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Summary

Mobile broadband wireless communication systems (MBWCS) are emerging as

a solution to provide broadband services to users on the move. These systems

are expected to operate in a wide variety of propagation scenarios, at different

mobile speeds, and at various frequency bands. Under such a variety of require-

ments, flexible and efficient channel simulation models will prove fundamental

for the laboratory analysis of MBWCS. Currently, most of the existing channel

simulation models are either too complex as to allow for an efficient performance

investigation of MBWCS, or they cannot be applied to the simulation of some rel-

evant classes of mobile fading channels. To overcome these limitations, we present

in this doctoral a flexible and efficient methodology for the design of channel sim-

ulation models for MBWCS. Such a methodology is based on the sum-of-cisoids

(SOC) approach, an approach that is closely in line with the electromagnetic

plane-wave propagation model.

We build our channel simulators upon a class of ergodic SOC simulation

models. For the computation of the SOC model parameters, we introduce two

simple methods that enable the design of simulation models for mobile fading

channels characterized by any type of Doppler power spectral densities (DPSDs).

The proposed methods are well-suited for the simulation of both single-input

single-output (SISO) and multiple-input multiple-output (MIMO) channels. We

evaluate the methods’ performance with respect to their accuracy for emulating

important statistical functions of the channel, such as the autocorrelation function

(ACF), the envelope probability density function (PDF), and the ACF of the

squared envelope. In the case of MIMO channels, we evaluate the methods’

performance in terms of the approximation of the channel temporal ACF and

spatial cross-correlation function (SCCF). The obtained results demonstrate the

excellent performance of the proposed methods.

This dissertation is also intended to provide a comprehensive treatise of the

theory behind the design of SOC simulation models for mobile fading channels.

In this respect, the statistical properties of SOC channel simulators are thor-

oughly analyzed. Important contribution are given concerning the correlation

properties of the square envelope of SOC simulators. Such contributions include

the derivation of closed-form expressions for the squared envelope ACF of the

xi
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SOC simulation model, and the analysis of the ergodicity properties of the SOC

model’s squared envelope.

We also revisit here the concept of the symbol-spaced tapped line model

(SSTDL) for WSSUS channels. In this regard, we present a discussion on the

problems of SSTDL models, and we propose a simple solution to avoid them.

The usefulness of such a solution is exemplary demonstrated by analyzing the bit

error probability of a multi-carrier code division multiple access (MC-CDMA)

system.
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Chapter 1

Introduction

1.1 Mobile Broadband Wireless Communication

Systems

In the opinion of many technology analysts, such as the authors of [Lee07, Orti07],

the next revolution in the wireless communications industry will be triggered

by the emerging mobile broadband wireless communication systems (MBWCS).

These novel systems will combine the best of modern fixed broadband wireless

access networks [Abic06, Stal04] and third generation (3G) cellular telephony sys-

tems [Rapp02, Robe06] with the aim of providing broadband multimedia services

to users on the move. MBWCS are expected to deliver high-data-rate services,

such as voice over IP (VoIP) and video on demand, to users moving at speeds as

high as those of fast trains [Li07, Bolt07].

Among the initiatives that are currently ongoing toward the standardization

of MBWCS, we can distinguish those carried out within the third-generation

partnership project (3GPP), the 3GPP 2 (3GPP2), the WiMAX ForumTM, and

the IEEE 802 group. The 3GPP [3Gweb1] is working on the standardization of

an advanced 3G cellular system called Long-Term Evolution (LTE). LTE is an

evolutionary upgrade of the Global System for Mobile Communications (GSM)

and the 3G Wideband Code Division Multiple Access (WCDMA) cellular system

[Robe06]. Its air interface utilizes an orthogonal frequency division multiple ac-

cess (OFDMA) scheme on the downlink, and a single-carrier frequency division

multiple access (SC-FDMA) scheme on the uplink [Orti07, Schu05]. LTE employs

multiple-input multiple-output (MIMO) transceivers to achieve data rates of up

to 277 Mbps on the downlink and 75 Mbps on the uplink, within a 20 MHz band-

width. It uses spatial division multiple access (SDMA) techniques to increase cell

capacity [Qua08a].

