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SummaryChannel simulation models have proved to be an indispensable tool for designingmobile radio ommuniation systems. By means of omputer simulations design-ers are able to assess the performane of wireless ommuniation systems undervarious propagation onditions without resorting to �eld trials, whih are ostlyand time onsuming. The e�etiveness of using hannel simulation models to alarge extend depends on how aurate the models are in re�eting the most impor-tant harateristis of real-world wave propagation environments. Clearly, whenthe parameters of a hannel simulation model are determined from measurementdata, a higher level of auray an be expeted.In this dissertation, we desribe two approahes to designing measurement-based simulation models for mobile wireless ommuniation hannels. The �rstmethod allows synthesizing hannel transfer funtions with joint spatial-temporal-frequeny orrelation properties approximating those of real-world radio hannels.The parameters of a hannel simulator are determined by �tting the spae-time-frequeny orrelation matrix of the simulation model to the estimated spae-time-frequeny orrelation matrix of a physial hannel. For this purpose, an iterativeparameter omputation algorithm has been developed. In the seond approah,a multihannel two-dimensional autoregressive model is proposed for simulatingmultiple-input multiple-output wideband mobile wireless hannels. The param-eters of the autoregressive models are estimated from real-world measurementdata. We also address the problem of possible instability of the multihannel two-dimensional autoregressive model and develop a model stabilization proedure,whih is based on numerial optimization tehniques.The methods proposed for designing measurement-based hannel simulationmodels presume stationarity of radio hannels. We disuss a new test for de-termining the time intervals, over whih a wireless hannel an be onsideredstationary. The stationarity intervals are identi�ed by omparing the delay powerspetral densities estimated at di�erent time instanes. The test is appliable tosingle-input single-output as well as to multiple-input multiple-output real-worldwireless hannels.In this thesis, we also investigate the problem of estimating the veloity of mo-bile stations. In partiular, we analyze to what extend the veloity estimation ani



ii Summarybe improved in wideband mobile stations equipped with multiple antennas. Forthis purpose, a simple algorithm, whih is suitable for real-time implementations,has been developed.
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Chapter 1Introdution
1.1 Classi�ation of Measurement-Based ChannelModelsIn the development and performane evaluation of wireless ommuniation sys-tems, hannel models play an important role. Wireless hannel models mathe-matially desribe the essential properties of propagation environments, i.e., theproperties that have onsiderable impat on the performane of radio ommuni-ation systems. In reent years, a number of wireless hannel models have beenproposed in the literature, see, e.g., [1�4℄ and the multiple referenes therein.Aording to the lassi�ation presented in [5℄ and also in [6℄, wireless hannelmodels an be divided into physial models and analytial (non-physial) models.The parametrization of physial hannel models expliitly aounts for the mul-tipath propagation of the eletromagneti waves in wireless hannels (onsider,e.g., the double-diretional model [7℄). On the other hand, analytial models de-sribe the statistial properties of the hannel system funtions, i.e., the impulseresponses (IRs) or the transfer funtions (TFs), without onsidering the physialaspets of the wave propagation. As an example representing analytial han-nel models, we an mention the orrelation-based wireless hannel models (see,e.g., [6℄).As it follows from the title, in this thesis we onsider measurement-basedhannel models. The term measurement-based signi�es the fat that some orall of the model parameters are determined from the measured IR or TF of areal-world wireless hannel. Certainly, the lassi�ation of wireless hannel mod-els into physial and analytial ones an also be applied to measurement-basedmodels. However, this lassi�ation sheme, whih is based solely on the modelparametrization, does not always allow us to judge what kind of information anbe obtained from the model about a physial propagation hannel. In attempt toresolve this issue and also in order to failitate the interpretation of the results1



2 Chapter 1presented in this thesis, we suggest another lassi�ation for measurement-basedhannel models. The proposed lassi�ation is based on the intended usage ofa model and, therefore, allows us to di�erentiate hannel models with respetto (w.r.t.) the model parametrization and also to the approah employed fordetermining the model parameters.We distinguish between two types of wireless hannel models. Models of the�rst type are oriented to the analysis of wireless hannels, while models of theseond type � to the synthesis (simulation) of wireless hannels. A normal as-sumption made about a hannel model of the �rst type is that it an adequatelypredit the behavior of a real-world wireless hannel. Thus, by analyzing esti-mated parameters of the hannel model, we obtain information about di�erentproperties of the physial radio hannel. The double-diretional hannel modelmentioned above, with the parameters estimated from the measured IR of a real-world hannel by employing, e.g., the SAGE [8℄ or RIMAX [9℄ algorithms, anserve as an example of hannel models of the �rst type.On the other hand, the task delegated to hannel models of the seond typeis of di�erent nature. It onsists in simulating wireless hannels with spei�edstatistis. Here, in ontrast to the analysis task, we aept the fat that theremight be more than one hannel model parametrization that allows to synthesizehannels with the spei�ed statistial properties. The measurement-based hannelsimulation models onstitute the main subjet of this dissertation.It should be noted that models of the �rst type an also be used to synthesizethe hannel IRs (TFs).1.2 Measurement-Based Channel Simulation ModelsThe main virtue of hannel simulation models designed based on measurementdata is the apability of synthesizing realisti hannel system funtions. Fur-thermore, the advantage of resorting to measurement-based hannel simulationmodels as ompared to the stored TFs or IRs of real-world hannels [4℄, beomeslear when we onsider, as an example, the problem of estimating the bit errorrate (BER) for a wireless ommuniation system. A reliable estimation of theBER requires a large number of samples of the measured hannel system fun-tions. Consequently, it beomes prohibitively expensive (if possible) to aquireand store a required amount of measurement data, partiularly for widebandmultiple-input multiple-output (MIMO) hannels. A feasible alternative is to usea measurement-based hannel simulation model to assess this important systemperformane harateristi.As it has been pointed out above, hannel simulation models are aimed to gen-erate realizations of the hannel system funtions with spei�ed statistis. Underspei�ed statistis, we understand the important �rst- and seond-order statistial



Chapter 1 3harateristis, e.g., the probability density funtion (PDF) of the hannel gains atdi�erent time instanes and frequenies and the various orrelation funtions (see,e.g., [10℄). In the following, our attention will be mainly onentrated on the orre-lation properties of the simulated hannel system funtions in time, frequeny, andspae. These seond-order statistial harateristis of fading hannels drastiallya�et the performane of many signal proessing tehniques inluding interleav-ing, error-orretion oding, diversity, frequeny hopping, and equalization [11℄.Additionally, analytial performane analysis of wireless ommuniation systemsutilizing these proessing tehniques is very di�ult. Thus, aurate represen-tation of the orrelation properties of fading hannels in simulation models ispartiularly important.For measurement-based hannel simulation models, the statistis of interestare estimated from the measured system funtions of real-world hannels. Thesystem funtions of real-world hannels are obtained by using hannel sounders1during measurement ampaigns (see, e.g., [12℄).It is worth mentioning that the problem of simulating hannel system fun-tions essentially falls into a more general framework of synthesizing realizationsof random proesses with spei�ed �rst- and seond-order statistis. This generalproblem has been studied in the literature (see, e.g., [13�15℄).In the previous subsetion, we noted that there might exist more than onemodel parametrization allowing simulating the hannel TFs or IRs with spei�edstatistis. Thus, a pratial approah to designing measurement-based hannelsimulation models starts with �nding a model parametrization, whih satis�esertain riteria, e.g., low omputational load in synthesizing hannel TFs, a smallnumber of the hannel simulation model parameters, et. In the following hap-ters, we disuss two approahes to designing measurement-based simulation mod-els for wireless ommuniation hannels. In these approahes, we have taken intoaount the following onsiderations:
• A model parametrization should be suitable for onstruting measurement-based hannel simulation models for narrowband single-input single-output(SISO) as well as narrowband MIMO time-variant wireless ommuniationhannels.
• A model parametrization should be suitable for onstruting measurement-based hannel simulation models for wideband SISO and wideband MIMOtime-variant wireless hannels.
• A model parametrization and methods for determining the values of themodel parameters should enable onstruting hannel simulation models1Hereafter, we presume that the measured system funtions of real-world hannels are digi-tized and onverted to the omplex baseband.



4 Chapter 1based on real-world wireless hannels orresponding to various propagationenvironments, e.g., outdoor and indoor propagation environments.
• A model parametrization and methods for determining the values of themodel parameters should enable onstruting measurement-based hannelsimulation models without assuming separability of the hannel orrelationproperties in time, frequeny, and spae (see, e.g., [16℄).
• The parameters of the measurement-based hannel simulation models shouldbe determined e�iently.1.3 Organization of the ThesisThe rest of the thesis is organized as follows. In Chapter 2, we desribe a sta-tistial test proposed for determining the intervals of stationarity for wirelessommuniation hannels. The stationarity test has been applied to several radioommuniation hannels measured in di�erent propagation senarios. The resultsof the analysis of the identi�ed stationarity intervals are presented. In Chap-ter 3, we disuss a method for designing measurement-based stohasti modelsfor simulating wideband MIMO wireless hannels. The proposed approah allowssynthesizing hannel TFs with the spatial-temporal-frequeny orrelation proper-ties approximating those of real-world radio hannels. In this hapter, we alsopresent two modi�ations of the method for reating measurement-based hannelsimulation models for narrowband MIMO and wideband SISO hannels, respe-tively. The multihannel two-dimensional (2D) autoregressive (AR) model forMIMO wideband mobile wireless hannels is presented in Chapter 4. In Chap-ter 5, we onsider the problem of estimating the veloity of mobile stations (MSs)in wireless ommuniation systems. In partiular, we investigate to what extendthe veloity estimation an be improved in wideband MS equipped with multipleantennas. For this purpose, we develop a simple veloity estimation algorithm.The performane of the algorithm is assessed by simulations. Finally, we summa-rize the results presented in this thesis in Chapter 6.



Chapter 2Stationarity of WirelessCommuniation Channels
2.1 IntrodutionChapters 3 and 4 of this thesis deal with modeling of mobile wireless ommuni-ation hannels. The hannel models onsidered in these hapters presume thewide-sense stationarity of randomly time-variant radio hannels [10℄. In pra-tie, however, real-world hannels often demonstrate `quasi-stationary' behavior,i.e., the assumption of wide-sense stationarity an be aepted only for limitedintervals of time and frequeny [10, 17℄. The simplest way to justify the quasi-stationarity of a measured wireless hannel is by taking into aount the physialarguments suh as the transmitter/reeiver speed, the frequeny bandwidth, thedistane to the satterers surrounding the transmitter/reeiver, et. Unfortu-nately, the hoie of stationarity intervals based on these simple physial onsid-erations is not always valid. Thus, it is important to develop a test proedurethat an be used to reliably identify regions of stationarity for wireless hannels.A number of stationarity tests have been proposed in the literature related tosuh disiplines as wireless hannel modeling, spetrum analysis, signal detetion,et. The orrelation between onseutive `instantaneous' delay power spetraldensities (PSDs) has been used in [18℄ to identify the loal region of stationarity(LRS) for wireless hannels. A nonstationarity detetor based on the time-variantautoregressive (TVAR) model has been desribed in [19℄. In [20℄, the authorssuggest to identify the intervals of stationarity by analyzing hanges in the wave-number spetrum estimated at di�erent loations. The use of the nonparametrirun-test [21℄ for determining the stationarity intervals of radio hannels has beeninvestigated in [22℄. An interesting test for wide-sense stationarity of MIMOwireless hannels has been developed in [23℄. This approah is based on analyzingthe evolutionary spetrum of a signal estimated at di�erent instanes of time [24℄.5



6 Chapter 2Also one annot help mentioning the tests for stationarity developed based on thetime-frequeny (time-sale) analysis of signals (see, e.g., [25, 26℄).In the development of the stationarity test proposed in [27℄ and presentedbelow in this hapter, the primary importane has been assigned to analyzing thestatistial properties of radio hannels without time averaging, under onditionthat the available frequeny bandwidth allows that. Time averaging intrinsiallyleads to a ontradition, i.e., the test validates the stationarity of the data bypresuming its stationarity on intervals determined by the length of the window.Often (if not always), the length of the window is hosen heuristially by ondut-ing preliminary eyeball analysis of the measurement data. The proposed approahallows to skip windowing of the measurement data in time. Hene, a greater levelof automation in the test proedure an be provided. The proposed test is basedon the hypothesis that the estimated delay PSD of a hannel does not hange withtime over the interval of stationarity. The test is appliable both to SISO andMIMO radio hannels. The design of the test proedure relies on the de�nition ofa random (multivariate) wide-sense stationary (WSS) proess (see, e.g. [28℄). Itis assumed that the time-variant frequeny response (TVFR) of a hannel is WSS(jointly WSS for MIMO hannels) w.r.t. frequeny. However, it appears that thisassumption is not restritive, if, similar to [18℄, the hannel stationarity intervalsare de�ned as the intervals over whih the loations of the satterers, transmitter,and reeiver do not hange signi�antly.This hapter is organized as follows. In Setion 2.2, the stationarity test forSISO and MIMO wireless ommuniation hannels is developed. The results ofthe performane evaluation for the developed test are presented in Setion 2.3.The analysis of the stationarity intervals for several real-world propagation en-vironments is presented in Setion 2.4. The onluding remarks are given inSetion 2.5.2.2 Stationarity TestsLet the TVFR H(f ′, t) desribing a SISO wireless hannel in frequeny f ′ andtime t be a omplex 2D random proess. It is assumed that the TVFR H(f ′, t)is an ergodi proess w.r.t. frequeny f ′.Wide-sense stationarity of the TVFR H(f ′, t) w.r.t. time t implies that thedelay PSD is time-invariant. This observation forms the basis of the statistialtest proposed for validating the hypothesis that the measured TVFR H(f ′, t) isa WSS proesses w.r.t. time t.In the following subsetion, the stationarity test for SISO wireless hannelsis desribed. In Subsetion 2.2.2, the proedure will be extended to test thestationarity of MIMO radio hannels.



Chapter 2 72.2.1 Stationarity Test for SISO ChannelsSuppose that the TVFR H(f ′, t) of a SISO radio hannel has been measured atdisrete frequenies f ′m = −B/2 +m△f ′ ∈ [−B/2, B/2], m = 0, . . . ,M − 1, andat disrete time instanes tn = n△t ∈ [0, T ], n = 0, . . . , N − 1. Hereafter, thesampling interval in the frequeny domain is signi�ed by △f ′, while △t standsfor the sampling interval in the time domain. The frequeny bandwidth and themeasurement time interval are denoted as B and T , respetively. The measuredTVFR of the hannel an be represented in a matrix form
H =






H[0, 0] . . . H[0, N − 1]... . . . ...
H[M − 1, 0] . . . H[M − 1, N − 1]




 . (2.1)The elements H[m,n] of the matrix H in (2.1) are omplex random variables.As it was mentioned above, it is assumed that the olumns of the hannel matrix

H, i.e., the snapshots of the hannel TVFR at time instanes tn, are ergodiproesses. Thus, for eah of these proesses, the mean an be determined as
η[n] = 〈H[m,n]〉f ′ (2.2)and the frequeny autoorrelation funtion (FACF) is given by

rf ′ [κ, n] = 〈H[m,n]H∗[m+ κ, n]〉f ′ (2.3)where ∗ designates the omplex onjugate and 〈·〉f ′ = 1
M

∑M−1
m=0 (·) denotes aver-aging over frequeny.The delay PSD of the radio hannel at time tn is given by

P (τ ′, tn) = △f ′
∞∑

κ=−∞

rf ′ [κ, n]e−j2πτ ′κ△f ′

. (2.4)where τ ′ stands for the propagation delay.Aording to the de�nition, wide-sense stationarity of the TVFR H w.r.t.time requires that the mean η[n] and the FACF rf ′ [κ, n] are time-invariant, i.e.,
η[n] = η (2.5)

rf ′ [κ, n] = rf ′ [κ]. (2.6)Condition (2.6) orresponds to the time-invariane of the delay PSD P (τ ′, tn),whih an be written as
P (τ ′, tn) = P (τ ′). (2.7)



8 Chapter 2Using (2.7), the null hypothesis H0 an be formulated as follows
H0 :

(
P (τ ′, tn1

)− P (τ ′, tn2
)
)
= 0, tn1

6= tn2
(2.8)whih implies that the delay PSD at time tn1

equals the delay PSD at time tn2
.Note that the hypothesis H0 also suggests the equality of the mean values,i.e., η[n1] = η[n2]. This follows from the observation that

∫ ∞

−∞
P (τ ′, tn)dτ

′ = rf ′ [0, n] = σ2[n] + η2[n] (2.9)where σ2[n] denotes the variane σ2[n] = 〈(H[m,n]− η[n])(H[m,n] − η[n])∗〉f ′ .The proedure presented below allows to ompare the delay PSDs estimatedat two di�erent time instanes1 and to determine whether the hypothesis H0 anbe exepted.The following �ve-step data proessing algorithm signi�antly simpli�es thestatistial analysis of the null hypothesis H0.Step 1. The n-th olumn of the hannel matrix H in (2.1) is divided into
K nonoverlapping segments eah of length Ms. The restrition imposed here is
K > Ms. Let

x(k)m = H[(k − 1)Ms +m,n], m = 0, . . . ,Ms − 1 (2.10)denote a omplex data sequene orresponding to the k-th segment, k = 1, . . . ,K.Step 2. For eah of the K sequenes {x(k)m }Ms−1
m=0 , k = 1, . . . ,K, alulate theperiodogram at the disrete delays τ ′q = q

Ms△f ′ , q = 0, . . . ,Ms − 1, i.e.,
P̂ (k)
q =

△f ′
Ms

∣
∣
∣
∣
∣

Ms−1∑

m=0

x(k)m e−j2πτ ′q△f ′m

∣
∣
∣
∣
∣

2

. (2.11)It is known (see, e.g., [29℄) that asymptotially (Ms → ∞)
P̂ (k)
q ∼

{

Pqχ
2
2/2, q = 1, . . . , Ms

2 − 1, Ms

2 + 1, . . . ,Ms − 1

Pqχ
2
1, q = 0 and Ms

2

(2.12)where χ2
1 and χ2

2 signify the hi-square distributions with one and two degrees offreedom, respetively. The symbol ∼ stands for the equality in distribution. Thetrue value of the delay PSD at the disrete delay τ ′q is denoted by Pq.Step 3. For eah of the K periodograms {P̂ (k)
q }Ms−1

q=0 , k = 1, . . . ,K, reate an1As will be shown shortly, the omparison is atually done in terms of the estimated epstrum.Reall that the epstrum of a signal is related to the PSD through an invertible one-to-onetransformation.



Chapter 2 9auxiliary data sequene {y(k)p }2Ms−3
p=0 as follows

y(k)p =

{

P̂
(k)
p , p = 0, . . . ,Ms − 1

P̂
(k)
2Ms−2−p, p =Ms, . . . , 2Ms − 3.

(2.13)Step 4. For eah of the K sequenes {y(k)p }2Ms−3
p=0 , k = 1, . . . ,K, estimate theepstrum Φ̂

(k)
l at the disrete frequenies ωl = lπ/(Ms − 1), l = 0, . . . , 2Ms − 3,aording to

Φ̂
(k)
l =

1

2Ms − 2

2Ms−3∑

p=0

ln(y(k)p )ejωlp. (2.14)Here, it is impliitly assumed that y(k)p > 0 for all p, whih is true in pratialsituations. Also note that due to the symmetry in {y(k)p }2Ms−3
p=0 , Φ̂(k)

l is real and
Φ̂
(k)
2Ms−2−l = Φ̂

(k)
l for l = 0, . . . ,Ms − 1.It has been shown in [30, 31℄ that asymptotially, i.e., as Ms → ∞, the esti-mated epstrum {Φ̂(k)

l }Ms−1
l=0 follows the multivariate Gaussian distribution withthe ovariane matrix C. The matrix C is a onstant diagonal matrix independentof the periodogram {P̂ (k)

q }Ms−1
q=0 .Step 5. Stak the estimated epstrum sequenes {Φ̂(k)

l }Ms−1
l=0 , k = 1, . . . ,K,as olumns into a matrix Un of dimensions Ms ×K. Let the olumn vetor ūnof dimensions Ms × 1 ontain the sample mean of eah row of the matrix Un.To verify the hypothesis H0, the algorithm desribed above is applied to the

n1-th and the n2-th olumns of the hannel matrix H representing the hannelfrequeny response at two distint time instanes tn1
and tn2

. As the outome, weobtain two matries Un1
, Un2

and two olumn vetors ūn1
, ūn2

. The vetors ūn1and ūn2
are the epstrum estimates at the time instanes tn1

and tn2
, respetively.The matries Un1

, Un2
and the vetors ūn1

, ūn2
an now be supplied to theHotelling T 2-test [32, 33℄.First, de�ne two matries

S1 = Un1
UT

n1
−Kūn1

ūT
n1

S2 = Un2
UT

n2
−Kūn2

ūT
n2

(2.15)where K is the number of segments (see Step 1 of the algorithm above) and theoperator {·}T denotes transposition. It is known [32℄ that the statisti
ϕ(S1,S2, ūn1

, ūn2
) given by

ϕ(S1,S2, ūn1
, ūn2

) =
K(2K −Ms − 1)

2Ms
(ūn1

− ūn2
)T (S1 + S2)

−1(ūn1
− ūn2

)(2.16)



10 Chapter 2follows the F-distribution, i.e., ϕ(S1,S2, ūn1
, ūn2

) ∼ F(Ms, 2K −Ms − 1).Thus, the null hypothesis H0 in (2.8) is aepted if
ϕ(S1,S2, ūn1

, ūn2
) < fα (2.17)where fα is the ritial value orresponding to the 100(1 − α)% on�dene level.2.2.2 Stationarity Test for MIMO ChannelsWe onsider a MIMO wireless hannel with NT transmitting and NR reeivingantennas. Eah of the NTNR subhannels establishing the ommuniation linksbetween eah transmitting and eah reeiving antennas, is represented by themeasured TVFR hannel matrix Hi, i = 1, . . . , NTNR, de�ned in (2.1). As in theprevious subsetion, the elements Hi[m,n] of the hannel matriesHi are assumedto be omplex random variables. Furthermore, it is assumed that at every timeinstane tn, the TVFRs of all the subhannels are jointly WSS proesses w.r.t.frequeny.The delay ross power spetral densities (CPSDs) at time tn is de�ned as

PHi,Hi′
(τ ′, tn) = △f ′

∞∑

κ=−∞

rf ′

Hi,Hi′
[κ, n]e−j2πτ ′κ△f ′

,

i, i′ = 1, . . . , NTNR (2.18)where rf ′

Hi,Hi′
[κ, n] is the frequeny ross-orrelation funtion (FCCF) at time tnbetween the TVFR Hi of the i-th subhannel and the TVFR Hi′ of the i′-thsubhannel given by

rf ′

Hi,Hi′
[κ, n] = 〈Hi[m,n]H

∗
i′ [m+ κ, n]〉f ′ ,

i, i′ = 1, . . . , NTNR. (2.19)The wide-sense stationarity of the onsidered MIMO hannel w.r.t. time requiresthat the delay CPSDs PHi,Hi′
(τ ′, tn), i, i′ = 1, . . . , NTNR, are time invariant.Therefore, the null hypothesis H0 an be expressed as

H0 :
(
PHi,Hi′

(τ ′, tn1
)− PHi,Hi′

(τ ′, tn2
)
)
= 0,

i, i′ = 1, . . . , NTNR and tn1
6= tn2

. (2.20)The objetive here is to validate the null hypothesis H0 by using the proeduredeveloped in the previous subsetion for SISO wireless hannels.In [34, Chapter 15℄, the author desribes an interesting approah to estimat-ing CPSDs. It is mentioned, however, that this approah annot guarantee themagnitude squared oherene [34℄ between two subhannels to be always bounded



Chapter 2 11by 1. As we are interested in the time variation of the estimated delay CPSD andnot in the estimated oherene between the subhannels, this drawbak is notrelevant for our purpose.Following [34℄, the real and the imaginary parts of the delay CPSDs PHi,Hi′
(τ ′, tn)an be written as

ℜ{PHi,Hi′
(τ ′, tn)} =

1

2
(PZii′ ,Zii′

(τ ′, tn)− PHi,Hi
(τ ′, tn)− PHi′ ,Hi′

(τ ′, tn))

ℑ{PHi,Hi′
(τ ′, tn)} =

1

2
(PWii′ ,Wii′

(τ ′, tn)− PHi,Hi
(τ ′, tn)− PHi′ ,Hi′

(τ ′, tn))(2.21)for i, i′ = 1, . . . , NTNR and i 6= i′, where PZii′ ,Zii′
(τ ′, tn) and PWii′ ,Wii′

(τ ′, tn)denote, respetively, the delay PSDs of the signals
Zii′ [m,n] = Hi[m,n] +Hi′ [m,n]

Wii′ [m,n] = Hi[m,n] + jHi′ [m,n]. (2.22)Taking (2.21) into aount, the null hypothesis H0 in (2.20) an be reformulatedas follows
H0a :

