not a real code. At
a very high level of hierarchy, a service model is connected to abstract information
about possible target platforms (source code) that are available and used on the code
generator. Based on the selected target platform, the code generator will generate
tailored source code.

In smart home domains, ontology has been used for composing services such as
used in [111, 87]. In [87] the use of ontologies enable the effective description of
the heterogeneous services and resources residing in the smart homes. It includes

Figure 4.12: An example of taxonomy of service models. Each model is con-
nected to source code. The source code itself can be at any pro-
gramming language.

74 CHAPTER 4. THE PMG-PRO METHOD

a proposal for an automatic ontology-based service discovery and dynamic service
composition.

Reffering to the idea of service taxonomy presented in Figure 4.12 a smart home
service ontology is created. A basic taxonomic tree of the General Formal Ontology
showing in Figure 4.13. This ontology can be used to automate the construction of
service hierarchy in PMG-pro. In this case, PMG-pro assumes that all the devices
in smart homes provide embedded services.

Figure 4.13: A General formal ontology of smart homes devices used in PMG-
pro.

In PMG-pro Figure 4.13, smart home devices are categorized into three classes;
entertainment, automation and surveillance devices. Including in the entertainment
devices are televisions, mp3 players, media servers and media renderers devices.
These devices provide functionality that can be discovered and used.

4.4 The Modeling Step

PMG-pro is a language independent method. It is possible to use different existing
modeling languages and different modeling editors. The requirement is that the
presenter must generate notations (i.e., abstract service models) that conform to the
chosen modeling language. Using the generated service models, service integrators
can model new service-based applications.

There is no direct contribution of PMG-pro in the modeling step. The only con-
tribution is a possibility of using different modeling languages to model service-
based application. However, in this section we describe how service-based applica-

4.4. The Modeling Step 75

tions can be modeled in PMG-pro. We focus only activity and sequence diagrams.
But obviously, it depends on the chosen modeling language.

4.4.1 Overview

In software development, models are used to describe the structures and the behav-
iors of the software systems. The structure specifies what the instances of the model
are; it identifies the meaningful components of the model construct and relates them
to each other. The behavioral model emphasizes the dynamic behavior of a system,
which in UML for example, can essentially be expressed in three different types
of behavioral models; interaction diagrams, activity diagrams, and state machine
diagrams.

4.4.2 Collaboration Activities Diagram

Even though for model-driven engineering, a state-machines diagram is considered
as the most executable models [35], we are still interested in using UML activity
diagram and collaboration diagram. The reason is that, from activity diagrams we
can generate state machine diagram [66]. The UML activity diagrams are used
mostly to model data/object flow systems that are a common pattern in service-

Figure 4.14: A service-based application model is specified using an activity
diagram. The figure shows a service-based application that uses
three existing services. Each service has internal activities. A
swimlane is representing a service

76 CHAPTER 4. THE PMG-PRO METHOD

based application models. The activity diagram is also good to model the behavior
of systems which do not greatly depend on external events. A system that is mostly
having steps that run to completion, rather than being interrupted by events and
requiring object/data flow between steps.

Thus, a model of service-based application in PMG-pro can be presented as a
collaboration activity where connections between service models are defined using
activity nodes. See Figure 4.14 for an example. The figure shows a service-based
application that uses three existing services. Each of the service has its own internal
activities. From the view of the service-based application, the internal activities are
seen as a simple service.

4.4.3 Sequence Diagrams

There are several ways to model interactions (connections) between services (i.e.,
service composition) in a service-based application diagram. For a simple service
composition, a sequence diagram is simpler than an activity diagram. By simple
composition we mean a composition that does not have dataflow and without any
activity between service models.

By developing a service abstractor/presenter that is able to generate a UML class
from a service description, we can then use the objects of the class to specify new
service-based applications in form of sequence diagrams. Figure 4.15 shows an
example of a service-based application specified in a sequence diagram.

Figure 4.15: A service-based application model specified is using a sequence
diagram. In this figure, three different UPnP services are used to
build a service-based application. The application will play music
when a UPnPLight service is invoked, and will stop it on a certain
value of weather parameter.

4.4. The Modeling Step 77

4.4.4 High-level Models

Using service hierarchy (see Figure 4.12), it would be possible for the modelers
to model new service-based applications at any levels of hierarchy. The higher
the level of hierarchy the more platform-independent the models would be. By
high-level models, we mean service-based application models that are built using
platform-independent service models at level 1 and above of service hierarchy (see
Figure 4.12).

High-level models might use presentations that are close to the end-users, for
example pictures that describe the real services. With regard to the service hierarchy
(see Figure 4.12), for end-users, the services may be presented in the highest level
of service hierarchy. Although this topic is out of the PMG-pro context, a short
explanation of how the idea can be done is given. In the ISIS project [110], ICE, an
end-user composition tool that enables end-users to compose different services at
run time was developed. We consider that by developing a specific service presenter
and abstractor, service presentations (service models) for end-users and code for
implementing the service models can be generated. The service models can then be
used by the end-users to model the composition.

4.4.5 Model Correctness

One of the major issues when using activity diagrams and sequence diagrams relates
to semantics. With regard to the UML activity diagrams, several works have been
to tackle this issues [29, 12, 107]. Several proposals have been also proposed, for
example [59, 18, 26].

However, PMG-pro is language independent. It uses existing modeling lan-
guages to model a service-based application. With this, the semantics of the models
and model correctness follow the chosen modeling languages. For example, when
we use ARCTIS to model a service-based application then the model correctness
is checked using its built-in model checker. Accordingly, if we use a UML tool to
model service-based applications then the semantic and the model checking mech-
anism follow its built-in model checker if they have. This leads to a conclusion that
the semantics of activity and sequence diagrams are not a big problem in PMG-pro,
while the semantic of the structure part is easy.

4.4.6 Summary

Modeling of service-based applications in PMG-pro is restricted to the service mo-
dels stored in the service library. The stored service models are a representation

78 CHAPTER 4. THE PMG-PRO METHOD

of existing run-time services. Different modeling languages can be used to model
service-based applications. PMG-pro present run-time services using notations that
conforms to the chosen modeling languages.

Since PMG-pro uses existing modeling languages, the model correctness de-
pends on its built-in model checker. PMG-pro assumes that all modeling languages
have its own (built-in) model checkers.

4.5 The Code Generation and Providing Step

To execute the models of service-based applications that have been produced in the
modeling step, PMG-pro applies code generation instead of model interpretation.
We apply model to a text transformation approach. The benefit of this approach is
that we have an additional checker for correctness of model since the approaches
use existing programming languages.

Many modeling tools, especially domain-specific modeling tools, come with
their own code generator. In this case, PMG-pro can use those code generators.
However, for the purpose of proof-of-concept where a service-based application
will be provided as a new service, a specific code generator must be developed. In
this section we present a concept of PMG-pro generates code from a model of a
service-based application.

Figure 4.16: The code generator. A template is used to generate source code.

4.5.1 Overview

Figure 4.16 shows the architecture of the code generator. As it can be seen in the
figure, the input for the code generation of PMG-pro is a model of the service-based

4.5. The Code Generation and Providing Step 79

application that can be an activity diagram or a sequence diagram. The XMI parser
reads a model of the service-based application that is presented in a XMI file. The
output of the parser is given to the generator.

4.5.2 Code Generations

Models have two parts; structures and behaviors. In PMG-pro the basic structure is
described using static class and building blocks while the behaviors are expressed
using UML activity nodes and actions in sequence diagrams.

Code is directly interpreted from the activity elements. For example, a line
connection from one port in a building block to port in another building block means
service invocation. Code for this connection is simply copied from proxy classes
that contain code for the actual invocations.

4.5.2.1 Code from Activity Diagrams

Models of a service-based application can be defined using activity diagrams. Thus,
a code must be generated from this activity diagram. In this section we present a
basic idea of how PMG-pro generates code from activity diagrams. Figure 4.17 and
listing 4.3 shows an example of A merge node and its code generated code.

A merge node is a control node that brings together multiple alternatives. It is
not used to synchronize concurrent flows but to accept one among alternate flows.
It has multiple incoming edges and a single outgoing edge. The execution of the
activity diagram can be described as shown in listing code 4.3. In [95] it is listed
other examples of code generation for other activity nodes. A similar concept can
also be found in [10] and [30].

Figure 4.17: A merge node. The figure shows an activities and three input data
flows. The activity will be executed all the data flows are arrived.

80 CHAPTER 4. THE PMG-PRO METHOD

Listing 4.3: An example of code generation from a
merge node

vo id mergeNode (){
i f ((X1)&&(X2)&&(X3))

a c t i v i t y (X1 , X2 , X3) ;
}

With regard to the ARCTIS code generation, PMG-pro code generator applies
only a simple transformation process. It reads and converts directly activity nodes
(with control and object flows) into code. So, it works only on a simple activity
diagram due to the formalism. The reason is that the code generator in PMG-pro is
developed only for the purpose of proof-of-concept. However, since the method is
independent of languages and tools, PMG-pro can use any built-in code generator.
In contrast, ARCTIS converts a collaboration activity diagram into a state machine
which is executable. For this, cTLA is used for the reasoning [55]. Code is then,
generated from the generated state machines. It works on more complex activity
diagrams.

4.5.2.2 Code from Sequence Diagrams

Some systems have simple dynamic behavior that can be expressed in terms of
specific sequences of messages between a small, fixed number of objects or com-
ponents. In such cases sequence diagrams can completely specify the system’s
behavior. Code can be generated from these simple cases. Listing 4.4 shows an
example of generated code from the sequence diagram shown in Figure 4.15.

Listing 4.4: An example of code generation from a se-
quence diagram

vo id sequenceCode
{

UPnP MediaRenderer c0 ;
UPnPWeatherModule c1 ;
UPnPLight c2 ;

c1 . c0 . p l a y () ;
c2 . c0 . s t o p () ;
c0 . r e p e a t () ;

}

4.5. The Code Generation and Providing Step 81

However, in many cases, behavior is more complex, e.g. when the set of com-
municating objects is large or highly variable, when there are many branch points
(e.g. exceptions), when there are complex iterations, or synchronization issues such
as resource contention. In such cases, sequence diagrams cannot completely de-
scribe the system’s behavior, but they can specify typical use cases for the system,
small details in its behavior, and simplified overviews of the behavior. Live Se-
quence Charts (LSCs) is one example of solutions to this problem.

4.5.2.3 Code Generation Method for Handling the Device Capabilities

In the context of MDA, different target platforms require different tailored code. In
the context of embedded systems, the terms of device capability and configuration
are often used instead of platforms. Device capability and configuration introduce
problems for code generation even within the same device capability. For example,
it can occur the development of mobile applications. In this case, it can happen that
a working source code for one specific mobile phone will not work on another one
of the same type. For instance, this can be caused by a difference in the user con-
figurations (e.g. memory size) or/and in the device capabilities (e.g., the resolution
of camera).

Listing 4.5: Lamp Code

p u b l i c c l a s s Lamp e x t e n d s a b s t r a c t L a m p {
. . .
p u b l i c vo id Lamp (){
UPnP Lamp upnp lamp= new UPnP Lamp () ;
UPnP Light u p n p l i g h t =new UPnP Light () ;
DPWS Lamp dpws lamp = new DPWS Lamp () ;
}

p u b l i c vo id ON (S t r i n g s e l e c t e d S e r v i c e){
i f (s e l e c t e d S e r v i c e . e q u a l s I g n o r e C a s e (” UPnP Lamp ”)) {

upnp lamp . s e t T a r g e t (t r u e) ;
} e l s e i f (s e l e c t e d S e r v i c e . e q u a l s I g n o r e C a s e (” UPnP Light ”)) {

u p n p l i g h t .ON () ;
} e l s e i f (s e l e c t e d S e r v i c e . e q u a l s I g n o r e C a s e (” DPWS Lamp ”)) {

dpws lamp . SwitchON () ;
}

p u b l i c vo id OFF (S t r i n g s e l e c t e d S e r v i c e){
i f (s e l e c t e d S e r v i c e . e q u a l s I g n o r e C a s e (” UPnP Lamp ”)) {

upnp lamp . s e t T a r g e t (f a l s e) ;

.
}

82 CHAPTER 4. THE PMG-PRO METHOD

Services in a service-based application environment are considered being pro-
vided by third parties; therefore they can easily come and go. It would be very
possible that included services are not available when a service-based application is
implemented, deployed, and run. To generate code for a device with a specific de-
vice capability, two solutions are proposed. The first solution is generating code for
possible aggregated services in the ontology. For example, the abstract Lamp class

shown in Figure 4.11 can be implemented differently during the code generation
process. This solution would also support run-time adaptation in case of services
are removed or new services appear. Listing 4.5 shows an example of possible
generated code for implementing the Lamp, using the first solution.

The Lamp class above is an implementation class of the abstract class presented
in Listing 4.1. It extends the abstractLamp class for implementing the abstract me-
thods. This implementation class is generated automatically based on a template.

The second solution is to generate code only for the present (specific) ser-
vices. This solution requires information about what devices are available at run-
time. This means code cannot be generated before the platform is used, which
essentially means on-demand code generation. For example, if the available Lamp
service is only UPnPLamp, then the code generator will only generate (use) the
UPnPLamp.java. The code generator will not generate (use) code for other Lamp
services (i.e., UPnP Light and DPWS Lamp).

4.5.3 Summary

Models describe the structure and the behavior of a service-based application. In
PGM-pro, the code from the structure is generated by objects instantiation while
code from the behavior is generated by interpretation of the interaction between
object instances. We adapt the DSL environment where we assume a service as an
implemented concept. For this reason, we do not specify which languages should
be used to model service-based application.

Chapter 5

Proof-of-Concept

Parts of the PMG-pro have been prototyped using Java programming language.
This chapter presents the prototypes and case studies showing the proof-of-concept.
Section 5.1 is an overview of the prototypes. Section 5.2, 5.3, and 5.4 present the
prototypes of the service presenter for ARCTIS, the service library, and the code
generator. For the proof-of-concept, three case studies are presented in Section 5.5.

5.1 Overview

We have prototyped parts of the PMG-pro to show the idea of presenting visually
services using graphical representation. Our plan is to extend the service abstrac-
tor/presenter to be able to generate different notations supporting different modeling
languages and editors. For this, we developed a general user interface as shown in
Figure 5.1. It must be noted that not all the links in the figure are implemented.

Figure 5.1: The screenshot of the user interface of PMG-pro.

83

84 CHAPTER 5. PROOF-OF-CONCEPT

5.2 Service Presenter

The focus of the prototype construction is to show that PMG-pro is worked. For
this, we focus only on the automated presentation of run-time services and code
generation parts. For the service representation, we have implemented two service
presenters. The first service presenter is capable to present run-time services as
ARCTIS building blocks. The second service presenter is developed to present run-
time services as UML classes in Rational Rose [85].

Using ARCTIS, the behaviors of a service-based application are modeled using
collaboration activity diagrams while using UML (Rational Rose), the behaviors
are modeled using sequence diagrams. Hence, the PMG-pro prototype supports for
two modeling techniques; collaboration activity diagram and sequence diagrams.
Obviously, the semantics of the language follows the chosen modeling languages.

The two prototypes of service presenter mentioned above are similar. In this the-
sis we present only the prototype of the service presenter that implements a transfor-
mation of UPnP services into ARCTIS building blocks. For this transformation, we
utilized XMI (XML for meta-data interchange). The first prototype is able to trans-
form a UPnP service description (XML) into an ARCTIS building block (XMI 2.1),
while the second prototype is able to transform WSDL service description (XML)
into UML classes.

The use UML class (which is static) to present service (by nature is dynamic)
is possible since the presentation in PMG-pro is only visually presenting (and ab-
straction) of run-time services. It is not the actual services. The actual services and
its behaviors reside in the service providers. In PMG-pro, a service model is an
abstract presentation of an existing service at high level. Access functionalities to
the actual services are done by the connected code.

5.2.1 UPnP Service Description

UPnP uses XML as a schema language for defining device and service descriptions,
control messages, and eventing. A UPnP-based device can implement zero or more
services. However, each UPnP device must host an XML device description that
contains specific information about the device, information about the services of
the device, and even information about the nested devices.

The service description itself is an XML document that lists actions and state
variables that apply to a specific service offered by the UPnP device. Figure 5.2 il-
lustrates a power service description (SetTarget) of the UPnP Light device in XML.
See appendix B for more details.

5.2. Service Presenter 85

Figure 5.2: An example of a UPnP service description. The actions are listed in
the service description. See Appendix B for more detail.

86 CHAPTER 5. PROOF-OF-CONCEPT

5.2.2 An ARCTIS Building Block Template

To generate ARCTIS building blocks we use a building block template (an XMI
file). We constructed the template based on a simple ARCTIS building block shown
in Figure 5.3. The figure shows the internal activity of a simple ARCTIS building
block for UPnP services in an activity diagram. With regard to the UPnP services,
important parameters of a building block are operations (action), receive signals
(EVENT) and variables. Therefore we only consider these parameters on the con-
struction of the ARCTIS building block template.

5.2.3 The Transformation

In general, transformations are defined by mapping rules using a transformation
language. Each mapping rule describes what one, or more elements in the source
model should be transformed to in the target model. When all mapping rules are
applied, the mapping describes the complete transformation from the source model
to the target model.

Figure 5.3: The internal activity diagram of a simple ARCTIS building block
for UPnP services. The building block has one action (operation)
and one event out. This building block is used for the construction
the template for a UPnP ARCTIS building block.

5.2. Service Presenter 87

Figure 5.4: XML representation of an ARCTIS building block for the construc-
tion of the template for a UPnP ARCTIS building block.

An ARCTIS building block is a model as it is an instantiation of the ARCTIS
modeling tool. Similarly, considering that XML is a modeling language then a
UPnP service description can be considered as a model since the UPnP description
is an instance of the XML language. Both models are in XML.

To transform the XML UPnP service description into an XMI building block,
the service presenter uses an XML Parser. The XML parser will parse the proper-
ties of a UPnP service (device name, device properties, actions, events, arguments,
argument types, and direction of actions). Based on these properties and the XMI
template, an ARCTIS building block is constructed. The process is done in three
main steps as follows:

1. read the description.xml
2. read the UPnP properties
3. map the properties onto the template of ACRTIS building block.

The algorithm of the service presenter is shown in listing 5.1. The transforma-
tion of UPnP service descriptions into ARCTIS building blocks is a kind of text-to-
model transformation. For this, the transformation rules presented in Table 4.1 is
used. The rules are very simple. For example, to present the name of the building
block, we use the name of the UPnP device. Figure 5.5 shows a snapshot of UPnP

88 CHAPTER 5. PROOF-OF-CONCEPT

Light service in an ARCTIS building block presented in Figure 4.7. The snapshot
shows some of the UPnP properties have been mapped into the XMI of an ARCTIS
building block. A complete version of the XMI can be found in Appendix C.

Listing 5.1: Algorithm for the transformation of UPnP service description
into an ARCTIS building block.

r e a d d e s c r i p t i o n . xml / / UPnP s e r v i c e d e s c r i p t i o n

g e t UPnP dev ice name
c r e a t e b u i l d i n g b l o c k (dev ice name)

g e t d e v i c e p r o p e r t i e s / / d e v i c e u r l , d e v i c e number , d e v i c e f r i end lyName , e c t
f o r each of p r o p e r t y n a m e

c r e a t e new xmi : i d f o r v a r i a b l e
name= p r o p e r t y n a m e

g e t a c t i o n s
f o r each a c t i o n n a m e

{
{

c r e a t e new xmi : i d f o r o p e r a t i o n
name= a c t i o n n a m e
g e t a rgumen t s

f o r each argument
{

c r e a t e new xmi : i d f o r a rgument
name= argument name
g e t t y p e
c r e a t e xmi : i d f o r t y p e

}
}

}

In addition to the ARCTIS building block, the service presenter generates also
a Java class. The implementation class is basically used as a proxy for service
invocations. To generate this implementation class, a template is used. We use
Cyberlink for Java for the UPnP services [52], to construct this template. This
implementation class is connected to the ARCTIS building block.

5.2. Service Presenter 89

Figure 5.5: XML representation of the UPnP Light service in an ARCTIS buil-
ding block presented in Figure 4.7. The XML contains information
about operation names, xmi:id, arguments, type of arguments, di-
rections, etc.