The 3GPP2 [3Gweb2] recently published the specifications of the Ultra Mobile

Broadband (UMB) standard for beyond-3G cellular systems [3gpUMB]. UMB is

1
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an upgrade of the CDMA2000 standard for 3G cellular networks [Robe06]. The

air interface of UMB is based on an OFDMA scheme, and it incorporates MIMO

transceivers to achieve data transfer rates of up to 288 Mbps on the downlink and

75 Mbps on the uplink, within a 20 MHz bandwidth [3gpUMB]. UMB includes

beamforming and transmission modes basing on SDMA.

The WiMAX Forum, an industry-led nonprofit organization, is developing

the Mobile WiMAX standard. Mobile WiMAX is a trimmed version of the

IEEE 802.16e standard for fixed and mobile broadband wireless access networks

[IEEE06]. It defines an OFDMA-based air interface able to deliver information

at peak data rates of 60 Mbps on the downlink and 23 Mbps on the uplink over a

10 MHz bandwidth [Teo07]. A 2× 2 MIMO configuration is required in order to

achieve such high data rates. Even though the Mobile WiMAX standard has not

yet been released, several trial networks basing on Mobile WiMAX have already

been deployed in several countries around the world, such as USA, Pakistan,

Korea, and Colombia [Goza06, Lee07].

The IEEE 802.20 Task Group is developing a new standard for MBWCS which

will specify an efficient packet-based air interface optimized for the transport of

Internet-Protocol- (IP)-based services [Bolt07]. In turn, the IEEE 802.16m Task

Group is working on a high throughput enhancement for licensed cellular bands

of the 802.16e standard.

We summarize the main features of LTE, UMB, and Mobile WiMAX in

Table 1.1, whereas Table 1.2 overviews the target characteristics of the IEEE

802.16m and IEEE 802.20 standards. An overview of the 802.16e standard is

also shown in Table 1.2.

1.2 Channel Simulation Models

1.2.1 The Need for Channel Simulation Models

In order to get insights into the problems that affect the performance of MBWCS,

or any other type of wireless communication systems, one often has to resort

in practice to the use of computer simulators. Computer simulators provide

a powerful, reproducible, and affordable way to assess the system performance.

They can be used as well to verify the correctness of results obtained analytically.

Choosing a proper channel simulation model is fundamental for the laboratory

analysis of MBWCS, as most of the problems affecting the performance of mobile

communication systems, e.g., path loss, shadowing, and signal fading, are caused

by the channel [Skla88]. The importance of channel simulation models is such that

the European Telecommunications Standards Institute (ETSI) has recently issued

a document with specifications for the design of channel simulators for MBWCS

[3gpSCM]. In view of the recommendations in [3gpSCM], and taking into account
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Table 1.1: Air Interface Specifications of LTE, UMB, and Mobile WiMAX

Characteristics LTE UMB Mobile WiMAX

Transmission
modes

OFDMA on the
uplink and

SC-FDMA on the
downlink

OFDMA and an
alternative mode
based on CDMA

OFDMA

Bands Licensed bands
below 2.6 GHz

Licensed bands
below 2.6 GHz

Licensed bands
between 2.3 and

3.5 GHz

Bandwidth Various, ranging
from 1.25 MHz to

20 MHz

Various, ranging
from 1.25 MHz to

20 MHz

Various, ranging
from 1.25 MHz to

10 MHz

Smart antenna
techniques

MIMO (2 × 2,
4× 4), SDMA∗, and

beamforming

MIMO (2 × 2,
4× 4), SDMA∗, and

beamforming

MIMO (2 × 2)

Compatibility
with other
systems

Scalable from GSM
and WCDMA

cellular networks

1xEV-DO and
CDMA2000 1X

cellular networks
—

Standard status Currently ongoing Released in 2007 Currently ongoing

Sources: [3gpUMB, Goza06, Li07, Qua08a, Teo07].
∗ SDMA and MIMO are complementary to each other. They are not used together.