(
PHi,Hi

(τ ′, tn1
)− PHi,Hi

(τ ′, tn2
)
)
= 0,

i = 1, . . . , NTNR and tn1
6= tn2

H0b :
(
PZii′ ,Zii′

(τ ′, tn1
)− PZii′ ,Zii′

(τ ′, tn2
)
)
= 0,

i, i′ = 1, . . . , NTNR, i 6= i′ and tn1
6= tn2

H0c :
(
PWii′ ,Wii′

(τ ′, tn1
)− PWii′ ,Wii′

(τ ′, tn2
)
)
= 0,

i, i′ = 1, . . . , NTNR, i 6= i′ and tn1
6= tn2

. (2.23)Note the absene of the delay CPSDs in (2.23). Thus, the null hypotheses
{{H0a}, {H0b}, {H0c}} an be veri�ed by using the method desribed in Sub-setion 2.2.1 for SISO hannels.The total number of the null hypotheses in (2.23) is equal to (NTNR)

2. Basedon the results of testing these hypotheses, the deision is to be taken on whethera MIMO hannel is WSS. One approah is to aept the wide-sense stationarityof a MIMO hannel only if all of the hypotheses {{H0a}, {H0b}, {H0c}} have beenvalidated. The probability of the Type I error, i.e., erroneously rejeting any ofthe hypotheses {{H0a}, {H0b}, {H0c}}, is equal to α (see (2.17)). Thus, assumingthe independene of suh errors, the probability of falsely rejeting the hypothesisthat a MIMO hannel is WSS an be expressed as
Pr{error} = 1− (1− α)(NTNR)2 . (2.24)



12 Chapter 2As it follows from Table 2.1, even for MIMO hannels of moderate dimensions,the probability of error Pr{error} is unaeptable. A possible solution to thisproblem is to allow a ertain number of hypotheses in (2.23) to be rejeted. Forexample, suppose the stationarity of a 2 × 2 MIMO hannel is veri�ed. Theprobability of error in a single hypothesis test α is set to 0.01. The goal is tomaintain Pr{error} equal to or less than α for the deision based on the resultsof (NTNR)
2 = 16 hypothesis tests. Using the Bernoulli trials sheme [28℄, it anbe easily shown that in this ase Pr{error} ≤ 0.01 if at least 1 of 16 hypothesesin (2.23) is allowed to be rejeted.Table 2.1: Probability Pr{error} of a wrong rejetion of the hypothesis that aMIMO hannel of dimensions NT ×NR is WSS

NT ×NR α = 0, 05 α = 0.01 α = 0.003
2× 2 0.36 0.14 0.047
3× 3 0.984 0.557 0.216
4× 4 0.9998 0.924 0.537Let us now reonsider the assumption of the wide-sense stationarity of thehannel TVFR w.r.t. frequeny. What an be said if this assumption is not valid?As it is desribed in Subsetion 2.2.1, the Hotelling T 2-test veri�es the hypothesisthat the two olumn vetors ūn1

and ūn2
are equal. If the WSS assumption ofthe TVFR in the frequeny domain is not valid, then the vetors ūn1

and ūn2are derived from the inonsistent estimates of the delay PSDs. Thus, the nullhypotheses formulated in (2.8) and (2.23) annot be veri�ed, i.e., nothing an besaid about WSS property of the hannel TVFR w.r.t. time.However, it is plausible to assume that if the geographial loations of thesatterers, transmitter, and reeiver remain unhanged between the time instanes
tn1

and tn2
, then the vetors ūn1

and ūn2
are equal. In this ase, the testsdeveloped above verify the empirial hannel stationarity as de�ned in [18℄.2.3 Performane EvaluationThe performane of the proposed stationarity test has been evaluated based onsyntheti TVFRs generated using the geometrial two-ring hannel simulationmodel (see e.g., [35℄). Some of the hannel simulator parameters are spei�edbelow:

• Carrier frequeny: 5.255 GHz;
• Bandwidth: B = 100 MHz;
• Reeiving antenna: uniform linear array;
• Transmitting antenna: uniform linear array;
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• Antenna element spaing at the reeiver: 0.5λ;
• Antenna element spaing at the transmitter: 0.5λ;
• Interval between the frequenies: △f ′ = 1.957 · 105 Hz;
• Time between hannel snapshots: △t = 0.02 s;
• Maximum Doppler frequeny: 22 Hz;
• SNR: 10 dB.A hundred satterers are loated on the rings around the base station (BS)and the MS (see also Chapter 5). It has been veri�ed that the Doppler frequen-ies and the propagation delays are di�erent for all propagation paths. Under thisondition the generated TVFR is ergodi w.r.t. time and frequeny [11℄. All thepropagation path gains are equal to 1/

√
100. The parameters of the hannel sim-ulator do not hange with time. It has been observed that for the on�dene levelof 99% (α = 0.01) and the parameter Ms = 16, the error probability Pr{error}is equal to 0.0073, 0.0145, and 0.0064 for SISO, 2 × 2 MIMO, and 4 × 4 MIMOhannels, respetively. Evidently, the resulting error probabilities are lose to thetarget value of 0.01.Analysis of the test sensitivity based on the simulated hannel TVFRs revealsthat the maximum Doppler frequeny does not signi�antly in�uene the perfor-mane of the test proedure. On the other hand, a non-Gaussianity of the TVFRs(as in the ase of a small number of satterers, e.g., below 20, in the simulationsetup desribed above) demonstrates a strong impat on the error probability

Pr{error}. Suh impat an be redued by inreasing the segment length Ms.2.4 Appliations to Measurement DataIn this setion, we present the results of applying the test proedure developedin Setion 2.2 to real-world measurement data. The measurement ampaign hasbeen onduted by Telenor R&D, Norway. The desription of the measurementsites as well as the measurement equipment an be found in Appendix A.The antenna arrays at the transmitter and the reeiver allow us to investigatethe distribution of the stationarity interval lengths for SISO and MIMO hannels.For the measurements onsidered below, the parameter Ms (see Subsetion 2.2.1)is equal to 16. The on�dene level is set to 99% (α = 0.01).2.4.1 Miro Cell Site � Regular Street GeometryThe �rst propagation environment orresponds to an urban miro-ell site with aregular street grid. A series of the measured impulse responses for this propagation
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Figure 2.1: Magnitude of the impulse response (miro ell site � regular streetgeometry).
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Figure 2.2: Mean-square value of the TVFR (miro ell site � regular streetgeometry).senario is shown in Fig. 2.1. The trend existing in the time variation of the mean-square value of the TVFR an be observed in Fig. 2.2.In Fig. 2.3, the P -value in the Hotelling T 2-test is shown for the SISO hannel.The P -value is the probability that the statisti ϕ(S1,S2, ūn1
, ūn2

), de�ned in(2.16), would take a value greater than the observed one ϕ̂(S1,S2, ūn1
, ūn2

), underondition the null hypothesis H0 (2.8) is true [36℄. The signi�ane value α = 0.01is also depited in Fig. 2.3.
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Figure 2.3: P -value in the Hotelling T 2-test for the SISO hannel (miro ellsite � regular street geometry).The omplementary umulative distribution funtions (CCDFs) of the lengthof the stationarity intervals2 obtained for SISO, 2 × 2 MIMO, and 4 × 4 MIMOhannels are presented in Fig. 2.4. The mean length of the identi�ed stationarityintervals dereases from 0.59 s for the SISO hannel to 0.28 s for the 2× 2 MIMOand to 0.18 s for 4 × 4 MIMO hannels. The standard deviations of the intervallengths are equal to 0.79 s, 0.34 s, and 0.21 s, for the SISO, 2×2 MIMO, and 4×4MIMO hannels, respetively. Also, the perentage of the identi�ed stationarityintervals longer or equal than for example 0.5 s drops from 40% for the SISOhannel to 20% for the 2× 2 MIMO and 10% for 4× 4 MIMO hannels.

2Sine the moving speed is known only approximately, the stationarity intervals are measuredin seonds and not in wavelengths, whih otherwise might be a preferable measure.
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Figure 2.4: CCDF of the length of the stationarity intervals (miro ell site �regular street geometry).2.4.2 Miro Cell Site � Open Market PlaeThe seond propagation environment orresponds to a town market square.The measured impulse responses and the graph of the TVFR mean-squarevalue are demonstrated in Figs. 2.5 and 2.6, respetively.The P -value in the Hotelling T 2-test for the SISO hannel is shown in Fig. 2.7.The CCDFs of the length of the stationarity intervals for the SISO, 2 × 2MIMO, and 4 × 4 MIMO hannels are depited in Fig. 2.8. The average lengthof the identi�ed stationarity intervals dereases from 0.51 s for the SISO han-nel to 0.25 s for the 2 × 2 MIMO and 0.14 s for 4 × 4 MIMO hannels, whilethe standard deviations of the interval lengths are equal to 0.64 s, 0.25 s, and
0.14 s, respetively. Note that similar to the previously onsidered propagationenvironment, the number and the length of the stationarity intervals derease asthe number of antennas at the reeiver and transmitter inreases. The perentageof the identi�ed stationarity intervals longer or equal than 0.5 s is equal to 36%for the SISO hannel, 15% for the 2 × 2 MIMO hannel, and 4% for the 4 × 4MIMO hannel.
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Figure 2.5: Magnitude of the impulse response (miro ell site � open marketplae).
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Figure 2.6: Mean-square value of the TVFR (miro ell site � open marketplae).
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Figure 2.7: P -value in the Hotelling T 2-test for the SISO hannel (miro ellsite � open market plae).
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Figure 2.8: CCDF of the length of the stationarity intervals (miro ell site �open market plae).



Chapter 2 192.4.3 Miro/Pio Cell Site � PassagewayThe measurement data has been olleted in a passageway onneting the marketsquare, mentioned in the previous subsetion, with a side street (see Appendix A).A series of the impulse responses of the measured hannel is depited inFig. 2.9. The mean-square value of the TVFR of the measured hannel is demon-strated in Fig. 2.10.

Figure 2.9: Magnitude of the impulse response (miro/pio ell site � passage-way).The P -value for the SISO hannel and the empirial CCDFs of the length ofthe stationarity intervals for the SISO, 2×2 MIMO, and 4×4 MIMO hannels areshown in Figs. 2.11 and 2.12, respetively. The means and the standard deviationsof the length of identi�ed stationarity intervals are equal to 0.61 s and 0.79 s forthe SISO hannel, 0.29 s and 0.31 s for the 2 × 2 MIMO hannel, 0.13 s and
0.17 s for the 4× 4 MIMO hannel. The perentage of the identi�ed stationarityintervals longer or equal than 0.5 s is equal to 39% for the SISO hannel, 23% forthe 2× 2 MIMO hannel, and 4% for 4× 4 MIMO hannel.Note again that the number and the length of the stationarity intervals de-rease as the number of antennas at the reeiver and transmitter inreases.
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Figure 2.10: Mean-square value of the TVFR (miro/pio ell site � passage-way).
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Figure 2.11: P -value in the Hotelling T 2-test for the SISO hannel (miro/pioell site � passageway).
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Figure 2.12: CCDF of the length of the stationarity intervals (miro/pio ellsite � passageway).2.4.4 Indoor Cell SiteThe stationarity test outlined in Setion 2.2 has been applied to a measured indoorwireless hannel.The sequene of the impulse responses and the graph of the mean-squarevalue of the TVFR are shown in Figs. 2.13 and 2.14, respetively. As it followsfrom 2.14, the variability of the measured TVFR in time is signi�antly smallerompared to the TVFRs of the hannels analyzed above. This observation issupported by the results presented in Figs. 2.15 and 2.16 for the P -value in theHotelling T 2-test for the SISO hannel and the empirial CCDFs of the length ofthe stationarity intervals for the SISO, 2× 2 MIMO, and 4× 4 MIMO hannels.A possible explanation to the redued variability of the measured TVFR is theabsene of the moving objets along the measurement route. For this hannel,the perentage of the identi�ed stationarity intervals longer or equal than 0.5 s isequal to 56% for the SISO hannel, 45% for the 2 × 2 MIMO hannel, and 32%for the 4× 4 MIMO hannel. The mean lengths of the stationarity intervals andthe standard deviations are equal , respetively, to 1 s and 1.51 s for the SISOhannel, 0.77 s and 1.31 s for the 2× 2 MIMO hannel, 0.47 s and 0.76 s for the
4× 4 MIMO hannel. As for all previously onsidered hannels, we note that thenumber and the length of the stationarity intervals derease for this environmentas the number of antennas at the reeiver and transmitter inreases.
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Figure 2.13: Magnitude of the impulse response (indoor ell site).
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Figure 2.14: Mean-square value of the TVFR (indoor ell site).
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Figure 2.15: P -value in the Hotelling T 2-test for the SISO hannel (indoor ellsite).
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Figure 2.16: CCDF of the length of the stationarity intervals (indoor ell site).



24 Chapter 22.5 Chapter SummaryIn this hapter, we desribe a stationarity test for wireless ommuniation han-nels. The test is based on analyzing the delay PSD estimated at two di�erenttime instanes. If the hanges in the estimated delay PSDs are statistially in-signi�ant, the hypothesis that the hannel is stationary during the onsideredtime interval is aepted. The proposed stationarity test has been extended tovalidate the stationarity of real-world MIMO wireless hannels.In seleting values for the parameters of the test proedure, partiularly theon�dene level, whih has been set in all our experiments to 99%, we have beenguided by onsidering the probability of the Type I error as the primary per-formane evaluation riterion. The reason for hoosing this partiular riterionlies in the fat that the risk of erroneous rejetion of the null hypothesis for thedeveloped test an be assessed objetively. On the other hand, evaluating thestatistial power of the test, i.e., the probability of the Type II error, requiresthe non-stationary hannel TVFRs. On loser inspetion it turns out that thenon-stationary hannel TVFRs an be synthesized in a variety of manners. Forexample, the hanges in the hannel delay PSDs an be abrupt and easily iden-ti�ed, while gradual transitions in the delay PSDs make the de�nition of thehannel stationarity interval itself rather di�ult and subjetive.The analysis of the TVFRs of wireless hannels measured in di�erent propa-gation environments suggests that the length of the hannel stationarity intervalsis greatly dependent on the number of antennas at the transmitter and the re-eiver. Generally, the stationarity intervals are longer and our more often forSISO ommuniation hannels ompared to MIMO hannels. It appears thatthe measured TVFR beomes more �sensitive� to the hanges in the propagationenvironment as the number of antennas at the transmitter and reeiver inreases.In the following hapters, we use the stationarity test proedure presentedabove to identify the intervals, over whih the TVFRs of the real-world wirelessan be assumed WSS.



Chapter 3Design of Measurement-BasedStohasti Channel Simulators
3.1 IntrodutionCorrelation-based models are widely used for simulating wireless hannels (see,e.g., [37�39℄). In the simplest form these models desribe only the spatial orrela-tion properties of MIMO hannels. In [40,41℄, the so-alled Kroneker model hasbeen ombined with the tap-delay line model to represent wideband MIMO han-nels. Reently, a strutured model, based on the eigenvalue deomposition of thehannel orrelation matrix, has been proposed in [42℄ for wideband MIMO han-nels. A orrelation-based model for wideband MIMO Rayleigh fading hannelswith seletivity in spae, time, and frequeny has been desribed in [43,44℄. Sim-ulation tehniques based on the orthogonal deomposition of the hannel impulseresponse are presented in [45, 46℄.In this hapter, we desribe a method for designing measurement-based stohas-ti simulation models for time-variant wireless hannels [47℄. The method hasbeen developed based partly on the results published in [48�50℄. The distintivefeature of the proposed design method is the apability of generating realizationsof the hannel TVFRs with the spatial, temporal, and frequeny orrelation har-ateristis losely approximating those of a real-world prototype hannel. Notethat the separability of the orrelation properties in time, frequeny, and spae(see [16, 51℄) is not presumed. The usefulness of the method is illustrated by de-signing several stohasti hannel simulators based on the TVFRs of real-worldhannels measured in di�erent propagation environments.This hapter is organized as follows. In Setion 3.2, the stohasti simula-tion model is desribed for MIMO wideband hannels. The problem of designingmeasurement-based MIMO wideband hannel simulators is formulated in Se-tion 3.3. The algorithm proposed for determining the parameters of MIMO wide-25



26 Chapter 3band hannel simulators is presented in Setion 3.4. In Setion 3.5, we validatethe orretness of the parameter alulation algorithm by simulations. Examplesillustrating the development of stohasti hannel simulators based on real-worldwideband MIMO hannels are presented in Setion 3.6. In Setions 3.7 and 3.8,we onsider the design of stohasti simulators for MIMO narrowband hannelsand SISO wideband hannels, respetively. The onluding remarks are given inSetion 3.9.3.2 A Stohasti Channel Simulation Model for MIMOWideband ChannelsIn this setion, we desribe a stohasti simulation model for MIMO widebandradio hannels. It is presumed that the transmitter and the reeiver are equippedwith NT and NR antennas, respetively.3.2.1 Time-Variant Frequeny ResponseThe simulated TVFR of a MIMO wideband wireless hannel at the disrete fre-quenies f ′m = −B/2 + m△f ′ ∈ [−B/2, B/2], m = 0, . . . ,M − 1, and at thedisrete time instanes tn = n△t ∈ [0, T ], n = 0, . . . , N − 1, is represented by thematrix sequene
H[m,n] =






H1,1[m,n] . . . H1,NR
[m,n]... . . . ...

HNT ,1[m,n] . . . HNT ,NR
[m,n]




 (3.1)where eah element Hi1,i2 [m,n], i1 = 1, . . . , NT and i2 = 1, . . . , NR, is a sampledTVFR of the subhannel between the i1-th transmitting antenna and the i2-threeiving antenna. The parameters B and T denote the frequeny bandwidth andthe observation time interval, respetively. In the vetorized form, the TVFR

H[m,n] is given by
h[m,n] = vec(H[m,n]) =









H1,1[m,n]

H2,1[m,n]...
HNT ,NR

[m,n]









. (3.2)Before we proeed with desribing the stohasti simulation model for MIMOwideband radio hannels, it makes sense to sketh the line of reasoning behindthe hosen modeling approah. For this purpose, we onsider a general disrete-time WSS zero-mean omplex random proess y(tn), tn ∈ [0, T ]. The anonial



Chapter 3 27deomposition of the random proess y(tn) is given by [52℄
y(tn) =

∑

l

Ulϕl(tn) (3.3)where Ul are unorrelated zero-mean omplex random variables and ϕl(tn) aredeterministi basis funtions.For the omplex random proess y(tn), represented by (3.3), the anonialdeomposition of the orrelation funtion Υ(tn, tq) = E{y(tn)y∗(tq)} is expressedas
Υ(tn, tq) =

∑

l

σ2Ul
ϕl(tn)ϕ

∗
l (tq) (3.4)where σ2Ul

denotes the variane of the random variable Ul.It is well-known that the optimal hoie of the basis funtions ϕl(tn) is ditatedby the Karhunen-Loève expansion (KLE) [53�55℄. The drawbak of the KLE isthe lak of an analytial solution for the basis funtions ϕl(tn), exept for a fewspeial ases. As a onsequene, it is not possible to generate realizations of therandom proess y(tn) at arbitrary hosen time instanes.An alternative approah to seleting the basis funtions ϕl(tn) in (3.3) is toemploy a generi basis1, e.g., the Fourier basis. Suh `universality' in representingradio propagation hannels is provided by the Maxwellian basis. As postulatedin [11, Chapter 4℄, any wireless hannel satisfying the bounded free-spae prop-agation onditions an be represented as a ombination of plane waves, whihonstitute a subset of the Maxwellian basis. It seems reasonable then to hoosethe funtions desribing the plane waves as the basis funtions for modeling theTVFRs of wireless ommuniation hannels.The simulation model proposed in this hapter for generating realizationsof the TVFR h[m,n] = [h1[m,n], . . . , hNTNR
]T is based on the stohasti loalarea hannel (SLAC) model [11℄. The TVFR of eah subhannel hi[m,n], i =

1, . . . , NTNR, is a 2D omplex zero-mean random proess, represented in thegeneralized form by the sum (f. (3.3))
hi[m,n] =

L∑

l=1

Ulϕil [m,n] (3.5)where {Ul}L1 are independent zero-mean omplex random variables and {ϕil [m,n]}L1are deterministi 2D funtions de�ned as
ϕil [m,n] = gile

j(2πfdl tn−2πf ′

mτ ′
l
), l = 1, . . . , L and i = 1, . . . , NTNR. (3.6)1By qualifying a basis as generi, we mean a broad appliability of the basis for representingsignals under mild onditions, whih are ful�lled in many pratial situations.



28 Chapter 3Eah funtion ϕil [m,n] desribes a homogeneous eletromagneti plane wave. Itis haraterized by the omplex path gain gil , the Doppler frequeny fdl , and thepropagation delay τ ′l . In ontrast to the SLAC model [11℄, the number of termsin the sum (3.5) is neessarily �nite.As follows from (3.5) and (3.6), the TVFR h[m,n] is a weighted sum of Lomplex exponentials2
h[m,n] =

L∑

l=1

clgle
j(2πfdl tn−2πf ′

mτ ′
l
)Ul. (3.7)where the vetor gl is de�ned as gl = [g1l , . . . , gNTNRl

]T . In the polar oordinatesystem, the omplex weighting oe�ients {Ul = Ξle
jΘl}L1 are represented by thephase shifts {Θl}L1 and the magnitudes {Ξl}L1 . The phase shifts {Θl}L1 are inde-pendent identially distributed (i.i.d.) random variables, eah having a uniformdistribution on the interval [0, 2π). The magnitudes {Ξl}L1 are independent, butnot neessarily identially distributed random variables. Moreover, the randomvariables Ξl and Θl are statistially independent for all l = 1, . . . , L.As will be shown in the next subsetion, the orrelation properties of thehannel simulation model in (3.7) in time, frequeny, and spae are ompletelydesribed by the set of parameters P =

{
L, {cl}L1 , {gl}L1 , {fdl}L1 , {τ ′l}L1

}. Notethat the number of the omponents L is also onsidered here (with some abuseof notation) as a model parameter. For a measurement-based stohasti hannelsimulator, the set of parameters P is determined from the measured TVFR of aprototype physial wireless hannel.The distributions of the random variables {Ξl}L1 an, in priniple, be de�nedarbitrarily, but restrited to having unit variane. For example, when {Ξl}L1 areRayleigh distributed or, equivalently, Ul ∼ CN (0, 1) (l = 1, . . . , L) [28℄, the TVFR
h[m,n] in (3.7) is a omplex Gaussian multivariate 2D random vetor proess. Ifthe magnitudes {Ξl}L1 are onstant and all are equal to 1, it an be shown thatthe envelope PDF p|hi|(x) of the simulated TVFR hi[m,n] of the ith subhannelis given by (see [11, p.118℄)

p|hi|(x) =

∫ ∞

0
xJ0(xζ)

(
L∏

l=1

J0(|clgil |ζ)
)

ζdζ, i = 1, . . . , NTNR (3.8)where J0(·) denotes the zero-order Bessel funtion of the �rst kind. Although theproduts {clgil}L1 are in general not equal, it an be expeted that the envelopePDF p|hi|(x) approahes the Rayleigh distribution as L → ∞ due to the entrallimit theorem.2The reason for keeping the gain fators {cl} as separate parameters will beome lear inSetion 3.4, where the parameter omputation method is onsidered.



Chapter 3 293.2.2 Spae-Time-Frequeny Correlation MatrixThe orrelation between the samples of the simulated TVFR h[m,n] is hara-terized by the spae-time-frequeny orrelation matrix R that is de�ned as
R = E

{
v[m,n]vH [m,n]

}
=
















R[0, 0] · · · R[−κmax, 0] · · · R[0,−ιmax] · · · R[−κmax,−ιmax]... . . . ... . . . ... . . . ...
R[κmax, 0] · · · R[0, 0] · · · R[κmax,−ιmax] · · · R[0,−ιmax]... . . . ... . . . ... . . . ...
R[0, ιmax] · · · R[−κmax, ιmax] · · · R[0, 0] · · · R[−κmax, 0]... . . . ... . . . ... . . . ...