Listing 5.2: Algorithm for the generation of code connected to the building
block. This algorithm is for UPnP services.

r e a d d e s c r i p t i o n . xml / / UPnP s e r v i c e d e s c r i p t i o n
g e t UPnP dev ice name
c r e a t e c l a s s (dev ice name)
g e t s e r v i c e T y p e

f o r each s e r v i c e T y p e
{
g e t a c t i o n s
f o r each a c t i o n
{

c r e a t e o p e r a t i o n (a c t i o n)
{
g e t a rgumen t s

f o r each argument
{

g e t argument name
g e t typeOfArgument
g e t d i r e c t i o n
c r e a t e a rgument (argument name , type , d i r e c t i o n)

}
}

}
}

90 CHAPTER 5. PROOF-OF-CONCEPT

Listing 5.3: The UPnP code for service invocations.

p u b l i c c l a s s UPnPLight e x t e n d s C o n t r o l P o i n t imp lemen t s N o t i f y L i s t e n e r ,
\ i n d e x {Event}E v e n t L i s t e n e r , S e a r c h R e s p o n s e L i s t e n e r {

p r i v a t e f i n a l s t a t i c S t r i n g
LIGHT DEVICE TYPE = ” urn : schemas−upnp−org : d e v i c e : B i n a r y L i g h t : 1 ” ;
p r i v a t e f i n a l s t a t i c S t r i n g
LIGHT SERVICE TYPE = ” urn : schemas−upnp−org : s e r v i c e : SwitchPower : 1 ” ;

p u b l i c vo id Power (S t r i n g deviceType , S t r i n g i){
Device dev = g e t D e v i c e (dev iceType) ;
o rg . c y b e r g a r a g e . upnp . S e r v i c e s e r =dev . g e t S e r v i c e (LIGHT SERVICE TYPE) ;
newPowerSta te = i ;
Ac t i on se tP owerAc t = dev . g e t A c t i o n (” S e t T a r g e t ”) ;
s e tPowerAc t . s e tArgumen tVa lue (” newTarge tVa lue ” , newPowerSta te) ;
s e tPowerAc t . p o s t C o n t r o l A c t i o n () ;

}

p u b l i c b o o l e a n G e t L o a d L e v e l S t a t u s (){
/ / code

}

p u b l i c b o o l e a n GetMinLevel (){
/ / code

}

p u b l i c b o o l e a n S e t L o a d L e v e l T a r g e t (){
/ / code

}

p u b l i c vo id S e t T a r g e t (S t r i n g newTarge tVa lue){
Power (LIGHT DEVICE TYPE , n) ;

}

p u b l i c b o o l e a n G e t S t a t u s (){
Ac t i o n ge tPowerAct = dev . g e t A c t i o n (” G e t S t a t u s ”) ;
i f (ge tPowerAct . p o s t C o n t r o l A c t i o n () == f a l s e)
r e t u r n ;
}

}

Similar to the generation process of the building block, to generate the imple-
mentation class we also have developed a parser. The parser reads the UPnP pro-
perties and maps it to the class template. Listing 5.2 shows the algorithm for the
service presenter to generate an implementation class connected to the ARCTIS
building block. Listing 5.3 is the generated Java class for the UPnP Light service.
A complete source code is presented in Appendix D.

5.3. The Service Library 91

5.3 The Service Library

The service presentation in PMG-pro is only for visually presenting run-time ser-
vices in order to service designers and integrator can use them specifying service-
based applications/composite services at design-time. The (visually) presented ser-
vice models do not describe the internal behavior of the actual services. The actual
services and its behaviors that reside in the service providers are hidden and in-
visible to the developers and integrators, but they have a complete functionality
description of the run-time services. Access functionalities to the actual services
at run-time are done by the connected code that is connected logically with the vi-
sualized service models. This is how the separation of a problem with the access
functions to particular run-time environment is realized.

The service library was implemented in a simple table that contains information
about the relation between models and its real code. At the moment we implement
the service library manually and store as .txt file.

The table contains four columns: the service graphical representation, the level
in the service hierarchy, the file name of the connected code and it subclass. Table
5.1 shows the table.

Table 5.1: A simple database for implementing the Service Library for the pur-
pose proof-of-concept.

Service Level Source code Sub class
Name file name
UPnP Lamp 0 UPnP Lamp.java -
UPnP Light 0 UPnP Light.java -
DPWS Lamp 0 DPWS Lamp.java -
LampService 1 Lamp.java UPnP Lamp,

DPWS Lamp,
UPnP light

LightService 2 Light.java LampService
UPnPMedia- 0 UPnPMedia- -
Renderer Renderer.java
DPWSMedia- 0 DPWSMedia- -
Renderer Renderer.java
VirtualMedia 0 VirtualMedia-
Renderer Renderer.java -
MediaRende- 1 MediaRen- UPnPMediaRenderer,
rerService derer.java DPWSMediaRenderer,

VirtualMediaRenderer

92 CHAPTER 5. PROOF-OF-CONCEPT

5.4 Code Generator

Although some existing modeling tools provide built-in code generators, for the
purpose of proof-of-concept, PMG-pro also provides a simple code generator. This
was done since the built-in code generators, for example the ARCTIS code gen-
erator, do not suitable for the proof-of-concept. ARCTIS does not implement the
providing step of PMG-pro. To provide a service-based application as a new ser-
vice, an additional code is required.

We have implemented a code generator that is able to generate code automati-
cally from models of a service-based application. For this we adapt the concept that
has been presented in Section 4.5. To provide as a UPnP service, the code includes
a service monitor that will monitor the availability of services and make an adap-
tation. At the moment we implemented only for UPnP services. The reason is that
the UPnP services have implemented a notification mechanism when a device with
embedded services come and go to the network.

To generate code the concept of model-to-text transformation is used. We did
not use any transformation language to generate code, but a Java program to trans-
form models into texts (i.e., source code). At the moment, the program can only
read collaboration activity diagrams (i.e., ARCTIS diagrams) and sequence dia-
grams (i.e., Rational Rose). However this is not a problem since most existing
modeling tools support these two types of diagrams. We will discuss this limitation
in Section 6.1.

Models of a service-based application have two parts; the structure and behavior.
The code from the behavior part is generated using the instantiation concept. One
instantiation is created for each used service models. In the case of ARCTIS to
Java code generation, from each building block, one object is instantiated [55].
Since the building blocks in this scenario are platform independent, the objects to
be instantiated are depending on the platform selection.

The behavior part is generated from the interactions between the service models.
Information for code generation of the behavior parts is taken from the activity
nodes. For this we adapt the generation method presented in [10]. With regard
to their method, an ARCTIS building block can be considered as an entity that
executes an external action.

Example of the generated code from the structure and behavior parts is pre-
sented in the case study 3, where we compose different services and provide the
functionality of the service-based application as new UPnP service.

5.5. Case Studies 93

5.5 Case Studies

For the purpose proof-of-concept, we use a smart home environment. Smart homes
are a simple example of environment containing different devices (with embedded
services) that can be freely controlled by others, in the sense of service invocations.
Using this feature, new application can be developed by defining a set of service
interactions either using event-based or request/reply interaction styles or both. It
is also considered that there are several services that can come and go in the smart
house environment.

A smart home environment was also used in [109] and [22]. Figure 5.6 illus-
trates the smart home that is used in this thesis. A residential gateway is controlling
and managing home devices with embedded services. In this type of dwelling, it
is possible to maintain control of doors and window shutters, valves, security and
surveillance systems, etc. It also includes the control of multi-media devices that
are parts of home entertainment systems.

Three similar cases studies are presented in this section. For each of case studies,
a composition scenario has been developed. The aims of the case study is showing
how the PMG-pro method can be applied for different domains and to show that
different modeling languages can be used. The three case studies are:

1. Model-driven approaches for the development of smart home services

Figure 5.6: Smart homes - Selected environment for the purpose of proof-of-
concept. All devices provide services that can be invoked. We have
three case studies based on this environment. Each case study has o
scenario of service-based application.

94 CHAPTER 5. PROOF-OF-CONCEPT

2. The development of event-based applications using existing services
3. A model-driven method for the development of service-based applications in

a heterogeneous services environment

In these case studies, we use mainly UPnP services as a model of software unit.
The reason is that UPnP uses XML to describe a service and, it seem become a
common to use XML to describe services (e.g. web services). Moreover, UPnP has
been widely used and implemented in several home devices.

5.5.1 Case Study 1: Model-driven Approaches for the Develop-
ment of Smart home Services

This case study presents our idea of applying MDD for the composition of existing
services, by which we aim at demonstrating how new smart home services will be
promoted. Similar case study was published in the Proceeding of Ambient Assistive
Health and Wellness Management in the Heart of the City, ICOST 2009 [94]

5.5.1.1 The aim of the Case Study

The aim of this case study is to demonstrate the use of the MDD approach for the
developing a smart home service by composing different services that have been
implemented using different technologies. For this purpose, we use Rational Rose
as a tool. Therefore, existing services are abstracted into UML classes. Then, a
sequence diagram is used to model the new service-based application.

5.5.1.2 Introduction

Smart home is about the application of automation techniques for the comfort and
security of residents’ privately owned homes. In smart homes, a residential gateway
(RGw) connects the home with different embedded devices (and services) to the In-
ternet. We consider all those services to be basic services in which we can promote
a new advanced service by means of service collaboration of those basic services.
The new service may include multiple devices, both internal services in the home
network and external services outside the home network.

5.5.1.3 A Use Case Scenario

In this scenario, we assume that there exist four different services running inde-
pendently in a smart home. Among of them are a UPnP AlarmModule that pro-

5.5. Case Studies 95

vides data services, a UPnP mobile phone detection service that provide a mobile-
absence detection service, UPnP based television that provides display service and
a SMS Web service. We will develop a new application that enables the owner
of a smart home to get the status of her/his health-related home equipment (repre-
sented by sensor in the alarm system) wherever she/he is. An alarm message will be
displayed onto either the UPnP based television when the owner is at home or on
his/her mobile phone when the owner of the house is not at home. The new service
is implemented as an OSGi service.

Figure 5.7: An abstract representation of the UPnP display service in an UML
class.

5.5.1.4 The Development Process

The first step is service abstraction in terms of UML classes. There exist several
frameworks of service description, for example, WSDL(Web service description
language), UPnP, and OSGi. Based on a service description, we present a service
as a UML class and generate code to implement the service invocations.

The transformation process of a UPnP service description into an UML class is
done by applying the concept of model transformation. For this transformation, the
transformation rules presented in Table 5.2 are used.

Table 5.2: Transformation rules between UPnP - UML class

UPnP UML Class
Device name Class Name
Action Operation
Action argument Operation’s argument
State variable Attribute
Type of state variable Parameter type

96 CHAPTER 5. PROOF-OF-CONCEPT

Using the table above and a template of UML class (in XMI), the displayOnTV
action is transformed into displayOnTV operation. The action arguments x, y and
message, are transformed into operation arguments. Table 5.3 shows the transfor-
mation result. Figure 5.7 shows the result of the transformation when the XMI of the
UPnP based Television description is opened in Rational Rose. Similar abstraction
process is done for the other services.

Table 5.3: A transformation of an UPnP service description into an UML class

UPnP UML Class
Device name: UPnP displayService Class Name : UPnP displayService
Action: displayOnTV Operation: displayOnTV
Action argument: Operation’s argument:
1. X: int 1. X: int
2. Y: int 2. Y: int
3. a: String 3. a: String

After all the existing services we want to include in the new service have been
abstracted into UML classes, we can model the new service, both of the structural
and behavior aspects. Thus, we have 4 UML classes representing four existing
services. Figure 5.8 below shows a sequence diagram of the new service. The
new service, alarmService, is a collaboration of four different services (the display
services, the SMS Services, phone detection service and the alarm service).

The behavior of the alarmsystem:OSGiService is described in a simple se-
quence diagram. The main purpose of a sequence diagram is to define event se-
quences that result in some desired outcome. The focus is less on messages them-
selves and more on the order in which messages occur; nevertheless, most sequence
diagrams will communicate what messages are sent between a system’s objects as
well as the order in which they occur. The dashed line arrows indicate that the mes-
sages are type of event, which are in this case, UPnP events. A solid arrow is used
to describe that an object calls an operation on the other object.

From the figure, it can be seen that when a sensor is activated, the alarmsystem:
OSGiService will search the location of the sensor and detect the presence of the
mobile phone. The application will then sendSMS and display the message to the
display service on the UPnP television. The use of dashed arrows to describe events
may help the implementation of the models, but it would become very complex
using sequence diagrams to describe complex event-based systems. An example
of other difficulty of the use of sequence diagram is the describing decision. For

5.5. Case Studies 97

Figure 5.8: An UML sequence diagram of the alarm system in the scenario.

example, to describe a case when the mobile phone is at home the message will
be sent onto the UPnP-based television. Otherwise, it uses the sendSMS service to
reach the mobile phone.

To execute the models, the transformation of the model to code is done. For this,
a template-based source code generator was built using Java. Since the combined
services will be provided as an OSGi service, the template was developed based on
OSGi framework, which is in this case, we use the Knopflerfish OSGi framework.

5.5.1.5 Summary of the Case Study

In this case study, we have demonstrated the MDD approach for developing a smart
home service by composing four different services, in different computing devices;
UPnP services, OSGi services, and Web Services. The new service is an OSGi
service which is intended to run on an OSGi-powered residential gateway. The
problem with the use of UML sequence diagram is its limitation to express complex
event-based system.

5.5.2 Case Study 2: The Development of Event-based applica-
tions using existing Services

We have made a case study of developing an event-based application from services
specified using UPnP specifications. In this case, a service-based application is de-
veloped. The combined functionality of the new service based application is not

98 CHAPTER 5. PROOF-OF-CONCEPT

provided as a service. It is just a normal application that is run and demonstrated
on a single computer. The case study was published in the Proceeding of 2nd In-
ternational Conference on Computer Technology and Development (ICCTD 2010)
[92]

5.5.2.1 The aim of the Case Study

Service interactions in service-based applications might use either event-based or
request/reply-based interactions or both. We are interested in event-based interac-
tions. Furthermore, we are interested on the use of model-driven approaches for the
development of event-based applications. The aim of the case study is to show that
another tool can be used to develop service-based application. Instead of Rational
Rose, we use ARCTIS as modeling tool.

5.5.2.2 Introduction

Event-based systems are widely used for the development of reactive systems. The
development of such systems is often be done by integrating compound, autonomous,
loosely coupled software units (components), including sensors, device controllers,
and databases.

In this case study we use UPnP services as an example of XML-based service
description. We consider that UPnP devices in a smart home provide services can be
used by other devices (a control point). Thus, a control point is a service user. From
the perspective of a service user, an UPnP device can be presented as an object.
They have attributes (i.e. state variables) and provide functionality/services/opera-
tions (i.e. actions) to the service users. From the perspectives of software developers
they can be presented as objects that can be composed with other objects. In PMG-
pro, the presentation of UPnP devices as an object is done during the presentation
step.

As a normal service user, a control point can use one or more UPnP services.
In the object-oriented perspective, the connections between an instance of a control
point (an object) and instances of UPnP devices (objects) can be modeled differ-
ently, for example using an object diagram. This is how we consider that UPnP is
compatible with object oriented environment.

This section gives a background for the UPnP technology, in particular, the idea
of event-based systems in UPnP-based smart homes.

1. A Universal Plug and Play (UPnP)
An important aspect of smart home networks is self-configuration in which

5.5. Case Studies 99

Figure 5.9: Events of the UPnP Light service on Intel’s SDK for UPnP-Device
Spy.

autonomous devices are allowed to join and leave the home network and at
the same time, the network automatically learns about any changes. UPnP
is one example of the enabler to achieve this purpose. UPnP allows flexible
connectivity to ad hoc and unmanaged networks.

• UPnP Services
It is a requirement that every UPnP-based device must host an XML de-
vice description that lists specific properties about the device and the ser-
vices associated with the device. For example, it contains information
about the FriendlyName of the devices, the ID of the device, etc. The
device description document also includes a Uniform Resource Locator
(URL) for the service description. The service description is an XML
document that lists the actions and state that apply to a specific service
offered by the device. See Appendix B for a complete example of UPnP
service and device description presented using XML document.

• UPnP Events
One thing that is interesting with the UPnP is that UPnP services have
state variables that can be used for building event-based systems. When
a state variable has changed its value, it will send the changed value to
all other UPnP devices to tell that the value has changed. Figure 5.9
below shows event description in Light UPnP device.

100 CHAPTER 5. PROOF-OF-CONCEPT

A UPnP device might act as a control point or a device. UPnP devices that
act as a control point can register for events to receive notifications if the
state variables for a particular service description changes. The publication
of such states changes by the service is called eventing. In this context, the
evented variables are those variables that send a notification to a control point
regarding such a change of status.

A control point can subscribe to a number of evented variables. When sub-
scribed to a particular event, the device submits the complete state of all vari-
ables to the control point. After sending the complete set of information about
all variables to the control point, the device keeps sending updates to the con-
trol point if any changes in the specific variables occur.

2. (UPnP-Based) Event-based Systems
UPnP service description contains a description of state variables (in object-
oriented term is attribute). These state variables can be type of evented, which
means that, any changes to the value of these variables will be confirmed to
all control points (service users) that subscribe to it. With these evented state
variables, a control point (a service user) can execute necessary operation
that depends on that event. This is how we consider that UPnP services can
be used to build a reactive system. That is a system that depends on event to
execute operations/functions.

A composite service is a service-based application that composes services
and provides new functionalities to others as a new service. In our case, we
consider all UPnP services to be basic services that we can compose as new
service-based applications. One simple example of a composed application in
smart homes is a weather-to-music application that will play a specific song
or music for a specific weather condition. In this example, an UPnP device
that measures the weather parameters will give the measured data to a UPnP
media renderer to play a specific song.

A simple event-based system consists of a set of producers and consumers
which are clients of an event notification service. All clients are connected to
the same service and access its functionality in order to subscribe to or pub-
lish notifications. As mentioned earlier, UPnP has all mechanism to publish,
subscribe, and unsubscribe that enables for building event-based systems.

3. Extending UPnP Scope Using Event Delivery Gateway.
To distribute the UPnP events, an event delivery gateway is required. We have
implemented UPnP event delivery gateways (u-EDG) using Java. Figure 5.10

5.5. Case Studies 101

Figure 5.10: An extending scenario of the UPnP network.

shows the connection of two smart homes using event delivery gateways. The
u-EDG contains of a Web service provider, a Web service client, and an UPnP
EventListener. The Web service provider provides a service that can be used
by a client to upload UPnP events and UPnP packets (a SSDP packet). For
the definition of UPnP events and UPnP SSDP packet the reader should refer
to [46].

On the client side, a Web service client can use the provided services to up-
load received packets and notifications from one smart home to another. A
UPnP EventListener which is on the client side listens to UPnP events and
UPnP packets. When an event or a UPnP packet in a smart home has been
received the Web Service client will send them to other smart homes using
the provided Web service. To be able to capture UPnP events, the client must
also implement UPnP control point [46].

Every UPnP event has device ID (uuidd), sequence number of the event
(seqd), name of the state variable (named) and the value (valued). With the
event delivery gateways, UPnP events can be distributed from one smart home
to other smart homes. With this distributed mechanism, the numbers of de-
vices that can be composed is also increasing.

5.5.2.3 A Use Case Scenario

We assume that there exist different services running independently in a smart
home. Among of them are a UPnP WeatherModule service, a UPnP light service,

102 CHAPTER 5. PROOF-OF-CONCEPT

services from a UPnP media renderer and services from a UPnP media server. We
want to develop an event-based application that will play mp3 music/song on se-
lected track number when the room temperature is greater than 20 degree and the
light (a lamp) is turned on. Here, the lamp status is used to indicate that the owner
of the smart home is at home.

To give an explanation of the services functionalities, we present a short de-
scription of each of the service as follows.

1. The UPnP WeatherModule Service
This service has four outputs; air temperature, humidity, solar radiation, and
wind speed. Any control point that subscribe to this service will get notifi-
cations when the value of the outputs are changed. This module is an event
producer.

2. The UPnP light service
The UPnP light service has five inputs (actions) and two outputs. The actions
are for example; SetLevel and GetLevel. Despite act as an event consumer,
this UPnP light can also act as an event producer. The state variables Statu-
sand LoadLevelStatus are an event. For a detail description of the UPnP light
service the reader should see [46].

3. The UPnP Media Server and Media Renderer
Any media in a media player should be able to be played in media renderers.
In this case study we assume that the media renderer has already a list of
media, so the control point needs only to send commands (control) to play,
stop, previous, and next. For detailed example of how a UPnP media server
and a media renderer are used the reader should refer to [34, 33].

A media server and a renderer might act as event consumer and producer, but
in this case study we use them as an event consumer. We assume that the media
renderer has already a list of song, so a control point can send a command control
to play, stop, next, etc.

5.5.2.4 The Development Approaches

To develop event-based applications using UPnP services, it is necessary to have a
model of the UPnP services.

1. Service Presentation/Abstractions
Different presentation can be use to present UPnP service as an object. To

5.5. Case Studies 103

represent a service by models we need a modeling language. Instead of using
a UML class, we use an ARCTIS building block. A building block is a kind
of encapsulation of activities that has external inputs outputs.