Table 1.2: Air Interface Specifications of the standards IEEE 802.16e, IEEE
802.16m, and IEEE 802.20

Characteristics IEEE 802.16e IEEE 802.16m IEEE 802.20

Transmission
modes

Three alternatives:
single-carrier,
OFDM, and
OFDMA

OFDMA OFDMA

Bands Licensed bands
suitable for

mobility below
6 GHz

Licensed bands
below 6 GHz

Licensed bands
below 3.5 GHz

Bandwidth Various, ranging
from 1.25 MHz to

20 MHz

Various, ranging
from 5 MHz to

20 MHz

Various, ranging
from 1.25 MHz to

20 MHz

Smart antenna
techniques

MIMO (2 × 2) MIMO (2 × 2,
4 × 4) and

beamforming

MIMO (different
configurations) and

beamforming

Compatibility
—

802.16e networks
operating in

OFDMA mode

802.11a/g standard

Standard status Released in 2006 Currently ongoing Currently ongoing

Sources: [Bolt07, Goza06, IEEE06].
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the characteristics of standardized channel models for MBWCS [Alme07], such

as the COST 259 [Corr01, Moli06] and the COST 273 [Corr06], we have that a

channel simulation model for MBWCS should meet the following:

• They should be able to reproduce the statistical properties of direction-

selective mobile fading channels.

• They should be adequate for the simulation of macrocell and microcell

mobile fading channels.

• They should be flexible and simple enough as to allow for the evaluation

of MBWCS operating in environments that exhibit propagation conditions

that change quite often during active sessions.

• They should be well-suited for the performance assessment of narrowband

and wideband MIMO systems.

• They should be well-suited for the performance assessment of multicarrier

single-input single-output (SISO) and MIMO systems.

1.2.2 The Sum-of-Cisoids Channel Simulation Approach

Several different models exist that allow for a proper simulation of mobile fading

channels, including:

• Models based on the Cholesky decomposition algorithm [Erte98, Beau04].

• Models based on the IFFT algorithm [Youn00].

• Models based on the autorregresive filtering concept[Badd05, Badd04].

• Models based on ray tracing [Cora97].

However, simulation models based on the SOS principle introduced by Rice

[Rice44, Rice45] are particularly attractive for the performance evaluation of

MBWCS. In addition to providing an excellent basis for the simulation of tempo-

rally correlated narrowband channels [Jake74, Pae02a, Pate05], the SOS princi-

ple can easily be applied to the simulation of frequency-selective [Hohe92, Yip95,

Wang07] and space-selective [Han02, Paet01, Pae04a, Pae08a] radio channels.

The design of accurate and efficient SOS-based simulators for mobile fading

channels has been a topic of research of several books and papers, e.g., [Jake74,

p. 70], [Pae02a, ch. 5], and [Pate05, Hohe92, Yip95, Wang07, Han02]. Nev-

ertheless, most of the existing SOS-based simulators have been developed on

the assumption that the channel’s Doppler power spectral density (DPSD) is

symmetrical with respect to the origin. This poses a serious restriction, since
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it has been observed that the DPSD of real-world channels is in general non-

symmetrical [Kott04, Abd02a, Zhao03, Blau06]. Moreover, simulation models

for fading channels having asymmetrical DPSDs are necessary to assess the per-

formance of mobile communication systems under non-isotropic scattering condi-

tions [Pae04a, Miti04]. To close this gap, a new class of SOS channel simulators

that are able to produce complex-valued waveforms with cross-correlated inphase

and quadrature (IQ) components—as required for the synthesis of channels char-

acterized by asymmetrical DPSDs—was introduced in [Paet01]. SOS models

of such a class, which are known as sum-of-cisoids (SOC) models [Paet07], are

closely in line with the plane-wave propagation model [Saun07], and have already

been adopted as the core structure of several space-selective channel simulators

[Paet01, Pae04a, Pae08a]. Unfortunately, the existing parameter computation

methods for SOC fading channel simulators with asymmetrical DPSD rely upon

optimization techniques that make the determination of the model parameters

a complex and time-consuming task. The development of new methods, under

the constraint of simplicity and accuracy, is therefore desirable to facilitate the

performance analysis of MBWCS.