R[κmax, ιmax] · · · R[0, ιmax] · · · R[κmax, 0] · · · R[0, 0]














(3.9)where the operator (·)H stands for a omplex onjugate transpose of a matrix andthe vetor v[m,n] designates

v[m,n] = [hT [m,n] . . .hT [m− κmax, n]

. . .hT [m,n− ιmax] . . .h
T [m− κmax, n− ιmax]]

T . (3.10)After substituting (3.7) into (3.10), the spae-time-frequeny orrelation ma-trix R of the hannel simulation model an be written as
R =

L∑

l=1

c2lRtl ⊗Rf ′

l
⊗Rgl (3.11)where the symbol ⊗ denotes the Kroneker produt. Note that Kroneker stru-ture of the orrelation matrix R results from absene of any ombinations of thespae-frequeny-time ross-terms in the omplex eponentials in (3.7) (f. the on-ditions for the wave propagation in the loal area [11, Chapter 4℄). The ToeplitzHermitian matries Rtl , Rf ′

l
and the Hermitian matrix Rgl are de�ned as

Rtl =






1 · · · e−j2πfdl ιmax△t... . . . ...
ej2πfdl ιmax△t · · · 1




 (3.12)

Rf ′

l
=






1 · · · ej2πτ
′

l
κmax△f ′... . . . ...

e−j2πτ ′
l
κmax△f ′ · · · 1




 (3.13)
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Rgl = glg

H
l . (3.14)The spae-time-frequeny orrelation matrix R in (3.9) is Hermitian and dou-bly blok-Toeplitz.For the ase of omplex weighting oe�ients with the onstant magnitudes

{Ξl = 1}L1 in (3.7), it is worth mentioning that the TVFR h[m,n] is orrelation-ergodi w.r.t. time and frequeny under the onditions fdn 6= fdl and τ ′n 6= τ ′l forall n 6= l.3.3 Problem FormulationAs it has been stated in Setion 3.2, the set of parameters P of the stohastihannel simulation model in (3.7) is to be determined from the TVFR of a pro-totype physial wireless hannel. Our aim is to develop an algorithm that allowsreating hannel simulators with the orrelation properties in time, frequeny, andspae losely approximating the orresponding orrelation properties of prototypereal-world hannels.Let H̃[m,n] denote the TVFR of a real-world wireless NT×NR MIMO hannelmeasured at the disrete frequenies f ′m, m = 0, . . . ,M − 1, and at the disretetime instanes tn, n = 0, . . . , N − 1. The TVFR H̃[m,n] in the vetorized formis given by
h̃[m,n]=

[

h̃1[m,n], . . . , h̃NTNR
[m,n]

]T

=vec(H̃[m,n]) =
[

H̃1,1[m,n], . . . , H̃NT ,NR
[m,n]

]T
. (3.15)The TVFR of eah subhannel h̃i[m,n], i = 1, . . . , NTNR, is assumed to be a2D zero-mean omplex random proess. Furthermore, we assume that the TVFR

h̃[m,n] of a real-world hannel is ergodi with respet to time and frequeny,therefore, an estimate of the spae-time-frequeny orrelation matrix R̃, de�nedsimilar to the orrelation matrix R in (3.9), an be obtained from a single realiza-tion of the TVFR h̃[m,n] by averaging over time and frequeny. The estimationof the orrelation matrix R̃ is onsidered in the next setion.The problem of designing a measurement-based stohasti hannel simulatoran now be formulated as follows:Given the estimated orrelation matrix R̃ of a real-world hannel, design ahannel simulation model in suh a way that the orrelation matrix R of thehannel simulator approximates losely the estimated orrelation matrix R̃.Taking into aount the possible inauray of the model in (3.7), as well



Chapter 3 31as the errors in the estimated orrelation matrix R̃, we suggest using the fol-lowing design riterion (see also [6, 56℄) for determining the set of parameters
P =

{
L, {cl}L1 , {gl}L1 , {fdl}L1 , {τ ′l}L1

} of the hannel simulation model de�ned inSetion 3.2
P̂ = min

P

∥
∥
∥R̃−R

∥
∥
∥
F

(3.16)where the symbol ‖·‖F denotes the Frobenius matrix norm. The Frobenius matrixnorm, in this ase, plays the role of the Eulidian vetor norm in the traditionalleast-square �tting of a data sequene formulation. After substituting (3.11) into(3.16) we obtain
P̂ = min

P

∥
∥
∥R̃−∑L

l=1 c
2
lRtl ⊗Rf ′

l
⊗Rgl

∥
∥
∥
F

(3.17)where the matries Rtl , Rf ′

l
, and Rgl are de�ned in (3.12), (3.13), and (3.14),respetively.In the next setion, we develop an iterative algorithm for determining theparameters of the hannel simulation model by minimizing the Frobenius normin (3.17).3.4 Computation of the Channel Simulator Parameters3.4.1 Estimation of the Channel Correlation MatrixBy assumption, the measured TVFR h̃[m,n] is WSS (ergodi) with respet totime and frequeny. Theoretially, this means that the matrix R̃ must be doublyblok-Toeplitz3. This an hardly be observed in pratial situations due to thestatistial variations in the orrelation matrix, estimated from a limited numberof measured data samples.Therefore, in order to ensure the doubly blok-Toeplitz struture of the es-timated orrelation matrix R̃, we �rst obtain the estimates of the orrelationmatries R̃[κ, ι] for κ = −κmax, . . . , 0, . . . , κmax and

ι = −ιmax, . . . , 0, . . . , ιmax, as follows
ˆ̃
R[κ, ι] =

1

(M − |κ|)(N − |ι|)

M−1−|κ|
∑

m=0

N−1−|ι|
∑

n=0

h̃[m,n]h̃H [m+ κ, n+ ι]. (3.18)Note that the orrelation matrix estimator (3.18) is unbiased, i.e.,
E{ ˆ̃R[κ, ι]} =3Reall that the TVFR h̃[m,n] is measured on the grid of equally distant frequenies f ′

m =
−B/2 +m△f ′, m = 0, . . . ,M − 1, and time instanes tn = n△t, n = 0, . . . , N − 1.
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1

(M − |κ|)(N − |ι|)

M−1−|κ|
∑

m=0

N−1−|ι|
∑

n=0

E{h̃[m,n]h̃H [m+ κ, n + ι]} = R̃[κ, ι].(3.19)Also for the omplex random proess h̃[m,n], whih is jointly Gaussian for anyset of frequenies f ′m and time instanes tn, it an be shown that the variane of the(i1, i2)-th element ˆ̃
Ri1,i2 [κ, ι], i1, i2 = 1, . . . , NTNR, of the estimated orrelationmatrix in (3.18), given by

E

{

( ˆ̃Ri1,i2 [κ, ι]−R̃i1,i2 [κ, ι])(
ˆ̃
Ri1 i2 [κ, ι]−R̃i1,i2 [κ, ι])

∗

}

=

=
1

(M − |κ|)2(N − |ι|)2
M−1−|κ|
∑

m1=0

N−1−|ι|
∑

n1=0

M−1−|κ|
∑

m2=0

N−1−|ι|
∑

n2=0

E

{

h̃i1 [m1, n1]h̃
∗
i2 [m1 + κ, n1 + ι]h̃i2 [m2 + κ, n2 + ι]h̃∗i1 [m2, n2]

}

−|R̃i1,i2 [κ, ι])|2 =

=
1

(M − |κ|)2(N − |ι|)2
M−1−|κ|
∑

m1=0

N−1−|ι|
∑

n1=0

M−1−|κ|
∑

m2=0

N−1−|ι|
∑

n2=0
[

E

{

h̃i1 [m1, n1]h̃
∗
i1 [m2, n2]

}

E

{

h̃∗i2 [m1 + κ, n1 + ι]h̃i2 [m2 + κ, n2 + ι]

}

+

E

{

h̃i1 [m1, n1]h̃i2 [m2 + κ, n2 + ι]

}

E

{

h̃∗i2 [m1 + κ, n1 + ι]h̃∗i1 [m2, n2]

}](3.20)asymptotially (as N → ∞, M → ∞) approahes zero under the ondition
∞∑

ϑ=−∞

∞∑

ς=−∞

|ϑ||ς|
[

E

{

h̃i1 [m,n]h̃
∗
i1 [m+ ϑ, n+ ς]

}

×E
{

h̃i2 [m,n]h̃
∗
i2 [m− ϑ, n− ς]

}

+ E

{

h̃i1 [m,n]h̃i2 [m+ ϑ+ κ, n + ς + ι]

}

×E
{

h̃∗i1 [m,n]h̃
∗
i2 [m− ϑ+ κ, n − ς + ι]

}]

<∞(3.21)where we have de�ned ϑ = m2 −m1 and ς = n2 − n1. The ondition in (3.21) isnormally ful�lled in pratie.The estimated orrelation matrix ˆ̃
R is reated by ombining the estimatedmatries ˆ̃

R[κ, ι] similar to (3.9). It an be easily heked that the resulting matrix
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ˆ̃
R is Hermitian and doubly blok-Toeplitz.3.4.2 Iterative Parameter Computation MethodObserve that the minimization of the Frobenius norm in (3.17) resembles theproblem of �nding the optimal (in the Frobenius norm sense) deomposition of theorrelation matrix ˆ̃

R over a library X of the Hermitian matries X = Rt ⊗Rf ′ ⊗
Rg. Eah member Xk = Rtk⊗Rf ′

k
⊗Rgk of the matrix library X is onstruted bysubstituting a set of the hannel simulator parameters γk = {gk, fdk , τ ′k} ∈ Γ into(3.12)�(3.14). Here, Γ denotes the set of all possible sets γk. To �nd the matries

{Xl}L1 that minimize the Frobenius norm in (3.17), we adapt the mathing pursuit(MP) approah [57℄ often employed, e.g., for seleting the `best' wavelet paketbasis deomposition of a given signal.The estimated orrelation matrix ˆ̃
R is deomposed as

ˆ̃
R =

〈 ˆ̃R,X1〉
〈X1,X1〉

X1 +
ˆ̃
Rres1 (3.22)where 〈A,B〉 designates the matrix inner produt and X1 = Rt1 ⊗Rf ′

1
⊗Rg1 is amember of the matrix library X obtained, as mentioned above, by substituting theset of the simulation model parameters γ1 = {g1, fd1 , τ ′1} ∈ Γ into (3.12)�(3.14).The Hermitian matrix ˆ̃

Rres1 represents the residual approximation error. Itan be shown that the matriesX1 and ˆ̃
Rres1 are orthogonal, i.e., 〈 ˆ̃Rres1,X1〉 = 0,onsequently

‖ ˆ̃R‖2F =
| ˆ〈R̃,X1〉|2
〈X1,X1〉

+ ‖ ˆ̃Rres1‖2F . (3.23)From (3.23), it follows that ‖ ˆ̃R‖F ≥ ‖ ˆ̃Rres1‖F and the set of parameters γ1 =

{g1, fd1 , τ ′1}, whih minimizes the norm of the residual error ˆ̃
Rres1 , an be deter-mined as

γ1 = {g1, fd1 , τ ′1} = argmax
γk∈Γ

〈 ˆ̃R,Xk〉
〈Xk ,Xk〉

. (3.24)Also, from the omparison of (3.17) and (3.23), the squared gain fator c21 is givenby
c21 =

〈 ˆ̃R,X1〉
〈X1,X1〉

. (3.25)Equation (3.11) implies that the gain fators cl must be real and nonnegative.Hene, the maximizer in (3.24) has to be supplemented with the onstraint
〈 ˆ̃R,X1〉 = |〈 ˆ̃R,X1〉|, i.e., the inner produt 〈 ˆ̃R,X1〉 must be real and greaterthan or equal to zero.



34 Chapter 3In turn, the residual error matrix ˆ̃
Rres1 is deomposed into the sum

ˆ̃
Rres1 =

〈 ˆ̃Rres1 ,X2〉
〈X2,X2〉

X2 +
ˆ̃
Rres2 . (3.26)Again, it an be shown that 〈 ˆ̃Rres2 ,X2〉 = 0, and onsequently

‖ ˆ̃Rres1‖2F =
|〈 ˆ̃Rres1 ,X2〉|2

〈X2,X2〉
+ ‖ ˆ̃Rres2‖2F (3.27)where the matrix X2 is a member of the library X orresponding to the parameterset γ2 = {g2, fd2 , τ ′2} ∈ Γ. Similar to (3.24) and (3.25), the parameter set γ2 isobtained by maximizing 〈 ˆ̃Rres1 ,Xk〉/〈Xk,Xk〉 under the onstraint 〈 ˆ̃Rres1 ,X2〉 =

|〈 ˆ̃Rres1 ,X2〉|, and the squared gain fator c22 = 〈 ˆ̃Rres1 ,X2〉/〈X2,X2〉. Observethat aording to (3.27) ‖ ˆ̃Rres1‖F ≥ ‖ ˆ̃Rres2‖F .Continuing in a similar way, we obtain the following deomposition of theestimated orrelation matrix ˆ̃
R

ˆ̃
R =

L∑

l=1

〈 ˆ̃Rresl−1
,Xl〉

〈Xl,Xl〉
Xl +

ˆ̃
RresL (3.28)where ˆ̃

Rres0 =
ˆ̃
R.Aordingly, the Fobenius norm in (3.17) is given by

‖ ˆ̃R −
L∑

l=1

〈 ˆ̃Rresl−1
,Xl〉

〈Xl,Xl〉
Xl‖F = ‖ ˆ̃RresL‖F . (3.29)Note that the inequality ‖ ˆ̃Rresl

‖F ≥ ‖ ˆ̃Rresl+1
‖F holds true for all l = 0, . . . , L−1.Let us now assume that the matries {Xl}L1 ∈ X , as well as the orrespondingsquared gain fators {c2l = 〈 ˆ̃Rresl−1

,Xl〉/〈Xl,Xl〉}L1 , have been determined. Inorder to further redue the residual approximation error given by (3.29), we wantto �nd the best possible solution to the following maximization problem (see(3.24))
{
gL+1, fdL+1

, τ ′L+1

}
= argmax

gk,fdk ,τ
′

k

〈 ˆ̃RresL
,Xk〉

〈Xk ,Xk〉 (3.30)under the onstraint 〈 ˆ̃RresL
,XL+1〉 = |〈 ˆ̃RresL

,XL+1〉|.Using the properties of the Kroneker produt and the de�nitions in (3.12)�



Chapter 3 35(3.14), any member Xk of the matrix library X an be written as
Xk = xkx

H
k = (etk ⊗ ef ′

k
⊗ gk)(etk ⊗ ef ′

k
⊗ gk)

H (3.31)where
etk =

[

1 ej2πfdk△t . . . ej2πfdk ιmax△t
]T

ef ′

k
=

[

1 e−j2πτ ′
k
△f ′

. . . e−j2πτ ′
k
κmax△f ′

]T
. (3.32)It follows that the maximizer in (3.30) an be equivalently expressed as

{
gL+1, fdL+1

, τ ′L+1

}
= argmax

gk,fdk ,τ
′

k

xH
k
ˆ̃
RresLxk

xH
k xk

. (3.33)To redue the omputational di�ulties assoiated with the multidimensionalsearh for the parameters {gL+1, fdL+1
, τ ′L+1

} in (3.33), we use the proeduredeveloped below.The maximum of the Rayleigh quotient in (3.33) is equal to the largest eigen-value λmaxL of the matrix ˆ̃
RresL

[58℄. This observation suggests an idea to makethe vetor xL+1 as muh as possible ollinear with the eigenvetor uL assoiatedwith the eigenvalue λmaxL . Thus, the maximization problem in (3.33) an bereformulated as
{
gL+1, fdL+1

, τ ′L+1

}
= argmin

gk,fdk ,τ
′

k

xH
k PLxk

xH
k xk

(3.34)where the matrixPL = I−uLu
H
L is the orthogonal projetor on the (NTNR(κmax+

1)(ιmax + 1) − 1)-dimensional subspae omplementary to the subspae spannedby the vetor uL, and I denotes the unity matrix of appropriate dimensions. In(3.34), the property PH
LPL = PL has been used.On substituting xk = etk ⊗ ef ′

k
⊗ gk into (3.34), we obtain4

{
gL+1, fdL+1

, τ ′L+1

}
= argmin

gk,fdk ,τ
′

k

〈Rf ′

k
⊗Rgk ,P

′
Lk
〉

(eHtketk)(e
H
f ′

k

ef ′

k
)(gH

k gk)
(3.35)where the matrix P′

Lk
is de�ned as
P′

Lk
= (eHtk ⊗ I)PL(etk ⊗ I). (3.36)4Reall that for any square matrix A and a vetor b, the following equalities hold b

H
Ab =

trace{bbH
A} = 〈bbH ,A〉.



36 Chapter 3The Couhy-Bunyakovsky-Shwarz (CBS) inequality allows us to write
|〈Rf ′

k
⊗Rgk ,P

′
Lk
〉| ≤ ‖Rf ′

k
⊗Rgk‖F ‖P′

Lk
‖F . (3.37)Thus, as a solution to (3.35), we use the Doppler frequeny fdL+1

determined as
fdL+1

= argmin
fdk

‖P′
Lk
‖F

eHtketk
. (3.38)After substituting the Doppler frequeny fdL+1

that minimizes (3.38) into (3.36),the hannel simulator parameters {gL+1, τ
′
L+1

} are found from the following equa-tion
{
gL+1, τ

′
L+1

}
= argmin

gk,τ
′

k

〈Rgk ,P
′′
Lk

〉
(eH

f ′

k

ef ′

k
)(gH

k gk)
(3.39)where the matrix P′′

Lk
is de�ned as
P′′

Lk
= (eHf ′

k
⊗ I)P′

L(ef ′

k
⊗ I). (3.40)Appliation of the CBS inequality to (3.39) results in

τ ′L+1 = argmin
τ ′
k

‖P′′
Lk

‖F
eH
f ′

k

ef ′

k

(3.41)and after substituting τ ′L+1, whih minimizes (3.41), into (3.39), we obtain
gL+1 = argmin

gk

gH
k P′′

Lgk

gH
k gk

. (3.42)The equation (3.42) is minimized by hoosing the vetor gL+1 to be equal to theeigenvetor orresponding to the smallest eigenvalue of the matrix P′′
L.In passing note that the simulation model parameters {gL+1, fdL+1
, τ ′L+1

} anbe omputed diretly from the eigenvetor uL without generating the matries
PL, P′

L, and P′′
L as in (3.38), (3.41), and (3.42).The squared gain fator c2L+1 is determined as

c2L+1 =
〈 ˆ̃RresL ,XL+1〉
〈XL+1,XL+1〉

(3.43)where the matrix XL+1 ∈ X is obtained by substituting the omputed parameters
{
gL+1, fdL+1

, τ ′L+1

} into (3.31). Sine the residual error matrix ˆ̃
RresL is Hermi-tian, the parameter c2L+1 is real. However, beause the matrix ˆ̃
RresL annot beguaranteed to be positive de�nite, the parameter c2L+1 an be negative. If this is



Chapter 3 37the ase, no solution to the maximization problem in (3.30) an be found usingthe method desribed above, i.e., the �nal approximation residual error is thengiven by the matrix ˆ̃
RresL

(see (3.28)).The empirial results of applying the proposed parameter omputation methoddemonstrate that the residual approximation error an be signi�antly reduedby applying the yli minimization tehnique [59℄.As before, presume that the matries {Xl}L1 ∈ X and the orrespondingsquared gain fators {c2l }L1 have been determined. Using the omputational stepsdesribed in (3.30)�(3.42), we obtain the set of parameters {gL+1, fdL+1
, τ ′L+1

}
∈

Γ and, onsequently, the matrix XL+1 ∈ X . We assume that c2L+1 ≥ 0. Other-wise, the minimization of the Frobenius norm (3.17) is �nalized with the residualapproximation error matrix ˆ̃
RresL

.The matries {Xl}L+1
1 and the squared gain fators {c2l }L+1

1 are supplied asinitial parameter values {X(0)
l }L+1

1 and {c2l
(0)}L+1

1 into an iterative minimizationproedure desribed below.On every iteration q, q = 1, 2, . . . , the following steps are exeuted:1) For p = 1, . . . , L+ 1, we ululate the auxiliary matries Z(q)
p aording to

Z(q)
p =







ˆ̃
R−∑L+1

l=2 c
2
l
(q−1)

X
(q−1)
l , p = 1

ˆ̃
R−∑p−1

l=1 c
2
l
(q)

X
(q)
l −∑L+1

l=p+1 c
2
l
(q−1)

X
(q−1)
l , 2 ≤ p ≤ L

ˆ̃
R−∑L

l=1 c
2
l
(q)

X
(q)
l , p = L+ 1.

(3.44)Use the matrix Z
(q)
p in lieu of ˆ̃

RresL
in (3.30)�(3.43) to ompute the param-eters {g(q)

p , f
(q)
dp
, τ ′p

(q), cp
(q)
}.2) Calulate the Frobenius norm of the residual approximation error matrix

ˆ̃
R

(q)
resL+1

as follows
‖ ˆ̃R−

L+1∑

l=1

c2l
(q)

X
(q)
l ‖F = ‖ ˆ̃R(q)

resL+1
‖F . (3.45)3) If the ondition ‖ ˆ̃R(q)

resL+1
‖F < ‖ ˆ̃R(q−1)

resL+1
‖F is satis�ed, begin a new iteration.Alternatively, set the hannel simulator parameters {gl, fdl , τ ′l , cl}L+1

1 equalto {g(q)
l , f

(q)
dl
, τ ′l

(q), cl
(q)
}L+1

1
and proeed with determining the initial valuesfor the parameters {gL+2, fdL+2

, τ ′L+2, cL+2

} using (3.30)�(3.43).As it has already been mentioned, the parameter omputation algorithm de-veloped above is based on the MP approah [57℄. In partiular, it inherits theenergy onservation property of the MP method [55℄, whih results in derease



38 Chapter 3of the approximation error given by (3.29), as the number of omponents L in-reases. The onvergene of the general MP method has been analyzed in [55,57℄.Taking into aount the arguments given in [55,57℄ and also the omments in [60℄,we onlude that the proposed method of determining the parameters P of thehannel simulation model in (3.7) an be onsidered only as a heuristi algorithm.That means that even though the Frobenius norm of the residual approximationerror matrix ˆ̃
RresL is a stritly noninreasing funtion of the number of the om-ponents L, it does not imply that the proposed algorithm neessarily produesthe optimal solution to the problem stated in Setion 3.3.The iterative nature of the parameter omputation algorithm desribed inthis setion impedes an assessment of its omputational omplexity. Further-more, the omplexity of the algorithm depends on the properties of the estimatedorrelation matrix ˆ̃

R and desired (aeptable) auray of the orrelation matrixapproximation, i.e., the aeptable residual approximation error norm ‖ ˆ̃RresL‖F(3.29).3.5 Simulation ResultsHere, we verify the orretness of the iterative parameter omputation algorithmdesribed in the previous setion. Additionally, we investigate the in�uene ofthe white noise present in the measured TVFR of a wireless hannel exerted onthe performane of the algorithm. For these purposes, we employ the geometrialtwo-ring hannel simulation model that has been used in Setion 2.3. Note thatthe orrelation matrix R̆ of the geometrial two-ring hannel simulation model,whih is de�ned similarly to (3.11), an be easily obtained by substituting theknown gains {c̆l}L1 , the Doppler frequenies {f̆dl}L1 , the propagation delays {τ̆ ′l}L1 ,and the vetors {ğl}L1 into (3.11), (3.12), (3.13), and (3.14), respetively. Thevetor ğl, l = 1, . . . , L, is given by the Kroneker produt of the steering vetor(see Chapter 5) of a transmitting antenna, alulated for the known diretion-of-departure (DOD) ψl, and the steering vetor of a reeiving antenna, alulatedfor the known diretion-of-arrival (DOA) φl. Below, we refer to the orrelationmatrix R̆ of the geometrial two-ring hannel simulation model as the sampleorrelation matrix.Some of the parameters of the geometrial two-ring hannel simulation modelread as (see also Setion 2.3):
• Number of satterers: L = 50;
• Reeiving antenna: 2-element omnidiretional uniform linear array;
• Transmitting antenna: 2-element omnidiretional uniform linear array;
• Time between hannel snapshots: △t = 0.07 s;
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• Maximum Doppler frequeny: 7 Hz;
• SNR: 5 dB.Aording to the problem formulation stated in Setion 3.3, we determine theset of parameters P =

{
L, {cl}L1 , {gl}L1 , {fdl}L1 , {τ ′l }L1

} of the hannel simulationmodel (3.7) as follows
P̂ = min

P

∥
∥Ř−R

∥
∥
F (3.46)where the matrix Ř = R̆+ σ2I is the sample-plus-noise orrelation matrix. Theterm σ2I represents the orrelation matrix of the omplex zero-mean multivariateGaussian white noise. The parameter σ2 signi�es the power of the noise om-ponent orresponding the spei�ed SNR. The identity matrix I is of the samedimensions as the sample orrelation matrix R̆.In Fig. 3.1, several examples of the sample-plus-noise temporal ross-orrelationfuntions (TCCFs) řti1,i2 [ι] and the sample-plus-noise frequeny ross-orrelationfuntions (FCCFs) řf ′

i1,i2
[κ], i1, i2 = 1, . . . , NTNR, are presented together withthe orresponding TCCFs rti1,i2 [ι] and FCCFs rf ′

i1,i2
[κ] of the hannel simulationmodel (3.7). The TCCFs řti1,i2 [ι] and FCCFs řf ′

i1,i2
[κ] are extrated from thealulated sample-plus-noise orrelation matrix5 Ř (see Setion 3.2). Similarly,the TCCFs rti1,i2 [ι] and FCCFs rf ′

i1,i2
[κ] are extrated from the orrelation matrix

R. In Fig. 3.1, we also show the sample TCCFs r̆f ′

i1,i2
[κ] and the sample FCCFs

r̆f ′

i1,i2
[κ] of the geometrial two-ring hannel simulation model for the noise-freease, extrated from the sample orrelation matrix R̆.As an be seen from the �gure, the orrelation properties of the resultinghannel simulation model (3.7) losely approximate the orresponding orrelationproperties of the geometrial two-ring hannel simulation model and are not signif-iantly e�eted by the presene of the noise omponent in the sample-plus-noiseorrelation matrix Ř. The observed resistane of the parameter omputationmethod to the white noise present in the TVFR an be attributed to the fatthat the eigenvetors of the sample orrelation matrix R̆ are also the eigenvetorsof the sample-plus-noise orrelation matrix Ř. Reall that the hannel simula-tor parameters {{gl}L1 , {fdl}L1 , {τ ′l}L1 } are determined by using the eigenvetorsof the orrelation matrix Ř (see Subsetion 3.4.2). It should be mentioned, how-ever, that the apability to single out the white noise omponent ontained inthe orrelation matrix to a large extend depends on the range of the time lags

|ι| ≤ ιmax and the range of the frequeny lags |κ| ≤ κmax, at whih the orrelationproperties of the hannel TVFR are estimated. The onduted simulations sug-5The sample-plus-noise TCCFs řti1,i2
[ι] and the sample-plus-noise FCCFs řf ′

i1,i2

[κ], i1, i2 =

1, . . . , NTNR, are de�ned as E{ȟi1 [m,n]ȟ∗

i2
[m,n+ι]} and E{ȟi1 [m,n]ȟ∗

i2
[m+κ, n]}, respetively,where ȟi[m,n], i = 1, . . . , NTNR, designates the TVFR of the i-th subhannel synthesized byusing the geometrial two-ring hannel simulation model and ontaminated with white noise.