Table 5.4: A Transformation of an UPnP service description into an ARCTIS
building block

UPnP Building Block
Device name: UPnPLight Building block name: UPnPLight
Action and argument: Paremeter and its type:
1. GetStatus(boolean ResultStatus) 1.a getStatus:String*

1.b resultStatus:boolean **
2. SetTarget (boolean newTargetValue) 2. setTarget:boolean*
3. GetMinLevel(int MinLevel) 3.a getMinLevel:int*

3.b MinLevel:int
4. SetLoadLevelTarget(int newLoadLevel- 4. setLoadLevelTarget:int*
Target)
5. GetLoadLevelStatus(boolean retLoad- 5.a getLoadLevelStatus:boolean*
LevelStatus) 5.b retLoadLevelStatus:int**
State variable and its type: Parameter output event with type:
1. Status:boolean 1. status:boolean **
2. LoadLevelStatus:int 2. loadLevelStatus:int**

**Parameter type of Output event, *Parameter type of Input event

Services abstraction is a kind of text-to-model transformation. By using ser-
vice descriptions, existing and running services in the network can be trans-
formed (abstracted) using graphical presentations. In addition to graphical
representation, a Java class is generated. This class is used as a proxy to
make invocations to the services that resides in a service provider.

The actual process of model transformation is done by applying text-to-text
transformation. That is XML-UPnP service descrption into XMI-ARCTIS
building block. We have defined a template for the XMI-ARCTIS building
block as presented shortly in Figure 5.3. Using this template and by apply-
ing the transformation rules presented in Table 4.1, the XML-UPnP service
description can be transformed into XMI-ARCTIS building block. The XMI
then can be opened in ARCTIS modeling tool. Table 5.4 shows the transfor-
mation process of UPnP parameters into ARCTIS building block parameters.
A complete XMI file and its representation in ARCTIS of the UPnPLight is
shown in Appendix C.

2. The Model of Event-based application
After all existing services mentioned above are presented in building blocks

104 CHAPTER 5. PROOF-OF-CONCEPT

Figure 5.11: The feelgood model is presented in an ARCTIS building block
diagram. Three building blocks are used to describe the combined
application.

by the service presenter (abstractor), the modeling of the new service-based
application can be done. With building blocks, a system is defined in terms of
building blocks composition, where the building blocks themselves encapsu-
late activities. Accordingly, a model of UPnP-based event-based application
is specified by defining connections of UPnP building blocks. The model
defines the structure and behavior of the event-based applications.

Figure 5.11 shows a conceptual model of service-based application presented
in building block diagram. The figure shows that a service based application
has one or more building blocks that are connected using connectors. The
connections between building blocks represent service interactions. They are
defined using activity nodes in a UML activity diagram. As shown in Figure
5.11, an ARCTIS model of the new event-based application is defined. If
we look at the building block C2:UPnPLight, the Status state variable of the
lamp will be used to send a play command to the C0:UPnP_MediaRenderer

if the air temperature is greater than 20 degree.

3. Code Generation.
From the model that is shown in Figure 5.11, our concern is how the code

5.5. Case Studies 105

for implementing the event-based application can be generated out from the
connections of building blocks automatically. A connection may mean an
invocation of one device to another service that is embedded in a device. For
this purpose, a code generator can use a simple way of code generation by
interpreting directly the activity diagram. Since we have all necessary code
for each building block, the generated code acts as ’glue code’ that coordinate
the included services (devices).

ARCTIS has a code generator for J2SE that enables automatic code gene-
ration from ARCTIS model [55]. In our prototype, one Java class will be
generated for one ARCTIS building block diagram. The Java code for an
ARCTIS model is generated based on the ARCTIS models, templates, and
proxy classes. The class acts as a ’glue code’ that implements the service
composition.

5.5.2.5 Summary of the Case Study

In the case study we have demonstrated how the model-driven approach is used
for the development of such systems. We abstract and present the services into
reusable ARCTIS building blocks that we can use to build and specify a new event-
based application. A building block is a graphical representation of implementation
class that is reusable and support for incremental development.

With model-based development approaches, the specification of service interac-
tions can be done at a high abstraction level. Although in this use case we use only
UPnP and Web services, we believe that the approach is also applicable for other
abstract services that are XML-based. Of course, in this case, objects in the Internet
of Things should provide embedded services that are described in XML.

5.5.3 Case Study 3: A model-driven method for the development
of service-based applications in a heterogeneous services
environment

In this case study, we developed a service-based application using different service
technologies. Moreover, the service-based application is then provided as a UPnP
service. This case study is the most complete of service creation cycle of the PMG-
pro method. In this case study, the combined functionality is provided as a UPnP
service. Thus, the service is described using XML, which is more flexible than
OSGi services in terms of interoperability. The case study was published in the
Proceeding of IEEE International Conference on Software Engineering and Service

106 CHAPTER 5. PROOF-OF-CONCEPT

Sciences ICSESS 2010 [97]. A full paper of this case study was also published in
SDL forum.

5.5.3.1 The aim of the Case Study

The aim of the case study is showing how the PMG-pro can be used to model
service-based application in a heterogeneous service environment.

5.5.3.2 Introduction

The fact that the concept of service-orientation systems can be defined, imple-
mented, and described in several ways has introduced different types of implemen-
tation of the concept. For this and other reasons, the motivation of this work was to
provide a method for building service-based applications using services that were
developed using different technologies (a heterogeneous service environment).

5.5.3.3 A Use Case Scenario

Considering that all the devices in the Internet implement their functionalities as
embedded services that can be invoked, new composite applications can be pro-
moted. In this scenario, we use the following devices:

1. WeatherModules that provide different data collection services (i.e., air tem-
perature, solar radiation, wind speed, and humidity sensors).

2. Lamps that provide on-off and dimmer services.
3. Media Renderers that provide playing of multimedia services.
4. Virtual devices that provide sending e-mail services.

In a smart home environment, different open and standardized languages and
technologies are often used to describe services. For example, Universal Plug and
Play (UPnP) is one of the popular standards for describing embedded services of
home entertainment devices (e.g., media renderer). Other examples are Web Ser-
vices Description Language (WSDL) and Device Profile for Web Services (DPWS).
Based on these different embedded services, new applications can be promoted. In
this scenario, a new application is promoted. The application has new functionali-
ties as follows:

• the application is able to send notifications (e-mail) when the air temperature
from the WeatherModule is greater than 50◦C,

5.5. Case Studies 107

• it will play music/songs on the media renderer when the light is turned on and
the solar radiation is below than 10, and
• provides two new UPnP services. The first service is to enable a user to

configure on which song user want to play for a specific weather condition,
while the second service is to get the configuration info.

5.5.3.4 The Development Process

1. Presentation.
The presenting step is a kind of text-to-model transformation. We have de-
veloped a service abstractor/presenter that is able to transform UPnP service
descriptions into ARCTIS building block and its bound source code (Java
class). ARCTIS is a modeling editor that uses a building block as a basic
entity.

A UPnP device has two kinds of description; device and service description.
A UPnP device can have several services that in a UPnP service description is
called Actions. To automate this step we use transformation rules. Table 4.1
in Section upnptoARCTIS shows transformation rules to transform different
properties in a UPnP service description into properties in an ARCTIS buil-
ding block. To construct the transformation rules, both ARCTIS and UPnP
meta-models are required. However, the rules are very simple. For example,
to present the name of the building block, we use the name of the UPnP de-
vice. Obviously, other XML-based service descriptions (e.g., WSDL, DPWS)
will use a similar process.

In addition to the graphical representation, source code (a Java class for ser-
vice invocations) is also generated for each UPnP service description. Ob-
viously, other programming language can also be used. After all service de-
scriptions are transformed into graphical service models the modeling step
can be started.

2. Modeling
Using the service taxonomy it would be possible for the modelers to model
new service-based applications using service models at any level of hierarchy.
The higher the level of hierarchy the more platform-independent the models
would be. By high-level models, we mean models of service-based applica-
tions that are built using platform-independent service models at level 1 and
above of the hierarchy in the service taxonomy. From high-level models of
service-based applications different source code can be generated. Obviously,

108 CHAPTER 5. PROOF-OF-CONCEPT

Figure 5.12: The ARCTIS model of the new application. The included service
models specify the structure of the application, while the interac-
tions between service models specify the behavior.

it will be limited by the number of source code binds to the service models
that are stored in the service library.

Using ARCTIS, a service-based application can be specified as a building
block diagram. The behavior of the new service-based application is defined
by interactions between building blocks, which are in this case defined us-
ing activity nodes defined in UML 2.0. Accordingly, the semantic follows
the semantic of UML 2.0 activity diagrams. Figure 5.12 shows an ARC-
TIS model of the service-based application defined in the scenario. There
are four building blocks that represent different existing services mentioned
in the scenario. In this model, the service models are taken from the level
1 of the service hierarchy. This means that they may have several different
implementations.

In ARCTIS, a service-based application can be, again, encapsulated and pre-
sented as a new building block. This allows us to model the new provided

5.5. Case Studies 109

services defined in the scenario. As defined in the scenario the new service-
based application will provide two new services (i.e., SettingService and Get-
Configuration Service). In ARCTIS, this can be specified by defining new
parameters (i.e., ports). Obviously, this new building block can be used to
build a new building block diagram as new specification of a software sys-
tem. This is the way how an incremental development of a large application
can be done in ARCTIS.

Listing 5.4: The structure part of the New Composite
Service

p u b l i c c l a s s New Compos i t e Se rv ice {

p r i v a t e UPnP MediaRenderer c0 ;
p r i v a t e SendMail c1 ;
p r i v a t e UPnPWeatherModule c2 ;
p r i v a t e UPnP Lamp c3 ;
MusicTrackNumber i n t ;
SensorTresho ldAT d ou b l e ;
Senso rTre sho ldSR do ub le ;

p u b l i c New Compos i t e Se rv ice () {
/ / main b e h a v i o r

}

p u b l i c vo id se tMusicTrackNumber (i n t number){
t h i s . MusicTrackNumber=number ;

}

p u b l i c vo id s e t S e n s o r T r e s h o l d A T (dou b l e s e n s o r T r e s h o l d A T){
t h i s . SensorTresho ldAT = s e n s o r T r e s h o l d A T ;

}

p u b l i c vo id s e t S e n s o r T r e s h o l d S R (dou b l e s e n s o r T r e s h o l d S R){
t h i s . Senso rTresho ldSR = s e n s o r T r e s h o l d S R ;

}
p u b l i c i n t getMusicTrackNumber (){
r e t u r n t h i s . MusicTrackNumber ;
}
.

p u b l i c s t a t i c vo id main (S t r i n g [] o r g s){
new New Compos i t e Se rv ice () ;

}
}

3. Code Generation and providing
To illustrate the code generation in PMG-pro, we use Java programming

110 CHAPTER 5. PROOF-OF-CONCEPT

language. To generate code from the structure the block diagram and buil-
ding blocks are used. From a building block diagram the main application
(class) is generated. The name of the class is defined using the name of the
building block diagram.

From each building block, one object is instantiated. Since the building
blocks in this scenario are platform independent, which objects instantiated
are depending on the platform selection. Listing 5.4 shows an example of
code when the UPnP platform is selected for the code generation at generat-
ing step. Only classes that implement UPnP services are instantiated.

Code from the behavior part is taken from the activity nodes. For this we
adapt the generation method presented in [10]. With regard to their method,
an ARCTIS building block can be considered as an entity that executes an
external action. For example, for the decision node (with air temperature
input) produces the code shown in Listing 5.5.

Listing 5.5: An example of code for the behavior part

i f (c2 . a i r t e m p e r a t u r e >= SensorTresho ldAT) {
c2 . msgg= SetMessage () ;

}
e l s e

b r e a k ;

For the scenario example, two new services are provided as UPnP services.
For this, UPnP code must be added. We have implemented a code generator to
generate code for the application scenario. Figure 5.13, is a screenshot of the
running UPnP services. We use deviceSpy software provided by Intel Tool
for UPnP technology [46]. It can be seen that the new application (composite
service) provides two UPnP services that are the GetConfiguration() and
the SettingService().

5.5.3.5 Summary of the Case Study

Software applications tend to be more service-based. Being service-based, two
things are required: a way to create simple service and a mechanism for describing
the interactions of those simple services. Furthermore, with model-driven develop-
ment approaches we need to present services and their interactions graphically.

5.5. Case Studies 111

Figure 5.13: The new composite service at run-time. The new service-based
application is provided as a new UPnP service.

Several different implementation of the concept of service orientation exist.
PMG-pro presents a service as a reusable building block independent of which im-
plementation of the concept. A building block refers to an implementation class
that acts as a proxy to an actual concrete service. Interactions between building
blocks are defined using activity diagrams. A building block might also include
other building blocks. With this approaches, a small, verified, and validated en-
capsulated activity diagram (a building block) can be used to build incrementally a
larger building block diagram presenting a complex software application.

112 CHAPTER 5. PROOF-OF-CONCEPT

Chapter 6

Evaluation

This chapter is organized in three sections. Section 6.1 presents an evaluation of
the PMG-pro method and use case studies. An evaluation of the method against the
seven sub research questions is presented in Section 6.2. At the last section, Section
6.3, an evaluation against related work is also presented. For this evaluation we
present four related work. The aims of the evaluation against the related work are
to show the originality of the method and positioning, that is the contribution of the
method in the area of MDD, and software development in the Internet of Things.

6.1 Evaluation of the Method and Case Studies

PMG-pro combines bottom-up, component-oriented and model-driven development
approaches to promote a rapid and automatic development of service-based applica-
tions. With this combined approach, existing services are presented using graphical
notations (i.e., models) conforming to a specific modeling language (the presen-
tation step), then new service-based applications are defined/specified using those
models (the modeling step), and finally code for implementing the new software-
based applications can be generated automatically (code generation step), see also
Figure 6.1.

The approach is intended for service integrators to be able to compose run-time
services at design-time, and to promote new services. The main idea is the con-
struction and use of the hierarchical service models in the service library. With this
approach, service integrators can focus on the problem solution on a high abstrac-
tion level using models, while the implementation will be done by a machine in
automated manner.

The PMG-pro method also proposes a new method of handling device capabili-
ties and configurations in the software development for personalized and embedded

113

114 CHAPTER 6. EVALUATION

Figure 6.1: The present, model, and generate-provide method for building
service-based applications.

devices. The proposed method is different with the existing methods, for example
software product lines (SPL). In SPL, software artifacts for a specific device capabi-
lity and configuration are created only if the use of the software artifacts is predicted
in one or more products in a well-defined product line. A library concept is not used
in SPL. However, although PMG-pro uses the concept of library, it contains only a
limited number of service models that were constructed in a hierarchical manner.

For the code generation from models, two approaches are proposed. The first
is to generate code for possible aggregated services in the ontology. In PMG-pro,
a service model relates to different implementations of service invocations. These
different implementations represent different platforms (e.g., different device capa-
bilities and configurations). All possible device configurations would also support
run-time adaptation in case of services are removed or new services appear.

The second possible solution is to generate code only for the present (specific)
services. Using the service library, tailored code can be generated for a specific
device capability and configuration. This solution requires information about what
devices are available at runtime. This means code cannot be generated before the
platform information is given, which essentially means code generation on-demand.

For the purpose of proof-of-concept we have developed prototypes of parts of
the method. The proof-of-concept has some limitations. For example, currently the
PMG-pro code generation only handles activity diagrams and sequence diagrams.

6.1. Evaluation of the Method and Case Studies 115

This is not a problem since most of the existing modeling tools support these two
types of diagrams. In addition, several modeling tools come with built-in code
generators and PMG-pro can use them.

However, since the existing modeling tools are not suitable for the purpose of
proof-of-concept where a service-based application is provided as a new service,
PMG-pro provides also a code generator. With this additional code generator, ser-
vice developers have a choice either to use built-in code generators or to use the
PMG-pro’s code generator. In the first case, PMG-pro facilitates the presentation
of existing services into the modeling editor of the tools. This has been shown and
demontrated in case study 1 and 2.

Other example of the limitations of the proof-of-concept is the number of sup-
ported tools. The proof-of-concept only supports for ARCTIS and UML Rational
Rose 2000. This is not a big problem since other UML-based modeling tools (e.g.,
SysML and SoaML) use also XMI which is similar to the one used in ARCTIS and
UML Rational Rose. Expanding the number of supported tools can be done by de-
veloping service presenters in a similar way, but with different XMI target formats
and versions.

The capability of transforming only XML-based service descriptions (i.e., UPnP
service description) is another limitation of the proof-of-concept. However, this is
not a serious problem, since it seems that a service description tends to be a static
description and XML tends to be used for such description. By developing different
parsers, different service descriptions that are XML-based can be presented visually
in a similar way.

Based on the prototypes, three cases study have been performed and presented
in previous chapter. In this evaluation chapter, the three case studies are evaluated.
The evaluation will focus on the use of the proposed methodss.

6.1.1 Case Study 1

In the first case study we have demonstrated the use of UML sequence diagram
to model a service-based application, that is an application that is built based on
existing services.

Promoting smart home applications using embedded systems is gaining impor-
tance, as it can produce composite services with features not present in the indivi-
dual basic services. Several methods, framework and tools of service composition
in a smart home environment have been proposed over the years to address these
issues [49, 17, 67, 72]. In [67] for example, they developed a framework to im-
plement the service composition of networked home appliances and entertainment.

116 CHAPTER 6. EVALUATION

However, none of them use MDD. It is found in [5, 9] that shows a method of how
the MDD approach is used to compose services, but they focused on web services
and did not consider others services technologies that exist in a smart home network.

The result of the case study shows that model-driven development approaches
can be used to compose different technologies of service-oriented systems. The
composed new service is then being provided as a new service using particular
service technologies, which in this case study is OSGi. The requirement is that the
run-time services have to be described using well-known standards for describing
services.

An important note is that the semantic of UML sequence diagram is very re-
stricted, in particularly, it can be very difficult to model event-based systems. How-
ever, the sequence diagram is a good diagram to use to document a system’s re-
quirements and to flush out a system’s design. The reason the sequence diagram is
so useful is because it shows the interaction logic between the objects in the system
in the time order that the interactions take place.

6.1.2 Case Study 2

In the second case study we have developed a service-based application that only
uses UPnP services. We developed an event-based application by employing the
Event properties of UPnP. The application is run and demonstrated on a single com-
puter.

Event-based interaction styles have become prevalent for large-scale distributed
applications [16] due to the inherent loose coupling of the services. As it is stated
in [16], the event-based interaction carries the potential for easy integration of au-
tonomous, heterogeneous software components into complex systems that are easy
to evolve and scale. For this and other reasons, a number of event-based middle-
ware infrastructures were developed for example are in [16, 15, 23]. Unfortunately
there is only a little literature on the development approaches and methodologies
of event-based systems using embedded services. If there exist, most of them are
implementation-oriented and do not use MDD.

In this case study, we use ARCTIS modeling editor to model the interactions
between services, where collaboration and activity diagrams are used. The activity
diagram provides activity nodes (such as actions, pins, data and control flows, and
signals) that allow specifying the meaning of a behavioral element (such as the body
of an operation from the class diagram, or the effect of a state transition from the
state diagram). With these, modelers(i.e., service integrators) are allowed to specify
behavior of a new event-based system in a precise way.

6.1. Evaluation of the Method and Case Studies 117

The result of the case study shows that an automatic graphical representation of
existing (run-time) services at design-time is an important step of applying the con-
cept of reusability and the use of MDD. Depending on the capability of modeling
tools, code can be generated automatically from models. However, the code gene-
ration can only be automated if each of the generated abstract service models has a
relation (directly or indirectly) with code for implementing the service invocations.

6.1.3 Case Study 3

The whole concept of PMG-pro is shown and demonstrated in this case study. In
this case study, we have developed a similar application as previous case studies.
However, we provide the functionality of the service-based application as a UPnP
service for other users All services are presented, a new service is modeled using
existing modeling language, and code that includes additional code for providing
the application as a new service is generated automatically.

In this case study we propose to use ontology for the construction of service hi-
erarchy. The basic idea is that for all similar services it will have a common service
model. This common model has one higher abstraction level. With this idea, service
models can be constructed in hierarchical service models (i.e., at different service
abstraction levels). Accordingly, using these service models, service integrators can
model service-based applications at different abstraction levels. In the case study,
a new service-based application is specified using level 1, where a common service
model has several possible sub service models.

In this case study, we also show two ways of using the constructed platform
models for the purpose of code generation. Firstly, based on the information of
the targeted platform, the code generator uses the platform models to generate code
tailored for the selected target platform. Alternatively, the generated code includes
code that contains a detection mechanism to do necessary adaptation at run-time.
The fully automated code generation is possible, since the service models are con-
nected to code for implementing the service invocations.

The result of this case study shows that providing a service from a service-
based application requires the existing service frameworks and APIs. However,
more work must be done since the contruction of the the hierarchical service models
was done manually. Moreover, a template is also required for each different service
technology.

118 CHAPTER 6. EVALUATION

6.2 Evaluation against Research Questions

Fully adaptation of model-driven development method for the development service-
based application is possible by using the abstraction concept. To review our results,
we recapitulate the research questions posed in Section 1.3 that was broken down
into seven sub research questions posed in Section 2.3.