1.3 Goals of the Doctoral Project

In this Doctoral thesis, we aim at developing accurate and efficient SOC chan-

nel simulators for MBWCS. The proposed simulators should fulfill the following

requirements:

• They should enable the simulation of mobile fading channels characterized

by symmetrical and asymmetrical DPSDs.

• They should be adequate for the simulation of fading channels under line-

of-sight (LOS) and non-line-of-sight (NLOS) conditions.

• They should be suitable for the performance analysis of MBWCS based on

SISO and MIMO technology.

• The determination of the model parameters should be done in a simple and

efficient manner.

To accomplish these goals, we propose two simple and effective parameter com-

putation methods for the design of SOC simulation models for mobile fading

channels with arbitrary DPSDs. We will show that the proposed methods emu-

late the statistical properties of SISO and MIMO channels with high accuracy.

It is also the objective of this dissertation to provide a comprehensive treatise

of the theory behind the design of SOC simulators for mobile fading channels.

In this respect, we present a thorough analysis of the statistical properties of
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SOC channel simulators for mobile Rician fading channels having a time-variant

LOS component. So far, the statistical properties of SOC Rician fading channel

simulators have been studied by considering a time-invariant LOS component.

Particularly, important contributions are given regarding the correlation proper-

ties of the squared envelope of SOC simulation models for Rician fading channels.

This includes closed-form solutions for the squared envelope autocorrelation func-

tion (ACF) of SOC channel simulators, and a detailed analysis on the ergodicity

properties of the squared envelope of the simulation model.

1.4 Organization of the Manuscript

The outline to the rest of the manuscript is as follows. In Chapter 2, we re-

view the characteristics and the statistical properties of a narrowband mobile

Rician fading channel that we will consider as a reference model to design the pa-

rameters computation methods proposed in this dissertation. In addition to the

correlation and spectral properties of the channel model, the review presented in

Chapter 2 includes information about the fading statistics, including the envelope

probability density function (PDF), the level crossing rate (LCR), the average

duration of fades (ADF), and the squared envelope ACF. In Chapter 3, we present

a stochastic SOC simulation model suitable for the simulation of the reference

model described in Chapter 2. Then, in Chapter 4, we introduce our parameter

computation methods. In Chapter 5, we show that such parameter computation

methods can be applied to the simulation of narrowband mobile MIMO fading

channels. We demonstrate in that chapter that the proposed methods produce

excellent results concerning the emulation of the correlation properties of MIMO

channels. The design of simulation models for wideband MIMO channels is also

discussed in Chapter 5. In Chapter 6, we deal with the simulation of wideband

channels. Finally, we summarize the main contributions of this dissertation in

Chapter 7.



Chapter 2

The Reference Model

2.1 Introduction

This chapter describes the characteristics and statistical properties of a narrow-

band mobile Rician fading channel model that we will consider as reference model

in subsequent chapters to design our channel simulators. The chapter reviews im-

portant statistical functions of the model, such as its ACF, DPSD, envelope PDF,

LCR, and ADF. In addition, it reviews the channel’s average Doppler shift and

Doppler spread, as well as the ACF of the channel’s squared envelope.

The channel model herein described is based on the assumption that in a mi-

crocellular/macrocellular small-scale propagation scenario, the narrowband sig-

nal seen by the mobile terminal (MT) is composed of a specular plane wave

and a collection of scattered plane waves that reached the MT’s antenna at the

same time but through different paths. Such a modeling approach was origi-

nally proposed by Clarke in [Clar68] for characterizing non-frequency-selective

mobile SISO channels, and it was extended afterwards by other researchers to

describe narrowband mobile MIMO channels [Chen00, Shiu00, Abd02b], as well

as to characterize three-dimensional mobile SISO channels [Auli79, Pars00].

The statistical properties of the aforementioned Rician fading channel model

are studied in a number of papers and books, but mostly under the assumption

of isotropic scattering, e.g., [Jake74, Rapp02, Auli79, Pars00]. In contrast, the

review presented here covers both isotropic and non-isotropic scattering scenarios.