40 Chapter 3gest that for the hosen time interval between hannel snapshots △t = 0.07 s andthe interval between the frequenies △f ′ = 1.957 · 105 Hz, the results similar tothose presented in Fig. 3.1 are ahieved when the values of κmax and ιmax satisfythe ondition κmaxιmax ≥ 50.
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(d)Figure 3.1: Examples of the TCCFs and FCCFs of the geometrial two-ringhannel simulation model (with and without white noise) and theorresponding TCCFs and FCCFs of the designed hannel simulator.3.6 Appliations to Real-World Measurement DataThe usefulness of the proposed design method is illustrated by onstruting severalMIMO wideband hannel simulators based on the measured TVFRs of real-worldhannels. Our prime interest is to test the onvergene of the parameter om-putation algorithm (see Setion 3.4), as well as to assess the omplexity of thehannel simulators measured by the number of terms L in (3.7).The hannel simulator design method desribed in this hapter is based on the



Chapter 3 41assumption that the TVFR of a physial radio hannel is WSS w.r.t. time andfrequeny. The intervals in the time-frequeny plane, over whih the measuredTVFRs an be assumed WSS, have been identi�ed using the stationarity testdeveloped in Chapter 2.The desription of the measurement sites an be found in Appendix A. Addi-tionally, Appendix A ontains information about the measurement method andthe equipment setup.3.6.1 Miro Cell Site � Regular Street GeometryThe normalized residual approximation error norm ‖ ˆ̃RresL‖F /‖
ˆ̃
R‖F versus thenumber of omponents L in (3.7) is depited in Fig. 3.2 (a). As an be seen fromthe �gure, the normalized error norm drops below 5% at L = 63. The resultingnormalized error norm orresponding to L = 120 is about 3%.
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(b)Figure 3.2: The normalized residual approximation error norm versus the num-ber of omponents L for (a) the MIMO wideband hannel simulatorand (b) the trunated disrete KLE (miro ell site � regular streetgeometry).For omparison reasons, we show in Fig. 3.2 (b) the results obtained fromthe trunated disrete KLE of the measured hannel TVFR [61℄. The normalizedresidual approximation error norm for the trunated disrete KLE is alulatedaording to the following expression
‖ ˆ̃RresL

‖F /‖ ˆ̃R‖F =

√∑

l λ
2
l −

∑

l≤L λ
2
l

∑

l λ
2
l

(3.47)where λ1 ≥ λ2 ≥ . . . are the ordered eigenvalues of the matrix ˆ̃
R. The normalizederror norm of 5% is ahieved with L = 41 prinipal omponents orresponding to



42 Chapter 3the largest eigenvalues of the estimated orrelation matrix ˆ̃
R. For L = 120, thenormalized error norm is about 1%.It is important to note that the trunated disrete KLE provides the optimal,in the mean-square error sense, approximation of the estimated orrelation matrix

ˆ̃
R for a given L. As we have mentioned in Setion 3.2, the disadvantage of thetrunated disrete KLE is the lak of an analytial solution for the eigenvetorsof the orrelation matrix ˆ̃

R. To illustrate this point, assume that we need tosynthesize a realization of the hannel TVFR on an interval of time of duration
0.7 s. Without going into details, it is su�ient to say that the size of the estimatedorrelation matrix ˆ̃

R has to be doubled in eah dimension as ompared to the sizeof the orrelation matrix enrolled in this subsetion. If we applied the trunateddisrete KLE to the enlarged matrix ˆ̃
R, the number of the prinipal omponentsrequired to approximate the new orrelation matrix with the same 5% normalizedapproximation error norm would be inreased to L = 62, i.e., by 50%, and wouldbe omparable with L = 63 exponential omponents in the hannel simulationmodel (3.7).In Fig. 3.3, several examples of the alulated TCCFs rti1,i2 [ι] and the FC-CFs rf ′

i1,i2

[κ], i1, i2 = 1, . . . , NTNR, are presented together with the orrespondingestimated TCCFs ˆ̃rti1,i2 [ι] and FCCFs ˆ̃rf ′

i1,i2
[κ] of the measured hannel. The esti-mated TCCFs ˆ̃rti1,i2 [ι] and FCCFs ˆ̃rf ′

i1,i2
[κ] of the measured hannel are extratedfrom the estimated spae-time-frequeny orrelation matrix ˆ̃

R (see Setion 3.4).The approximate 95% on�dene intervals [62℄ for the estimated TCCFs and FC-CFs shown in Fig. 3.3 have been obtained assuming that the elements of theestimated matries ˆ̃
R[κ, ι] in (3.18) are omplex Gaussian distributed randomvariables. As an be seen from Fig. 3.3, the orrelation funtions of the hannelsimulator are well �tted to the orresponding estimated orrelation funtions ofthe physial hannel. A signi�ant disrepany exists between the TACFs rti,i [ι]and the estimated TACFs ˆ̃rti,i [ι] at time lag ι = 0 as well as between the FACFs

rf ′

i,i
[κ] and the estimated FACFs ˆ̃rf ′

i,i
[κ] at the frequeny lag κ = 0. Takinginto aount the results presented in Setion 3.5, a possible explanation for thisdisrepany ould be the presene of `measurement' noise in the TVFR h̃[m,n],weakly orrelated in time, frequeny, and spae.
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(f)Figure 3.3: Examples of the estimated TCCFs and FCCFs of the physial han-nel and the orresponding TCCFs and FCCFs of the designed MIMOwideband hannel simulator (miro ell site � regular street geome-try).



44 Chapter 3Reall that the envelope PDFs of the subhannels hi[m,n], i = 1, . . . , NTNR,are not diretly taken into aount in the design method desribed in Setion 3.4.Nevertheless, it is of interest to onsider the resulting envelope PDFs p|hi|(x) givenby (3.8) for a speial ase of the omplex weighting oe�ients with the onstantmagnitudes Ξl = 1, l = 1, . . . , L, (see Setion 3.2). Figure 3.4 presents thealulated envelope PDFs for two subhannels. The alulated envelope PDFs
p|hi|(x) in Fig. 3.4 are shown together with the estimated empirial envelopePDFs p|h̃i|

(x) and the Rayleigh PDFs orresponding to the omplex weightingoe�ients Ul ∼ CN (0, 1). Note that the envelope PDFs alulated by using (3.8)follow the Rayleigh distribution.
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(b)Figure 3.4: Examples of the envelope PDFs for the MIMO wideband hannelsimulator p|hi|(x) and the orresponding empirial PDFs p|h̃i|
(x)(miro ell site � regular street geometry).In Fig. 3.5, the umulative distribution funtions (CDFs) of the instantaneoushannel apaity (mutual information) of the measured hannel and a synthesizedhannel are presented. The instantaneous apaity C[n] for the simulated hannelan be obtained for all time instanes tn, n = 1, . . . , N , aording to the de�nition[4, 41, 42℄

C[n] =
1

M

M−1∑

m=0

log2

[

det

(

I+
ρ

NTF [n]
H[m,n]HH [m,n]

)] (3.48)where the hannel matrix H[m,n] has been de�ned in (3.1), ρ denotes the signal-to-noise ratio (SNR), and I is the unity matrix. The normalization fator F [n] ateah time instane is given by
F [n] =

1

M

M−1∑

m=0

‖H[m,n]‖2F . (3.49)



Chapter 3 45The instantaneous apaity of the measured physial hannel is de�ned in a similarway.Due to the fat that the number N of the available snapshots of the TVFRis limited for a real-world wireless hannel, we split the available frequeny band-width B = 100 MHz into smaller frequeny bands of about 20 MHz. The in-stantaneous apaities of the measured hannel and the simulated hannel arealulated for eah of the frequeny bands aording to the formulas (3.48) and(3.49).As it an be seen from Fig. 3.5, the apaity CDF of the generated hannel isbiased ompared to the apaity CDF of the measured hannel. This result anbe foreseen by inspeting the plots in Fig. 3.3. As it has already been mentioned,the TACFs rti,i [0] and the FACFs rf ′

i,i
[0], whih de�ne the varianes of the gen-erated TVFRs hi[m,n], i = 1, . . . , NTNR, are smaller than the estimated TACFs

ˆ̃rti,i [0] and FACFs ˆ̃rf ′

i,i
[0] of the orresponding measured TVFRs h̃i[m,n]. It is ofinterest to investigate if the bias an be removed by adjusting the varianes of theTVFRs hi[m,n], i = 1, . . . , NTNR. For this purpose, a omplex `measurement'noise6, unorrelated in time, spae, and frequeny, is added to the generated re-alizations of the TVFR h[m,n]. Indeed, as an be seen from Fig. 3.5, adding the`measurement' noise, whih follows the omplex multivariate Gaussian distribu-tion with zero means and the diagonal ovariane matrix, to the TVFR h[m,n],eliminates the bias. The elements along the main diagonal of the `measurement'noise ovariane matrix are given by σ2i = ˆ̃rti,i [0]− rti,i [0], i = 1, . . . , NTNR.
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Figure 3.5: Capaity CDFs of the simulated hannel and the measured hannelfor the SNR ρ = 20 dB (miro ell site � regular street geometry).6The `measurement' noise should not be onfused with the noise at the input of a reeiverrepresented by the SNR ρ in (3.48).



46 Chapter 3The estimated mean µC values and standard deviations σC of the instanta-neous apaity of the measured hannel and the simulated hannels (with andwithout `measurement' noise) are given in Table 3.1.Table 3.1: Estimated mean and standard deviation of the apaity (miro ellsite � regular street geometry).Measured Channel Channel simulatorhannel simulator with `measurement' noiseMean, µC (bps/Hz) 7.25 6.48 7.23Standard deviation, σC (bps/Hz) 0.81 0.9 0.813.6.2 Miro Cell Site � Open Market PlaeThe normalized residual approximation error norm is shown in Fig. 3.6 (a). The
7% normalized error norm is ahieved with L = 179 omponents in the han-nel simulation model (3.7). Compare this value with the results presented inFig. 3.6 (b) for the trunated disrete KLE. Here, the 5% normalized error normis ahieved with L = 104 prinipal omponents, while for L = 179 omponentsthe normalized residual approximation error norm is about 2%.
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(b)Figure 3.6: The normalized residual approximation error norm versus the num-ber of omponents L for (a) the hannel simulator and (b) the trun-ated disrete KLE (miro ell site � open market plae).Examples of the estimated TCCFs ˆ̃rti1,i2 [ι] and FCCFs ˆ̃rf ′

i1,i2
[κ] of the mea-sured hannel are depited in Fig. 3.7 together with their respetive ounterparts

rti1,i2 [ι] and rf ′

i1,i2
[κ] alulated for the developed hannel simulator. As it anbe seen from Fig 3.7, the TCCFs rti1,i2 [ι] and the FCCFs rf ′

i1,i2
[κ] of the designedhannel simulator losely approximate the orresponding TCCFs and FCCFs es-timated from the measurement data.
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(f)Figure 3.7: Examples of the estimated TCCFs and FCCFs of the physial han-nel and the orresponding TCCFs and FCCFs of the designed MIMOwideband hannel simulator (miro ell site � open market plae).



48 Chapter 3Examples of the envelope PDFs p|hi|(x) (see (3.8)) and the empirial envelopePDFs p|h̃i|
(x) estimated from the measurement data are shown in Fig. 3.8. Clearly,the envelope PDFs p|hi|(x) follow the Rayleigh distribution.
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(b)Figure 3.8: Examples of the envelope PDFs of the MIMO wideband hannel sim-ulator p|hi|(x) and the orresponding empirial PDFs p|h̃i|
(x) (miroell site � open market plae).The CDFs of the instantaneous hannel apaity C[n] of a synthesized han-nel and of the measured hannel alulated as desribed in Subsetion 3.6.1 aredemonstrated in Fig. 3.9. Note the absene of the bias between the two CDFurves shown in the �gure.
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Figure 3.9: Capaity CDFs of the simulated hannel and the measured hannelfor an SNR ρ = 20 dB (miro ell site � open market plae).



Chapter 3 49The mean values µC and the standard deviations σC of the instantaneousapaity of the synthesized hannel and the measured hannel are presented inTable 3.2.Table 3.2: Estimated mean and standard deviation of the apaity (miro ellsite � open market plae).Measured Channel Channel simulatorhannel simulator with `measurement' noiseMean, µC (bps/Hz) 8.63 8.67 8.75Standard deviation, σC (bps/Hz) 1.32 1.05 0.933.6.3 Miro/Pio Cell Site � PassagewayIn Figs. 3.10 (a)�(b), the normalized residual approximation error norm is shownfor the hannel simulator and the trunated disrete KLE, respetively. The
5% normalized error norm is ahieved with L = 143 omponents in the hannelsimulator (3.7) vs. L = 67 prinipal omponents in ase of the trunated disreteKLE (see (3.47)). Correspondingly, L = 161 omponents in (3.7) provide thenormalized error norm below 4.9%, while for L = 161 omponents in the trunateddisrete KLE the normalized error norm is below 3.5%.
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(b)Figure 3.10: The normalized residual approximation error norm versus the num-ber of omponents L for (a) the MIMO wideband hannel simu-lator and (b) the trunated disrete KLE (miro/pio ell site �passageway).Examples of the estimated TCCFs ˆ̃rti1,i2 [ι] and FCCFs ˆ̃rf ′

i1,i2

[κ] of the mea-sured hannel together with their respetive ounterparts rti1,i2 [ι] and rf ′

i1,i2

[κ]alulated for the developed hannel simulator are depited in Fig. 3.11.
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(f)Figure 3.11: Examples of the estimated TCCFs and FCCFs of the physialhannel and the orresponding TCCFs and FCCFs of the designedMIMO wideband hannel simulator (miro/pio ell site � passage-way).



Chapter 3 51Note the disrepany between the TACFs ˆ̃rti,i [ι] and rti,i [ι] at time lag ι = 0,and between the FACFs ˆ̃rf ′

i,i
[κ] and rf ′

i,i
[κ] at frequeny lag κ = 0.Figure 3.12, demonstrates the examples of the envelope PDFs p|hi|(x) (see(3.8)). The orresponding empirial envelope PDFs p|h̃i|

(x) are also plotted inthe same �gure. It an be observed that the envelope PDFs p|hi|(x) given by (3.8)follow the Rayleigh distributions. In Fig. 3.12, it is shown that the empirialenvelope PDFs p|h̃i|
(x) also follow the Rayleigh distributions. Thus, the evidentdisrepany between the envelope PDFs p|hi|(x) and the empirial envelope PDFsin Fig. 3.12 is due to the di�erene in the varianes (the TACFs rti,i [0] and ˆ̃rti,i [0]in Fig. 3.11) of the orresponding random proesses hi and h̃i.
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(b)Figure 3.12: Examples of the envelope PDFs of the MIMO wideband hannelsimulator p|hi|(x) and the orresponding empirial PDFs p|h̃i|
(x)(miro/pio ell site � passageway).In Fig. 3.13, the CDFs of the instantaneous hannel apaity (see Subse-tion 3.6.1) of the measured hannel and of a simulated hannel realization aredepited. Observe, that the mismath between the apaity CDFs (bias) an beredued by adding a white `measurement' noise to the simulated TVFR h[m,n],as desribed in Subsetion 3.6.1.
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Figure 3.13: Capaity CDFs of a simulated hannel and the measured hannelfor an SNR ρ = 20 dB (miro/pio ell site � passageway).The mean values µC and the standard deviations σC of the instantaneousapaity of the simulated hannels and the measured hannel are presented inTable 3.3.Table 3.3: Estimated mean and standard deviation of the apaity (miro/pioell site � passageway).Measured Channel Channel simulatorhannel simulator with `measurement' noiseMean, µC (bps/Hz) 8.45 7.9 8.59Standard deviation, σC (bps/Hz) 1.17 1.21 0.823.6.4 Indoor Cell SiteFor the indoor propagation senario, the normalized residual approximation errornorm versus the number of omponents L is shown in Figs. 3.14 (a)�(b) for thehannel simulator and the trunated disrete KLE, respetively. In this ase, thenormalized error norm for the designed hannel simulator has onverged to 10%for L = 220 omponents (see (3.7)). The trunated disrete KLE with L = 220prinipal omponents provides the normalized residual approximation error normof about 2%. For the referene, the 5% normalized error norm is ahieved with
L = 139 omponents in ase of the trunated disrete KLE.
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(b)Figure 3.14: The normalized residual approximation error norm versus the num-ber of omponents L for (a) the hannel simulator and (b) thetrunated disrete KLE (indoor ell site).Fig. 3.15 depits several examples of the TCCFs ˆ̃rti1,i2 [ι] and FCCFs ˆ̃rf ′

i1,i2
[κ],estimated from the measurement data, as well as the TCCFs rti1,i2 [ι] and the FC-CFs rf ′

i1,i2
[κ], alulated for the developed hannel simulator. As an be seen fromFig. 3.15, the approximation of the FCCFs is worse ompared to the propagationsenarios onsidered in the previous subsetions.Examples of the envelope PDFs p|hi|(x) obtained by using (3.8) and the orre-sponding empirial envelope PDFs p|h̃i|

(x) estimated from the measured TVFRsare shown in Fig. 3.16. We observe that the envelope PDFs p|hi|(x) given by (3.8)follow the Rayleigh PDF.The instantaneous hannel apaity CDFs of the measured hannel and of agenerated hannel realization (see Subsetion 3.6.1) are demonstrated in Fig. 3.16.The mean values µC and the standard deviations σC of the instantaneous apaityare presented in Table 3.4.Table 3.4: Estimated mean and standard deviation of the apaity (indoor ellsite). Measured Channel Channel simulatorhannel simulator with `measurement' noiseMean, µC (bps/Hz) 8.15 7.97 8.1Standard deviation, σC (bps/Hz) 1.03 0.85 0.79
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(f)Figure 3.15: Examples of the estimated TCCFs and FCCFs of the physialhannel and the orresponding TCCFs and FCCFs of the designedMIMO wideband hannel simulator (indoor ell site).
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(b)Figure 3.16: Examples of the envelope PDFs of the MIMO wideband hannelsimulator p|hi|(x) and the orresponding empirial PDFs p|h̃i|
(x)(indoor ell site).
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Figure 3.17: Capaity CDFs for a simulated hannel and the measured hannelfor an SNR ρ = 20 dB (indoor ell site).



56 Chapter 33.7 Design of Measurement-Based Stohasti ChannelSimulators for MIMO Narrowband ChannelsSo far, we have been onerned with the design of stohasti hannel simula-tors for MIMO wideband hannels. In this setion, we desribe an adaptation ofthe method, proposed in the previous setions, for designing measurement-basedhannel simulators for MIMO narrowband hannels. In agreement with the de�-nition of a narrowband hannel [3, 4℄, it is presumed that the TVFR H̃[m,n] ofa real-world NT × NR MIMO wireless hannel has a onstant magnitude and alinear phase shift over the frequeny interval [−B/2, B/2] (�at fading).3.7.1 Stohasti Channel Simulation ModelThe synthesized TVFR of a MIMO narrowband wireless hannel at disrete timeinstanes tn = n△t ∈ [0, T ], n = 0, . . . , N − 1, is represented by the matrixsequene
H[n] =






H1,1[n] . . . H1,NR
[n]... . . . ...

HNT ,1[n] . . . HNT ,NR
[n]




 . (3.50)The TVFR H[n], in the vetorized form, is generated using the following simula-tion model

h[n] = vec(H[n]) =
L∑

l=1

clgle
j2πfdl tnUl. (3.51)where the set of parameters P =

{
L, {cl}L1 , {gl}L1 , {fdl}L1

} and the omplexweighting oe�ients {Ul}L1 are spei�ed as in Setion 3.2.The spae-time orrelation matrix R is de�ned as follows
R = E

{
v[n]vH [n]

}
=






R[0] · · · R[−ιmax]... . . . ...
R[ιmax] · · · R[0]




 . (3.52)where the vetor v[n] is de�ned by v[n] = [hT [n] . . .hT [n− ιmax]]

T . Using (3.51),the orrelation matrix R an be written as
R =

L∑

l=1

c2lRtl ⊗Rgl (3.53)where the matries Rtl and Rgl are de�ned in (3.12) and (3.14), respetively.



Chapter 3 573.7.2 Parameter Computation MethodThe following riterion is proposed for determining the set of parameters P of thehannel simulation model (3.51)
P̂ = min

P

∥
∥
∥
ˆ̃
R−∑L

l=1 c
2
lRtl ⊗Rgl

∥
∥
∥
F

(3.54)where ˆ̃
R is the estimated orrelation matrix, whih is de�ned similarly to (3.52)as

ˆ̃
R =







ˆ̃
R[0] · · · ˆ̃

R[−ιmax]... . . . ...
ˆ̃
R[ιmax] · · · ˆ̃

R[0]






. (3.55)The onsistent estimates of the orrelation matries ˆ̃

R[ι], ι = −ιmax, . . . , 0, . . . , ιmax,
ιmax ∈ R in (3.55) are obtained as

ˆ̃
R[ι] =

1

(N − |ι|)

N−1−|ι|
∑

n=0

h̃[n]h̃H [n+ ι]. (3.56)The minimization of the Frobenius norm in (3.54) is aomplished by applyingan adapted version of the iterative parameter omputation method desribed inSubsetion 3.4.2. The method is based on deomposing the estimated orrelationmatrix ˆ̃
R over a library X of the Hermitian matries X = Rt ⊗Rg, where eahmember Xk = Rtk ⊗Rgk of the matrix library an be written as (f. (3.31))

Xk = xkx
H
k = (etk ⊗ gk)(etk ⊗ gk)

H . (3.57)The set of parameters P =
{
L, {cl}L1 , {gl}L1 , {fdl}L1

} is omputed aording tothe proedure desribed in Subsetion 3.4.2. However, the Equations (3.39)�(3.42)are to be dropped as they are not relevant for narrowband hannels. Instead, aftersubstituting the Doppler frequeny fdL+1
, whih minimizes (3.38), into (3.36), thevetor gL+1 is found as

gL+1 = argmin
gk

gH
k P′

Lgk

gH
k gk

. (3.58)Below, we present some examples of designing hannel simulators for real-world MIMO narrowband hannels.