1. Q1: What models should we use to present run-time services for different ser-
vice users?
A model is used to represent something real that exists in run-time environ-
ment. In this case, a model is only a representation of a service. It can use
different notations or symbols. For example, in PMG-pro, services can be pre-
sented using UML classes, SoaML Participants, SCA components and ARC-
TIS building blocks. The important thing is that any symbols are connected
to source code that implements the concept of the used symbols or notations.
The source code is used for the purpose of code generation. More explanation
about this has been presented in Section 4.2.3.

2. Q2: How can the presentation of run-time services into service models can
be done?
The presentation of run-time services can be done by employing their service
descriptions. Current available service descriptions use XML to describe ser-
vices, for example XML UPnP service description. We consider that XML is
a language, therefore an XML UPnP service description is a model. The ser-
vice models that are mentioned above (i.e. UML classes, SoaML Participants,
SCA components, ARCTIS building blocks) are obviously a model.

The presentation of run-time services is done by applying a Model-to-Model
transformation. The actual processing is done by a Text-to-Text transforma-
tion. In the case of transforming a UPnP service description into an ARCTIS
building block, the transformation of XML (text) into XMI (text) is done.
More detail about the transformation process of service description into ser-
vice models has been presented in Section 4.2.

3. Q3: Which service description technology should we use to describe ser-
vices?
Although this is a very important question in the field of software service
engineering, we did not find any solution to answer the question. However,
from the design-time perspective we consider that a service description must
include information about service categorization. Within the PMG-pro, this

6.2. Evaluation against Research Questions 119

information will help the construction of hierarchical service models in the
service library.

A service description should also describe states. With this information, any
system can be modeled more accurately either as an event-based or request-
reply system.

A proposal of a service description is presented in Section 4.2.2. The concep-
tual service description itself is presented in Figure 4.3. We propose to extend
to UPnP service description for describing embedded services in the Internet
of Services. A case study of using UPnP service description for building an
event-based system is presented in Section 5.5.2.

4. Q4: Which modeling languages should be used to model service-based ap-
plications?
Any modeling language can be used to model service-based applications. The
requirement is that each notation or symbol (instance of the language) is con-
nected to source code that implements the concept of the notation or symbol.
This can be done by developing different service presenters and abstractors
that transform run-time services into service models in a hierarchical manner.
With these service models, service integrators can model new service-based
application at different abstraction levels, while the code generator uses the
connected code to generated tailored source code.

PMG-pro focuses on a presentation of existing services using notations or
symbols that conform to existing modeling languages. With this, software
developers can use existing modeling languages to specify software system.
Therefore, the semantics issues are depending on the chosen modeling lan-
guages. A relevant solution to this has been presented in Section 4.3.

5. Q5: To what extent should device capability and configuration be included in
the design-time (modeling step)?
Using ontology, we propose to construct a hierarchical service model. The
highest level of the hierarchy is the most abstract model, while the lowest
level is the less abstract. All information about device capabilities and con-
figurations are given at different levels in the hierarchy service models. The
lowest level includes the complete information about the device capability
and information. It is up to the service developers to choose in which level of
the service models that will be used to model a service-based application. A
relevant solution of this has been presented in Section 4.3.

120 CHAPTER 6. EVALUATION

6. Q6: How can code generation from a high-level model of service-based ap-
plication be automated?
In PMG-pro, basically, the code generation will be handled by the built-in
code generator of the chosen modeling languages. However, for the purpose
of proof-of-concept of the providing step, PMG-pro has also its own code
generator.

To generate code from the structure part PMG-pro uses the instantiation con-
cept. For example, from a building block, object instantiations are used. To
generate code from the behavior part, PMG-pro adapts the generation method
presented in [10]. We have presented this in case study 3.

7. Q7: Should we add a platform model or at least some platform patterns?
The most important key of achieving an automated code generation is that
every service model relates to code that implements service invocations. This
code can be seen as a proxy to the real service resides in service providers.
PMG-pro constructs these pairs (model-code) in a hierarchical manner.

With the constructed platform models, code can be generated from service
models at any level of the service hierarchy. In other words, the platform
information is already generated during the abstraction process and therefore
it can be used for code generation of all possible platforms during the code
generation step. However, templates are still required. The templates are
constructed with a pattern following the target platforms.

6.3 Evaluation against Related Work

Service composition is gaining importance, as it can produce composite services
with features not present in the individual basic services. Several research projects
have been conducted with regards to the service creations by composition in the con-
text of Future Internet. Those projects proposed different solutions (i.e. methods,
languages, etc.) for the service creation from requirement capturing for service
specification, service modeling, service design, service implementation, service de-
ployment, and service maintenance. In this evaluation, firstly, we will present four
related research projects and secondly, we will evaluate the PMG-pro method re-
garding their proposed methodologies.

6.3. Evaluation against Related Work 121

6.3.1 Related Work

During 2005 - 2010, several research projects have been done in the area of service-
based applications (within the European Commission ICT Research in FP7). Ex-
amples of such research project are the SeCSE project [103], the SODIUM project
[104], the ASG project [31] and the ISIS project. Different modeling tools for ser-
vice creation have also been developed. We will first present a short overview of the
project mentioned above, including their proposed methods. Then we will evaluate
them against PMG-pro.

6.3.1.1 ISIS

As it has been presented in earlier, the thesis work was done in the context of the
ISIS project [110]. One of the ISIS results is ARCTIS. In ARCTIS, modeling is
based on building blocks on the library. The service library contains all information
about the services, such as its description, properties, capabilities, and run-time
behaviors. The library is used by the service developer as the main component to
build a new service.

An ARCTIS building block is constructed from three layers:

• Java code describes detailed behavior of operations on data and APIs.
• UML activities describe in which order operations are executed and how

events arriving from different sources are synchronized.
• UML state machines (so-called ESMs) describe contracts that define in which

context a building block may be used.

A service-based application can be specified as a building block composition.
For the composition, UML activity diagram is used. With this, service engineers
can think and understand the complete behavior of a specification, not only several
scenarios. This has the benefit that complete specifications can be analyzed by
model checking, and that an implementation can be generated automatically

6.3.1.2 SeCSE

Service Centric Systems Engineering (SeCSE) [103] is one of the research projects
working on the topic of service development. A project result of interest to the ser-
vice engineering community at large is the SeCSE conceptual model which explains
concepts that are important within the SeCSE project. The model clarifies

• The meaning of a service

122 CHAPTER 6. EVALUATION

• The difference between a service and its public description
• The distinction between simple vs composite and stateless vs stateful services
• The various actors that exploit, offer, and manage services
• The relevant aspects concerning service discovery, composition, publication,

execution and monitoring.

SeCSE is creating methods, tools and techniques to enable service integrators
and service providers to develop and use dependable services and service-centric
applications more easily. Contributions are being made in the areas of service and
systems specification, service discovery, service-centric systems architectures and
service monitoring and management.

SeCSE has also developed a methodology for service engineering, tackling the
need for significant service discovery activities both during the requirements engi-
neering phase of a project and also at run-time, when service discovery is needed in
order to decide whether to start re-negotiation and re-planning in order to optimize
the overall quality of a service composition.

6.3.1.3 SODIUM

Service- Oriented Development in a Unified fraMework (SODIUM) is another re-
search project that mainly addresses the need for standards-based integration of
heterogeneous services. SODIUM aims to define and implement an open source
middleware platform, tools and methodology as well as models and languages for
composing heterogeneous services offered by diverse service providers in an open,
unified and standards-based way. To support the development of service-based ap-
plications, SODIUM focuses on three main topics of research as follows:

• Set of Languages
This includes three languages; Visual Service Composition Language (VSCL)
for designing service composition graphs at multiple levels of details, Unified
Service Composition Language (USCL) to facilitate the invocation and com-
position of multiple types of services, and Unified Service Query Language
(USQL)
• Visual Service Composition Suite comprising all tools necessary for con-

structing and analyzing a Visual service Composition Graph (VCG).
This includes the Visual Editor that enables the construction of a Visual Com-
position Graph (VCG) using the VSCL, a VSCL to USCL Translator which
translates the VCG, expressed in VSCL, into USCL descriptions.

6.3. Evaluation against Related Work 123

• Run Time Environment
This part comprises the components necessary for the execution of a VCG.

6.3.1.4 ASG

The Adaptive Service Grid (ASG) [31] project aims to build a platform which will
perform and support a service delivery lifecycle, enabling provision and consump-
tion of complex services. A key concept is that ASG will use semantic information
about services to fulfill user requests.

ASG is developing an open platform to automate the interchange and compo-
sition of software and services via the internet. Bridging the worlds of Grid com-
puting and service-oriented architectures, it is developing concepts, methods and
tools for an open platform for adaptive services discovery, creation, composition,
and enactment.

Service in ASG are thus described not only syntactically (the technical inter-
face to invoke a service) but also semantically. These semantics are represented by
semantic service specifications, which include functional and non-functional pro-
perties and rely on ontology from various industrial domains. ASG components
can make use of this information about what a service does in addition to how it
does it.

6.3.2 Discussion

Before we evaluate the PMG-pro method against the research projects mentioned
above, firstly, we will evaluate the thesis contribution to the ISIS project. With
respect to the ISIS method, the PMG-pro method supports for a fully round-trip
service engineering cycle. This means that we can use the created services to build
a bigger service-based application in an incremental manner. Figure 6.2 shows an
illustration of how the PMG-pro method contributes to the whole ISIS method.

From the figure, it can be seen that two main contributions of the PMG-pro me-
thod to the ISIS project are a presentation mechanism of existing services described
using XML into service models and an additional code generator. The service pre-
sentation mechanism is done in the presentation step of the PMG-pro method. With
the presentation mechanism, it will be possible to have a fully-cycle of software
development. With the additional code generation, it enriches the ISIS method.

One of the results of the ISIS project is ARCTIS. To evaluate how PMG-pro
and ARCTIS are different, we start with a statement of that PMG-pro is a method

124 CHAPTER 6. EVALUATION

Figure 6.2: PMG-pro contribution to the ISIS method

while ARCTIS is a tool. The strong focus of PMG-pro is a method for the deve-
lopment of service-based applications using existing services by abstracting those
services. From the perspectives of ARCTIS, the service presenter in PMG-pro can
be seen as an automated tool for abstracting existing services into building blocks
in the ARCTIS’s library, since the ARCTIS is based on building blocks on the li-
brary [65, 53, 57]. As far as the author understood, a building block in ARCTIS is
defined/developed/ modeled manually, and in an incremental manner. This includes
the creation of code for implementing the building block functionality. Thus, PMG-
pro enriches ARCTIS.

As mentioned earlier, PMG-pro consist of three parts; presentation, modeling
and code generation. The modeling and code generation parts are already part of
ARCTIS such that PMG-pro can use ARCTIS to model a service-based application
and ARCTIS’s code generator to generate code. ARCTIS does not manage the pre-
sentation part that automatically presents visually existing services. With PMG-pro,
it will be possible to develop/specify new service by composing existing services
in ARCTIS, without any effort to manually create building blocks representing the
existing services. In this case, PMG-pro extends ARCTIS. That is the presentation
part of the PMG-pro.

With regard to modeling part, it is necessary to note that PMG-pro is not only
support ARCTIS, but also other modeling tools by considering that we can create
different service presenters to the target tools. We have mentioned that in addition to

6.3. Evaluation against Related Work 125

ARCTIS, the proof-of-concept tool of PMG-pro supports also UML Rational Rose.
Other modeling tools can also be supported for example Objecteering for SoaML.
In this case, PMG-pro can be seen as an ARCTIS user.

Both ARCTIS and PMG-pro can be used for high-level modeling. With the
concept of blocks inside a block, ARCTIS supports for high-level modeling. In
PMG-pro, a hierarchical service model is used. Service models are classified into
different abstraction levels. The less the level service models, the platform depen-
dent a service model would be. With the hierarchical concept, PMG-pro users can
model a service-based application at different abstraction levels. It is up to the de-
velopers to specify in which level a model will be specified.

With regard to code generation PMG-pro and ARCTIS are also different. Each
building block comes with its code. There are three cases of building blocks:

a. buidling blocks for existing services - they get code from the abstractor,
b. composition building blocks - they get their code from the underlying code in

composed blocks.
c. building blocks of aggregated services in the ontology. They get their code

according to the description in 4.5.2.3.

Therefore the only place where the code is directly connected to the entity is
case a, the rest is generated. In this case, ARCTIS handles only case a and b,
and PMG-pro adds case c. In addition to an automated transformation of run-time
services into service models and code, PMG-pro handles also high-level models
concept by using the concept of service aggregation, case 3. PMG-pro uses the
concept of ontology to manage the levels of the service models. The code generator
in PMG-pro will generate required code for model execution.

There are two possible ways of code generation in PMG-pro. The first is to
generate code for possible aggregated services in the ontology. All possible device
configurations would also support run-time adaptation in case of services are re-
moved or new services appear. The second possible solution is to generate code
only for the present (specific) services. This solution requires information about
what devices are available at runtime. This means code cannot be generated before
the platform is used, which essentially means code generation on-demand. This is
how the separation between the functionality of a problem and the access functions
to particular run-time environments is realized in practice. That is, by generating
code using the two possible ways mentioned above.

However, it is also necessary to note that PMG-pro can use built-in code genera-
tors of the used modeling tools. For example, if we have chosen ARCTIS as a target

126 CHAPTER 6. EVALUATION

tool at the presentation step, we can use the ARCTIS code generator to generate the
constructed model. In this case, PMG-pro is only used to present existing services
into ARCTIS building blocks. PMG-pro facilitates the ARCTIS users to be able to
use existing services in an automatic manner.

As a summary, three important points of how PMG-pro differs with ARCTIS
are; the service presentation, the use of ontology to construct the hierarchical service
models, and the provisioning of code generation.

For the evaluation of the PMG-pro against the research project mentioned ear-
lier, we will only focus on four issues; service presentation, modeling languages,
service descriptions, and handling device capabilities and configuration. In partic-
ular, we will focus on how they solve these issues with regard to the sub questions
presented in Section 2.3.

One thing that makes PMG-pro different from the projects mentioned above
(SeCSE, ASG and SODIUM) is that, while they proposed new frameworks or/and
new modeling languages for the development of service-based applications, PMG-
pro uses the existing ones (e.g., modeling languages). PMG-pro focuses on an
automated abstraction/presentation of existing services. Depending on the abstrac-
tor/presenter, any graphical presentation conforming to a modeling language can be
used to present a service. We construct platform information by maintaining the re-
lation between service models and their code (i.e., their real implementations). This
is not the case of SeCSE, ASG and SODIUM. They have also developed their own
framework for executing the composed services. Furthermore, SODIUM developed
its own domain-specific languages.

The fact that different perspectives may have different definitions of a service
means that the definition of service composition may also be different. PMG-pro
considers that a service is just a kind model of a software unit. With this definition,
a services composition can be done in a similar way as a composition of software
units that normally is done at design-time using bottom-up approaches. In contrast,
the three research projects mentioned above do not use this perspective.

For the composition of service component models (i.e., software units), compo-
sition techniques, and composition languages are required[3]. For the composition
languages, there is no particular language that is supposed to be a language for
the service compositions. In Web service context, the Web Service Business Pro-
cess Execution Language (WS-BPEL) [82] and the Web Services Choreography
Description Language (WS-CDL) [37] can be considered as a composition langu-
age. Within the OMG context, the Service-oriented architecture Modeling Langu-
age (SoaML) [79] is another example of composition languages. Also in the Web

6.3. Evaluation against Related Work 127

services context, services orchestration and choreography are well-known service
composition techniques. In the context of Service Component Architecture (SCA)
[40], wiring can also be considered as a type of composition techniques. While
PMG-pro is language-independent, the three research projects mentioned above
seem to promote their own languages.

Presenting software functionality into abstract graphical representation has also
been studied by other researchers. For example, in [71] UML is used to model Web
services. The main contributions of their method are conversion rules between UML
and web services described by WSDL. However, their work focused only on Web
services and did not think about how automated code generation can be achieved.
In [113], software components are visualized using graphical notations that develo-
pers can easily understand. They use a picture of a real device to present a software
component. The integration is done by simply connecting components graphically.
Obviously, the approach is only applicable for a specific domain. While PMG-pro
is considering of presenting all types of run-time services using graphical represen-
tation, the three research projects mentioned above do not consider an automated
presentation of run-time services.

An important feature of PMG-pro is that different graphical representations can
be used to represent services. This leads to different ways of specifying new service-
based applications. For example, if run-time services are visually presented as UML
classes, then we can use sequence diagram to specify a new service-based applica-
tion.

PMG-pro focuses on design-time compositions. However, the PMG-pro method
can be extended to support run-time compositions. Using the PMG-pro method it
would be possible to generate service graphical representation that can be used by
end-users (i.e., run-time composition). In the ISIS project for example [110], ICE,
an end-user composition, has been developed. A service in ICE is presented as a
puzzle with either one input or one output. A composition is done by connecting
puzzles. By developing a service abstractor/presenter, an ICE puzzle for end-users
and source code for implementing service invocations can be generated. The ICE
puzzle then can be used by the end-users to model the composition (at run-time)
while the source code is used by ICE to execute the composition.

MDD is considered effective if the transformation of abstract models to more
detailed models is an automatic process. In [38], a method for an automatic transfor-
mation of flow-global choreography models (UML activity diagram) into localized
choreography models (ARCTIS model) is proposed. The author proposes to use
Attributed Graph Grammar System (AGG) as the graph transformation engine. Us-

128 CHAPTER 6. EVALUATION

ing this method, ARCTIS code generator is used to generate an executable code.
In contrast, despite of built-on code generator, PMG-pro implements only a simple
interpreter that reads and convert any connection of activity nodes (in the activ-
ity diagrams) into code, directly. This is of course a week approach. However, it
works for a simple activity diagram, where the automation of code generation can
be achieved. For more complex activity diagram, PMG-pro can use built-in code
generator.

From the other view, PMG-pro can be seen as a bottom-up service development
as it starts from abstracting run-time services into different service models. Using
these abstract service models, new services are specified. It does not start from
high level models, goes to more detail models, and finally code (e.g. PIM⇒ PSM
⇒ code, in terms of MDA), a top down approach. In term of model-driven deve-
lopment, PMG-pro includes a reverse engineering process, enabling a fully cycle
of model-driven development method. This feature can not be found in SeCSE,
SODIUM and ASG. They apply the top down approach.

SeCSE, SODIUM, ASG and ISIS provide a facility and method for building
service-based application by composing existing pre-made services. However, pro-
viding the new functionality of a service-based application as a new service is not
explicitly considered. Moreover, the three research projects mentioned above did
not implicitly mention the used deployment method of service-based applications
on small devices that have a big variability with regard to the device capability and
configuration. Accordingly, they did not propose any solution to this issue.

As summary of the evaluation, we present Table 6.1 that shows a comparison of
the PMG-pro method with the related work mentioned above.

6.3. Evaluation against Related Work 129

Table 6.1: Evaluation - A comparison

SecSE SODIUM ASG PMG-pro

Modeling UML VSCL and UML Developer’s
Languages USCL a preference
Service UML VCG b UML Depending the cho-
Presentation classes classes sen languages
Service Web Web Web XML-based
Description services services services description
Handling device Using the hierar-
capability and - - - chical service models
configuration in the library

aSee Section 6.3.1.3
bVisual Composition Graph, see Section 6.3.1.3

130 CHAPTER 6. EVALUATION

Chapter 7

Summary and Future Work

This chapter gives the summary of the thesis and future work.

7.1 Summary

This thesis addresses service engineering methods and tools for the creation of new
services by composing pre-made services. We envision that all devices in the In-
ternet of Things provide their functionalities as services. They can appear in any
kind of software-based Internet services. At run-time, they may be hosted on small
devices to powerful computing devices. Accordingly, referring to the software-
oriented architectures, service-based applications can be developed by composing
existing heterogeneous services that are hosted by autonomous and networked de-
vices. Hence, a new service is created by providing the new composite functionality
of the service-based application as a service.

The thesis proposes PMG-pro, a language-independent, bottom-up and model-
driven method for the development of service-based applications. In PMG-pro, a
service is defined as a model of a software unit. Thus, composing services can be
done in the similar way as with software composition system. For this, a service is
presented using a graphical service model and is connected to code that relates to
the implementation of the service models. Thus, a connected code can be seen as a
proxy to the real service that resides in a service provider.

In PMG-pro, a model of service-based applications is specified in collaboration
of service models. The model specifies which services are included (used) and how
they are interacting which each other. The used service models define the structure
of the composite services while the interactions between the service models define
the behavior of the service-based application. Here, PMG-pro facilitates the presen-
tation of run-time service models at design-time, so that they can be used to specify

131

132 CHAPTER 7. SUMMARY AND FUTURE WORK

models of service-based application. This is done by an automatic transformation
of a service description into a service model and code for service invocations, by
employing existing service frameworks and APIs.

Different modeling languages can be used to present existing (pre-made) service
at design-time. Accordingly, different programming languages also can be used to
implement the code for service invocations. The important thing to remember is
that we need to maintain the connection between the service models and the code
for service invocations. Here, the code is a real implementation of the service model
(a concept).