2.2 The Narrowband Rician Fading Channel Model

We model the non-frequency-selective mobile fading channel in the equivalent

complex baseband by a complex Gaussian process1 ννν(t), which characterizes a

1Throughout this dissertation, we will make use of bold symbols and letters to denote ran-
dom variables and stochastic processes, whereas we will employ normal symbols and letters for
constants and deterministic processes.

7
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two-dimensional small-scale propagation environment where the scattering is not

necessarily isotropic. We in turn model the process ννν(t) by a superposition of

a stationary zero-mean complex Gaussian process µµµ(t) and a time-variant deter-

ministic process mρ(t), i.e., ννν(t) = µµµ(t) +mρ(t), where the random process µµµ(t)

describes the diffuse part of the channel due to scattering and mρ(t) characterizes

its specular part.

On the basis of the central limit theorem [Papo02, p. 278], and following

Clarke’s scattering propagation model [Clar68], we can express the channel’s

diffuse part in terms of a sum of scattered azimuthal plane waves as follows:

µµµ(t) = lim
N→∞

N∑

n=1

cccn exp
{
j
(
2πfffnt+ θθθn

)}
(2.1)

where the nth plane wave is characterized by a cisoid with a random gain cccn, a

random phase θθθn, and a random Doppler frequency fffn. According to Clarke’s

model [Clar68], the cisoids’ phases θθθn are independent and identically distributed

(i.i.d.) random variables, each having a uniform distribution over [−π, π), while

the gains cccn are given such that E{ccc2n} = σ2
µµµ/N for all n = 1, . . . ,N , where σ2

µµµ

is the mean power of the channel due to scattering (0 < σ2
µµµ < ∞); E{·} denotes

statistical expectation. In turn, the Doppler frequencies fffn are defined as

fffn , fmax cos(αααn), ∀n = 1, . . . ,N (2.2)

where αααn is the random AOA of the nth incoming wave, and fmax stands for

the maximum Doppler frequency shift induced on the channel’s multipath com-

ponents by the Doppler effect (fmax > 0). The AOAs αααn introduced above are

assumed to be i.i.d. random variables having some given PDF pααα(α), α ∈ [−π, π).

The gains cccn, phases θθθn, and AOAs αααn are furthermore considered as being mu-

tually independent.

On the other hand, we model the specular component mρ(t) through a sin-

gle cisoid with a deterministic gain ρ, phase θρ, and Doppler frequency fρ ,

fmax cos(αρ), where θρ, αρ ∈ [−π, π), and 0 ≤ ρ <∞.

Under such considerations, the channel model can be written in the form

ννν(t) = lim
N→∞

N∑

n=1

cccn exp
{
j
(
2πfffnt+ θθθn

)}

︸ ︷︷ ︸

µµµ(t)

+ ρ exp
{
j(2πfρt+ θρ)

}

︸ ︷︷ ︸

mρ(t)

. (2.3)

One can easily verify from the expression above that the mean value mννν(t) ,

E{µµµ(t)} of ννν(t) is equal to mρ(t), that is, mννν(t) = mρ(t), whereas its variance

Var{ννν(t)} , E{|ννν(t)−mννν(t)|2} equals σ2
µµµ, i.e., Var{ννν(t)} = σ2

µµµ. In turn, the power



Chapter 2 – The Narrowband Rician Fading Channel 9

of ννν(t) is given by Pννν(t) , E{|ννν(t)|2} = σ2
ννν , where σ2

ννν = σ2
µµµ + ρ2; | · | indicates

complex absolute value. We refer the reader to [Clar68, Jake74] for details on the

physics behind (2.3). There, the suitability of the model for describing real-world

channels is also discussed.