58 Chapter 33.7.3 Appliations to Real-World Measurement DataIn the onsidered examples, whih illustrate the development of hannel simulatorsfor MIMO narrowband hannels, we use the same measured TVFRs of the real-world hannels that have been already employed in Setion 3.6 for illustrating thedesign of the hannel simulators for MIMO wideband hannels.First, we onsider the onvergene of the iterative parameter omputationmethod of Subsetion 3.7.2. The normalized residual approximation error norm
‖ ˆ̃RresL

‖F /‖ ˆ̃R‖F versus the number of omponents L in (3.51) is shown for di�er-ent propagation environments in Figs. 3.18 (a)�3.21 (a). For omparison reasons,Figs. 3.18 (b) � 3.21 (b) depit the normalized residual approximation errornorms obtained aording to (3.47) for the trunated disrete KLEs. For the aseof MIMO narrowband hannels, the ordered eigenvalues λ1 ≥ λ2 ≥ . . . of thematrix ˆ̃
R de�ned in (3.55) are substituted into (3.47). As it an be seen fromFigs. 3.18�3.21, the resulting normalized error norm is below 5% for all developedhannel simulators.Examples of the estimated TCCFs ˆ̃rti1,i2 [ι] of the measured hannels togetherwith their respetive ounterparts rti1,i2 [ι] alulated for the developed hannelsimulators are depited in Figs. 3.22�3.25. As an be seen from the plots, theTCCFs of all developed hannel simulators losely approximate the orrespondingTCCFs of the measured hannels. Note that due to a small number of the TCCFssamples, κmax = 5, the parameter omputation method of Subsetion 3.7.2 is notable to single out the ontribution of the `measurement' noise in the estimatedorrelation matrix ˆ̃

R (see Setion 3.5).
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(b)Figure 3.18: The normalized residual approximation error norm versus the num-ber of omponents L for (a) the MIMO narrowband hannel simu-lator and (b) the trunated disrete KLE (miro ell site � regularstreet geometry).
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(b)Figure 3.19: The normalized residual approximation error norm versus the num-ber of omponents L for (a) the MIMO narrowband hannel sim-ulator and (b) the trunated disrete KLE (miro ell site � openmarket plae).
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(b)Figure 3.20: The normalized residual approximation error norm versus the num-ber of omponents L for (a) the MIMO narrowband hannel sim-ulator and (b) the trunated disrete KLE (miro/pio ell site �passageway).
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(b)Figure 3.21: The normalized residual approximation error norm versus the num-ber of omponents L for (a) the MIMO narrowband hannel sim-ulator and (b) the trunated disrete KLE (indoor ell site).
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(f)Figure 3.22: Examples of the estimated TCCFs of the physial hannel and theorresponding TCCFs of the designed MIMO narrowband hannelsimulator (miro ell site � regular street geometry).



62 Chapter 3

0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2
x 10

−5

Time lag, ι (s)

A
b
so

lu
te

va
lu

e
of

T
C

C
F

 

 

Measured channel, ˆ̃rt1,1
[ι]

Channel simulator, rt1,1
[ι]

95% confidence interval

(a) 0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2
x 10

−5

Time lag, ι (s)

A
b
so

lu
te

va
lu

e
of

T
C

C
F

 

 

Measured channel, ˆ̃rt1,2
[ι]

Channel simulator, rt1,2
[ι]

95% confidence interval

(b)
0 0.1 0.2 0.3 0.4

0

0.5

1

1.5

2
x 10

−5

Time lag, ι (s)

A
b
so

lu
te

va
lu

e
of

T
C

C
F

 

 

Measured channel, ˆ̃rt2,2
[ι]

Channel simulator, rt2,2
[ι]

95% confidence interval

() 0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2
x 10

−5

Time lag, ι (s)

A
b
so

lu
te

va
lu

e
of

T
C

C
F

 

 

Measured channel, ˆ̃rt1,3
[ι]

Channel simulator, rt1,3
[ι]

95% confidence interval

(d)
0 0.1 0.2 0.3 0.4

0

0.5

1

1.5

2
x 10

−5

Time lag, ι (s)

A
b
so

lu
te

va
lu

e
of

T
C

C
F

 

 

Measured channel, ˆ̃rt3,3
[ι]

Channel simulator, rt3,3
[ι]

95% confidence interval

(e) 0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2
x 10

−5

Time lag, ι (s)

A
b
so

lu
te

va
lu

e
of

T
C

C
F

 

 

Measured channel, ˆ̃rt2,3
[ι]

Channel simulator, rt2,3
[ι]

95% confidence interval

(f)Figure 3.23: Examples of the estimated TCCFs of the physial hannel and theorresponding TCCFs of the designed MIMO narrowband hannelsimulator (miro ell site � open market plae).
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(f)Figure 3.24: Examples of the estimated TCCFs of the physial hannel and theorresponding TCCFs of the designed MIMO narrowband hannelsimulator (miro/pio ell site � passageway).
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(f)Figure 3.25: Examples of the estimated TCCFs of the physial hannel and theorresponding TCCFs of the designed MIMO narrowband hannelsimulator (indoor ell site).



Chapter 3 653.8 Design of Measurement-Based Stohasti ChannelSimulators for SISO Wideband ChannelsIn this setion, the hannel simulation model desribed in Setion 3.2 is adaptedfor synthesizing TVFRs of SISO wideband hannels. Additionally, the model pa-rameter omputation method developed in Setion 3.4 is modi�ed for determiningthe parameters of measurement-based SISO wideband hannel simulators.It is assumed that the TVFR h̃[m,n] of a real-world SISO wideband hannelhas been measured at disrete frequenies f ′m = −B/2 +m△f ′ ∈ [−B/2, B/2],
m = 0, . . . ,M−1, and at disrete time instanes tn = n△t ∈ [0, T ], n = 0, . . . , N−
1. We assume that the measured TVFR h̃[m,n] is a 2D zero-mean omplexrandom proess, whih is time- and frequeny-shift invariant w.r.t. the orrelationproperties.3.8.1 Stohasti Channel Simulation ModelThe TVFR h[m,n] of a SISO wideband wireless hannel at disrete frequenies
f ′m, m = 0, . . . ,M − 1, and at disrete time instanes tn, n = 0, . . . , N − 1, isdesribed as

h[m,n] =

L∑

l=1

cle
j(2πfdl tn−2πf ′

mτ ′
l
)Ul (3.59)where the simulation model parameters P =

{
L, {cl}L1 , {fdl}L1 , {τ ′l}L1

} as well asthe omplex weighting oe�ients Ul, l = 1, . . . , L, have been de�ned in Se-tion 3.2.When the magnitudes {Ξl}L1 of the omplex weighting oe�ients {Ul}L1 areonstant and all are equal to 1, the envelope PDF p|h|(x) of the simulated TVFR
h[m,n] is given by (f. (3.8))

p|h|(x) =

∫ ∞

0
xJ0(xζ)

(
L∏

l=1

J0(|cl|ζ)
)

ζdζ. (3.60)The orrelation properties of the synthesized TVFR h[m,n] are desribed bythe temporal-frequeny orrelation matrix R whih is de�ned as (f. (3.9))
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R = E

{
v[m,n]vH [m,n]

}
=

















r[0, 0] · · · r[−κmax, 0] · · · r[0,−ιmax] · · · r[−κmax,−ιmax]... . . . ... . . . ... . . . ...
r[κmax, 0] · · · r[0, 0] · · · r[κmax,−ιmax] · · · r[0,−ιmax]... . . . ... . . . ... . . . ...
r[0, ιmax] · · · r[−κmax, ιmax] · · · r[0, 0] · · · r[−κmax, 0]... . . . ... . . . ... . . . ...

r[κmax, ιmax] · · · r[0, ιmax] · · · r[κmax, 0] · · · r[0, 0]















(3.61)where the vetor v[m,n] is de�ned by v[m,n] = [h[m,n] . . . h[m−κmax, n] . . . h[m,n−

ιmax] . . . h[m − κmax, n − ιmax]]
T . By using (3.59), the orrelation matrix R anbe written as
R =

L∑

l=1

c2lRtl ⊗Rf ′

l
(3.62)where the matries Rtl and Rf ′

l
have been de�ned in (3.12) and (3.13), respe-tively. Note that the positive semi-de�nite matrix R is Hermitian and blok-Toeplitz.3.8.2 Parameter Computation MethodThe set of parameters P of the hannel simulation model de�ned in (3.59) isdetermined aording to the following riterion

P̂ = min
P

∥
∥
∥
ˆ̃
R−∑L

l=1 c
2
lRtl ⊗Rf ′

l

∥
∥
∥
F

(3.63)where ˆ̃
R is the estimated orrelation matrix de�ned similarly to (3.61). Theelements of the estimated matrix ˆ̃

R are obtained as
ˆ̃r[κ, ι] =

1

(M − |κ|)(N − |ι|)

M−1−|κ|
∑

m=0

N−1−|ι|
∑

n=0

h̃[m,n]h̃H [m+ κ, n + ι]. (3.64)The minimization of the Frobenius norm in (3.63) is aomplished by using amodi�ation of the iterative algorithm proposed in Subsetion 3.4.2. In partiular,the matrix library X (see Subsetion 3.4.2) onsists of the matries Xk = Rtk ⊗
Rf ′

k
. Eah member Xk of the matrix library is onstruted by substituting thehannel simulator parameters fdk and τ ′k into (3.12) and (3.13), respetively. Theonly required modi�ation of the proedure desribed by the expressions (3.33)�(3.43) in Subsetion 3.4.2, is that Equation (3.42) is to be omitted.



Chapter 3 67The performane of the modi�ed parameter omputation method is demon-strated with examples in the next subsetion.3.8.3 Appliations to Real-World Measurement DataThe parameter omputation method developed in Subsetion 3.8.2 has been ap-plied to the measured TVFRs of the real-world hannels (see Appendix A). SineSISO wideband hannels are onsidered in this setion, only data obtained froma single pair of transmitting-reeiving antennas have been used to determine theparameters of the hannel simulators. The results illustrating the performane ofthe designed hannel simulators are presented below.The normalized residual approximation error norm ‖ ˆ̃RresL‖F /‖
ˆ̃
R‖F versus thenumber of omponents L in (3.59) is shown for the designed hannel simulators inFigs. 3.26�3.29. The dashed line in the �gures signi�es the 5% normalized errornorm. Clearly, the resulting normalized error norm for all four hannel simulatorsis below this value. For omparison reasons, Figs. 3.26�3.29 also demonstrate theorresponding normalized residual approximation error norms for the trunateddisrete KLEs alulated aording to (3.47).
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(b)Figure 3.26: The normalized residual approximation error norm versus the num-ber of omponents L for (a) the SISO wideband hannel simulatorand (b) the trunated disrete KLE (miro ell site � regular streetgeometry).The estimated TACFs ˆ̃rt[ι] and FACFs ˆ̃rf ′ [κ] of the four real-world hannelsand the TACFs rt[ι] and FACFs rf ′ [κ] of the orresponding hannel simulators aredepited in Figs. 3.30�3.33. As an be seen from the �gures, notieable disrepan-ies exist between the TACFs ˆ̃rt[ι] and rt[ι] at ι = 0 as well as between the FACFs
ˆ̃rf ′ [κ] and rf ′ [κ] at κ = 0 orresponding to the regular street and the passagewaypropagation senarios (f. the results presented in Figs. 3.3, 3.7, 3.11, 3.15).
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(b)Figure 3.27: The normalized residual approximation error norm versus the num-ber of omponents L for (a) the SISO wideband hannel simulatorand (b) the trunated disrete KLE (miro ell site � open marketplae).
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(b)Figure 3.28: The normalized residual approximation error norm versus the num-ber of omponents L for (a) the SISO wideband hannel simulatorand (b) the trunated disrete KLE (miro/pio ell site � passage-way).Figures 3.34�3.37 depit the envelope PDFs alulated by using (3.60) in aseof the omplex weighting oe�ients Ul having the onstant magnitudes Ξl = 1,
l = 1, . . . , L (see Subsetion 3.2.1). As expeted, the envelope PDFs alulatedby using (3.60) math the Rayleigh PDFs. Figs. 3.34�3.37 also demonstrate theempirial envelope PDFs p|h̃|(x) of the real-world hannels.
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(b)Figure 3.29: The normalized residual approximation error norm versus the num-ber of omponents L for (a) the SISO wideband hannel simulatorand (b) the trunated disrete KLE (indoor ell site).
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(b)Figure 3.31: (a) The TACFs and (b) the FACFs of the real-world hannel andthe SISO wideband hannel simulator (miro ell site � open mar-ket plae).
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(b)Figure 3.32: (a) The TACFs and (b) the FACFs of the real-world hannel andthe SISO wideband hannel simulator (miro/pio ell site � pas-sageway).
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(b)Figure 3.33: (a) The TACFs and (b) the FACFs of the real-world hannel andthe SISO wideband hannel simulator (indoor ell site).
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Figure 3.34: The envelope PDF p|h|(x) of the SISO wideband hannel simulatorand the empirial PDF p|h̃|(x) of the real-world hannel (miro ellsite � regular street geometry).
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Figure 3.35: The envelope PDF p|h|(x) of the SISO wideband hannel simulatorand the empirial PDF p|h̃|(x) of the real-world hannel (miro ellsite � open market plae).
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Figure 3.36: The envelope PDF p|h|(x) of the SISO wideband hannel simula-tor and the empirial PDF p|h̃|(x) of the real-world hannel (mi-ro/pio ell site � passageway).
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Figure 3.37: The envelope PDF p|h|(x) of the SISO wideband hannel simulatorand the empirial PDF p|h̃|(x) of the real-world hannel (indoor ellsite).3.9 Chapter SummaryIn this hapter, we have presented a method for designing measurement-basedstohasti hannel simulators for wireless time-variant ommuniation hannels.The method is grounded on �tting the orrelation properties of a hannel sim-ulation model to the orresponding orrelation properties of a prototype real-world hannel. Depending on whether a hannel simulator is to be designed for aMIMO/SISO or narrowband/wideband radio hannel, a ombination of the tem-poral, frequeny, and spatial orrelation properties is taken into onsideration. Itshould be mentioned that the separability of the orrelation properties in time,frequeny, and spae is not presumed.The parameters of hannel simulators are determined by using an iterativealgorithm developed in this hapter. As it has been demonstrated by variousexamples, the proposed algorithm is able to produe aeptable results for wire-less hannels in di�erent propagation environments. Additionally, the algorithmexhibits resistane to the white `measurement' noise omponent possibly presentin the estimated orrelation matrix of a real-world hannel. However, a seriousdrawbak of the proposed parameter omputation algorithm is its rather highomputational omplexity, espeially for the ase of MIMO wideband hannels.In the next hapter, we will onsider a di�erent approah to the develop-ment of measurement-based hannel simulation models for time-variant wirelessommuniation hannels.
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Chapter 4Two-Dimensional AutoregressiveModel for MIMO WidebandMobile Radio Channels
4.1 IntrodutionIn the previous hapter, we have onsidered a method for designing stohastisimulation models for wireless hannels, whih is based on approximating theorrelation properties of a real-world hannel. It has been demonstrated thatthe method provides a lose �tting between the spae-time-frequeny orrelationmatrix R (3.11) of the simulation model (3.7) and the estimated spae-time-frequeny orrelation matrix R̃ of a physial hannel (see Subsetion 3.4.1).Due to the `quasi-stationary' behavior of real-world hannels [10℄, the num-ber of samples of the measured TVFR, whih are available for estimating thespae-time-frequeny orrelation matrix R̃, is always on�ned. It means that inall pratial situations, the orrelation properties of a real-world hannel an bereliably estimated only in a �nite range of the time shifts ι and the frequenyshifts κ, i.e., |ι| ≤ ιmax and |κ| ≤ κmax. Under these irumstanes, it is thenreasonable to question if a hannel simulator developed by using the method ofChapter 3 is adequate in representing the important spetral harateristis ofa real-world hannel, suh as the delay and the Doppler spetrum spreads. Theanswer to this question depends on several fators, whih vary from one partiularsenario to another. For example, a hannel simulator developed by approximat-ing the spae-time-frequeny orrelation matrix R̃ an be adequate if the temporaland the frequeny orrelation funtions of a prototyping physial hannel deaysu�iently fast w.r.t. time shift ι and frequeny shift κ, respetively. However,if this assumption is not valid, other methods for designing hannel simulationmodels, whih, perhaps, do not require estimation of the orrelation properties of75



76 Chapter 4a real-world hannel from the measurement data, might be preferable.In this hapter, we desribe the multihannel 2D AR model for MIMO wide-band mobile wireless hannels [63℄. In this model, radio hannels between eah ofthe transmitting and the reeiving antennas are represented by 2D rational trans-fer funtions. Our interest in the multihannel 2D AR model is motivated bythe high level of �exibility intrinsi to the AR models, whih has been extensivelyused in spetrum estimation and system identi�ation, see, e.g. [34,64,65℄ and themultiple referenes therein. It is also important to emphasize that the multihan-nel 2D AR model does not presume separability of the orrelation properties of aradio hannel in time, frequeny, and spae. Some of the previous works relatedto the AR modeling and simulation of wireless ommuniation hannels an befound, for example, in [66�68℄. Spetral estimation for multiple 2D signals usingthe multihannel 2D AR model is disussed in [69℄.As it is shown in the following, the parameters of the multihannel 2D ARmodel an be estimated from the real-world measurement data by using the well-known Yule-Walker algorithm or, alternatively, by employing the predition errorminimization (PEM) algorithm. None of these methods, however, guarantees thestability of the resulting multihannel 2D AR model. Therefore, speial attentionis paid to the problem of the model stability, whih arises when the multihannel2D AR model is used for synthesizing the TVFRs of wireless hannels.The utility of the multihannel 2D AR model is veri�ed by designing hannelsimulators based on the TVFRs of the real-world hannels.This hapter is organized as follows. In Setion 4.2, we desribe the multi-hannel 2D AR model. The model parameter estimation methods are presentedin Setion 4.3. In Setion 4.4, we onsider the stability of the multihannel 2D ARmodel. The method for synthesizing the TVFR of a hannel in the delay-Dopplerdomain is presented in Setion 4.5. The performane of the multihannel 2D ARmodel has been assessed based on the simulated MIMO hannels as desribed inSetion 4.6. The multihannel 2D AR models developed based on the measuredTVFRs of the physial radio hannels are presented in Setion 4.7. Finally, theonluding remarks are given in Setion 4.8.4.2 The Multihannel 2D Autoregressive ModelWe onsider a MIMO wideband wireless hannel, whih ontains NT antennasat the transmitter side and NR antennas at the reeiver side. Let the matries
H[m,n], m = 0, . . . ,M−1 and n = 0, . . . , N−1, be the hannel TVFRs generatedat disrete frequenies f ′m = −B/2 +m△f ′ ∈ [−B/2, B/2] and at disrete timeinstanes tn = n△t ∈ [0, T ], n = 0, . . . , N − 1. As in the previous hapters, wedenote the frequeny bandwidth and the observation time interval as B and T ,



Chapter 4 77respetively. As before, the matries
H[m,n] =






H11[m,n] . . . H1NR
[m,n]... . . . ...

HNT 1[m,n] . . . HNTNR
[m,n]




 (4.1)an be equivalently represented in the vetorized form as

h[m,n] = vec(H[m,n]) =









H11[m,n]

H21[m,n]...
HNTNR

[m,n]









(4.2)where h[m,n] = [h1[m,n], h2[m,n], . . . , hNTNR
[m,n]]T and hi[m,n],

i = 1, . . . , NTNR, is the TVFR of the i-th subhannel.The TVFR hi[m,n] of eah subhannel is a omplex zero mean 2D WSSrandom proess (random �eld). Furthermore, the TVFR h[m,n] orresponds tothe multihannel 2D AR proess of the form
h[m,n] = −

∑∑

[i1,i2]∈S
[i1,i2] 6=[0,0]

AT [i1, i2]h[m− i1, n− i2] + u[m,n] (4.3)where A[i1, i2] are omplex matrix oe�ients of dimensions NTNR × NTNR.The vetor sequene u[m,n] is a omplex multihannel 2D white noise with theross-orrelation matrix Ru[k, l] de�ned as
Ru[k, l] = E{u[m,n]uH [m+ k, n+ l]} = Puδ[k, l] (4.4)where δ[k, l] is the 2D Dira delta funtion and Pu denotes the noise delay-DopplerPSD matrix1, whih is onstant.We assume that the hannel model (4.3) is reursively omputable (ausal)[70℄. The two most ommonly used support regions S that guarantee the reur-sive omputability of the TVFR h[m,n] are the �nite nonsymmetri half-plane(NSHP) and the �nite quarter plane (QP) supports [64℄. In the following, wefous our attention on the multihannel 2D AR models (4.3) with the �nite QPsupport region SQP de�ned as

SQP = {[i1, i2] : 0 ≤ i1 ≤ p1, 0 ≤ i2 ≤ p2}. (4.5)1The diagonal elements of the delay-Doppler PSD matrix are the delay-Doppler spetra ofthe individual sub-hannels hi[m,n] (4.2) at the ertain delay and Doppler frequeny. Theo�-diagonal elements orrespond to the samples of the ross-subhannel delay-Doppler spetra.
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Sample to be computed 

1i

2iFigure 4.1: The support region SQP for a multihannel 2D AR(1,2) model.where (p1,p2) is the order of the multihannel 2D ARmodel, heneforth designatedAR(p1,p2). As an illustrative example, the support region SQP for a multihannel2D AR(1,2) model is shown in Fig. 4.1.Using the relationship between the input PSD and the output PSD of a linearshift-invariant (LSI) multihannel 2D �lter (see, e.g., [34,69℄), we de�ne the delay-Doppler PSD Ph(τ
′, fd) of the multihannel 2D AR model as
Ph(τ

′, fd) = H(τ ′, fd)PuHH(τ ′, fd)△f ′△t (4.6)where
H(τ ′, fd) =

(

I+

p1∑

i1=0

p2∑

i2=0

[i1,i2] 6=[0,0]

A[i1, i2]e
−j2π(τ ′i1△f ′+fdi2△t)

)−1 (4.7)and τ ′ and fd are the propagation delay and the Doppler frequeny, respetively.The matrix I is the identity matrix.4.3 Estimation of the Model ParametersSuppose that the sampled TVFR H̃[m,n] of a real-world MIMO hannel, obtainedfrom a hannel sounder during a measurement ampaign, is a multihannel 2DAR proess.Assume that the order (p1,p2) of the multihannel 2D AR(p1,p2) model (4.3)has been determined (see Subsetion 4.7.1). The parameters of the model, i.e.,the matrix oe�ients A[i1, i2] and the noise PSD matrix Pu, are to be estimatedfrom the measured TVFR h̃[m,n], whih is a vetorized representation of thesampled TVFR H̃[m,n] de�ned similar to (4.2).
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R̃h[0, 0] · · · R̃h[−p1, 0] · · · R̃h[0,−p2] · · · R̃h[−p1,−p2]... . . . ... . . . ... . . . ...
R̃h[p1, 0] · · · R̃h[0, 0] · · · R̃h[p1,−p2] · · · R̃h[0,−p2]... . . . ... . . . ... . . . ...
R̃h[0, p2] · · · R̃h[−p1, p2] · · · R̃h[0, 0] · · · R̃h[−p1, 0]... . . . ... . . . ... . . . ...
R̃h[p1, p2] · · · R̃h[0, p2] · · · R̃h[p1, 0] · · · R̃h[0, 0]
















︸ ︷︷ ︸

R̃h

×

×
















I...
AT [p1, 0]...
AT [0, p2]...
AT [p1, p2]
















=
















Pu...
0...
0...
0
















(4.9)
4.3.1 Yule-Walker Normal EquationsThe ross-orrelation matrix R̃h[κ, ι] of the TVFR h̃[m,n] an be de�ned asfollows

R̃h[κ, ι] = E{h̃[m,n]h̃H [m+ κ, n+ ι]}. (4.8)Substituting (4.3), (4.4) into (4.8) and noting that the multihannel 2D AR(p1,p2)model (4.3) is asual we obtain a system of the Yule-Walker normal equations(4.9). The matrix oe�ients A[i1, i2] and the noise delay-Doppler PSD matrix
Pu that solve the normal equations (4.9) an be e�iently determined by themethod desribed, e.g., in [71℄.In pratie, the matrix R̃h in (4.9) has to be estimated from the �nite-samplevetor sequene h̃[m,n] implying the latter is ergodi. The suitable estimator ofthe matrix R̃h is given by

ˆ̃
Rh =

1

NM

M−1∑

m=0

N−1∑

n=0

ṽ[m,n]ṽH [m,n] (4.10)
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ṽ[m,n] =

















h̃[m,n]...
h̃[m− p1, n]...
h̃[m,n− p2]...

h̃[m− p1, n− p2]

















. (4.11)
Note that the omponents of the vetor ṽ[m,n] in (4.11) with the negative indieshave to be set to zero, i.e., h̃[m− p1, n− p2] = 0 for m < p1 and/or n < p2.The matrix ˆ̃

Rh (4.10) is Hermitian and positive semide�nite. In general, thematrix oe�ients A[i1, i2] and the noise delay-Doppler PSD matrix Pu annotbe determined uniquely even if all the eigenvalues of the matrix ˆ̃
Rh are greaterthan zero. The reason is that the number of the unknown omplex parametersin (4.9) is equal to (p1p2 + p1 + p2)N

2
TN

2
R and is greater than the number of theknown independent omplex elements of the matrix ˆ̃

Rh, whih is (2p1p2 + p1 +

p2 + 1)NTNR (see also [65℄).4.3.2 Predition Error MinimizationThe PEM method is based on the strong relationship existing between the ARmodeling and the linear predition problem [65℄.The linear forward preditor of h̃[m,n] is de�ned as
ˆ̃
h[m,n] = −

∑∑

[i1,i2]∈SQP

[i1,i2] 6=[0,0]

AT [i1, i2]h̃[m− i1, n− i2] (4.12)with the predition error given by
ẽ[m,n] = h̃[m,n]− ˆ̃

h[m,n]. (4.13)Consequently, the predition error power matrix an be written as
Σ̃ = E{ẽ[m,n]ẽH [m,n]}. (4.14)For the �nite-sample vetor sequene h̃[m,n] the estimator of the matrix Σ̃takes the form

ˆ̃
Σ =

1

(M − p1)(N − p2)
(Z̃+ ỸX)H(Z̃+ ỸX) (4.15)



Chapter 4 81where the matries Z̃, Ỹ, and X are de�ned below
Z̃ =









h̃T [M − 1, N − 1]

h̃T [M − 2, N − 1]...
h̃T [p1, p2]









(4.16)
Ỹ =









h̃T [M − 2, N − 1] · · · h̃T [M − p1 − 1, N − p2 − 1]

h̃T [M − 3, N − 1] · · · h̃T [M − p1 − 2, N − p2 − 1]... . . . ...
h̃T [p1 − 1, p2] · · · h̃T [0, 0]









(4.17)
X =









AT [1, 0]

AT [2, 0]...
AT [p1, p2]









. (4.18)The matrix oe�ients A[i1, i2] of the multihannel 2D AR(p1,p2) model anbe estimated by minimizing the sum of the estimated predition error powers, i.e.,
{

Â[i1, i2]
}

[i1,i2]∈SQP ,
[i1,i2] 6=[0,0]

= min
{A[i1,i2]}

{

trace
(
ˆ̃
Σ
)}

. (4.19)This is a linear least-squares estimation problem. The estimate of the matrix
X (4.18) that minimizes (4.19) an be written as

X̂ = −Ỹ†Z̃ (4.20)where Ỹ† is the Moore-Penrose pseudoinverse of the matrix Ỹ [58℄.The estimated noise delay-Doppler PSD matrix P̂u is equal to the residualpredition error power matrix ˆ̃
Σmin, obtained by substituting the solution X̂(4.20) into (4.15).