To demonstrate the PMG-pro method, parts of the method (the presentation and
code generation) has been prototyped and three case studies have been performed. It
was demonstrated how different modeling tools can be used for the development of
service-based applications, where two modeling tools (ARCTIS and Rational Rose)
were used.

We conclude that the use of model-driven development approach for the service
creation using existing heterogeneous services, can only be succeed if run-time ser-
vices can be presented as service models using notations/symbols that conforms to
a modeling language. At the same time, the service models must be connected to
the code that implements the service invocations. In this way, service developer can
uses the graphical service models to specify a new service (a type of service-based
application), while the code generator will select the appropriate code from the ser-
vice library. To be able to do this, service frameworks and APIs for implementing
the services invocations on device levels are required.

The PMG-prop method supports the three criteria of software development that
have been presented in the introduction chapter, in the following ways:

1. Exploring the reusability of existing services.
Component reuse is a key point of a rapid development method of software
systems. By developing automated service presenter/abstractors it would be
possible to use existing services at design-time. This can be achieved trans-
forming run-time service descriptions into service models at design-time.

In PMG-pro, the relation between service models and code is handled in the
service library. Ontology is used to construct more abstract service models.
With this, service composers can browse and compose services at different
abstraction levels. If all existing services that might have been implemented
using different technologies, are represented as graphical services models
they can be used for developing composite services. Hence, the automation of
service presentation enables the exploring the reusability of existing services.

7.2. Future Work 133

2. Handling device capability and configuration.
In order to achieve the automation of code generation, information about the
actual targeted platform (with a specific capabilities and configuration) is re-
quired. We have shown two ways of using the constructed platform models.
The first is to generate code for possible aggregated services in the ontology.
All possible device configurations would also support run-time adaptation in
case of services are removed or new services appear. The second possible
solution is to generate code only for the present (specific) services.

3. Managing the complexity so that service designers are shielded from
complexity.
Abstraction, both by the use of component-oriented development and model-
driven development approaches, has been used for many years as a mean of
managing the complexity of software system and their development. By com-
bining service-oriented system and model-driven development approaches,
PMG-pro provides a method for software modeling at high abstraction lev-
els, far away from the implementation details. Hence, service integrators are
shielded from the complexity.

Moreover, PMG-pro is language-independent. Different notations conform-
ing to selected modeling languages can be used to present services. Using
the selected modeling languages and editors, software developers can spec-
ify new service-based applications using collaboration activities or sequence
diagrams.

7.2 Future Work

PMG-pro supports for a rapid and automatic development composite services in
the Internet of services. With its flexibility, PMG-pro can use different modeling
techniques by considering that we can develop service presenters that present ser-
vices to the tools that implement different modeling techniques. Two prototypes
of service presenters for two different tools with two different modeling techniques
have been prototyped. The first is ARCTIS using collaboration activities modeling
techniques and the second one is Rational Rose using sequence diagrams modeling
techniques. However, the prototypes that have been developed only support UML
tools with XMI version 1.1 (Rational Rose) and XMI 2.1 (ARCTIS), and without
compatibility issues checking. To be more widely used, extending the PMG-pro
capability could be done.

134 CHAPTER 7. SUMMARY AND FUTURE WORK

The most important thing is developing an automated service categorization.
Categorization enables the manageability of services, which can help with the ser-
vice discoverability for the code generation. With this, a fully-automated and a
technology-independent method for service creation in the Internet of Services will
be in place. Moreover, the extension should be done for the following purposes:

1. Covering Different Existing Service Technologies
Service developers should be able to include different service description
technologies as a consequence of different ways of implementing service-
oriented architectures. Unfortunately, only a few service composition tech-
niques and language support for non-Web Services technology, while there
are available other service technologies that are potential to be included in
the development of heterogonous service-based applications. For this, ser-
vice presenters and abstractors for different services technologies should be
developed.

In the prototype of PMG-pro, new functionalities of service-based application
can be provided only as UPnP services. In the future we will extend to other
service technologies such as Web services, DPWS services, OSGi services
and any other service technologies.

2. Implementing more Service Presenters and Abstractors
A Text-to-Model (e.g., XML service description to UML) transformation is
important key for the success of the use of model-driven approach for the
development of composite services. On the other hand, different service pre-
senters and abstractors are needed for different modeling language. Currently,
the service presenter and abstractor supports only for two modeling languages
(i.e., UML and ARCTIS). To be able to use the method for many modeling
and programming languages, more service presenter and abstractor could be
developed.

3. Providing an Automated Service Presentation for End-users
From the end-user’s perspective, a service can be seen as provided functiona-
lity (i.e., at run-time) that can be used for their daily life. Since services are
embedded on the devices, with this perspective, a services composition can
be seen as a device composition. Here the service presentation in the PMG-
pro can contribute to the service presentation of run-time service to end-users.
An initial case study of presenting embedded services for end-users has been
done and published in the Proceeding of Conference on Information Techno-
logy and Electrical Engineering 2011 Yogyakarta, Indonesia. The case study

7.2. Future Work 135

is presented in Appendix E. However, since the case study was only for ICE,
we plan to extend to other end-users service compositions environment.

136 CHAPTER 7. SUMMARY AND FUTURE WORK

References 137

REFERENCES

[1] Ali Rezafard, Andras Vilmos, et.al. Internet of things : Strategic research
roadmap, 2009. Available at http://www.europa.eu/information. Last ac-
cessed at 20/09/2011.

[2] Rajeev Alur, Gerard J. Holzmann, and Doron Peled. An analyzer for message
sequence charts. Software - Concepts and Tools, 17(2):70–77, 1996.

[3] Uwe Assmann. Invasive software composition. Springer, April 2003.

[4] Luciano Baresi, Elisabetta Di Nitto, and Carlo Ghezzi. Toward open-world
software: Issue and challenges. Computer, 39:36–43, 2006.

[5] Mariano Belaunde and Paolo Falcarin. Realizing an mda and soa marriage
for the development of mobile services. In Ina Schieferdecker and Alan Hart-
man, editors, Model Driven Architecture Foundations and Applications, vol-
ume 5095 of Lecture Notes in Computer Science, pages 393–405. Springer
Berlin / Heidelberg, 2008. 10.1007/978-3-540-69100-6 28.

[6] H. Ben-Abdallah, S. Leue, University of Waterloo. Dept. of Electrical, and
Computer Engineering. Expressing and analyzing timing constraints in mes-
sage sequence chart specifications. Technical report (University of Waterloo.
Dept. of Electrical and Computer Engineering). Dept. of Electrical and Com-
puter Engineering, University of Waterloo, 1997.

[7] Gérard Berry. The foundations of Esterel, pages 425–454. MIT Press, Cam-
bridge, MA, USA, 2000.

[8] Jean Bézivin, Grégoire Dupé, Frédéric Jouault, Gilles Pitette, and Jamal Ed-
dine Rougui. First experiments with the ATL model transformation language:
Transforming XSLT into XQuery. In Proceeding of 2nd OOPSLA Workshop
on Generative Techniques in the context of Model Driven Architecture, 2003.

[9] Jean Bezivin, Slimane Hammoudi, Denivaldo Lopes, and Jouault Jouault.
Applying mda approach for web service platform. In Proceedings of the
Enterprise Distributed Object Computing Conference, Eighth IEEE Interna-
tional, pages 58–70, Washington, DC, USA, 2004. IEEE Computer Society.

[10] A.K. Bhattacharjee and R.K. Shyamasundar. Validated code generation for
activity diagrams. In Proceedings of Distributed Computing and Internet

138 Model-driven and Compositional Service Creation in the Internet of Services

Technology, volume 3816/2005 of LNCS, pages 508–521. Springer Berlin /
Heidelberg, 2005.

[11] Rolv Braek. MDA in perspective. In Proceedings of First European Work-
shop on Model Driven Architecture with Emphasis on Industrial Application,
Enschede, The Netherlands, March 2004. University of Twente.

[12] Egon Brger, Alessandra Cavarra, and Elvinia Riccobene. An asm semantics
for uml activity diagrams. In Teodor Rus, editor, Algebraic Methodology and
Software Technology, volume 1816 of Lecture Notes in Computer Science,
pages 293–308. Springer Berlin / Heidelberg, 2000. 10.1007/3-540-45499-
3-22.

[13] Manfred Broy, Christoph Hofmann, Ingolf Krüger, and Monika Schmidt. A
graphical description technique for communication in software architectures.
Technical Report TUM-I9705, Technische Univerität München, 1997.

[14] Nicholas Carriero. An implementation of Linda for a NUMA Machine. Par-
allel Computing, 24(7):1005–1021, 1998.

[15] Antonio Carzaniga, Elisabetta Di Nitto, David S. Rosenblum, and Alexan-
der L. Wolf. Issues in supporting event-based architectural styles. In Pro-
ceedings of the third international workshop on Software architecture, page
1720, Orlando, Florida, United States, 1998. ACM.

[16] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design
of a scalable event notification service: Interface and architecture. Techni-
cal Report CU-CS-863-98, Department of Computer Science, University of
Colorado at Boulder, USA, 1998.

[17] D. Chakraborty, Y. Yesha, and A. Joshi. A distributed service composition
protocol for pervasive environments. In Wireless Communications and Net-
working Conference, 2004. WCNC. 2004 IEEE, volume 4, page 25752580
Vol.4, Atlanta, Georgia USA, 2004. IEEE.

[18] Seung Mo Cho, Hyung Ho Kim, Sung Deok Cha, and Doo Hwan Bae. A
semantics of sequence diagrams. Information Processing Letters, 84(3):125
– 130, 2002.

[19] Franco Cicirelli, Angelo Furfaro, and Libero Nigro. Integration and inter-
operability between Jini services and Web services. In IEEE International

References 139

Conference on Services Computing, volume 0, pages 278–285, Los Alami-
tos, CA, USA, 2007. IEEE Computer Society.

[20] James Coplien, Daniel Hoffman, and David Weiss. Commonality and vari-
ability in software engineering. IEEE Software, 15:37–45, November 1998.

[21] D. Cotroneo, C. Di Flora, and S. Russo. A Jini framework for distributed
service flexibility. In Proceedings of the 10th Euromicro conference on
Parallel, distributed and network-based processing, EUROMICRO-PDP’02,
pages 109–116, Washington, DC, USA, 2002. IEEE Computer Society.

[22] Lorcan Coyle, Steve Neely, Graeme Stevenson, Mark Sullivan, Simon Dob-
son, and Paddy Nixon. Sensor fusion-based middleware for smart homes.
International Journal of Assistive Robotics and Mechatronics, 8(2):53–60,
2007.

[23] Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonso Fuggetta. The JEDI
Event-Based infrastructure and its application to the development of the
OPSS WFMS. IEEE Trans. Softw. Eng., 27(9):827850, 2001.

[24] W. Damm and D. Harel. Lscs: Breathing life into message sequence charts.
Technical report, Jerusalem, Israel, Israel, 1998.

[25] Elisabetta Di Nitto, Carlo Ghezzi, Andreas Metzger, Mike Papazoglou,
and Klaus Pohl. A journey to highly dynamic, self-adaptive service-
based applications. Automated Software Engineering, 15:313–341, 2008.
10.1007/s10515-008-0032-x.

[26] Christoph Eichner, Hans Fleischhack, Roland Meyer, Ulrik Schrimpf, and
Christian Stehno. Compositional semantics for uml 2.0 sequence diagrams
using petri nets. In Andreas Prinz, Rick Reed, and Jeanne Reed, editors, SDL
2005: Model Driven, volume 3530 of Lecture Notes in Computer Science,
pages 1260–1263. Springer Berlin / Heidelberg, 2005. 10.1007/11506843-9.

[27] Luc Engelen and Mark van den Brand. Integrating textual and graphical
modelling languages. Electron. Notes Theor. Comput. Sci., 253:105–120,
September 2010.

[28] Thomas Erl. Service-Oriented Architecture (SOA): Concepts, Technology,
and Design. Prentice Hall PTR, Upper Saddle River, NJ, USA, August 2005.

140 Model-driven and Compositional Service Creation in the Internet of Services

[29] Rik Eshuis and Roel Wieringa. A formal semantics for uml activity diagrams
- formalising workflow models, 2001.

[30] Rik Eshuis and Roel Wieringa. A formal semantics for UML Activity Di-
agrams - formalising workflow models. Technical Report TR-CTIT-01-04,
Enschede, 2001.

[31] Marcus Flehmig. Adaptive Service Grid (ASG) - toward an adaptive stateful
service environment. In Presented in Future Service Engineering meeting,
Brussel, 2005.

[32] UPnP Forum. UPnP standard, 2003. Available at http://www.upnp.org/. Last
accessed at 20/09/2011.

[33] UPnP Forum. Mediarenderer : Device template version 1.01,
2010. Available at http://upnp.org/specs/av/UPnP-av-MediaRenderer-v3-
Device.pdf. Last accessed at 20/09/2011.

[34] UPnP Forum. Mediaserver: Device template version 1.01, 2010. Avail-
able at http://upnp.org/specs/av/UPnP-av-MediaServer-v3-Device.pdf. Last
accessed at 20/09/2011.

[35] Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra. Integrating
formal methods with Model-Driven engineering. In Proceedings of Inter-
national Conference on Software Engineering Advances, pages 86–92, Los
Alamitos, CA, USA, 2009. IEEE Computer Society.

[36] James Goodwill. Apache Axis Live: A Web Services Tutorial. Sourcebeat,
December 2004.

[37] Juan Jos Pardo et.al Gregorio Daz. Automatic translation of ws-cdl chore-
ographies to timed automata. In Mario Bravetti, Lela Kloul, and Gianluigi
Zavattaro, editors, EPEW/WS-FM, volume 3670 of LNCS, pages 230–242.
Springer, 2005.

[38] Fenglin Han, Surya B. Kathayat, Hien Nam Le, Rolv Brk, and Peter Her-
rman. Towards choreography model transformation via graph transforma-
tion. In IEEE Conference on Software Engineering and Service Science,
ICSESS 2011., Beijing, China, 07/2011 2011. IEEE, IEEE.

[39] Zef Hemel, Lennart C. L. Kats, and Eelco Visser. Code Generation by Mo-
del Transformation. A Case Study in Transformation Modularity. In J. Gray,

References 141

A. Pierantonio, and A. Vallecillo, editors, Proceeding of International Con-
ference on Model Transformation (ICMT 2008), volume 5063 of LNCS, page
183198. Springer, June 2008.

[40] IBM. Service component architecture.
http://www.ibm.com/developerworks/ library/specification/ws-sca/, Novem-
ber 2006.

[41] IBM. Business process execution language for web services version 1.1.
http://www.ibm.com/developerworks/library/specification/ws-bpel/, Febru-
ary 2007.

[42] ITU. Press release 15 february 2010 - International Telecommunication
Union. Technical report, International Telecommunication Union, 2010.

[43] ITU-TS. Recommendation z.120: Message sequence chart-annex b: For-
mal semantics of message sequence chart. Technical report, International
Telecommunication Union, 1998.

[44] ITU-TS. Recommendation z.120: Message sequence chart (msc). Technical
report, International Telecommunication Union, 2004.

[45] Sun Java. Getting started with SunSPOTs, 2008. Available at
http://www.sunspotworld.com/about.html. Last accessed at 20/09/2011.

[46] Michael Jeronimo and Jack Weast. UPnP Design by Example: A Software
Developer’s Guide to Universal Plug and Play. Intel Press, May 2003.

[47] Shanshan Jiang. Some Service Issues in Adaptable Service Systems. PhD the-
sis, Norwegian University of Science and Technology, Department of Telem-
atics, 2008.

[48] Li JiZhe and Yuan YongJun. Research and Implementation of Lightweight
ESB with Microsoft .NET. Japan-China Joint Workshop on Frontier of Com-
puter Science and Technology, 0:455–459, 2009.

[49] G. Kapitsaki, D.A. Kateros, I.E. Foukarakis, G.N. Prezerakos, D.I. Kakla-
mani, and I.S. Venieris. Service composition: State of the art and future
challenges. In Mobile and Wireless Communications Summit, 2007. 16th
IST, page 15, Budapest, HUngary, 2007. IEEE.

[50] Jens Khner. Expert .NET Micro Framework (Expert). APress, 2008.

142 Model-driven and Compositional Service Creation in the Internet of Services

[51] Cédric Kiss. Composite capabilities/preference profiles: Structure and vo-
cabularies 2.0. Technical report, W3C, 2007.

[52] Satoshi Konno. Cyberlink for java programming guide v.1.3, 2005. Available
at http://www.cybergarage.org/twiki/bin/view/Main/CyberLinkForJava. Last
accessed at 20/09/2011.

[53] Frank Alexander Kraemer, Rolv Bræk, and Peter Herrmann. Compositional
Service Engineering with Arctis. Telektronikk, 105(2009.1), 2009.

[54] Frank Alexander Kraemer and Peter Herrmann. Transforming Collaborative
Service Specifications into Efficiently Executable State Machines. In Karsten
Ehring and Holger Giese, editors, Proceedings of the 6th International Work-
shop on Graph Transformation and Visual Modeling Techniques (GT-VMT
2007), volume 7 of Electronic Communications of the EASST. EASST, 2007.

[55] Frank Alexander Kraemer, Peter Herrmann, and Rolv Bræk. Aligning
UML 2.0 State Machines and Temporal Logic for the Efficient Execution of
Services. In R. Meersmann and Z. Tari, editors, Proceedings of the 8th Inter-
national Symposium on Distributed Objects and Applications (DOA), 2006,
Montpellier, France, volume 4276 of Lecture Notes in Computer Science,
pages 1613–1632. Springer–Verlag Heidelberg, 2006.

[56] Frank Alexander Kraemer, Vidar Slåtten, and Peter Herrmann. Model-Driven
Construction of Embedded Applications based on Reusable Building Blocks
– An Example. In Attila Bilgic, Reinhard Gotzhein, and Rick Reed, editors,
SDL 2009, volume 5719 of Lecture Notes in Computer Science, pages 1–18.
Springer-Verlag Berlin Heidelberg, 2009.

[57] Frank Alexander Kraemer, Vidar Slåtten, and Peter Herrmann. Tool Sup-
port for the Rapid Composition, Analysis and Implementation of Reactive
Services. Journal of Systems and Software, 82(12):2068–2080, December
2009.

[58] Peter B. Ladkin and Stefan Leue. Interpreting message flow graphs. Formal
Aspects of Computing, 7, 1995.

[59] Xiaoshan Li, Zhiming Liu, and H. Jifeng. A formal semantics of uml se-
quence diagram. In Software Engineering Conference, 2004. Proceedings.
2004 Australian, pages 168 – 177, 2004.

References 143

[60] J.M. Marquez, J. Alamo, and J.A. Ortega. Distributing OSGi services: The
OSIRIS domain connector. In Proceedings of the Fourth International Con-
ference on Networked Computing and Advanced Information Management,
2008. NCM ’08., volume 1, pages 341–346, 2008.

[61] Mari Matinlassi. Comparison of Software Product Line Architecture Design
Methods: COPA, FAST, FORM, KobrA and QADA. In Proceedings of the
26th International Conference on Software Engineering (ICSE ’04), pages
127–136, Washington DC, USA, 2004. IEEE Computer Society.

[62] Doug McIlroy. Mass-Produced software components. In Proceedings of the
1st International Conference on Software Engineering, pages 98, 88, 1968.

[63] Geir Melby and Rolv Braek. Delivery of convergent telecom services on
J2EE platforms. In Proceeding of International Conference on Intellegence
in Servce Delivery Networks, 2004.

[64] Stephen J. Mellor, Kendall Scott, and Dirk Weise. MDA distilled. Addison-
Wesley, 2004.

[65] Frank Alexander Kræmer. Arctis and Ramses: Tool suites for rapid ser-
vice engineering. In Proceedings of NIK 2007 (Norsk informatikkonferanse),
Oslo, Norway, Oslo, 2007. Tapir Akademisk Forlag.

[66] Frank Alexander Kræmer. Engineering Reactive Systems: A Compositional
and Model-Driven Method Based on Collaborative Building Blocks. PhD
thesis, Norwegian University of Science and Technology, Trondheim, August
2008.

[67] M. Merabti, P. Fergus, O. Abuelma’atti, H. Yu, and C. Judice. Managing dis-
tributed networked appliances in home networks. Proceedings of the IEEE,
96(1):185, 166, 2008.

[68] Gail C. Murphy, David Notkin, and Kevin Sullivan. Software reflexion mo-
dels: bridging the gap between source and high-level models. In Proceedings
of the 3rd ACM SIGSOFT symposium on Foundations of software engineer-
ing, SIGSOFT ’95, pages 18–28, New York, NY, USA, 1995. ACM.

[69] Eric Newcomer. Understanding Web Services: XML, WSDL, SOAP, and
UDDI. Addison-Wesley Professional, dimensions: 7-3/8x9-1/4 edition, May
2002.