2.3 Statistical Characterization of the Reference

Channel Model

2.3.1 ACFs

The complex Gaussian process ννν(t), which acts in this dissertation as a refer-

ence channel model, can be characterized by means of its ACF rνννννν(t1, t2) ,

E{ννν∗(t1)ννν(t2)}. It is straightforward to verify that the ACF of ννν(t) satisfies

rνννννν(t1, t2) = rνννννν(τ) (2.4)

= rµµµµµµ(τ) + ρ2 exp {j2πfρτ} (2.5)

where τ = t2 − t1, and rµµµµµµ(τ) is the ACF of the channel’s diffuse component

µµµ(t); the notation rxxxxxx(τ) stands for the time-origin independent ACF rxxxxxx(τ) ,

E{xxx∗(t)xxx(t + τ)} of a stationary random process xxx(t), and the operator (·)∗
indicates complex conjugation. One can easily show for the latter ACF that

rµµµµµµ(τ) = σ2
µµµE
{

exp(j2πfmax cos(ααα)τ)
}

(2.6)

where ααα is any arbitrary AOA in {αααn}Nn=1. Furthermore, since the cisoid exp(j2π

·fmax cos(ααα)τ) is an even function of ααα, we can present (2.6) in the form

rµµµµµµ(τ) = 2σ2
µµµ

π∫

0

gααα(α) exp(j2πfmax cos(α)τ)dα (2.7)

with gααα(α) , [pααα(α) + pααα(−α)]/2 denoting the even part of the PDF pααα(α) of ααα.

Alternatively, we can write

rµµµµµµ(τ) = σ2
µµµ

fmax∫

−fmax

pfff (f) exp{j2πfτ}df (2.8)

where pfff (f) is the PDF of the random Doppler frequencies fffn defined in (2.2).

Such a PDF is found to be equal to

pfff (f) = 2 rect(f) · gααα(arccos(f/fmax))

fmax

√

1 − (f/fmax)2
. (2.9)
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The function rect(f) in (2.9) stands for the rectangular function, which we define

as rect(f) = 1 for |f | < fmax, and rect(f) = 0 for |f | ≥ fmax. It is worth noticing

that the ACF of the diffuse component µµµ(t) meets

rµµµµµµ(τ) =
[
rµµµIµµµI

(τ) + rµµµQµµµQ
(τ)
]
+ j
[
rµµµIµµµQ

(τ) − rµµµQµµµI
(τ)
]

= 2
[
rµµµIµµµI

(τ) + jrµµµIµµµQ
(τ)
]

(2.10)

where

rµµµIµµµI (τ) = rµµµQµµµQ(τ) = σ2
µµµ

π∫

0

gααα(α) cos (2πfmax cos(α)τ) dα (2.11a)

rµµµIµµµQ
(τ) = −rµµµQµµµI

(τ) = σ2
µµµ

π∫

0

gααα(α) sin (2πfmax cos(α)τ) dα (2.11b)

are the ACFs and cross-correlation functions (CCFs) of the IQ components of

µµµ(t), denoted by µµµI(t) and µµµQ(t), respectively. The CCF of any pair of random

processes xxx(t) and yyy(t) is defined here as rxxxyyy(τ) , E{xxx∗(t)yyy(t+ τ)}. It becomes

evident from (2.10) and (2.11) that if µµµI(t) and µµµQ(t) are uncorrelated, then the

ACF rµµµµµµ(τ) of µµµ(t) will be an even and a real-valued function; otherwise, it will

be complex-valued and hermitian symmetric.

From the results presented in (2.5) and (2.8), we obtain

rνννννν(τ) = σ2
µµµ

fmax∫

−fmax

pfff (f) exp
{
j2πfτ

}
df + ρ2 exp{j2πfρτ}. (2.12)

We recall that a random process is wide-sense stationary (WSS) when its mean

value is constant and its ACF depends only on the time difference τ [Leon94,

p. 356]. Since the mean value of ννν(t) is equal to mννν(t) = mρ(t) = ρ exp{j(2πfρt+
θρ)} [cf. Sec. 2.2], and rνννννν(t1, t2) = rνννννν(τ), it follows that the reference model is

WSS process if any of the conditions stated below is fulfilled2:

Condition 2.1 The received signal is solely composed of scattered waves, so that

ννν(t) = µµµ(t), and therefore mννν(t) = 0.