82 Chapter 44.4 Model StabilityThe hannel model (4.3) is stable when the following ondition is ful�lled [64℄
det







I+

p1∑

i1=0

p2∑

i2=0
[i1,i2] 6=[0,0]

A[i1, i2]z
i1
1 z

i2
2








6= 0, (4.21)for all {(z1, z2) : |z1| ≤ 1, |z2| ≤ 1}where z1 and z2 are omplex variables.Both, the Yule-Walker and the PEM methods, desribed in Setion 4.3, donot guarantee the stability of the resulting multihannel 2D AR(p1,p2) model.Additionally, the stability test (4.22) is almost useless in pratie due to theheavy omputational load.4.4.1 State-Spae Representation of the Multihannel 2D ARModelIn the past years, a number of stability tests has been proposed for 2D reursive�lters in state-spae form [72, 73℄. An attrative feature of the state-spae repre-sentation is that it an be extended to multihannel 2D reursive �lters, i.e., tothe multihannel 2D AR(p1,p2) model (4.3).In this setion, we onsider the 2D state-spae model representation developedby Roesser [74℄. The Roesser's state-spae model an be formulated as follows [70℄
[

xh[m+ 1, n]

xv[m,n+ 1]

]

=

[

A11 A12

A21 A22

][

xh[m,n]

xv[m,n]

]

+

[

B1

B2

]

u[m,n]

h[m,n] =
[

C1 C2

]
[

xh[m,n]

xv[m,n]

]

+Du[m,n] (4.22)where xh and xv are the model state variable vetors. The model input u[m,n]and the model output h[m,n] in (4.22) are the same proesses u[m,n] and h[m,n]as in (4.3).The two possible andidates for the model stability test of the Roesser's state-spae model are presented below [73℄.The Roesser's state-spae model (4.22) is bounded input bounded output(BIBO) stable if
{

A11 is stable
A22 +A21(z1I−A11)

−1A12, |z1| = 1 is stable (4.23)



Chapter 4 83where a square matrix, e.g., A11, is stable if the maximum magnitude of itseigenvalues is less than 1. The seond possible group of stability riteria is de�nedas {

‖A11‖2 < 1

‖A22‖2 + ‖A21‖2(1− ‖A11‖2)−1‖A12‖2 < 1
(4.24)where ‖ · ‖2 is equal to the largest singular value of the matrix.The riteria in (4.23) are su�ient and neessary onditions for the BIBOstability of the model (4.22). On the other hand, the riteria in (4.24) are su�ientbut not neessary [73℄. The experimental results show that the BIBO stabilityonditions (4.23) are more suitable for the stabilization proedure presented below,in spite of the obvious omputational advantages assoiated with the stability testimplemented aording to the riteria in (4.24).To be able to apply the stability test (4.23), the multihannel 2D AR(p1,p2)model (4.3) has to be onverted to the Roesser's state-spae representation (4.22).The onversion between the model representations an be done in at least twoways. As an example, the two possible realizations of a simple multihannel 2DAR(1,1) model are presented in Fig. 4.2. The shift operators are indiated in the�owgraphs as z−1

1 and z−1
2 . The state variables in xh and xv are assigned to theoutputs of the shift operators. The matrix oe�ients A[i1, i2], i1, i2 = {0, 1},are shown in Fig. 4.2 along the appropriate branhes.
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84 Chapter 44.4.2 Stabilization ProedureIn this subsetion, we desribe a proedure that an be applied to resolve thepossible instability of the multihannel 2D AR(p1,p2) model (4.3).Step 1. Estimate the matrix oe�ients Â(0)[i1, i2] and the noise delay-Doppler PSD matrix P̂
(0)
u either by solving the Yule-Walker normal equationsof Subsetion 4.3.1 or by minimizing the sum of the estimated predition errorpowers in (4.19) (see Subsetion 4.3.2).Step 2. Calulate the matries A11, A12, A21, and A22 of the Roesser'sstate-spae representation (4.22). If the BIBO stability onditions in (4.23) aresatis�ed, skip the next steps.Step 3. Formulate the minimization problem (4.19) under onstrains (4.23) asa multi-objetive optimization problem that an be solved by the goal-attainmentmethod [75℄, i.e.,

min
γ∈R

γ (4.25)subjet to
trace

(
ˆ̃
Σ
)

− w1γ ≤ trace
(

P̂
(0)
uu

)

ρ(A11)− w2γ ≤ 1

ρ(A22 +A21(z1I−A11)
−1A12)− w3γ ≤ 1, |z1| = 1where ρ(·) denotes the spetral radius of a square matrix [58℄, {w1, w2, w3} arethe weighting oe�ients that signify the relative trade-o� between the objetives,and γ is a salar parameter (see, e.g, [75, 76℄). Note that the matries Σ̂, A11,

A12, A21, and A22 in (4.25) are funtions of the matrix oe�ients A[i1, i2],
[i1, i2] ∈ SQP , [i1, i2] 6= [0, 0]. The solution to the multi-objetive minimizationproblem formulated in (4.25) an be found by applying the fgoalattain funtionimplemented in MATLAB. The estimates Â(0)[i1, i2] obtained at Step 1 an beused as the initial parameter values.Step 4. The matrix oe�ients Â[i1, i2] obtained in Step 3 are substitutedinto (4.19) to get the estimate of the matrix X̂. Finally, the estimate of the noisedelay-Doppler PSD matrix P̂u is equal to the residual predition error powermatrix ˆ̃

Σmin alulated by substituting the matrix X̂ into (4.15) (see Setion 4.3).A note regarding Step 2 and Step 3 of the algorithm desribed above is re-quired. For the seond stability riterion in (4.23) the largest magnitude eigen-value of the orresponding matrix has to be alulated at the in�nite number ofpoints z1 along the unit irle, |z1| = 1. The onduted simulations suggest that alimited number of points z1 is su�ient to hek the stability of the multihannel2D AR(p1,p2) model.



Chapter 4 854.5 Synthesis of the Time-Variant Frequeny Responsein the Delay-Doppler DomainChannel simulators based on the 2D AR(p1,p2) model represented in the form of(4.3) or in the state-spae form (4.22) allow reursive omputation of the TVFR
h[m,n]. Although omputationally e�ient, the model representations (4.3) and(4.22) require stability of the multihannel 2D AR(p1,p2) model. If the multi-hannel 2D AR(p1,p2) model is unstable, the stabilization proedure presentedin Subsetion 4.4.2 an be applied. However, the omputational load assoiatedwith Step 3 of the stabilization algorithm quikly inreases as the order (p1,p2) ofthe model grows.On the other hand, the lak of guaranteed stability of the multihannel 2DAR(p1,p2) is not a serious drawbak for estimating the delay-Doppler PSDPh(τ

′, fd)of a radio hannel (see, e.g., the disussions in [65, Chapter 3℄ and [64, Chapter15℄). This observation underlies the method for generating the TVFR h[m,n] inthe delay-Doppler domain presented below.Let a omplex zero-mean multihannel 2D white noise w[m,n], with the on-stant delay-Doppler PSD Pw(τ
′, fd) = I, be an input to the LSI shaping �lterrepresented by its delay-Doppler transfer funtion Ψ(τ ′, fd), whih is a matrix ofdimensions NTNR ×NTNR at every propagation delay τ ′ and Doppler frequeny

fd. The delay-Doppler PSD Py(τ
′, fd) of the signal y[m,n] at the output of the�lter is given by (f. (4.6))

Py(τ
′, fd) = Ψ(τ ′, fd)PwΨ

H(τ ′, fd) = Ψ(τ ′, fd)Ψ
H(τ ′, fd). (4.26)Assuming that Ψ(τ ′, fd) = P

1/2
h (τ ′, fd), where the square root of the delay-Doppler PSD matrix Ph(τ

′, fd) (4.6) is obtained by applying the singular valuedeomposition2 (SVD) [58℄, the delay-Doppler PSD of the signal at the output ofthe �lter Py(τ
′, fd) (4.26) is equal to Ph(τ

′, fd).A pratial approah to generating the TVFR h[m,n] of a wireless hannel isby implementing the shaping �lter in the delay-Doppler domain as follows
h[m,n] =

M−1∑

k=0

N/2
∑

l=−N/2

[
1

M△f ′N△tPh

(
k

M△f ′ ,
l

N△t

)]1/2

× W

(
k

M△f ′ ,
l

N△t

)

ej2π(
km
M

+ ln
N
) (4.27)where the disrete Fourier transform (DFT) W (

k
M△f ′ ,

l
N△t

) of the noise signal2Reall that the delay-Doppler PSD matrix Ph(τ
′, fd) (4.6) is Hermitian.
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w[m,n] at the disrete delays k

M△f ′ , k = 0, . . . ,M−1, and at the disrete Dopplerfrequenies l
N△t , l = −N/2, . . . , N/2, is given by

W

(
k

M△f ′ ,
l

N△t

)

=
1√
MN

M−1∑

m=0

N−1∑

n=0

w[m,n]e−j2π(km
M

+ ln
N
). (4.28)By onstrution, the TVFR h[m,n] in (4.27) is a omplex multihannel 2Drandom proess with the delay-Doppler PSD approximating the desired Ph(τ

′, fd)given by (4.6). Note that the TVFR h[m,n] generated aording to (4.27) is peri-odi w.r.t. frequeny f ′ and time t with the periodsM△f ′ and N△t, respetively.The agreement between the delay-Doppler PSD of the random proess h[m,n](4.27) and the desired delay-Doppler PSD Ph(τ
′, fd) an be improved by substi-tuting W

(
k

M△f ′ ,
l

N△t

)

= ejθ[k,l] into (4.27) instead of (4.28). The vetors θ[k, l],
k = 0, . . . ,M − 1 and l = −N/2, . . . , N/2, onsist of realizations of the i.i.d.random variables, eah having the uniform distribution on the interval [0, 2π). If
M and N are su�iently large, then the distribution of the TVFR h[m,n] ap-proahes the omplex Gaussian multivariate distribution due to the entral limittheorem (CLT) [28℄.In pratie, the delay-Doppler PSD Ph(τ

′, fd) is unknown. Therefore, anestimate P̂h(τ
′, fd), obtained by substituting the estimated matrix oe�ients

{

Â[i1, i2]
}

[i1,i2]∈SQP ,
[i1,i2] 6=[0,0]

and the noise delay-Doppler PSD P̂u (see Setion 4.3) into(4.6), is used in lieu of the delay-Doppler PSD Ph(τ
′, fd) in (4.27).4.6 Simulation ResultsIn this setion, we present two examples that illustrate the performane of themultihannel 2D AR models employed as hannel simulators. In eah of the ex-amples, the role of the measured 2 × 2 MIMO hannel is played by a hannelsimulator with known parameter values, in the following referred to as the pro-totype model. The task is to estimate the parameters of the multihannel 2DAR(p1,p2) model (4.3), the target model, from the TVFR h̃[m,n] synthesized byusing the prototype model.In the �rst example, the prototype model is the multihannel 2D AR(2,2)model. The parameters of the target multihannel 2D AR(2,2) model, i.e., thematrix oe�ients A[i1, i2] and the noise delay-Doppler PSD matrix Pu, havebeen estimated from a training TVFR sequene h̃[m,n], 1 ≤ m ≤ 193, 1 ≤

n ≤ 100, by employing the PEM and the YW methods (see Setion 4.3). TheBIBO stability test (4.23) shows that both target multihannel 2D AR(2,2) modelsresulting from applying the PEM and the YW parameter estimation methods arestable.



Chapter 4 87To evaluate the performane of the target multihannel 2D AR(2,2) models,the test TVFRs h[m,n] have been generated using the resulting target models.Another test TVFR h̃[m,n], of the same length as h[m,n], has been obtainedusing the prototype model. The TCCFs r̂ti1,i2 [ι], i1, i2 = 1, . . . , NTNR, and theFCCFs r̂f ′

i1,i2
[κ], of the target multihannel 2D AR(2,2) models are estimated fromthe test TVFRs h[m,n]. Similarly, the TCCFs ˆ̃rti1,i2 [ι] and the FCCFs ˆ̃rf ′

i1,i2
[κ] ofthe prototype model are estimated from the test TVFR h̃[m,n]. Some estimatedTCCFs and FCCFs of the target models and of the prototype model are shown inFig. 4.3.As an be seen in Fig. 4.3, the seleted TCCFs and the FCCFs of the targetmultihannel 2D AR(2,2) models approximate well their respetive ounterpartsof the prototype model. Similar results are observed for other estimated temporaland frequeny ross-orrelation funtions. Additionally, the results presented forthe target model obtained by applying the PEM parameter estimation methodare very lose to those orresponding to the target model obtained by using theYW algorithm.The prototype model in the seond example, is a hannel simulator based onthe double-diretional hannel model [5℄. In the double-diretional model the wire-less propagation hannel is represented by a set of L omplex exponents (multipathomponents). Eah of these omplex exponents is haraterized by the omplexamplitude, Doppler frequeny, propagation delay, diretion-of-arrival, diretion-of-departure, and, possibly, polarization matrix. In our double-diretional model,the transmitter is stationary and the reeiver is moving. The transmitter andthe reeiver are equipped with linear antenna arrays. Eah of the antenna arraysonsists of two (NT = NR = 2) omnidiretional single-polarization antenna ele-ments separated by a half wavelength distane. The radio waves propagate in theazimuthal plane. Several other parameters are spei�ed below:

• Number of multipath omponents: L = 530;
• Time interval between snapshots: △t = 10 ms;
• Signal arrier frequeny: f ′c = 5.2 GHz;
• Interval between frequenies: △f ′ = 3.125 · 105 Hz;
• Frequeny bandwidth: B = 60 MHz;
• Measurement noise SNR: 20 dB.The multipath omponents of the prototype model in the delay-Doppler planeare shown in Fig. 4.4. Note that this example represents an extreme ase in asense that the delay-Doppler PSD of the TVFR synthesized using the prototype
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(f)Figure 4.3: The TCCFs and FCCFs of the prototype multihannel 2D AR(2,2)model and of the target multihannel 2D AR(2,2) model (example1).



Chapter 4 89model is disrete, while the target multihannel 2D AR(p1,p2) model implies aontinuous delay-Doppler PSD.
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Figure 4.4: The multipath omponents (example 2).Again, as in the �rst example, the training TVFR h̃[m,n], 1 ≤ m ≤ 193, 1 ≤
n ≤ 100, has been generated using the prototype model and supplied to thePEM to estimate the parameters A[i1, i2] and Pu of the target multihannel 2DAR(p1,p2) model. In this ase, the parameters of the multihannel 2D AR(1,1),AR(3,3), AR(5,5), and AR(10,10) models have been estimated. All of the targetmodels have been stabilized using the proedure desribed in Subsetion 4.4.2.The TCCFs r̂ti1,i2 [ι], i1, i2 = 1, . . . , NTNR, of the resulting target modelsand the TCCFs ˆ̃rti1,i2 [ι] of the prototype model have been estimated from thegenerated test sequenes h[m,n] and h̃[m,n], respetively. Similarly, the FCCFs
r̂f ′

i1,i2

[κ] of the resulting target models and the FCCFs ˆ̃rf ′

i1,i2

[κ] of the originalmodel have been estimated from the orresponding test sequenes. In Fig. 4.5,we demonstrate the estimated TCCFs and FCCFs for several subhannels of theresulting (stabilized) target models and of the prototype model. The TCCFsand FCCFs of the target models rather poorly approximate the orrespondingorrelation funtions of the prototype model as ompared to the results presentedin Fig. 4.3.
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(f)Figure 4.5: The TCCFs and FCCFs of the prototype model and of the targetmodels (example 2).



Chapter 4 91The e�et of applying the stabilization proedure to the target multihannel2D AR(10,10) model an be observed in Fig. 4.6 where we depit the delay-Doppler PSD (for the �rst subhannel) before and after stabilization. The delay-Doppler PSDs of the target models have been alulated using (4.6). Note thepresene of multiple spurious peaks in the delay-Doppler PSD, whih are parti-ularly notieable in Fig. 4.6 (b).
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(b)Figure 4.6: The delay-Doppler PSD of the target multihannel 2D AR(10,10)model (a) before stabilization and (b) after stabilization (example2).
4.7 Appliation to Measurement DataIn this setion, we develop several multihannel 2D AR(p1,p2) models based onreal-world measurement data. The desription of the measurement sites and themeasurement equipment an be found in Appendix A.The parameters of all multihannel 2D AR(p1,p2) models presented below havebeen estimated from the measurement data by using the PEM algorithm desribedin Subsetion 4.3.2. Empirially, it has been observed that the PEM algorithm ispreferable for estimating the parameters of the multihannel 2D AR(p1,p2) modelsas ompared to the YW method (see Subsetion 4.3.1). As this observation is ina agreement with the results available in the literature for the ase of 1D ARmodels (see, e.g., [64℄), we do not provide the details related to the performaneof the multihannel 2D AR(p1,p2) models developed by using the YW parameterestimation method.



92 Chapter 44.7.1 Model Order SeletionThe development of the multihannel 2D AR(p1,p2) model starts with seletingan appropriate order (p1,p2) of the model. A number of methods for model orderseletion has been proposed in the literature (see, e.g., [34, 36, 77, 78℄). In thiswork, we use the well-known ross-validation method [36, 77℄. This hoie ismotivated by the fat that the ross-validation method does not rely on any apriory information or analytial analysis of the measurement data.For omparison reasons, we also assess the order of the multihannel 2DAR(p1,p2) model by using the following rule. A realization of the hannel TVFR
h[m,n] is generated by using a andidate multihannel 2D AR(p1,p2) model.The parameters P̂u and Â[i1, i2], 0 ≤ i1 ≤ p1, 0 ≤ i2 ≤ p2, of the andidatemodel are estimated from the measured TVFR h̃[m,n] of a real-world hannelby employing the PEM algorithm. The orrelation matrix R̂, estimated from thesynthesized TVFR h[m,n] as desribed in Subsetion 3.4.1, is ompared to theorrelation matrix ˆ̃

R estimated similarly from the measured TVFR h̃[m,n]. Theomparison is done in terms of the normalized approximation error norm de�nedas ‖ ˆ̃R − R̂‖F /‖ ˆ̃R‖F . Finally, a andidate model, whih provides the smallestnormalized error norm, is hosen. In the following, this rule will be referred toas the orrelation matrix �tting (CMF) rule. Note that the CMF rule representsan intuitive way of hoosing the order of the multihannel 2D AR(p1,p2) model,aording to the problem formulation given in Setion 3.3.It should be mentioned that in all examples presented below, we have onsid-ered the andidate multihannel 2D AR(p1,p2) models in the range 1 ≤ p1 ≤ 15,
1 ≤ p2 ≤ 6.4.7.2 Miro Cell Site � Regular Street GeometryFor the measured TVFR of the hannel onsidered in this subsetion, the ross-validation method and the CMF rule yield as the best andidate, respetively, themultihannel 2D AR(6,1) and AR(9,5) models. The stability test (4.23) showsthat the multihannel 2D AR(9,5) model is unstable. Hene, the four-step proe-dure desribed in Subsetion 4.4.2 has been applied to stabilize the model.In Fig. 4.7, several estimated TCCFs ˆ̃rti1,i2 [ι] and FCCFs ˆ̃rf ′

i1,i2

[κ], extratedfrom the orrelation matrix ˆ̃
R of the measured hannel (see Subsetion 3.4.1),are presented. In the same �gure, we also show the orresponding estimatesof the TCCFs r̂ti1,i2 [ι] and the FCCFs r̂f ′

i1,i2
[κ], i1, i2 = 1, . . . , NTNR, for themultihannel 2D AR(6,1) and AR(9,5) models. Note that the approximate 95%on�dene intervals depited in Fig. 4.7 are related to the TCCFs ˆ̃rti1,i2 [ι] andFCCFs ˆ̃rf ′

i1,i2
[κ] estimated from the real-world measurement data. The resultspresented in Fig. 4.7 an be ompared to the results in Fig. 3.3.
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(f)Figure 4.7: Examples of the estimated TCCFs and FCCFs of the physial han-nel and the orresponding TCCFs and FCCFs of the multihannel2D AR(p1,p2) models (miro ell site � regular street geometry).