144 Model-driven and Compositional Service Creation in the Internet of Services

[70] Roy Grønmo and Birger Møller-Pedersen. From sequence diagrams to state
machines by graph transformation. In Laurence Tratt and Martin Gogolla,
editors, Theory and Practice of Model Transformations, volume 6142 of
LNCS, pages 93–107. Springer Berlin / Heidelberg, 2010. 10.1007/978-3-
642-13688-7 7.

[71] Roy Grønmo, David Skogan, Ida Solheim, and Jon Oldevik. Model-Driven
web services development. In Proceedings of International Conference on
e-Technology, e-Commerce, and e-Services, volume 0, pages 42–45, Los
Alamitos, CA, USA, 2004. IEEE Computer Society.

[72] Josef Noll, Sarfraz Alam, and Mohammad M. R. Chowdhury. Integrating
mobile devices into semantic services environments. In Proceedings of the
2008 The Fourth International Conference on Wireless and Mobile Commu-
nications, pages 137–143, Washington, DC, USA, 2008. IEEE Computer
Society.

[73] OASIS. OASIS reference model for service oriented ar-
chitecture (SOA), 2006. Available at http://www.oasis-
open.org/committees/download.php/19679/soa-rm-cs.pdf. Last accessed at
20/09/2011.

[74] OASIS. Devices profile for web services version 1.1. Technical report, OA-
SIS, 2009.

[75] Jon Oldevik, Tor Neple, Roy Grønmo, Jan Aagedal, and Arne-J. Berre. To-
ward standardised model to text transformations. In Model Driven Archi-
tecture Foundations and Applications, volume 3748/2005 of LNCS, pages
239–253. Springer Berlin / Heidelberg, 2005.

[76] OMG. Model-Driven Architecture guide, version 1.0.1, June 2003. Avail-
able at http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf. Last accessed at
20/09/2011.

[77] OMG. CORBA Component Model specification, v4.0, 2004. Avail-
able at http://www.omg.org/cgi-bin/doc?formal/06-04-01. Last accessed at
20/09/2011.

[78] OMG. Meta object facility (MOF) 2.0 Query/View/Transformation spec-
ification final adopted speci- fication ptc/05-11-01, 2005. Available at
http://www.omg.org/docs/ptc/05-11-01.pdf. Last accessed at 20/09/2011.

References 145

[79] OMG. Service oriented architecture Modeling Language (SoaML) :
Specification for the UML Profile and Metamodel for Services (UPMS),
2009. Available at http://www.omg.org/cgi-bin/doc?ptc/09-04-01.pdf. Last
accessed at 20/09/2011.

[80] OMG. Unified Modeling Language specification, version 2.2, 2009. Avail-
able at http://www.omg.org/technology/documents/formal/uml.htm. Last ac-
cessed at 20/09/2011.

[81] OMG. Systems Modeling Language (SysML) 1.2, June 2010. Available at
http://www.omg.org/spec/SysML/1.2/PDF. Last accessed at 20/09/2011.

[82] Chun Ouyang, Eric Verbeek, Wil M. P van der Aalst, Stephan Breutel, Mar-
lon Dumas, and Arthur H. M ter Hofstede. Formal semantics and analysis
of control flow in WS-BPEL. Science of Computer Programming, 67(2-
3):162198, 2007.

[83] Dimitri Papadimitriou. Future Internet: The Cross-ETP Vision Document.
Technical Report Version 1.0, European Future Internet Assembly, FIA,
2009.

[84] Andy D. Pimentel. The artemis workbench for system-level performance
evaluation of embedded systems. IJES, 3(3):181–196, 2008.

[85] Terry Quatrani. Visual modeling with Rational Rose 2000 and UML (2nd
ed.). Addison-Wesley Longman Ltd., Essex, UK, UK, 2000.

[86] Daniel Retkowitz and Monika Pienkos. Ontology-based configuration of
adaptive smart homes. In Proceedings of the 7th workshop on Reflective and
adaptive middleware, ARM ’08, pages 11–16, New York, NY, USA, 2008.
ACM.

[87] Ioanna Roussaki, Ioannis Papaioannou, Dimitrios Tsesmetzis, Julia Kan-
torovitch, Jarmo Kalaoja, and Remco Poortinga. Ontology based service
modelling for composability in smart home environments. In Max Mhlhuser,
Alois Ferscha, and Erwin Aitenbichler, editors, Constructing Ambient In-
telligence, volume 11 of Communications in Computer and Information Sci-
ence, pages 411–420. Springer Berlin Heidelberg, 2008. 10.1007/978-3-540-
85379-4-47.

[88] Johannes Sametinger. Software engineering with reusable components.
Springer-Verlag New York, Inc., New York, NY, USA, 1997.

146 Model-driven and Compositional Service Creation in the Internet of Services

[89] Sancho. Definition for the term (software) service, sector abbreviations and
definitions for a telecommunications thesaurus oriented database, ITU-T,
2009. http://www.itu.int/sancho.

[90] Pierre Audoin Consultants SAS. Economic and social impact of software and
software based services. Technical report, Pierre Audoin Consultants SAS,
2010.

[91] Selo Sulistyo. An automated services presentation method for supporting
end-user compositions. In Proceeding of Proceeding of Conference on Infor-
mation Technology and Electrical Engineering 2011, volume 2. IEEE Press,
2010.

[92] Selo Sulistyo. Model-based approaches for the development of event-based
systems using embedded services. In Proceeding of 2nd International Con-
ference on Computer Technology and Development (ICCTD), pages 591 –
596, 2010.

[93] Selo Sulistyo. Presenting reusable service models in model-driven service
engineering. In Proceeding of International Conference on Future Informa-
tion Technology - ICFIT 2010, volume 2. IEEE Press, 2010.

[94] Selo Sulistyo and Andreas Prinz. Model-Driven development approach for
providing smart home services. In Ambient Assistive Health and Wellness
Management in the Heart of the City, volume 5597/2009 of LNCS, pages
274–277. Springer Berlin / Heidelberg, Tours, France, 2009.

[95] Selo Sulistyo and Andreas Prinz. Recursive modeling for completed code
generation. In Proceedings of 1st Workshop on Behavior Modeling in Model-
Driven Architecture, volume 1, pages 1–7, Enschede, The Netherlands, 2009.
ACM New York, NY, USA.

[96] Selo Sulistyo and Andreas Prinz. Model-driven approaches for service-based
applications development. In Proceeding of 5th International Conference on
Software and Data Technologies (ICSOFT 2010), volume 1, Piraeus, Greece,
2010. SciTePress. Portugal.

[97] Selo Sulistyo and Andreas Prinz. PMG-pro: a model-driven method for the
development of service-based applications in a heterogeneous services envi-
ronment. In Proceeding of IEEE International Conference on Software En-
gineering and Service Sciences (ICSESS), 2010, volume 5, pages 111–114,
Beijing, China, 2010. IEEE Press.

References 147

[98] Selo Sulistyo and Andreas Prinz. PMG-pro: A model-driven method for
the development of service based applications. In Proceeding of 15th Inter-
national Conference on System Design Languages: Integrating system and
software modeling, volume 7083/2011 of LNCS, pages 136–151. Springer
Berlin / Heidelberg, Toulouse, France, 2011.

[99] Yu Sun, Zekai Demirezen, Marjan Mernik, Jeff Gray, and Barrett Bryant.
Is my DSL a modeling or programming language? In Proceedings of 2nd
International Workshop on Domain-Specific Program Development (DSPD),
Nashville, Tennessee, 2008.

[100] York Sure. The internet of services. In International Conference on Ontolo-
gies, DataBases, and Applications of SEmantics (ODBASE2007), 2007.

[101] Clemens Szyperski. Component Software: Beyond Object-Oriented Pro-
gramming (2nd Edition). Addison-Wesley Professional, 2 edition, November
2002.

[102] The Open Mobile Alliance Team. User agent profile 2.0. Technical report,
Open Mobile Alliance, 2007.

[103] The SeCSE Team. Designing and deploying service-centric systems: the
SeCSE way. In Proceedings of the Service Oriented Computing: a look at
the Inside (SOC @Inside’07), 2007.

[104] Simela Topouzidou. Service oriented development in a unified framework
(SODIUMCSE). Deliverable CD-JRA-1.1.2, SODIUM Consortium, May
2007.

[105] International Telecommunication Union. The internet of things - executive
summary, 2005. Available at http://www.itu.int/ osg/spu/publications/inter-
netofthings/InternetofThingssummary.pdf. Last accessed at 20/09/2011.

[106] Willem-Jan van den Heuvel, Olaf Zimmermann, and et.al. Software service
engineering: Tenets and challenges. In Proceedings of the 2009 ICSE Work-
shop on Principles of Engineering Service Oriented Systems, PESOS ’09,
pages 26–33, Washington, DC, USA, 2009. IEEE Computer Society.

[107] V. Vitolins and A. Kalnins. Semantics of uml 2.0 activity diagram for busi-
ness modeling by means of virtual machine. In EDOC Enterprise Computing
Conference, 2005 Ninth IEEE International, pages 181 – 192, sept. 2005.

148 Model-driven and Compositional Service Creation in the Internet of Services

[108] J. White, D.C. Schmidt, E. Wuchner, and A. Nechypurenko. Automating
product-line variant selection for mobile devices. In Software Product Line
Conference, 2007. SPLC 2007. 11th International, pages 129 –140, 2007.

[109] Chao-Lin Wu, Chun-Feng Liao, and Li-Chen Fu. Service-oriented smart-
home architecture based on OSGi and mobile-agent technology. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part C: Applications and Re-
views, 37(2):193 –205, 2007.

[110] Xiaomeng Su, Reidar Martin Svendsen, et.al . Description of the ISIS Ecosys-
tem Towards an Integrated Solution to Internet of Things. Telenor Group
Corporate Development, 2010.

[111] Jingjing Xu, Yann-Hang Lee, Wei-Tek Tsai, Wu Li, Young-Sung Son, Jun-
Hee Park, and Kyung-Duk Moon. Ontology-based smart home solution and
service composition. In Embedded Software and Systems, 2009. ICESS ’09.
International Conference on, pages 297 –304, may 2009.

[112] William Yeager and Joseph Williams. Secure peer-to-peer networking: The
jxta example. IT Professional, 4:53–57, 2002.

[113] Kostyantyn Yermashov. Software Composition with Templates. PhD Thesis,
De Montfort University, UK, 2008.

[114] L. Youseff, M. Butrico, and D. Da Silva. Toward a Unified Ontology of
Cloud Computing. In Grid Computing Environments Workshop, 2008. GCE
’08, pages 1–10, Nov 2008.

[115] Elmar Zeeb, Andreas Bobek, Hendrik Bohn, and et.al. WS4D: SOA-Toolkits
making embedded systems ready for web services. In Proceedings of Second
International Workshop on Open Source Software and Product Lines, page
3342, Limerick, 2007. ITEA.

[116] Simon Znaty and Jean-Pierre Hubaux. Telecommunications services engi-
neering: Principles, architectures and tools. In Object-Oriented Technologys,
volume 1357/1998 of LNCS, pages 3–10. Springer Berlin / Heidelberg, 1998.

Appendix A

List of Publications

During the period of thesis work, together with the supervisor, the author of this
thesis has published several publications in conference proceedings.

1. Sulistyo, S., An Automated Services Presentation Method for Support-
ing End-user Compositions. In Proceeding of International Conference on
Information Technology and Electrical Engineering, July 28th, 2011, Yo-
gyakarta, Indonesia. ISBN: 979-97956-0-7 (2011)

2. Sulistyo, S., Prinz, A. PMG-pro: A Model-driven Development Method of
Service-based Applications. In Proceeding of 15th International Conference
on System Design Languages: Integrating system and software modeling,
Toulouse, France. LNCS Volume 7083, pp. 136–151. Springer, Heidelberg
(2011).

3. Sulistyo, S., Prinz, A. Model-driven Approaches for Service-based Ap-
plications Development. In Proceeding of 5th International Conference on
Software and Data Technologies (ICSOFT 2010), July 22-24,2010, Piraeus,
Athen, Greece. SciTePress. Portugal. ISBN: 978-989-8425-23-2 (2010)

4. Sulistyo, S., Prinz, A. PMG-pro: A Model-driven Method for the Develop-
ment of Service-based Applications in a Heterogeneous Services Environ-
ment. In: Proceeding of IEEE International Conference on Software Engi-
neering and Service Sciences (ICSESS), July 16-18, Beijing, China. IEEE
Press. ISBN: 978-1-4244-6053-3 (2010)

5. Sulistyo, S., Prinz, A. Systems, Models and Languages. In: Proceeding
of IEEE 3rd International Conference on Advanced Computer Theory and
Engineering (ICACTE 2010), August 20-22, Chengdu, China. IEEE Press.
ISBN: 978-1-4244-6540-8, ISSN: 2154-7491 (2010)

149

150 Publications

6. Sulistyo, S. 2010. Presenting Reusable Service Models in Model-driven
Service Engineering. In:Proceeding of 2010 International Conference on
Future Information Technology (ICFIT), 14-15 December 2010. ISBN: 978-
1-4244-8370-9. (2010)

7. Sulistyo, S. Model-based Approaches for the Development of Event-based
Systems Using Embedded Services. In: Proceeding of 2nd International
Conference on Computer Technology and Development, Cairo, Egypt. No-
vember 2-4, ISBN: 978-1-4244-8843-8. (2010)

8. Sulistyo, S. and Prinz, A. Recursive modeling for completed code genera-
tion, In: Proceedings of the 1st Workshop on Behaviour Modelling in Model-
Driven Architecture, Enschede, The Netherlands, ed: ACM New York, USA
ISBN: 978-1-60558-503-1 (2009)

9. Sulistyo, S., and A. Prinz, A.Model-Driven Development Approach for
Providing Smart Home Services, In: Proceeding of Ambient Assistive Health
and Wellness Management in the Heart of the City. LNCS Volume 5597/2009,
ed: Springer Berlin / Heidelberg, 2009, pp. 274-277. ISBN: 978-3-642-
02867-0 (2009)

Additionally, the author has been collobarated with another PhD student focusing
on the perfomance of security algorithms on small devices. The author took part on
the implementation of sofware embedded systems. The collaboration has produced
two publications.

• Yi Ren, Vladimir Oleshchuk, Frank Y. Li, and Selo Sulistyo, SCARKER: a
Sensor Capture Resistance and Key Refreshing Scheme for Mobile WSNs.
In Proceeding of the 36th IEEE Conference on Local Computer Networks
(LCN), Bonn, Germany, 4-7 October 2011 (2011).

• Yi Ren, Vladimir Oleshchuk, Frank Y. Li and Selo Sulistyo, ”FoSBaS: A
Bi-directional Secrecy and Collusion Resilience Key Management Scheme
for BANs”. Accepted for publication in IEEE Wireless Communications and
Networking Conference (WCNC 2012), Paris, France, 1-4 April 2012 (2012).

Appendix B

UPnP Light Service Description

B.1 Device Description.xml
<?xml version="1.0" encoding="utf-8"?>

<root xmlns="urn:schemas-upnp-org:device-1-0">

<specVersion>

<major>1</major>

<minor>0</minor>

</specVersion>

<device>

<deviceType>urn:schemas-upnp-org:device:BinaryLight:1</deviceType>

<presentationURL>/</presentationURL>

<friendlyName>Light (AUB30307-LAD830)</friendlyName>

<manufacturer>Intel Corporation</manufacturer>

<manufacturerURL>http://www.intel.com</manufacturerURL>

<modelDescription>Software Emulated Light Bulb</modelDescription>

<modelName>Intel CLR Emulated Light Bulb</modelName>

<modelNumber>XPC-L1</modelNumber>

<modelURL>http://www.intel.com/xpc</modelURL>

<UDN>uuid:c67c29a2-671f-41e7-8152-eef45096bad4</UDN>

<iconList>

<icon>

<mimetype>image/png</mimetype>

<width>32</width>

<height>32</height>

<depth>32</depth>

<url>/icon.png</url>

</icon>

<icon>

<mimetype>image/jpg</mimetype>

<width>32</width>

<height>32</height>

<depth>32</depth>

<url>/icon.jpg</url>

</icon>

</iconList>

<serviceList>

<service>

<serviceType>urn:schemas-upnp-org:service:DimmingService:1</serviceType>

<serviceId>urn:upnp-org:serviceId:DimmingService.$0001</serviceId>

<SCPDURL>_urn:upnp-org:serviceId:DimmingService.0$001_scpd.xml</SCPDURL>

151

152 UPnP Light Service Description

<controlURL>_urn:upnp-org:serviceId:DimmingService.$0001_control</controlURL>

<eventSubURL>_urn:upnp-org:serviceId:DimmingService.$0001_event</eventSubURL>

</service>

<service>

<serviceType>urn:schemas-upnp-org:service:SwitchPower:1</serviceType>

<serviceId>urn:upnp-org:serviceId:SwitchPower.$0001</serviceId>

<SCPDURL>_urn:upnp-org:serviceId:SwitchPower.$0001_scpd.xml</SCPDURL>

<controlURL>_urn:upnp-org:serviceId:SwitchPower.$0001_control</controlURL>

<eventSubURL>_urn:upnp-org:serviceId:SwitchPower.$0001_event</eventSubURL>

</service>

</serviceList>

</device>

</root>

B.2 Dimming Service Description.xml
<?xml version="1.0" encoding="utf-8"?>

<scpd xmlns="urn:schemas-upnp-org:service-1-0">

<specVersion>

<major>1</major>

<minor>0</minor>

</specVersion>

<actionList>

<action>

<name>GetLoadLevelStatus</name>

<argumentList>

<argument>

<name>RetLoadLevelStatus</name>

<direction>out</direction>

<relatedStateVariable>LoadLevelStatus</relatedStateVariable>

</argument>

</argumentList>

</action>

<action>

<name>GetMinLevel</name>

<argumentList>

<argument>

<name>MinLevel</name>

<direction>out</direction>

<relatedStateVariable>MinLevel</relatedStateVariable>

</argument>

</argumentList>

</action>

<action>

<name>SetLoadLevelTarget</name>

<argumentList>

<argument>

<name>NewLoadLevelTarget</name>

<direction>in</direction>

<relatedStateVariable>LoadLevelTarget</relatedStateVariable>

</argument>

</argumentList>

</action>

</actionList>

<serviceStateTable>

<stateVariable sendEvents="yes">

<name>LoadLevelStatus</name>

UPnP Light Service Description 153

<dataType>ui1</dataType>

<allowedValueRange>

<minimum>0</minimum>

<maximum>100</maximum>

</allowedValueRange>

</stateVariable>

<stateVariable sendEvents="no">

<name>MinLevel</name>

<dataType>ui1</dataType>

</stateVariable>

<stateVariable sendEvents="no">

<name>LoadLevelTarget</name>

<dataType>ui1</dataType>

<allowedValueRange>

<minimum>0</minimum>

<maximum>100</maximum>

</allowedValueRange>

</stateVariable>

</serviceStateTable>

</scpd>

B.3 Switch Power Service Description.xml
<?xml version="1.0" encoding="utf-8"?>

<scpd xmlns="urn:schemas-upnp-org:service-1-0">

<specVersion>

<major>1</major>

<minor>0</minor>

</specVersion>

<actionList>

<action>

<name>GetStatus</name>

<argumentList>

<argument>

<name>ResultStatus</name>

<direction>out</direction>

<relatedStateVariable>Status</relatedStateVariable>

</argument>

</argumentList>

</action>

<action>

<name>SetTarget</name>

<argumentList>

<argument>

<name>newTargetValue</name>

<direction>in</direction>

<relatedStateVariable>Target</relatedStateVariable>

</argument>

</argumentList>

</action>

</actionList>

<serviceStateTable>

<stateVariable sendEvents="yes">

<name>Status</name>

<dataType>boolean</dataType>

</stateVariable>

<stateVariable sendEvents="no">

154 UPnP Light Service Description

<name>Target</name>

<dataType>boolean</dataType>

</stateVariable>

</serviceStateTable>

</scpd>

Appendix C

XMI Representation of ARCTIS
Building Blok of UPnP Light

C.1 ARCTIS building block
The ARCTIS building block of UPnP Light service is shown in Figure C.1. All
UPnP actions are transformed into parameter inputs while the State Variables, which
has invented is true, are transformed into parameter outputs. In addition, all get
actions are also transformed into paramater output event. The parameter is taken
from the name of argument type of ’out’.