Condition 2.2 The AOA of the specular component is equal to ±π/2, i.e., αρ =

±90◦. In such a case, we obtain mννν(t) = ρ exp
{
jθρ
}
, which is a time-independent

quantity.

Condition 2.1 leads in fact to the well-known Rayleigh fading channel model

[Pae02a, Chap. 3]—a model that is widely used for assessing the performance of

2The reference model will be strict-sense stationary (SSS) indeed, since ννν(t) is a Gaussian
process [Leon94, p. 360].
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mobile communication systems [Hou04, Choi01]. We will pay special attention to

such a particular case—which we will refer to as the NLOS case—because of its

relevance. Condition 2.2, on the other hand, is related to very specific scenarios,

and we will not devote further attention to that case.

2.3.2 PSDs

The channel model described by ννν(t) can alternatively be characterized through

its PSD Sνννννν(f). It is shown in [Mill04, pp. 373–375] that the PSD and the

ACF of a random process form a Fourier transform pair provided that the ACF

depends only on the time difference τ . Since this is the case for the ACF rνννννν(τ)

of ννν(t) [see (2.12)], we find by substituting rνννννν(τ) from (2.12) into Sνννννν(f) =
∫∞
−∞ rνννννν(τ)exp{−j2πfτ}dτ that

Sνννννν(f) = σ2
µµµpfff (f) + ρ2δ(f − fρ) (2.13)

= 2σ2
µµµrect(f) · gααα(arccos(f/fmax))

fmax

√

1 − (f/fmax)2
+ ρ2δ(f − fρ) (2.14)

where δ(·) is the Dirac delta function. This result implies that the PSD of ννν(t)

is confined to a bandwidth of 2fmax, as |fρ| ≤ fmax and pfff (f) = 0 for |f | ≥ fmax.

The channel’s PSD is often referred to as the DPSD due to the relationship

between Sνννννν(f) and the distribution of the signal power in the Doppler frequency

domain. We will adopt such a terminology from this point onwards.

For the special case mρ(t) = 0, Sνννννν(f) reduces to the DPSD

Sµµµµµµ(f) = 2σ2
µµµrect(f) · gααα(arccos(f/fmax))

fmax

√

1 − (f/fmax)2
(2.15)

of µµµ(t). For this case, we can observe from classic Fourier theory (see [Brig88,

Sec. 3.6]) that if the IQ components of µµµ(t) are uncorrelated, meaning that rµµµµµµ(τ)

is even and real-valued, then Sµµµµµµ(f) will be symmetrical with respect to the origin.

On the contrary, if µµµI(t) and µµµQ(t) are mutually correlated, then Sµµµµµµ(f) will be

asymmetrical. In this respect, it is worth noticing that measurement campaigns

carried out in different propagation scenarios have shown that the DPSDs of

real-world NLOS channels are in general asymmetrical [Kott04, Zhao03, Blau06].

2.3.3 Average Doppler Shift and Doppler Spread

The first moment and the squared-root second central moment of Sνννννν(f) define

the channel’s average Doppler shift Aνννννν and Doppler spread Dνννννν , respectively.

These two quantities play an important role in the investigation of problems

related to the time-variant behavior of the channel, such as speed estimation

[Moha05] and frequency synchronization [Cai06, Niss06]. One can show by taking



12 Channel Simulation Models for Mobile Broadband Communications

account of the Fourier transform relationship between Sνννννν(f) and rνννννν(τ) that

Aνννννν ,

∫∞
−∞ fSνννννν(f)df
∫∞
−∞ Sνννννν(f)df

=
1

j2π

ṙνννννν(0)

rνννννν(0)
(2.16)

Dνννννν ,

√
√
√
√

∫∞
−∞ Sνννννν(f)

[
f −Aνννννν

]2
df

∫∞
−∞ Sνννννν(f)df

=
1

2π

√
(
ṙνννννν(0)

rνννννν(0)

)2

− r̈νννννν(0)

rνννννν(0)
(2.17)

where the single and double overdots denote the first and second derivatives

with respect to τ , respectively. Interestingly, (2.16) and (2.17) indicate that the

average Doppler shift and Doppler spread of ννν(t) can unequivocally be determined

from the value, slope, and curvature of rνννννν(τ) at the origin (τ = 0).