94 Chapter 4It follows from Fig. 4.7 that the multihannel 2D AR(9,5) model better ap-proximates the temporal orrelation harateristis of the real-world prototypehannel than the 2D AR(6,1) model.The estimated delay-Doppler PSDs P̂h(τ
′, fd) of the 2D AR(6,1) and the 2DAR(9,5) models are depited in Fig. 4.8.
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(b)Figure 4.8: The delay-Doppler PSD P̂h(τ
′, fd) of the (a) 2D AR(6,1) model;(b) 2D AR(9,5) (miro ell site � regular street geometry).The estimated Doppler PSDs P̂hfd

(fd) of the multihannel 2D AR(6,1) andAR(9,5) models are shown in Fig. 4.9 together with the Doppler PSD ˆ̃Phfd
(fd)estimated from the measured TVFR h̃1,1[m,n]. The estimate of the DopplerPSD ˆ̃Phfd

(fd) has been obtained by using the averaged periodogram method (see,e.g., [64℄). To redue the bias in the estimated Doppler PSD, we have tapered themeasured TVFR h̃1,1[m,n] in the time domain with the Hanning window [79℄.Similarly, the estimated delay PSDs P̂hτ ′
(τ ′) of the multihannel 2D AR(6,1) andAR(9,5) models as well as the delay PSD ˆ̃Phτ ′

(τ ′) estimated from the measuredTVFR h̃1,1[m,n] are presented in Fig. 4.10. Sine the varianes of the estimatedDoppler PSD ˆ̃Phfd
(fd) and the delay PSD ˆ̃Phτ ′

(τ ′) are rather small, the orre-sponding on�dene intervals are not shown in Figs. 4.9 and 4.10.From Fig. 4.9, it appears that the order of the AR(6,1) model w.r.t. time isunderestimated, whih results in the oversmoothed Doppler PSD. As the mainreason for an underestimated order of the multihannel 2D AR model seleted bythe ross-validation method (see Subsetion 4.7.1), we onsider a small number
N of the available hannel TVFR snapshots (N < 20 for the examples presentedin this and the following two subsetions).It is of interest to analyze the results presented in Fig. 4.9 in terms of the �rsttwo spetral moments, i.e., the estimated average Doppler shift and the estimatedDoppler spread. The estimated average Doppler shift ˆ̃µfd and the estimated
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(b)Figure 4.9: The Doppler PSDs for the multihannel 2D AR(p1,p2) models andthe measured hannel (miro ell site � regular street geometry).
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(b)Figure 4.10: The delay PSDs for the multihannel 2D AR(p1,p2) models andthe measured hannel (miro ell site � regular street geometry).Doppler spread ˆ̃σfd of a measured hannel are de�ned, respetively, as
ˆ̃µfd =

∫ fdmax

−fdmax
fd

ˆ̃Pfd(fd)dfd
∫ fdmax

−fdmax

ˆ̃Pfd(fd)dfd
(4.29)and

ˆ̃σfd =

√
√
√
√
√

∫ fdmax

−fdmax
f2d

ˆ̃Pfd(fd)dfd
∫ fdmax

−fdmax

ˆ̃Pfd(fd)dfd
− (ˆ̃µfd)

2. (4.30)where fdmax
is given by fdmax

= 1/(2△t) and △t denotes the interval betweenthe hannel snapshots. Of ause in pratie, the integrals in (4.29),(4.30) have



96 Chapter 4to be approximated with the �nite sums. The average Doppler shift µ̂fd and theDoppler spread σ̂fd of the estimated Doppler PSD P̂hfd
(fd) of the multihannel2D AR(p1,p2) model are de�ned in a similar way.By analogy, the results presented in Fig. 4.10 an be analyzed in terms ofthe estimated average delay shift and the estimated delay spread. The estimatedaverage delay shift ˆ̃µτ ′ and the estimated delay spread ˆ̃στ ′ of a measured real-worldhannel are given by

ˆ̃µτ ′ =

∫ τ ′ub
τ ′lb τ ′ ˆ̃Pτ ′(τ

′)dτ ′

∫ τ ′ub
τ ′lb ˆ̃Pτ ′(τ ′)dτ ′

(4.31)and
ˆ̃στ ′ =

√
√
√
√
√

∫ τ ′ub
τ ′lb τ ′2 ˆ̃Pτ ′(τ ′)dτ ′

∫ τ ′ub
−τ ′lb ˆ̃Pτ ′(τ ′)dτ ′

− (ˆ̃µτ ′)2 (4.32)respetively. The average delay shift µ̂τ ′ and the delay spread σ̂τ ′ of the estimateddelay PSD ˆ̃Phτ ′
(τ ′) of the multihannel 2D AR(p1,p2) model are de�ned similarly.The limits of the integrals τ ′lb and τ ′ub in (4.31),(4.32) orrespond to the −20 dBnoise threshold as referred to the maximum of the estimated delay PSD ˆ̃Phτ ′

(τ ′)[2℄. The integrals in (4.31),(4.32) are approximated with the �nite sums.The estimated spetral moments of the multihannel 2D AR(6,1) and AR(9,5)models as well as the spetral moments obtained from the estimated single-dimensional PSDs ˆ̃Phfd
(fd) and ˆ̃Phτ ′

(τ ′) of the measured hannel are olletedin Table 4.1. Additionally, we have also inluded in Table 4.1 the results obtainedfor the hannel simulator based on the model (3.7), whih has been developedin Subsetion 3.6.1 by using the design method of Subsetion 3.4.2. The on�-dene intervals for the spetral moments estimated from the measurement dataare spei�ed in brakets.Table 4.1: Spetral moments (miro ell site � regular street geometry).Measured 2D AR(6,1) 2D AR(9,5) Channelhannel simulator (3.7)Doppler shift, 0.51 0.95 0.85 0.66
µfd (Hz) [0.47, 0.54]Squared Doppler 14.72 15.52 14.76 14.55spread, σ2

fd
(Hz2) [14.58, 14.85]Delay shift, 2.709 2.708 2.714 2.705

µτ ′ (µs) [2.707, 2.710]Squared delay 0.0037 0.0027 0.0029 0.0022spread, σ2
τ ′ (µs2) [0.0035, 0.0039]The (squared) Doppler and delay spreads represent the main interest for us.As it follows from Table 4.1, the squared delay and Doppler spreads of the multi-



Chapter 4 97hannel 2D AR(9,5) model are somewhat loser, as ompared to other onsideredhannel simulators, to the squared delay and Doppler spreads of the measuredhannel.Note that the spei�ed on�dene intervals for the estimated spetral mo-ments of the measured hannel, although useful for indiating the variability ofthe orresponding parameters, are not su�ient for determining if the di�erenesbetween the spetral moments of the hannel simulation models and the spetralmoments of the measured hannel are signi�ant. For example, the estimatedsquared delay spread is equal to 0.0042 µs2 or 0.0035 µs2 when the Blakman orHamming window [79℄, respetively, is used for estimating the delay spetral mo-ments from the measurement data. Both these values are outside the on�deneinterval [0.0035, 0.0039] µs given in Table 4.1.In Fig. 4.11, the CDFs of the instantaneous hannel apaity (mutual informa-tion) C[n] (3.48) of the measured hannel and of the hannels generated by usingthe multihannel 2D AR(6,1) and 2D AR(9,5) models3 are presented. Clearly, theapaity CDFs of the multihannel 2D AR models are slightly biased towards thehigher apaity values. The estimated mean µC values and standard deviations
σC of the apaity for the multihannel 2D AR(6,1) model, 2D AR(6,1) model,and the measured hannel are given in Table 4.2.Table 4.2: Estimated mean and standard deviation of the apaity (miro ellsite � regular street geometry).Measured 2D AR(6,1) 2D AR(9,5)hannelMean, µC (bps/Hz) 7.25 7.58 7.7Standard deviation, σC (bps/Hz) 0.81 0.8 0.82The apaity CDFs in Fig. 4.11 an be ompared to the apaity CDF for thehannel simulator (3.7) demonstrated in Fig. 3.5

3In the following, we refer to the instantaneous apaity of hannels synthesized by a multi-hannel 2D AR(p1,p2) model simply as the apaity of the multihannel 2D AR(p1,p2) model.
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(b)Figure 4.11: Capaity CDFs of the multihannel 2D AR(p1,p2) models and ofthe measured hannel for an SNR ρ = 20 dB (miro ell site �regular street geometry).4.7.3 Miro Cell Site � Open Market PlaeThe results of applying the ross-validation method and the CMF rule (see Subse-tion 4.7.1) suggest that the multihannel 2D AR(6,1) model (the ross-validationmethod) and the AR(6,2) model (the CMF rule) are the best andidates. Thestability test (4.23) demonstrates that both the multihannel 2D AR(6,1) andAR(6,2) models are BIBO stable.Examples of the estimated TCCFs r̂ti1,i2 [ι] and FCCFs r̂f ′

i1,i2

[κ] of the multi-hannel 2D AR(6,1) and AR(6,2) models are depited in Fig 4.12 together withtheir respetive ounterparts ˆ̃rti1,i2 [ι] and ˆ̃rf ′

i1,i2
[κ] of the measured hannel. Asan be seen from the graphs presented in Fig 4.12, some improvement in theapproximation of the TCCFs ˆ̃rti1,i2 [ι] an be observed for the multihannel 2DAR(6,2) model ompared to the AR(6,1) model, although, at the expense of wors-ening the agreement between the estimated FCCFs. Figure 4.12 an be omparedwith the orresponding results presented in Figure 3.7.The estimated delay-Doppler PSDs P̂h(τ

′, fd) of the 2D AR(6,1) and 2DAR(6,2) models are depited in Fig 4.13. The spetral harateristis of the mul-tihannel 2D AR(6,1) and 2D AR(6,2) models are further ompared in Figs. 4.14and 4.15, where the estimated Doppler and delay PSDs are shown, respetively.
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(f)Figure 4.12: Examples of the estimated TCCFs and FCCFs of the physial han-nel and the orresponding TCCFs and FCCFs of the multihannel2D AR(p1,p2) models (miro ell site � open market plae).
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(b)Figure 4.13: The delay-Doppler PSD P̂h(τ
′, fd) of the (a) 2D AR(6,1) modeland (b) 2D AR(6,2) (miro ell site � open market plae).
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(b)Figure 4.14: The Doppler PSDs for the multihannel 2D AR(p1,p2) models andthe measured hannel (miro ell site � open market plae).As in the previous subsetion, we have olleted the estimated �rst and se-ond order spetral moments for the measured hannel and the 2D AR modelsin Table 4.3. As it an be seen from Table 4.3, the squared Doppler spread ofthe hannel simulator based on the model (3.7), whih has been developed inSubsetion 3.6.2, is a bit loser to the squared Doppler spread of the measuredhannel as ompared to the results provided by the multihannel 2D AR models.However, the squared delay spread of the multihannel 2D AR models is loser tothe squared delay spread of the estimated delay PSD ˆ̃Phτ ′
(τ ′). Consistent withFigs. 4.14 and 4.15, the di�erenes between the estimated spetral moments ofthe multihannel 2D AR(6,1) and 2D AR(6,2) models are rather small.The CDFs of the instantaneous hannel apaity C[n] (3.48) of the measured
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(b)Figure 4.15: The delay PSDs for the multihannel 2D AR(p1,p2) models andthe measured hannel (miro ell site � open market plae).Table 4.3: Spetral moments (miro ell site � open market plae).Measured 2D AR(6,1) 2D AR(6,2) Channelhannel simulator (3.7)Doppler shift, 1.106 −0.11 0.19 0.02
µfd (Hz) [1.05, 1.16]Squared Doppler 24.5 21.7 22.47 23.87spread, σ2

fd
(Hz2) [24.36, 24.64]Delay shift, 0.71 0.707 0.68 0.704

µτ ′ (µs) [0.706, 0.722]Squared delay 0.053 0.051 0.054 0.048spread, σ2
τ ′ (µs2) [0.051, 0.055]hannel and of the multihannel 2D AR(6,1) and 2D AR(6,2) models are demon-strated in Fig. 4.16. Clearly, the CDF urves are in good agreement. The meanvalues µC and the standard deviations σC of the apaity for the multihannel2D AR models and the measured hannel are presented in Table 4.4.Table 4.4: Estimated mean and standard deviation of the apaity (miro ellsite � open market plae).Measured 2D AR(6,1) 2D AR(9,5)hannelMean, µC (bps/Hz) 8.63 8.73 8.75Standard deviation, σC (bps/Hz) 1.32 1 1.03The apaity CDFs of the multihannel 2D AR(6,1) and 2D AR(6,2) modelsin Fig. 4.16 an be ompared with the apaity CDF of the hannel simulatorbased on the model (3.7) presented in Fig. 3.9.
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(b)Figure 4.16: Capaity CDFs for the multihannel 2D AR(p1,p2) models and themeasured hannel for an SNR ρ = 20 dB (miro ell site � openmarket plae).4.7.4 Miro/Pio Cell Site � PassagewayAs before, we start with seleting an appropriate order of the multihannel 2DAR(p1,p2) model. Again, for this purpose we employ two approahes: the ross-validation method and the CMF rule desribed in Subsetion 4.7.1. The twomethods yield two di�erent best andidate models, whih are the multihannel 2DAR(5,1) model (aording to the ross-validation method) and the multihannel2D AR(10,4) model (the CNF rule). Both these models are BIBO stable aordingto the results obtained by using the stability test (4.23).In Fig. 4.17, the examples of the TCCFs ˆ̃rti1,i2 [ι] and FCCFs ˆ̃rf ′

i1,i2
[κ], esti-mated from the measured TVFR of the real-world hannel, are depited togetherwith the estimated TCCFs r̂ti1,i2 [ι] and FCCFs r̂f ′

i1,i2
[κ] of the multihannel 2DAR(5,1) and AR(10,4) models. The estimated TCCFs r̂ti1,i2 [ι] of the multihannel2D AR(5,1) model deay faster than the orresponding estimated TCCFs ˆ̃rti1,i2 [ι]of the measured hannel and the estimated TCCFs r̂ti1,i2 [ι] of the multihannel2D AR(10,4) model.
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(f)Figure 4.17: Examples of the estimated TCCFs and FCCFs of the physial han-nel and the orresponding TCCFs and FCCFs of the multihannel2D AR(p1,p2) models (miro/pio ell site � passageway).



104 Chapter 4As it an also be seen from Fig. 4.17, inreasing the order of the model from(5,1) to (10,4) does not remove the disrepany between the estimated FCCFs
ˆ̃rf ′

i1,i2

[κ] of the measured hannel and the estimated FCCFs r̂f ′

i1,i2

[κ] of the mul-tihannel 2D AR models. The estimated TCCFs r̂ti1,i2 [ι] and FCCFs r̂f ′

i1,i2
[κ] ofthe multihannel 2D AR(5,1) and AR(10,4) models presented in Fig. 4.17 an beompared to the orresponding orrelation funtions in Fig. 3.11.The estimated 2D delay-Doppler PSDs P̂h(τ

′, fd) of the 2D AR(5,1) and2D AR(10,4) models are depited in Fig 4.18. Correspondingly, the estimatedDoppler PSDs P̂hfd
(fd) and the delay PSDs P̂hτ ′

(τ ′) of the multihannel 2DAR models are shown together with the Doppler PSD ˆ̃Phfd
(fd) and the delayPSD ˆ̃Phτ ′

(τ ′) of the measured hannel, estimated from the TVFR h̃1,1[m,n], inFigs. 4.19 and 4.20, respetively. Clearly, the order of the multihannel 2DAR(5,1) model is underestimated w.r.t. time (see the omment in Subsetion 4.7.2regarding the results presented in Fig. 4.9).
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(b)Figure 4.18: The delay-Doppler PSD P̂h(τ
′, fd) of the (a) 2D AR(5,1) modeland (b) 2D AR(10,4) (miro/pio ell site � passageway).We further analyze the results depited in Figs. 4.19 and 4.20 in terms ofthe �rst and seond order spetral moments presented in Table 4.5. Clearly, theestimated spetral moments of the multihannel 2D AR(10,4) model are loser tothe orresponding spetral moments of the measured hannel, ompared to thespetral moments obtained for the 2D AR(5,1) model and the hannel simulatorbased on the model (3.7). As in the previous subsetions, the squared delay spreadof the hannel simulation model (3.7) is smaller than the analogues harateristiof the measured hannel and the multihannel 2D AR models. Also note thatin spite of the poor agreement between the Doppler PSD P̂hfd

(fd) of the 2DAR(5,1) model and the estimated Doppler PSD ˆ̃Phfd
(fd) of the measured hannelin Fig. 4.19, the Doppler spetrum moments of the AR(5,1) model are rather lose
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(b)Figure 4.19: The Doppler PSDs for the multihannel 2D AR(p1,p2) models andthe measured hannel (miro/pio ell site � passageway).
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(b)Figure 4.20: The delay PSDs for the multihannel 2D AR(p1,p2) models andthe measured hannel (miro/pio ell site � passageway).to the estimated average Doppler shift and the Doppler spread of the measuredhannel.The CDFs of the instantaneous hannel apaity (3.48) of the multihannel2D AR(5,1) and 2D AR(10,4) models as well as the instantaneous apaity CDFof the measured hannel are shown in Fig. 4.21. The results presented in Fig. 4.21are omparable to those obtained for the hannel simulator developed in Subse-tion 3.6.3 and depited in Fig. 3.13. The estimated mean values and the standarddeviations of the apaity for the 2D AR(5,1), 2D AR(10,4), and the measuredhannel are shown in Table 4.6.



106 Chapter 4Table 4.5: Spetral moments (miro/pio ell site � passageway).Measured 2D AR(5,1) 2D AR(10,4) Channelhannel simulator (3.7)Doppler shift, −0.275 −0.47 −0.29 −0.63
µfd (Hz) [−0.315,−0.24]Squared Doppler 16 16.82 15.8 15.23spread, σ2

fd
(Hz2) [15.88, 16.15]Delay shift, 2.57 2.56 2.55 2.55

µτ ′ (µs) [2.564, 2.57]Squared delay 0.022 0.019 0.018 0.013spread, σ2
τ ′ (µs2) [0.021, 0.023]Table 4.6: Estimated mean and standard deviation of the apaity (miro/pioell site � passageway). Measured 2D AR(6,1) 2D AR(9,5)hannelMean, µC (bps/Hz) 8.45 8.7 8.7Standard deviation, σC (bps/Hz) 1.16 0.825 0.79
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(b)Figure 4.21: Capaity CDFs of the multihannel 2D AR(p1,p2) models and themeasured hannel for an SNR ρ = 20 dB (miro/pio ell site �passageway).4.7.5 Indoor Cell SiteFor the real-world hannel onsidered in this subsetion, the multihannel 2DAR(5,3) and the 2D AR(15,3) models have been hosen based on the resultsprovided by the ross-validation method and the CMF rule (Subsetion 4.7.1),respetively. Both models are BIBO stable aording to the stability test (4.23).In Fig. 4.22, several TCCFs ˆ̃rti1,i2 [ι] and FCCFs ˆ̃rf ′

i1,i2

[κ], estimated from themeasurement data, as well as the orresponding estimated TCCFs r̂ti1,i2 [ι] and
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(f)Figure 4.22: Examples of the estimated TCCFs and FCCFs of the physial han-nel and the orresponding TCCFs and FCCFs of the multihannel2D AR(p1,p2) models (indoor ell site).



108 Chapter 4the FCCFs r̂f ′

i1,i2

[κ] of the multihannel 2D AR(5,3) and 2D AR(15,3) modelsare depited. It an be observed that while the inrease in the model order from(5,3) to (15,3) improves the agreement between the FCCFs ˆ̃rf ′

i1,i2

[κ] and r̂f ′

i1,i2

[κ],it worsens the �tting between the estimated TCCFs of the multihannel 2D ARmodels and the estimated TCCFs of the measured hannel. The results presentedin Fig. 4.22 an be ompared to the results shown in Fig. 3.15The estimated 2D delay-Doppler PSDs P̂h(τ
′, fd) of the 2D AR(5,3) and 2DAR(15,3) models are demonstrated in Fig 4.23. The estimated single-dimensionalDoppler PSDs and the delay PSDs are shown in Figs. 4.19 and 4.20, respetively,for the multihannel 2D AR(5,3) and AR(15,3) models as well as the orrespond-ing single-dimensional PSDs estimated from the measured TVFR.
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(a) (b)Figure 4.23: The delay-Doppler PSD P̂h(τ
′, fd) of the (a) 2D AR(5,1) model;(b) 2D AR(10,4) (indoor ell site).
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(b)Figure 4.24: The Doppler PSDs for the multihannel 2D AR(p1,p2) models andthe measured hannel (indoor ell site).
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(b)Figure 4.25: The delay PSDs for the multihannel 2D AR(p1,p2) models andthe measured hannel (indoor ell site).The estimated �rst and seond order spetral moments for the measured han-nel and the multihannel 2D AR models are presented in Table 4.7. As in theprevious subsetions, in Table 4.7 we inlude the spetral moments alulatedfor the hannel simulator based on the model (3.7) developed in Subsetion 3.6.4based on the same measured TVFR. It appears that the inrease in the order ofthe multihannel 2D AR model from (5,3) to (15,3) does not signi�antly in�u-ene the values of the estimated spetrum moments. Again, the alulated delayspread of the hannel simulator (3.7) is smaller ompared to the delay spread es-timated from the measurement data and to the delay spread of the multihannel2D AR models. Table 4.7: Spetral moments (indoor ell site).Measured 2D AR(5,3) 2D AR(15,3) Channelhannel simulator (3.7)Doppler shift, −1.23 −0.88 −0.845 −1.4
µfd (Hz) [−1.27,−1.2]Squared Doppler 13.5 13.4 14.2 12.12spread, σ2

fd
(Hz2) [13.33, 13.66]Delay shift, 2.394 2.394 2.392 2.383

µτ ′ (µs) [2.391, 2.396]Squared delay 0.097 0.083 0.086 0.057spread, σ2
τ ′ (µs2) [0.094, 0.1]In Fig. 4.26, the instantaneous hannel apaity CDFs (3.48) of the multihan-nel 2D AR(5,3) and AR(15,3) models are shown together with the instantaneousapaity CDF of the measured hannel. As it an be seen from Fig. 4.26, theinstantaneous hannel apaity CDFs of the 2D AR(5,3) and AR(15,3) modelsare lose to the instantaneous hannel apaity CDF of the measured hannel.



110 Chapter 4The graphs presented in Fig. 4.26 an be ompared to the apaity CDF of thehannel simulator based on the model (3.7) depited in Fig. 3.17. The estimatedmean values and the standard deviations of the apaity for the 2D AR(5,3), 2DAR(15,3), and the measured hannel are presented in Table 4.8.Table 4.8: Estimated mean and standard deviation of the apaity (indoor ellsite). Measured 2D AR(6,1) 2D AR(9,5)hannelMean, µC (bps/Hz) 8.17 8.15 8.14Standard deviation, σC (bps/Hz) 0.83 1 0.85
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(b)Figure 4.26: Capaity CDFs of the multihannel 2D AR(p1,p2) models and themeasured hannel for the SNR ρ = 20 dB (indoor ell site).



Chapter 4 1114.8 Conluding RemarksIn this hapter, we have desribed the use of the multihannel 2D AR model forsimulating MIMO wideband mobile radio hannels. The parameters of the mul-tihannel 2D AR model are estimated from the measured TVFR of a real-worldprototype hannel. The estimates of the multihannel 2D AR model parametersan be obtained by solving the set of Yule-Walker normal equations or, alterna-tively, by employing the PEM method.One of the main problems assoiated with the multihannel 2D AR model is apossible instability of a resulting hannel simulator. The stabilization proedureproposed in this hapter an be used to stabilize the multihannel 2D AR model.However, due to the large number of the model parameters, the stabilizationproedure might be time onsuming even for the multihannel 2D AR models ofa moderate order, say p1 > 5, p2 > 5 for 2× 2 MIMO systems.If the multihannel 2D AR model is to be used for generating realizationsof the hannel TVFR, whih do not exeed the duration of several transmittedsymbols, then the method of synthesizing the TVFR in the delay-Doppler domainan be employed. This method is based on the observation that the lak of theguaranteed stability of the multihannel 2D AR model is not a serious drawbakfor estimating the delay-Doppler PSD of a wireless hannel. Thus, a spetrumshaping �lter an be reated and applied to an input white noise in the delay-Doppler domain.In this hapter, we have onsidered the important harateristis of severalmultihannel 2D AR models developed based on the TVFRs of the real-worldhannels measured in di�erent propagation environments. The results presentedin this hapter an be ompared to the performane results for the stohastihannel simulators designed in Chapter 3. Below is a summary of the key ob-servations related to the development and performane of multihannel 2D ARmodels:
• The multihannel 2D AR model is generally less e�ient in synthesizingrealizations of the TVFR of a wireless MIMO hannel than the hannelsimulation model (3.7) desribed in Chapter 3. This is due to the fatthat a relatively large amount of data has to be stored in the memory foralulating the samples of the hannel TVFR. This is true for multihannel2D AR models represented in the form of (4.3) or (4.22) as well as in theform of the spetrum shaping �lter (4.27).
• Estimating the parameters of the multihannel 2D AR(p1,p2) model an beharaterized as a moderate omplexity omputational problem. For exam-ple, the omputational ost of estimating the model parameters by usingthe PEM method desribed in Subsetion 4.3.2 an roughly be estimated as
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{
(M − p1)(N − p2)N

2
TN

2
R

[
(p1p2 + p1 + p2)

2 + (p1p2 + p1 + p2) + 1)
]}.

• It has been observed that the multihannel 2D AR model even of a relativelylow order, whih provides only a very smooth estimate of the delay-DopplerPSD of a real-world prototype hannel, is often su�ient for adequate rep-resentation of the important statistis of the prototype hannel.