Figure C.1: An ARCTIS building block is used to represent run-time UPnP
Light services, see also Figure 4.7

C.2 The XMI file
<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.1" xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:arctis="http:///schemas/arctis/_WFTqUHjGEdyxtoUMycQn9Q/10"

xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore"

xmlns:graphics="http:///schemas/graphics/_gd9EwIuAEdytfOWtpACIqw/6"

155

156 XMI ARCTIS

xmlns:uml="http://www.eclipse.org/uml2/2.1.0/UML"

xsi:schemaLocation="http:///schemas/arctis/_WFTqUHjGEdyxtoUMycQn9Q/10

pathmap://ARCTIS_PROFILES/arctis.profile.uml#_WFTqUXjGEdyxtoUMycQn9Q

http:///schemas/graphics/_gd9EwIuAEdytfOWtpACIqw/6 pathmap://RAMSES_GRAPHIC_PROFILES/

no.ntnu.item.ramses.graphicprofile.uml#_geG1wIuAEdytfOWtpACIqw">

<uml:Package xmi:id="_sPNt8LymEd6VCq2W8FCNPQ" name="no.uia.isis.runtimeupnp.light">

<packagedElement xmi:type="uml:Activity" xmi:id="_sPgo4LymEd6VCq2W8FCNPQ"

name="UPnPLight" classifierBehavior="_sd0KoLymEd6VCq2W8FCNPQ"

partition="_sPgo4bymEd6VCq2W8FCNPQ">

<ownedBehavior xmi:type="uml:StateMachine"

xmi:id="_sd0KoLymEd6VCq2W8FCNPQ" name="UPnPLight">

<region xmi:id="_sd97oLymEd6VCq2W8FCNPQ" name="<region>">

<subvertex xmi:type="uml:Pseudostate"

xmi:id="_seHFkLymEd6VCq2W8FCNPQ" name="<initial>"/>

<subvertex xmi:type="uml:State" xmi:id="_4M_HgLymEd6VCq2W8FCNPQ" name="on"/>

<subvertex xmi:type="uml:State" xmi:id="_cAMFILynEd6VCq2W8FCNPQ" name="off"/>

<transition xmi:id="_4MYqkLymEd6VCq2W8FCNPQ" name="setTarget/Status"

target="_cAMFILynEd6VCq2W8FCNPQ" source="_4M_HgLymEd6VCq2W8FCNPQ"/>

<transition xmi:id="_b_vZMLynEd6VCq2W8FCNPQ" name="setTarget/Status"

target="_4M_HgLymEd6VCq2W8FCNPQ" source="_cAMFILynEd6VCq2W8FCNPQ"/>

<transition xmi:id="_OhaZkLysEd6VCq2W8FCNPQ" name="setTarget/Status"

target="_4M_HgLymEd6VCq2W8FCNPQ" source="_4M_HgLymEd6VCq2W8FCNPQ"/>

<transition xmi:id="_lHRzMLysEd6VCq2W8FCNPQ" name="setTarget/Status"

target="_cAMFILynEd6VCq2W8FCNPQ" source="_cAMFILynEd6VCq2W8FCNPQ"/>

</region>

</ownedBehavior>

<ownedOperation xmi:id="_58oDsbynEd6VCq2W8FCNPQ" name="getArgument"/>

<ownedOperation xmi:id="_dSFqgbyqEd6VCq2W8FCNPQ" name="getStatus"/>

<ownedOperation xmi:id="_gIxjwLyqEd6VCq2W8FCNPQ" name="setLoadLevelTarget"/>

<ownedOperation xmi:id="_hdQqcbyqEd6VCq2W8FCNPQ" name="setTarget"/>

<ownedOperation xmi:id="_ksY44LyqEd6VCq2W8FCNPQ" name="sendMinLevel"/>

<ownedOperation xmi:id="_u17UsbyqEd6VCq2W8FCNPQ" name="sendStatus"/>

<ownedOperation xmi:id="_xdRKYbyqEd6VCq2W8FCNPQ" name="sendLoadLevelStatus"/>

<ownedParameter xmi:id="_B301ILynEd6VCq2W8FCNPQ" name="setTarget"

type="_0KLj8LynEd6VCq2W8FCNPQ" isStream="true"/>

<ownedParameter xmi:id="_DGzJsLynEd6VCq2W8FCNPQ" name="setLoadLevelTarget"

type="_ytWZkLynEd6VCq2W8FCNPQ" isStream="true"/>

<ownedParameter xmi:id="_Eq718LynEd6VCq2W8FCNPQ" name="getMinLevel"

type="_ytWZkLynEd6VCq2W8FCNPQ" isStream="true"/>

<ownedParameter xmi:id="_GLpawLynEd6VCq2W8FCNPQ" name="getLoadLevelStatus"

type="_0KLj8LynEd6VCq2W8FCNPQ" isStream="true"/>

<ownedParameter xmi:id="_G-nIwLynEd6VCq2W8FCNPQ" name="getStatus"

type="_63LSIO_FEd6VUYZjXdLT1w" isStream="true"/>

<ownedParameter xmi:id="_WDb2ALyrEd6VCq2W8FCNPQ" name="Status"

direction="out" isStream="true"/>

<ownedParameter xmi:id="_XZ3dcLyrEd6VCq2W8FCNPQ" name="loadLevelStatus"

direction="out" isStream="true"/>

<ownedParameter xmi:id="_fbMlYEkuEd-L3Z94OHHEpA" name="resultStatus"

direction="out" isStream="true"/>

<ownedParameter xmi:id="_kC1e4EkuEd-L3Z94OHHEpA" name="minLevel"

direction="out" isStream="true"/>

<ownedParameter xmi:id="_mkqicEkuEd-L3Z94OHHEpA" name="retLoadLevelStatus"

direction="out" isStream="true"/>

<variable xmi:id="_qVNC4LynEd6VCq2W8FCNPQ" name="target" type="_0KLj8LynEd6VCq2W8FCNPQ"/>

<variable xmi:id="_rjbwkLynEd6VCq2W8FCNPQ" name="status" type="_0KLj8LynEd6VCq2W8FCNPQ"/>

<variable xmi:id="_swxGYLynEd6VCq2W8FCNPQ"

XMI ARCTIS 157

name="loadLevelStatus" type="_ytWZk LynEd6VCq2W8FCNPQ"/>

<variable xmi:id="_swxGYLynEd6VCq2W8FCNPQ"

name="LoadLevelStatus" type="_ytWZk LynEd6VCq2W8FCNPQ"/>

<variable xmi:id="_uXJOULynEd6VCq2W8FCNPQ"

name="LoadLevelTarget" type="_ytWZkLynEd6VCq2W8FCNPQ"/>

<variable xmi:id="_v2zqQLynEd6VCq2W8FCNPQ"

name="MinLevel" type="_ytWZkLynEd6VCq2W8FCNPQ"/>

<node xmi:type="uml:ActivityParameterNode" xmi:id="_B2yTULynEd6VCq2W8FCNPQ"

name="setTarget" outgoing="_4paoALyqEd6VCq2W8FCNPQ"

inPartition="_sPgo4bymEd6VCq2W8FCNPQ" type="_0KLj8LynEd6VCq2W8FCNPQ"

parameter="_B301ILynEd6VCq2W8FCNPQ"/>

<node xmi:type="uml:ActivityParameterNode" xmi:id="_DFm24LynEd6VCq2W8FCNPQ"

name="setLoadLevelTarget" outgoing="_4LBb0LyqEd6VCq2W8FCNPQ"

inPartition="_sPgo4bymEd6VCq2W8FCNPQ" type="_ytWZkLynEd6VCq2W8FCNPQ"

parameter="_DGzJsLynEd6VCq2W8FCNPQ"/>

<node xmi:type="uml:ActivityParameterNode" xmi:id="_Ep5UILynEd6VCq2W8FCNPQ"

name="getMinLevel" outgoing="_4aXfYLyqEd6VCq2W8FCNPQ"

inPartition="_sPgo4bymEd6VCq2W8FCNPQ" type="_ytWZkLynEd6VCq2W8FCNPQ"

parameter="_Eq718LynEd6VCq2W8FCNPQ"/>

<node xmi:type="uml:ActivityParameterNode" xmi:id="_GKdH8LynEd6VCq2W8FCNPQ"

name="getLoadLevelStatus" outgoing="_38HdILyqEd6VCq2W8FCNPQ"

inPartition="_sPgo4bymEd6VCq2W8FCNPQ" type="_0KLj8LynEd6VCq2W8FCNPQ"

parameter="_GLpawLynEd6VCq2W8FCNPQ"/>

<node xmi:type="uml:ActivityParameterNode" xmi:id="_G-Kc0LynEd6VCq2W8FCNPQ"

name="getStatus" outgoing="_45g5gLyqEd6VCq2W8FCNPQ" inPartition="_sPgo4bymEd6VCq2W8FCNPQ"

type="_63LSIO_FEd6VUYZjXdLT1w" parameter="_G-nIwLynEd6VCq2W8FCNPQ"/>

<node xmi:type="uml:CallOperationAction" xmi:id="_gInywLyqEd6VCq2W8FCNPQ"

name="o1" outgoing="_If4xcLyrEd6VCq2W8FCNPQ" incoming="_4LBb0LyqEd6VCq2W8FCNPQ"

inPartition="_sPgo4bymEd6VCq2W8FCNPQ" operation="_gIxjwLyqEd6VCq2W8FCNPQ"/>

<node xmi:type="uml:CallOperationAction" xmi:id="_hdQqcLyqEd6VCq2W8FCNPQ"

name="o2" outgoing="_I3buwLyrEd6VCq2W8FCNPQ" incoming="_4paoALyqEd6VCq2W8FCNPQ"

inPartition="_sPgo4bymEd6VCq2W8FCNPQ" operation="_hdQqcbyqEd6VCq2W8FCNPQ"/>

<node xmi:type="uml:CallOperationAction" xmi:id="_ksPH4LyqEd6VCq2W8FCNPQ"

name="o3" outgoing="_2lHuUEkuEd-L3Z94OHHEpA" incoming="_4aXfYLyqEd6VCq2W8FCNPQ"

inPartition="_sPgo4bymEd6VCq2W8FCNPQ" operation="_ksY44LyqEd6VCq2W8FCNPQ"/>

<node xmi:type="uml:CallOperationAction" xmi:id="_u17UsLyqEd6VCq2W8FCNPQ"

name="o0" outgoing="_3TAvEEkuEd-L3Z94OHHEpA" incoming="_45g5gLyqEd6VCq2W8FCNPQ"

inPartition="_sPgo4bymEd6VCq2W8FCNPQ" operation="_u17UsbyqEd6VCq2W8FCNPQ"/>

<node xmi:type="uml:CallOperationAction" xmi:id="_xdRKYLyqEd6VCq2W8FCNPQ"

name="o4" outgoing="_2QjMgEkuEd-L3Z94OHHEpA" incoming="_38HdILyqEd6VCq2W8FCNPQ"

inPartition="_sPgo4bymEd6VCq2W8FCNPQ" operation="_xdRKYbyqEd6VCq2W8FCNPQ"/>

<node xmi:type="uml:SendSignalAction" xmi:id="_7lBdgLyqEd6VCq2W8FCNPQ" name="s0"

outgoing="_ZLHYoLyrEd6VCq2W8FCNPQ" incoming="_I3buwLyrEd6VCq2W8FCNPQ"

inPartition="_sPgo4bymEd6VCq2W8FCNPQ" signal="_CIfxkLyrEd6VCq2W8FCNPQ"/>

<node xmi:type="uml:SendSignalAction" xmi:id="_FbWCYLyrEd6VCq2W8FCNPQ"

name="s1" outgoing="_vMo64CxQEd-TYfFXYHHQxA" incoming="_If4xcLyrEd6VCq2W8FCNPQ"

inPartition="_sPgo4bymEd6VCq2W8FCNPQ" signal="_EFXG4LyrEd6VCq2W8FCNPQ"/>

<node xmi:type="uml:ActivityParameterNode" xmi:id="_WCZUMLyrEd6VCq2W8FCNPQ"

name="Status" incoming="_ZLHYoLyrEd6VCq2W8FCNPQ" inPartition="_sPgo4bymEd6VCq2W8FCNPQ"

parameter="_WDb2ALyrEd6VCq2W8FCNPQ"/>

<node xmi:type="uml:ActivityParameterNode" xmi:id="_XYrKoLyrEd6VCq2W8FCNPQ"

name="LoadLevelStatus" incoming="_vMo64CxQEd-TYfFXYHHQxA"

inPartition="_sPgo4bymEd6VCq2W8FCNPQ" parameter="_XZ3dcLyrEd6VCq2W8FCNPQ"/>

158 XMI ARCTIS

<node xmi:type="uml:ActivityParameterNode" xmi:id="_famvgEkuEd-L3Z94OHHEpA"

name="ResultgetStatus" incoming="_3TAvEEkuEd-L3Z94OHHEpA"

inPartition="_sPgo4bymEd6VCq2W8FCNPQ" parameter="_fbMlYEkuEd-L3Z94OHHEpA"/>

<node xmi:type="uml:ActivityParameterNode" xmi:id="_kCPpAEkuEd-L3Z94OHHEpA"

name="ResultgetMinLevel" incoming="_2lHuUEkuEd-L3Z94OHHEpA"

inPartition="_sPgo4bymEd6VCq2W8FCNPQ" parameter="_kC1e4EkuEd-L3Z94OHHEpA"/>

<node xmi:type="uml:ActivityParameterNode" xmi:id="_mj67kEkuEd-L3Z94OHHEpA"

name="ResultgetLoadLevelStatus" incoming="_2QjMgEkuEd-L3Z94OHHEpA"

inPartition="_sPgo4bymEd6VCq2W8FCNPQ" parameter="_mkqicEkuEd-L3Z94OHHEpA"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_38HdILyqEd6VCq2W8FCNPQ" name="e0"

source="_GKdH8LynEd6VCq2W8FCNPQ" target="_xdRKYLyqEd6VCq2W8FCNPQ"

inPartition="_sPgo4bymEd6VCq2W8FCNPQ"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_4LBb0LyqEd6VCq2W8FCNPQ"

name="e1" source="_DFm24LynEd6VCq2W8FCNPQ" target="_gInywLyqEd6VCq2W8FCNPQ"

inPartition="_sPgo4bymEd6VCq2W8FCNPQ"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_4aXfYLyqEd6VCq2W8FCNPQ" name="e2"

source="_Ep5UILynEd6VCq2W8FCNPQ" target="_ksPH4LyqEd6VCq2W8FCNPQ"

inPartition="_sPgo4bymEd6VCq2W8FCNPQ"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_4paoALyqEd6VCq2W8FCNPQ"

name="e3" source="_B2yTULynEd6VCq2W8FCNPQ" target="_hdQqcLyqEd6VCq2W8FCNPQ"

inPartition="_sPgo4bymEd6VCq2W8FCNPQ"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_45g5gLyqEd6VCq2W8FCNPQ"

name="e4" source="_G-Kc0LynEd6VCq2W8FCNPQ" target="_u17UsLyqEd6VCq2W8FCNPQ"

inPartition="_sPgo4bymEd6VCq2W8FCNPQ"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_If4xcLyrEd6VCq2W8FCNPQ"

name="e5" source="_gInywLyqEd6VCq2W8FCNPQ" target="_FbWCYLyrEd6VCq2W8FCNPQ"

inPartition="_sPgo4bymEd6VCq2W8FCNPQ"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_I3buwLyrEd6VCq2W8FCNPQ"

name="e6" source="_hdQqcLyqEd6VCq2W8FCNPQ" target="_7lBdgLyqEd6VCq2W8FCNPQ"

inPartition="_sPgo4bymEd6VCq2W8FCNPQ"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_ZLHYoLyrEd6VCq2W8FCNPQ"

name="e11" source="_7lBdgLyqEd6VCq2W8FCNPQ" target="_WCZUMLyrEd6VCq2W8FCNPQ"

inPartition="_sPgo4bymEd6VCq2W8FCNPQ"/>

<edge xmi:type="uml:ObjectFlow" xmi:id="_vMo64CxQEd-TYfFXYHHQxA"

name="e10" source="_FbWCYLyrEd6VCq2W8FCNPQ" target="_XYrKoLyrEd6VCq2W8FCNPQ"

inPartition="_sPgo4bymEd6VCq2W8FCNPQ"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_2QjMgEkuEd-L3Z94OHHEpA"

name="e7" source="_xdRKYLyqEd6VCq2W8FCNPQ" target="_mj67kEkuEd-L3Z94OHHEpA"

inPartition="_sPgo4bymEd6VCq2W8FCNPQ"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_2lHuUEkuEd-L3Z94OHHEpA"

name="e8" source="_ksPH4LyqEd6VCq2W8FCNPQ" target="_kCPpAEkuEd-L3Z94OHHEpA"

inPartition="_sPgo4bymEd6VCq2W8FCNPQ"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_3TAvEEkuEd-L3Z94OHHEpA" name="e9"

source="_u17UsLyqEd6VCq2W8FCNPQ" target="_famvgEkuEd-L3Z94OHHEpA"

inPartition="_sPgo4bymEd6VCq2W8FCNPQ"/>

<group xmi:type="uml:ActivityPartition" xmi:id="_sPgo4bymEd6VCq2W8FCNPQ"

name="main" node="_B2yTULynEd6VCq2W8FCNPQ _DFm24LynEd6VCq2W8FCNPQ

_Ep5UILynEd6VCq2W8FCNPQ _GKdH8LynEd6VCq2W8FCNPQ _G-Kc0LynEd6VCq2W8FCNPQ

_gInywLyqEd6VCq2W8FCNPQ _hdQqcLyqEd6VCq2W8FCNPQ _ksPH4LyqEd6VCq2W8FCNPQ

_u17UsLyqEd6VCq2W8FCNPQ _xdRKYLyqEd6VCq2W8FCNPQ _7lBdgLyqEd6VCq2W8FCNPQ

_FbWCYLyrEd6VCq2W8FCNPQ _WCZUMLyrEd6VCq2W8FCNPQ _XYrKoLyrEd6VCq2W8FCNPQ

_famvgEkuEd-L3Z94OHHEpA _kCPpAEkuEd-L3Z94OHHEpA _mj67kEkuEd-L3Z94OHHEpA"

edge="_38HdILyqEd6VCq2W8FCNPQ _4LBb0LyqEd6VCq2W8FCNPQ _4aXfYLyqEd6VCq2W8FCNPQ

_4paoALyqEd6VCq2W8FCNPQ _45g5gLyqEd6VCq2W8FCNPQ _If4xcLyrEd6VCq2W8FCNPQ

_I3buwLyrEd6VCq2W8FCNPQ _ZLHYoLyrEd6VCq2W8FCNPQ _vMo64CxQEd-TYfFXYHHQxA

_2QjMgEkuEd-L3Z94OHHEpA _2lHuUEkuEd-L3Z94OHHEpA _3TAvEEkuEd-L3Z94OHHEpA"/>

</packagedElement>

XMI ARCTIS 159

<packagedElement xmi:type="uml:PrimitiveType" xmi:id="_ytWZkLynEd6VCq2W8FCNPQ" name="int"/>

<packagedElement xmi:type="uml:PrimitiveType" xmi:id="_0KLj8LynEd6VCq2W8FCNPQ" name="boolean"/>

<packagedElement xmi:type="uml:Signal" xmi:id="_CIfxkLyrEd6VCq2W8FCNPQ" name="Status"/>

<packagedElement xmi:type="uml:Signal" xmi:id="_EFXG4LyrEd6VCq2W8FCNPQ" name="LoadLevelStatus"/>

<packagedElement xmi:type="uml:PrimitiveType"

xmi:id="_63LSIO_FEd6VUYZjXdLT1w" name="java.lang.String"/>

<packagedElement xmi:type="uml:SignalEvent" xmi:id="_1eX-sCxQEd-TYfFXYHHQxA" name="r0"/>

<profileApplication xmi:id="_sPW34LymEd6VCq2W8FCNPQ">

<eAnnotations xmi:id="_sPW34bymEd6VCq2W8FCNPQ" source="http://www.eclipse.org/uml2/2.0.0/UML">

<references xmi:type="ecore:EPackage" href="pathmap://ARCTIS_PROFILES

/arctis.profile.uml#_WFTqUXjGEdyxtoUMycQn9Q"/>

</eAnnotations>

<appliedProfile href="pathmap://ARCTIS_PROFILES/arctis.profile.uml#_rE77YK4iEduZSuTiwKs5Lw"/>

</profileApplication>

<profileApplication xmi:id="_sPqZ4LymEd6VCq2W8FCNPQ">

<eAnnotations xmi:id="_sPqZ4bymEd6VCq2W8FCNPQ" source="http://www.eclipse.org/uml2/2.0.0/UML">

<references xmi:type="ecore:EPackage"

href=

"pathmap://RAMSES_GRAPHIC_PROFILES/no.ntnu.item.ramses.graphicprofile.uml#_geG1wIuAEdytfOWtpACIqw"/>

</eAnnotations>

<appliedProfile href="pathmap://RAMSES_GRAPHIC_PROFILES/no.ntnu.item.ramses.

graphicprofile.uml#_UEANMUVlEduH9aQE_pc66w"/>

</profileApplication>

</uml:Package>

<graphics:Shape xmi:id="_sVLMALymEd6VCq2W8FCNPQ" x="220" y="142"

width="405" height="20" base_Element="_sPgo4LymEd6VCq2W8FCNPQ"/>

<arctis:esm xmi:id="_sd0KobymEd6VCq2W8FCNPQ" base_StateMachine="