Chapter 5Veloity Estimation in WidebandMobile Stations Equipped WithMultiple Antennas
5.1 IntrodutionDuring the last two deades, a number of publiations has been devoted to theproblem of estimating the MS veloity from the reeived signal in ellular net-works. Suh interest is due to the fat that signi�ant improvements in the perfor-mane of wireless ommuniation systems are possible if the MS speed is known.For example, the knowledge of the MS veloity allows to minimize the numberof handovers in multilayer ellular networks. Furthermore, the information aboutthe MS speed an be used to tune up di�erent adaptive signal proessing algo-rithms implemented in the transeivers.Several methods for estimating the MS veloity an be found in the litera-ture, see e.g., [80�87℄. The performane evaluation of some of the estimationalgorithms, as well as their omparison, are presented in [88, Chapter 5℄ and alsoin [89℄. Aording to the theoretial and simulation-based analysis provided inthe referenes, the main fators that ause degradation in the performane ofthe available veloity estimators are the additive noise, presene of shadowing,and the nonisotropi sattering environment. An additional fator, whih is oftenomitted from the onsideration, is the limited time interval over whih the hannelstatistis have to be estimated.Although the existing veloity estimators an be employed without any hangesin wideband MIMO systems, it is of interest to investigate how additional degreesof freedom, e.g., signal bandwidth and multiple antennas at a MS, an be uti-lized to improve the auray of the veloity estimation for di�erent propagationsenarios. The results of the investigations might be useful in the ontext of113



114 Chapter 5developing the newly emerged Ultra Mobile Broadband (UMB) [90℄ and mobileWiMAX [91℄ tehnologies. It is worth mentioning that the problem of improvingthe robustness of MS veloity estimators by taking advantage of a wide bandwidthand antenna arrays (at the BS), has been reently analyzed in [92℄.In this hapter, we desribe an MS veloity estimation method designed forwideband MIMO ommuniation systems [93℄. In our method, the speed of theMS is estimated using the well-known relationship between the DOAs and theDoppler shifts that haraterizes the multipath signal omponents. Aordingto [4, Chapter 7℄, the distribution of the DOAs is a funtion of delays. Theassumption that we make regarding the propagation environment is that the mul-tipath omponents arriving at the MS from a ertain bounded interval of DOAsan be uniquely identi�ed with a ertain range of propagation delays. This as-sumption allows us to simplify the otherwise ompliated parameter estimationalgorithms that an be applied to simultaneously estimate the DOAs and the or-responding Doppler frequenies of the multipath omponents. The performaneof the proposed MS veloity estimator has been evaluated on simulated hannelTVFRs. The presented results demonstrate that the suggested veloity estimationalgorithm is less sensitive to noise and nonisotropi sattering ompared to severalother known methods. It is also shown how the performane of the proposed MSspeed estimator is a�eted by the available signal bandwidth.The rest of the hapter is organized as follows. In Setion 5.2, we desribethe model of the hannel TVFR. The MS veloity estimation method is presentedin Setion 5.3. Setion 5.4 provides the results of the performane evaluation.Conluding remarks are given in Setion 5.5.5.2 The Time-Variant Frequeny Response of the Chan-nelIn this setion, we establish the model for the TVFR of a mobile MIMO radiopropagation hannel. In MIMO systems, the MS and the BS are equipped withantenna arrays onsisting of NMS and NBS elements, respetively. For simpliityreasons and without loss of generality, we let NBS = 1.It is assumed that the TVFR vetor H(f ′, t) = [H1(f
′, t), . . . ,HNMS

(f ′, t)]Tof the mobile radio hannel onsists of a �nite number L of multipath omponents(f. (3.7)), i.e.,
H(f ′, t) =

L∑

n=1

g(φl)cle
j(2πfdl t−2πf ′τ ′

l
+θl) (5.1)where f ′ and t denote the frequeny and time variables, respetively, and Hi(f

′, t),
i = 1, . . . , NMS , is the TVFR of the i-th subhannel. Eah of the L multipath



Chapter 5 115omponents is haraterized by the path gain cl, Doppler frequeny fdl , propaga-tion delay τ ′l , phase shift θl, and the DOA φl. Here, we impliitly assume thatthe planar eletromagneti waves propagate horizontally.The steering vetor g(φ) in (5.1) is de�ned as [94℄
g(φ) = [g1(φ)e

−jk0〈k,r1〉, . . . , gNMS
(φ)e−jk0〈k,rNMS

〉]T (5.2)where the vetor ri, i = 1, . . . , NMS , spei�es the loation of the i-th MS antennaarray element with respet to a hosen referene point; k is a unit vetor pointingin the diretion of the wave propagation; k0 is the free-spae wavenumber, relatedto the wavelength λ by k0 = 2π/λ. The radiation pattern of the i-th antenna arrayelement is given by gi(φ), i = 1, . . . , NMS . If the MS is equipped with a uniformlinear array (ULA), we presume that the radiation pattern of the MS antennaarray is e�etively restrited to the range of φ ∈ [−π/2, π/2] (see, e.g., [65℄),where the DOA φ is measured w.r.t. the normal to the linear antenna array.In pratie, the TVFRH(f ′, t) has to be estimated, e.g., using pilot tones as inorthogonal frequeny division multiplexing (OFDM) ommuniation systems [4℄.The errors in the estimated TVFR Ĥ(f ′, t) are represented by a omplex spa-tially unorrelated (independent) additive white Gaussian noise (AWGN) vetor
w(f ′, t), i.e.,

Ĥ(f ′, t) = H(f ′, t) +w(f ′, t) (5.3)where eah omponent of the vetor w(f ′, t) = [w1(f
′, t), . . . , wNMS

(f ′, t)]T haszero-mean and variane 2σ2w. Similar to the previous hapters, we assume thatthe TVFR H(f ′, t) is estimated at disrete frequenies f ′m = −B/2 + m△f ′ ∈
[−B/2, B/2], m = 0, . . . ,M − 1, and at disrete time instanes tn = n△t ∈ [0, T ],
n = 0, . . . , N − 1, where B and T denote the frequeny bandwidth and thetime observation interval, respetively. The frequeny sampling interval △f ′ andthe time sampling interval △t are onstants. The time sampling interval △t issupposed to be less than 1/(2fdmax

) with the maximum Doppler frequeny de�nedas fdmax
= v/λc, where v is the speed of the MS and λc = c/fc

1 with c denotingthe speed of light.5.3 Veloity Estimation AlgorithmIn this setion, we desribe the algorithm proposed for estimating the MS velo-ity. The basi idea behind the algorithm omes from the well-known relationshipbetween the Doppler frequeny fdl and the DOA φl of the l-th multipath ompo-nent in (5.1). Under the ondition that the Doppler e�et is aused only by the1In a typial wideband ommuniation system, the inequality B/fc ≪ 1 still holds, where fcis the enter frequeny of the modulated bandpass signal.



116 Chapter 5MS movement, this relationship an be expressed as
fdl =

v

λc
cos(φl − αv) (5.4)where v is the MS veloity and αv designates the diretion of the MS movement.5.3.1 Least-Squares Veloity EstimatorSuppose that estimates of the DOAs {φ̂k} and the Doppler frequenies {f̂dk}of K ≤ L multipath omponents in (5.1) are available. The least-squares (LS)estimator of the MS veloity v and the diretion of the MS movement αv an beexpressed as

{v̂, α̂v} = arg min
{v,αv}

{
K∑

k=1

(f̂dk −
v

λc
cos(φ̂k − αv))

2

}

. (5.5)Using the identity
v

λc
cos(φ̂k − αv) =

v

λc
[cos(φ̂k) cos(αv) + sin(φ̂k) sin(αv)] (5.6)we an de�ne the system of linear equations
Ab = fd (5.7)where

A =






cos(φ̂1) sin(φ̂1)... ...
cos(φ̂K) sin(φ̂K)




 , (5.8)

b ≡
[

b1
b2

]

=

[

v/λc cos(αv)

v/λc sin(αv)

]

, (5.9)and
fd = [f̂d1 , . . . , f̂dK ]

T . (5.10)The LS solution of (5.7) is given by2
b̂ = (ATA)−1AT fd. (5.11)Thus, the LS estimate of the MS veloity that solves the minimization problem2Sine unertainties due to the estimation errors are present in both the matrix A in (5.9)and the vetor fd in (5.11), it makes sense to �nd the total least-squares (TLS) [95℄ solution forthe vetor b.



Chapter 5 117in (5.5) an be written as
v̂ = λc

√

b̂21 + b̂22 (5.12a)
α̂v = arctan

(

b̂2

b̂1

)

. (5.12b)5.3.2 Estimation of the Diretion-of-Arrivals and the DopplerFrequeniesHypothetially, it seems to be an attrative approah to selet the multipath om-ponents in (5.1) lustered around a known DOA φ̃k by using, e.g., beamformingtehniques [96℄. Then, assuming the seleted multipath omponents have approx-imately the same Doppler frequeny, it is relatively easy to obtain the estimate
f̂dk . In pratie, however, the small aperture (see, e.g., [94℄) of an antenna arrayat the MS makes it impossible to onstrut a spatial �lter (beamformer) withgood seletivity properties3 in the angular domain. On the other hand, in wide-band ommuniation systems, the `aperture' in the frequeny domain, determinedby the signal bandwidth B, is relatively large. Thus, the multipath omponentsin (5.1) with the propagation delays lustered around a known delay τ̃ ′k an beseleted. Furthermore, we assume that the Doppler spetrum of the multipathomponents lustered in the delay domain around τ̃ ′k possesses a global maximum,whih an be assoiated with a ertain Doppler frequeny fdk .The above-mentioned onsiderations have led to the following algorithm forestimating the DOAs {φk} and the Doppler frequenies {fdk}, k = 1, . . . ,K.Step 1. Selet the multipath omponents with the propagation delays, whihare lose to a spei�ed delay τ̃ ′k hosen as desribed below. For this purpose,pass the estimated TVFR Ĥi[m,n] = Ĥi[m△f ′, n△t], i = 1, . . . , NMS , of the i-thsubhannel through a delay bandpass �lter with the transfer funtion entered at
τ̃ ′k. The �ltering operation an be implemented in the form of a disrete Fouriertransform (DFT) as

yi[n; τ̃
′
k] =

1

M

M−1∑

m=0

Ĥi[m,n]e
−j2πτ̃ ′

k
△f ′m (5.13)where yi[n; τ̃ ′k] denotes the sampled signal at the output of the bandpass �lter.Step 2. Estimate the DOA φk. Assuming the antenna array alibrationdata as well as the loations of the antenna elements w.r.t. the referene point isavailable at the MS, the DOA φk an be estimated using the beamforming method3By the seletivity properties, we understand the width of the main lobe and the level of theside lobes of the �lter transfer funtion.



118 Chapter 5(see, e.g., [94, 96℄)
φ̂k = argmax

φk







gH(φk)
(

1
N

∑N−1
n=0 y[n; τ̃ ′k]y

H [n; τ̃ ′k]
)

g(φk)

gH(φk)g(φk)






(5.14)where y[k; τ̃ ′k] = [y1[n; τ̃

′
k], . . . , yNMS

[n; τ̃ ′k]]
T , g(φ) is de�ned in (5.2).Step 3. Estimate the Doppler frequeny fdk by alloating a maximum of theperiodogram, i.e.,̂

fdk = argmax
fdk







1

N

∣
∣
∣
∣
∣

N−1∑

n=0

z[n; τ̃ ′k, φ̂k]e
j2πfdk△t n

∣
∣
∣
∣
∣

2





(5.15)where the sampled funtion z[n; τ̃ ′k, φ̂k] is given by

z[n; τ̃ ′k, φ̂k] = gH(φ̂k)y[n; τ̃
′
k]. (5.16)The Steps 1�3 presented above are illustrated with a signal �ow diagram inFig. 5.1.
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Figure 5.1: Signal �ow diagram for estimating the DOAs and the Doppler fre-quenies.Note that the hoie of the delay bandpass �lter used in Step 1 was mainlygoverned by the simpliity of implementation. For example, the DFT in Step 1



Chapter 5 119an be readily omputed using the fast Fourier transform (FFT). It might bepossible, however, to improve the harateristis of the �lter, e.g., by using datawindowing [65, 79℄.Based on the onduted simulations, we suggest to use as {τ̃ ′k} the loationsof the K highest peaks in the impulse response of the �rst subhannel obtainedby taking the FFT of Ĥ1[m,n] w.r.t. the frequeny index m.On obtaining the estimates {φ̂k, f̂dk}, k = 1, . . . ,K, the MS veloity is deter-mined as desribed in Subsetion 5.3.1.5.4 Simulation ResultsIn this setion, we present the results of the performane evaluation for the MSveloity estimation algorithm desribed in the previous setion.The performane of the proposed MS veloity estimator has been assessedon a number of TVFRs H(f ′, t) generated using a simple geometrial model. Inthis model, the distane D between the BS and the MS is assumed to be 750 m.The MS is equipped with a ULA onsisting of two (NMS = 2) omnidiretionalantenna elements separated by a half wavelength distane. The signal frequenyband is entered at f ′c = 2 GHz. The normal to the MS antenna array points to-wards the BS. The satterers are uniformly distributed in the region between theBS and the MS. The dimensions of the region are determined by the maximumallowed propagation delay τ ′max = 1/△f ′. Thus, the DOAs {φl} of the multi-path omponents [see (5.1)℄ lie in the range [−π/2, π/2] and, therefore, an beunambiguously estimated. The path gains {cl} are realizations of i.i.d. randomvariables, eah having a uniform distribution in the interval [0, 1]. The path gainsare �rst normalized, so that ∑L
l=1 c

2
l = 1, then eah of them is multiplied by theexponential fator exp[log(0.1)(τ ′l − τ ′min)/(τ

′
max − τ ′min)], where τ ′min = D/c. Thehosen multipliation fator represents the exponential deay normally observedin the measured hannel power-delay pro�le (PDP) [97℄. The diretion of theMS movement αv is an outome of a random number generator having a uniformdistribution in the interval [0, 2π). The other parameters are spei�ed as below:

• Number of multipath omponents: L = 230;
• Time interval between snapshots: △t = 1 ms;
• Number of snapshots: N = 100;
• Interval between frequenies: △f ′ = 3.125 · 105 Hz.Note that the propagation delay τ ′l of the l-th multipath omponent is a fun-tion of the DOA φl in the synthesized TVFR of the hannel. An example of thesimulated multipath omponents in the delay-DOA plane is depited in Fig. 5.2.
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Figure 5.2: Example of the simulated multipath omponents in the delay-DOAplane.
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Figure 5.3: Normalized bias as a funtion of the MS veloity and the SNR (B= 20 MHz).The performane of the MS veloity estimator is evaluated in terms of thenormalized biasE{(v̂−v)/v} and the mean-squared relative error (MSRE) E{[(v̂−
v)/v]2} of the estimates. These two harateristis are shown in Figs. 5.3 and 5.4,respetively, for di�erent values of the SNR. It an be observed that the normalizedbias and the MSRE are almost independent of the atual MS speed. As expeted,with inreasing SNR, the veloity estimates beome less biased and have smallerMSRE.
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Figure 5.4: Mean-squared relative error as a funtion of the MS veloity andthe SNR (B = 20 MHz).Figures 5.5 and 5.6 demonstrate the degree to whih the performane of theproposed veloity estimation algorithm depends on the available signal bandwidth
B. It an be seen that for B ≥ 15 MHz the normalized bias and the MSRE donot hange signi�antly. A somewhat greater MSRE in the veloity estimates isobserved for B = 5 MHz.
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Figure 5.5: Normalized bias as a funtion of the MS veloity and the bandwidth(SNR = 10 dB).
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Figure 5.6: Mean-squared relative error as a funtion of the MS veloity andthe bandwidth (SNR = 10 dB).



Chapter 5 123We have also ompared the performane of the proposed MS veloity esti-mation algorithm with several existing methods, namely: the instantaneous fre-queny (IF) method [85℄, the level-rossing rate (LCR) method [80℄, the zero-rossing rate (ZCR) method [80℄, and the ovariane-based (COV) estimationmethod [81℄4. All of these methods assume isotropi sattering. To satisfy this as-sumption, the performanes of the veloity estimators have been ompared basedon the TVFRs, generated using the geometrial one-ring simulation model [35℄.In this model, the satterers are loated on a ring. The DOAs {φn} are realiza-tions of i.i.d. random variables, eah having a uniform distribution in the interval
[−π, π]. All path gains {cn} are equal to 1/

√
N . To avoid the ambiguity in theestimation of the DOAs {φn}, three neighboring elements of an 8-element omni-diretional uniform irular array (UCA) are used as the MS antenna. The othersimulation model parameters are unhanged ompared to the hannel simulatordesribed above. The Riian K-fator, whih is zero in this propagation senario,is assumed known in the IF veloity estimation method.The normalized bias and the MSRE of the veloity estimates obtained usingthe aforementioned estimation methods are depited in Figs. 5.7 and 5.8, respe-tively. The performane results for the IF, LCR, ZCR, and COV methods arein agreement with the similar results presented in [88, Chapter 5℄. It an be ob-served that the proposed veloity estimation method demonstrates smaller biasand smaller MSRE in the broad range of the onsidered MS speeds.
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Figure 5.7: Normalized bias as a funtion of the MS veloity (SNR = 10 dB, B= 10 MHz).4The hannel statistis required for the veloity estimation by using the IF, LCR, ZCR, andCOV methods have been averaged over M frequenies and NMS subhannels.
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Figure 5.8: Mean-squared relative error as a funtion of the MS veloity (SNR= 10 dB, B = 10 MHz).5.5 Conluding RemarksIn this hapter, we have onsidered a method for the veloity estimation in MSsequipped with multiple antennas and operating over wideband ommuniationhannels. The veloity is estimated by employing the well-known relationshipsbetween the DOAs, the MS speed, and the Doppler frequenies of the multipathomponents representing the TVFR of the hannel. The method is based on theassumption that the Doppler spetrum of the multipath omponents lustered inthe delay domain possesses a global maximum, whih an be assoiated with aertain Doppler frequeny.Using omputer simulations, the performane of the proposed MS veloityestimation method has been evaluated for di�erent SNRs and di�erent signalbandwidths. It has been demonstrated that the new estimation algorithm isnot restrited to isotropi sattering senarios. The proposed veloity estimatorappears to be more robust to noise ompared to several other existing MS speedestimation methods.



Chapter 6Summary of Contributions andOutlook
6.1 ContributionsIn this thesis, we have foused on the methods for designing measurement-basedsimulation models for wireless ommuniation hannels. Below is the summary ofthe ontributions:

• A stationarity test has been proposed for real-world wireless ommuniationhannels. The test has been extended to validate the stationarity of MIMOwireless hannels.
• The stationarity of the TVFRs of wireless ommuniation hannels mea-sured in di�erent propagation environments has been analyzed. We havefound that the length of the hannel stationarity intervals dereases as thenumber of antennas at the transmitter and the reeiver inreases.
• We have proposed a method for designing measurement-based stohastihannel simulation models for time-variant wideband MIMO wireless han-nels. The method has also been adapted for designing measurement-basedstohasti hannel simulators for wideband SISO and narrowband MIMOwireless hannels.
• Experimental investigations based on simulations and measurement dataorresponding to various propagation environments have shown that theproposed method an be used for reating simulators for wireless ommuni-ation hannels. Additionally, it has been demonstrated that the method isrobust against white noise present in the measurement data.
• We have proposed the multihannel 2D AR model for simulating MIMOwideband mobile radio hannels. The parameters of the multihannel 2D125



126 Chapter 6AR model are estimated from the measured TVFR of a real-world hannel.We have investigated the problem of a possible instability of the resultingmultihannel 2D AR hannel model. A model stabilization proedure hasbeen proposed to stabilize the multihannel 2D AR model. Also, we haveonsidered synthesizing the TVFRs of MIMO wideband mobile radio han-nels in the delay-Doppler domain. This hannel simulation method an beused even in the ase of unstable multihannel 2D AR models.
• We have analyzed the problem of estimating the veloity in wideband MSsequipped with multiple antennas. Using a developed veloity estimationalgorithm, it has been demonstrated that the MS veloity estimations anbe signi�antly improved as ompared to the results provided by severalexisting methods.6.2 OutlookThe results of the basi performane analysis for the stationarity test developedin Chapters 2 have been presented. However, a more detailed study of the testbehavior under various onditions is required. The purpose of this study is toinvestigate the dependene between the level of on�dene for an outome of thestationarity test and the data sample size, i.e., the available signal bandwidth.The part, whih has not been overed in this dissertation, is the analysis ofe�ets the errors in representing the orrelation properties in time, frequeny, andspae produe on the performane of wireless reeivers. Potentially, suh analysisopens possibilities for optimizing the hoie of the parameters in the algorithmpresented in Chapters 3 and also for reduing the omputational load assoiatedwith determining the parameters of the simulation model (3.7).The methods for designing measurement-based hannel simulators desribedin Chapters 3 and 4 allow synthesizing realizations of the hannel TVFR withthe orrelation properties approximating those of a prototype real-world hannel.Presuming that the �rst-order PDF of the TVFR of the prototype real-world han-nel an be approximated by the omplex Gaussian PDF, the hannel simulatordeveloped by using one of the methods presented in this thesis allows an adequateanalysis of the performane of wireless ommuniation systems. The justi�ationfor the assumed Gaussianity of real-world radio hannels, inluding empirial re-sults obtained during multiple measurement ampaigns, an be found in manyreferenes. However, it has also been reported in the literature that the estimateddistribution of the TVFR of measured hannels an signi�antly deviate from theomplex Gaussian PDF. In [14℄ and [15℄, it is mentioned that a general approah tosimulating stationary random proesses with spei�ed orrelation properties andarbitrary �rst-order PDFs is based on a non-linear memoryless transformation of



Chapter 6 127Gaussian random proesses. A possible appliation of this approah to the devel-opment of hannel simulators for wireless ommuniation hannels onstitutes aninteresting researh topi.In the stohasti hannel simulation model presented in Chapter 3, the spae-time-frequeny orrelation matrix R of the model is represented as a sum of theKroneker produts of the matries Rtl , Rf ′

l
, and Rgl de�ned in (3.12), (3.13),(3.14), respetively. The orrelation matries Rgl , l = 1, . . . , L, an be furtherparameterized in terms of the DOAs and DODs. Suh parametrization an reduethe total number of the hannel simulation model parameters. To investigatethis possibility, the measurement data have to be supplemented with auratealibration data for the transmitter and reeiver equipment used in a measurementampaign.The methods for designing measurement-based simulation models presented inthis thesis are appropriate for generating wireless hannels that satisfy the wide-sense stationarity assumption in the delay-Doppler domain. However, as it hasbeen mentioned above, for real-world hannels this assumption an be aeptedonly on limited intervals of time. Therefore, further researh is neessary for de-veloping measurement-based hannel simulation models apable of reproduingthe quasi-stationary (nonstationary) behavior of physial radio ommuniationhannels. This subjet is partiularly important for the mobile-to-mobile ommu-niations, where very short intervals of hannel stationarity an be expeted.
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Appendix AMeasurement Equipment andPropagation SenariosThe ontent of this appendix is a ompilation of the relevant details, whih havebeen found in the two tehnial reports provided by Telenor R&D together withthe measurement data.A.1 Measurement EquipmentThe measurement ampaign was onduted by Telenor R&D in Oslo, Norway, inJuly 2003. The measurements were performed using a wideband hannel sounderwith synhronized multiplexing of the transmitter and reeiver antennas. Thehannel sounder was manufatured by SINTEF Teleom and Informatis, Trond-heim, Norway, on assignment from Telenor R&D. Both the transmitter and thereeiver were equipped with eight element uniform linear arrays onsisting of ver-tially polarized retangular path antennas with an inter-element spaing of one-half wavelength. A linear frequeny hirp signal was used for hannel sounding.The blok diagrams of the hannel sounder transmitter and reeiver are shown inFigs. A.1 and A.2, respetively.The transmitter was mounted on a mobile trolley at the height of 1.5 m aboveground. The reeiver antenna was stationary and mounted on a 1.7 m high tripodmast. In addition, the following parameters desribing the set up are listed below.
• Carrier frequeny: f ′c = 5.255 GHz;
• Bandwidth: B = 100 MHz;
• Interval between the frequenies: △f ′ = 1.957 · 105 Hz;
• Time between hannel snapshots: △t = 0.07 s;
• Impulse response length: 5.12 µs.129
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 Figure A.1: Channel sounder transmitter.

 Figure A.2: Channel sounder reeiver.



Appendix A 131A.2 Propagation SenariosA.2.1 Miro Cell Site - Regular Street GeometryThis site is a part of Oslo downtown with a regular street grid. The building massis homogenous and materials used are mostly brik and onrete. The buildingheight varies between 20 � 30 m. In Fig. A.3, the position of the reeiving antennais shown.The measurement route is shown on the map in Fig. A.4. The photo of themeasurement route is depited in Fig. A.5.

Figure A.3: Position of the reeiving antenna (miro ell site � regular streetgeometry).
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Figure A.4: Map of the measurement route (miro ell site � regular street ge-ometry).

Figure A.5: Photo of the measurement route (miro ell site � regular streetgeometry).



Appendix A 133A.2.2 Miro Cell Site - Open Market PlaeThe seond measurement site is a market square partly �lled with market stalls.The surrounding buildings are of variable size and height. The size of the squareis about 100 × 100m2. One side of the square is approximately 5 m above theother. The reeiving antenna was plaed at the elevated side of the square. Theposition of the reeiving antenna is marked with a red irle in Fig. A.6. Themeasurement route is shown in Fig. A.7.

Figure A.6: Position of the reeiving antenna (miro ell site - open marketplae).

Figure A.7: Map of the measurement route (miro ell site � open market plae).



134 Appendix AA.2.3 Miro/Pio Cell Site - PassagewayAt the south-east side of the market square, desribed in the previous subsetion,a pedestrian passageway leads through a building to the next street. The routeis shown on the map in Fig. A.8. This site was hosen for testing the so-alled`key-hole' e�et.The interior of the passageway is presented in Fig. A.9.

Figure A.8: Map of the measurement route (miro/pio ell site - passageway).

Figure A.9: Photo of the measurement route (miro/pio ell site - passageway).



Appendix A 135A.2.4 Indoor Cell SiteThe indoor measurements were performed in the Telenor headquarters building.This is a modern o�e building with open indoor areas. The building materialsused are mostly glass and steel with wood overed omputer �oors or stone tiles.Very few ubile o�es are used. The working zones are with a high degree ofopenness. The building has an irregular struture.The interior of the working zone at Telenor headquarters is shown in Fig. A.10.The map of the measurement route and the photo of the route are shown inFigs. A.11 and A.12, respetively.

Figure A.10: Working zone interior (indoor ell site).

Figure A.11: Map of the measurement route (indoor ell site).
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Figure A.12: Photo of the measurement route (indoor ell site).
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