_sd0KoLymEd6VCq2W8FCNPQ"/>

<graphics:Shape xmi:id="_tgH8MLymEd6VCq2W8FCNPQ" x="222" y="161"

width="404" height="277" base_Element="_sPgo4bymEd6VCq2W8FCNPQ"/>

<arctis:event xmi:id="_4MrlgLymEd6VCq2W8FCNPQ" base_Transition="

_4MYqkLymEd6VCq2W8FCNPQ" triggers="_B2yTULynEd6VCq2W8FCNPQ"

effects="_WCZUMLyrEd6VCq2W8FCNPQ"/>

<graphics:Shape xmi:id="_B3-mILynEd6VCq2W8FCNPQ" x="115" y="390"

base_Element="_B2yTULynEd6VCq2W8FCNPQ" orientation="west"/>

<graphics:Shape xmi:id="_DGzJsbynEd6VCq2W8FCNPQ" x="96" y="222"

base_Element="_DFm24LynEd6VCq2W8FCNPQ" orientation="west"/>

<graphics:Shape xmi:id="_ErFm8LynEd6VCq2W8FCNPQ" x="133" y="301"

base_Element="_Ep5UILynEd6VCq2W8FCNPQ" orientation="west"/>

<graphics:Shape xmi:id="_GLpawbynEd6VCq2W8FCNPQ" x="70" y="262"

base_Element="_GKdH8LynEd6VCq2W8FCNPQ" orientation="west"/>

<graphics:Shape xmi:id="_G-nIwbynEd6VCq2W8FCNPQ" x="130" y="342"

base_Element="_G-Kc0LynEd6VCq2W8FCNPQ" orientation="west"/>

<arctis:event xmi:id="_cACUILynEd6VCq2W8FCNPQ" base_Transition="

_b_vZMLynEd6VCq2W8FCNPQ" triggers="_B2yTULynEd6VCq2W8FCNPQ"

effects="_WCZUMLyrEd6VCq2W8FCNPQ"/>

<arctis:location xmi:id="_qVWM0LynEd6VCq2W8FCNPQ"

base_Variable="_qVNC4LynEd6VCq2W8FCNPQ" partition="_sPgo4bymEd6VCq2W8FCNPQ"/>

<graphics:Shape xmi:id="_qVWM0bynEd6VCq2W8FCNPQ" x="367"

y="195" base_Element="_qVNC4LynEd6VCq2W8FCNPQ"/>

<arctis:location xmi:id="_rjbwkbynEd6VCq2W8FCNPQ"

base_Variable="_rjbwkLynEd6VCq2W8FCNPQ" partition="_sPgo4bymEd6VCq2W8FCNPQ"/>

<graphics:Shape xmi:id="_rjlhkLynEd6VCq2W8FCNPQ" x="370"

y="173" base_Element="_rjbwkLynEd6VCq2W8FCNPQ"/>

<arctis:location xmi:id="_swxGYbynEd6VCq2W8FCNPQ"

base_Variable="_swxGYLynEd6VCq2W8FCNPQ" partition="_sPgo4bymEd6VCq2W8FCNPQ"/>

<graphics:Shape xmi:id="_sw63YLynEd6VCq2W8FCNPQ" x="247"

160 XMI ARCTIS

y="174" base_Element="_swxGYLynEd6VCq2W8FCNPQ"/>

<arctis:location xmi:id="_uXSYQLynEd6VCq2W8FCNPQ"

base_Variable="_uXJOULynEd6VCq2W8FCNPQ" partition="_sPgo4bymEd6VCq2W8FCNPQ"/>

<graphics:Shape xmi:id="_uXSYQbynEd6VCq2W8FCNPQ" x="248"

y="195" base_Element="_uXJOULynEd6VCq2W8FCNPQ"/>

<arctis:location xmi:id="_v2zqQbynEd6VCq2W8FCNPQ"

base_Variable="_v2zqQLynEd6VCq2W8FCNPQ" partition="_sPgo4bymEd6VCq2W8FCNPQ"/>

<graphics:Shape xmi:id="_v2zqQrynEd6VCq2W8FCNPQ" x="514"

y="172" base_Element="_v2zqQLynEd6VCq2W8FCNPQ"/>

<graphics:Shape xmi:id="_gJEesLyqEd6VCq2W8FCNPQ" x="231"

y="219" width="149" height="44" base_Element="_gInywLyqEd6VCq2W8FCNPQ"/>

<graphics:Shape xmi:id="_hdtWYLyqEd6VCq2W8FCNPQ" x="248"

y="383" width="123" height="44" base_Element="_hdQqcLyqEd6VCq2W8FCNPQ"/>

<graphics:Shape xmi:id="_ksip4LyqEd6VCq2W8FCNPQ" x="242"

y="291" width="151" height="44" base_Element="_ksPH4LyqEd6VCq2W8FCNPQ"/>

<graphics:Shape xmi:id="_u2FFsLyqEd6VCq2W8FCNPQ" x="249"

y="331" width="108" height="44" base_Element="_u17UsLyqEd6VCq2W8FCNPQ"/>

<graphics:Shape xmi:id="_xdt2ULyqEd6VCq2W8FCNPQ" x="236"

y="251" width="157" height="44" base_Element="_xdRKYLyqEd6VCq2W8FCNPQ"/>

<graphics:Shape xmi:id="_7lLOgLyqEd6VCq2W8FCNPQ" x="409"

y="385" base_Element="_7lBdgLyqEd6VCq2W8FCNPQ"/>

<graphics:Shape xmi:id="_FbfzYLyrEd6VCq2W8FCNPQ" x="409"

y="219" base_Element="_FbWCYLyrEd6VCq2W8FCNPQ"/>

<graphics:Shape xmi:id="_WECS8LyrEd6VCq2W8FCNPQ" x="617"

y="394" base_Element="_WCZUMLyrEd6VCq2W8FCNPQ" orientation="east"/>

<graphics:Shape xmi:id="_XZ3dcbyrEd6VCq2W8FCNPQ" x="616"

y="228" base_Element="_XYrKoLyrEd6VCq2W8FCNPQ" orientation="east"/>

<arctis:event xmi:id="_OhkKkLysEd6VCq2W8FCNPQ"

base_Transition="_OhaZkLysEd6VCq2W8FCNPQ" triggers="

_B2yTULynEd6VCq2W8FCNPQ" effects="_WCZUMLyrEd6VCq2W8FCNPQ"/>

<arctis:event xmi:id="_lHa9ILysEd6VCq2W8FCNPQ"

base_Transition="_lHRzMLysEd6VCq2W8FCNPQ"

triggers="_B2yTULynEd6VCq2W8FCNPQ" effects="_WCZUMLyrEd6VCq2W8FCNPQ"/>

<graphics:Shape xmi:id="_fbMlYUkuEd-L3Z94OHHEpA"

x="621" y="347" base_Element="_famvgEkuEd-L3Z94OHHEpA"/>

<graphics:Shape xmi:id="_kC1e4UkuEd-L3Z94OHHEpA"

x="620" y="316" base_Element="_kCPpAEkuEd-L3Z94OHHEpA"/>

<graphics:Shape xmi:id="_mkqicUkuEd-L3Z94OHHEpA"

x="616" y="282" base_Element="_mj67kEkuEd-L3Z94OHHEpA"/>

</xmi:XMI>

Appendix D

Code for Invocation of UPnP Light
services

import org.cybergarage.upnp.*;

import org.cybergarage.upnp.ssdp.*;

import org.cybergarage.upnp.device.*;

import org.cybergarage.upnp.event.*;

import java.util.ArrayList;

import java.util.Hashtable;

public class UPnPLight extends ControlPoint implements NotifyListener,

EventListener, SearchResponseListener {

private final static String LIGHT_DEVICE_TYPE = "urn:schemas-upnp-org:device:BinaryLight:1";

private final static String LIGHT_SERVICE_TYPE = "urn:schemas-upnp-org:service:SwitchPower:1";

public UPnPLight(){

addNotifyListener(this);

addSearchResponseListener(this);

addEventListener(this);

search();

}

//

// Listener

//

public void deviceNotifyReceived(SSDPPacket packet) {

String dd=packet.toString();

// System.out.println(dd);

byte[] pp=dd.getBytes();

SSDPPacket ss= new SSDPPacket(pp,pp.length);

// System.out.println(ss.getST());

}

public void deviceSearchResponseReceived(SSDPPacket packet){

String dd=packet.toString();

byte[] pp=dd.getBytes();

SSDPPacket ss= new SSDPPacket(pp,pp.length);

161

162 Code for Service Invocations

}

public void eventNotifyReceived(String uuid, long seq, String name, String value) {

System.out.println(""+uuid+"="+seq+"="+name+"="+value);

}

//

// Power

//

public void Power(String deviceType, String i) {

Device dev = getDevice(deviceType);

if (dev == null)

{

System.out.println("device not found");

return;

}

org.cybergarage.upnp.Service ser=dev.getService(LIGHT_SERVICE_TYPE);

boolean ss=this.subscribe(ser);

if (ss =true) System.out.println(ser + "is true");

Action getPowerAct = dev.getAction("GetStatus");

if (getPowerAct.postControlAction() == false)

{

System.out.println("post nggak ketemu");

return;

}

ArgumentList outArgList = getPowerAct.getOutputArgumentList();

String powerState = outArgList.getArgument(0).getValue();

String newPowerState = (powerState.compareTo("1") == 0) ? "0" : "1";

newPowerState=i;

Action setPowerAct = dev.getAction("SetTarget");

setPowerAct.setArgumentValue("newTargetValue", newPowerState);

setPowerAct.postControlAction();

}

public void SetTarget(String newTargetValue){

Power(LIGHT_DEVICE_TYPE,n);

}

public boolean GetStatus (String deviceType){

Device dev = getDevice(deviceType);

if (dev == null)

{

System.out.println("device not found");

return;

}

org.cybergarage.upnp.Service ser=dev.getService(LIGHT_SERVICE_TYPE);

boolean ss=this.subscribe(ser);

if (ss =true) System.out.println(ser + "is true");

Code for Service Invocations 163

Action getPowerAct = dev.getAction("GetStatus");

if (getPowerAct.postControlAction() == false)

{

System.out.println("post nggak ketemu");

return;

}

ArgumentList outArgList = getPowerAct.getOutputArgumentList();

String powerState = outArgList.getArgument(0).getValue();

if powerState=’1’ status=true else false;

return ResultStatus;

}

public int GetLoadLevelStatus (){

//code

}

public int GetMinLevel (){

//code

}

public void SetLoadLevelTarget (int new){

Action setPowerAct = dev.getAction("SetLoadLevelTarget");

setPowerAct.setArgumentValue("newTargetValue", newPowerState);

setPowerAct.postControlAction();

}

}

164 Apendix E: Future Work : A case - study

Appendix E

Presenting Embedded Services for
End-user Composition

In this case study, the PMG-pro method is applied to support the end-users services
composition where run-time services are presented using simple and well-known
pictures. After all run-time services are presented, end user can compose the ser-
vices in a simple way.

1. Introduction
Different perspectives might have different definition of what is a service.
From the end-user’s perspective, a service can be seen as provided functio-
nality (i.e., at run-time) that can be invoked via their interfaces. With this
perspective, a services composition can be seen as a development method
of applications. Such development methods (i.e. service-based applications)
are currently being adopted in many of today’s large-scale software projects
[103, 104, 110]. Unfortunately, there is only a few numbers of researches
have been done on tools and methods supporting for end-users composition.
Having development tools and methods that enable end-user to be involved in
the development of service-based application is a challenge.

Using advanced development tools and methods it would be possible for end-
users, which typically are inexperience with technology details, to integrate
(compose) run-time services. This case study presents a method of presenting
services into abstract graphical representation so that end-users can compose
run-time services to build service-based applications. The method is a special
case of PMG-pro method that has been presented in [97, 98]. We use service
descriptions to generate source code (i.e. for service invocations) and present
the source code using abstract graphical representation to represent services

165

166 Future Work: A Case Study

(i.e. service models). The service models are used by the end-users to specify
the composition, while the source code is used for the service invocations.
For this purpose we use ICE [110], an end-user service composition (i.e.,
run-time services).

2. A Composition Scenario
In this scenario we also consider that all the devices have been implemented
their embedded services using open and standardized languages and tech-
nologies. Examples for such open and standardized technologies are Uni-
versal Plug and Play (UPnP), Web Services Description Language (WSDL)
and Device Profile for Web Services (DPWS). Based on these different em-
bedded services, new applications can be promoted. In this scenario, a new
application with the following new functionalities is promoted:

• the application is able to send notifications (e-mail) when the air tem-
perature from the WeatherModule is greater than 50◦C,
• it will play music/songs on the Media renderer when the solar radiation

is below than 10, and

3. The Development Process

(a) The Automated Services Presentation Step.
Since the PMG-pro method is a language-independent method, it is pos-
sible to use different existing modeling languages and different model-
ing editors. This is done by developing and implementing different ser-
vice abstractors/presenters. The requirement is that the presenter must
generate notations (i.e., abstract service models) that conform to the
chosen modeling languages. Different representations and notations to
represent the existing services can be used. UML classes [80], CORBA
components [77], Participants in SoaML [79], or SCA components [40]
are among of them. On the system levels, for example SysML [81], a
UML profile for system modeling, a building block is used to represent
an existing service. It means that in PMG-pro, different modeling lan-
guages can be used to model service-based applications. The important
thing to remember is that we must take care of the relations (bindings)
between graphical representations (i.e. service models) and source code
(i.e. implementation for the service invocations).

Future Work: A Case Study 167

Figure E.1: A simplified UML class diagram of an ICE edge. An ICE edge can
be either an action or an trigger edge.

In this case study we will present services using ICE Edges in ICE Puz-
zle. From a service description (sk), the abstractor/presenter generates
two types of graphical service model. The first type, Msk

T , is a service
model type of Trigger, while the second type, Msk

A, is a service mo-
del type of Action. The service models conform to a ICE meta-model.
The transformation also generates source code (Csk) that conforms to a
selected programming language.

Table E.1: Transformation rules between UPnP - ICE Edge

UPnP ICE Puzzle
Device name Egde name
Action Procedure
Action argument Signal In
State variable Signal Out
Type of state variable Signal type

A conceptual ICE Edge is presented in UML class diagram in Figure
E.1. We consider to be able to transform UPnP service desription to
ICE Edges using transformation rules presented in Table E.1. Figure
E.2 shows a representation of a UPnP service in an ICE Edge as a result
of the transformation processes.

(b) The Modeling Step.
Using special modeling editor (i.e., ICE Puzzle), a service-based ap-
plication can be built by connecting one ICE edge type of Trigger and
one ICE edge type of Action. In the composition of ICE Edges, every
service model Ms represents either a Trigger Msk

T or an Action Msk
T .

168 Future Work: A Case Study

Figure E.2: An ICE Puzzle represents UPnP MediaRenderer.

Figure E.3: The models of the new application defined in the scenario. Two
puzzle compositions specify the structure and the behavior of the
application.

Since a composite application can only be a relation of one Trigger and
one Action. Fig. E.3 shows the new application defined in the scenario.

(c) Code Generation Step.
We do not handle the code generation of puzzle composition since it is
handled by ICE-core.

4. Discussion
There are two possible service compositions: run-time and design-time ser-
vice compositions. Several research projects promoting tools and methods
for service composition have been conducted, for example the SeCSE project
[103]. One of the SeCSE goals is to create methods, tools, and techniques
to enable service integrators to develop service-centric applications. The
SODIUM [104] project focuses on the need for standards-based integration
of heterogeneous services. The two research projects mentioned above were
focusing on tools and methods for the development of service-based appli-
cation. However, the proposed tools and methods are intended for software

Future Work: A Case Study 169

developers who know the technology details. Using their developed frame-
works, software developers can develop service-based applications and pro-
vide them to the end-users. Our work was to provide a method for end-users
(i.e., inexperience of technologies) are able to compose run-time services to
promote new applications.

The fact that different perspectives may have different definitions of a ser-
vice, the definition of a service composition may also be different. We use
PMG-pro methods to present services so that end-users can compose (inte-
grate) run-time services. Using the PMG-pro method it would be possible to
generate service graphical representation that can be used by end-users (i.e.,
run-time composition). We present a service using a simple and well-known
picture. Each service graphical representation has source code implementing
the service invocations. The code for each service graphical representation is
packed as a bundle (i.e., ICE edge). The ICE Edges then can be used by end-
users to model the composition (at run-time) while the source code is used by
ICE to execute the composition.

5. Summary of the Use Case
In this case study we have shown a method for presenting run-time services
for supporting for end-users composition. To show the idea, we use PMG-
pro, a language- independent, bottom-up and model-driven method. Based
on existing service frame- works and service descriptions, a service presen-
ter/abstractor captures statically platform knowledge and presents them to
then users using abstract graphical representation (i.e., ICE Edges). Using
simple and well-recognized pictures to present run-time services it would be
possible for inexperience users to build service-based applications using run-
time services.

170 Future Work: A Case Study

Index

Abstraction, 9, 102, 133
Abstractor, 9, 61, 134
Acceleo, 50
Activity diagram, 46
Apache, 38
API, 36, 43, 60, 72, 117, 121, 132
Architecture, 29, 33, 36, 41, 44, 127
ATL, 50
Automated, 9, 10, 134
Automatic, 53
Axis, 38, 60

Building block, 67, 103

CC/PP, 56
Choreography, 126
Cloud computing, 3, 6, 14
Code generator, 57
Component , 33, 127, 132
Concrete service, 16
Control point, 54
Cyberlink , 36, 60, 88

DPWS , 21, 40, 41, 60, 63, 71, 134
DPWS framework, 41
DSML, 22, 47

Embedded, 23
Embedded system, 23
End-users, 134
Event, 40, 98–101, 103, 116

Event-based, 98, 100, 103, 116
Event-based system, 98

Framework, 40, 41, 43, 72
Future Internet, 1–3, 6, 120

inexperienced users, 3
Internet of object, 2
Internet of services, 8, 24, 38, 133
Internet of Things, 2–4, 8, 23, 52, 56,

57, 105, 113, 131

JET, 50
Jini, 30, 43, 44, 53, 63

Library, 71, 72

M2M, 49, 50, 72
Model transformation, 49, 118
Model-driven, 8–10, 24, 93
Model-driven development, 8, 24

Notation, 22, 50

Object, 125
Ontology, 74, 132
OSGi framework, 42, 43, 97
OSGi services, 21, 63, 97, 105, 134

Parser, 87
Participant, 35, 64, 67, 118
PLA, 55
Presentation, 10, 102, 107, 129, 134
Providing, 134

171

172 INDEX

Rational Rose, 84, 92, 94, 96, 98, 115,
125, 132, 133

SBIS, 13–15, 52
SCA, 33, 34, 64, 67, 118, 127
SCV, 55
SEIS, 13, 14
Service creation, 5
Service model, 125
Smart home, 73, 93, 94
SOA, 4, 15, 21, 29, 30, 36–38, 40–43
SoaML , 34, 35, 67, 118
Software developer, 10, 66
Software product line, 55
Software unit, 32
Solution, 16
SPL, 55, 56, 114
SSDP, 101

T2M, 49, 50
T2T, 49, 50
Text transformation, 118

Unified modeling language, 21
UPnP devices, 16, 21, 36, 66, 67, 98–

100
UPnP framework, 36
UPnP services, 16, 21, 36, 38, 63, 84,

86, 88, 89, 92, 94, 97–100,
102, 107, 110, 116, 134

Web services, 16, 21, 22, 33, 37, 38,
41, 42, 61, 63, 105, 126, 127,
134

XML UPnP service description, 67,
72, 87, 118

XML-based service description, 63,
98, 107, 115

	List of Figures
	List of Tables
	Definitions and Abbreviations
	1 Introduction
	1.1 An Introduction to the Area of Interest: the Future Internet
	1.2 Motivation
	1.3 Main Contributions
	1.4 Thesis Structure

	2 Software Development in the Internet of Services
	2.1 Service-based Applications
	2.2 Challenges and Problems
	2.3 Further Research Questions

	3 Background
	3.1 Service-oriented Systems
	3.2 Model-driven Development
	3.3 Embedded Systems
	3.4 Software Product Lines
	3.5 The ISIS Project

	4 The PMG-pro Method
	4.1 Overview of PMG-pro
	4.2 The Service Presentation and Abstraction Step
	4.3 The Service Library and the Service Frameworks (APIs) Repository
	4.4 The Modeling Step
	4.5 The Code Generation and Providing Step

	5 Proof-of-Concept
	5.1 Overview
	5.2 Service Presenter
	5.3 The Service Library
	5.4 Code Generator
	5.5 Case Studies

	6 Evaluation
	6.1 Evaluation of the Method and Case Studies
	6.2 Evaluation against Research Questions
	6.3 Evaluation against Related Work

	7 Summary and Future Work
	7.1 Summary
	7.2 Future Work

	REFERENCES
	A List of Publications
	B UPnP Light Service Description
	C XMI Representation of ARCTIS Building Blok of UPnP Light
	D Code for Invocation of UPnP Light services
	E Presenting Embedded Services for End-user Composition
	INDEX