In a similar way, one can show that the average Doppler shift Aµµµµµµ and Doppler

spread Dµµµµµµ of the diffuse component µµµ(t) are equal to

Aµµµµµµ ,

∫∞
−∞ fSµµµµµµ(f)df
∫∞
−∞ Sµµµµµµ(f)df

=
ṙµµµIµµµQ(0)

πσ2
µµµ

(2.18)

Dµµµµµµ ,

√
√
√
√

∫∞
−∞ Sµµµµµµ(f)

[
f −Aµµµµµµ

]2
df

∫∞
−∞ Sµµµµµµ(f)df

=

√

−
(

A2
µµµµµµ +

r̈µµµIµµµI
(0)

2π2σ2
µµµ

)

. (2.19)

We took account of the relationships ṙµµµµµµ(0) = 2jṙµµµIµµµQ
(0) and r̈µµµµµµ(0) = 2r̈µµµIµµµI

(0)

in writting the previous expressions, where

ṙµµµIµµµQ(0) = 2πσ2
µµµfmax

π∫

0

gααα(α) cos(α)dα (2.20a)

r̈µµµIµµµI
(0) = −σ2

µµµ(2πfmax)
2

π∫

0

gααα(α) cos2(α)dα. (2.20b)

It becomes evident from (2.18) that if the IQ components of µµµ(t) are uncorrelated,

meaning that rµµµIµµµQ
(τ) = 0, then Aµµµµµµ = 0. This was to be expected, since the

DPSD of µµµ(t) is symmetrical under such conditions.
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2.4 Statistical Characterization of the Signal Fading

The design of robust transceivers for mobile communication systems requires

knowledge on the statistics of the signal fading. In this regard, explicit infor-

mation about the distributions of the channel’s envelope and phase, LCR, and

ADF is of utmost interest, as these statistical functions play an important role in

the design of carrier detection/tracking [Brow96], channel codification [Edba89],

and diversity techniques [Rapp02, Sec. 7.10], [Jake74, Sec. 6.3], just to give a few

examples. Information about the ACF of the channel’s squared envelope is also

relevant, since this function gives insights into the carrier-to-noise-ratio (CNR)

fluctuations produced by noisy fading channels [Pars00, p. 129].

2.4.1 PDFs of the Channel’s Envelope and Phase

2.4.1.1 First-Order PDF of the Envelope

Concerning the distribution of the reference model’s envelope ξξξ(t) , |ννν(t)|2, one

can show by proceeding as in [Pae02a, Sec. 6.1.1] and [Auli79] that irrespective

of the channel’s correlation properties, the first-order PDF pξξξ(z; t) of ξξξ(t) equals

pξξξ(z) =
2z

σ2
µµµ

e
− z2+ρ2

σ2
µµµ I0

(
2z · ρ
σ2
µµµ

)

, z ≥ 0 (2.21)

where I0(·) is the modified Bessel function of the first kind and order zero. Equa-

tion (2.21) can be identified as the Rice distribution [Proa01, p. 46], and it in-

dicates that the channel’s envelope ξξξ(t) is a first-order stationary process, since

pξξξ(z; t) = pξξξ(z). The PDF given above can be rewritten in terms of the ratio

between the powers of the specular and diffuse components as follows

pξξξ(z) =
2z(cR + 1)

σ2
ννν

· exp

{

−cR − z2(cR + 1)

σ2
ννν

}

· I0
(

2z

σννν

√

cR(cR + 1)

)

(2.22)

for z ≥ 0, where σ2
ννν = σ2

µµµ + ρ2 is the total power of the channel, and cR , ρ2/σ2
µµµ

is the so-called Rician factor, which is an indicator of the link quality (the higher

the Rician factor, the higher the quality of the wireless link).

For the NLOS case (cR = 0), the PDF in (2.22) reduces to the PDF pζζζ(z) of

the envelope ζζζ(t) , |µµµ(t)| of the diffuse component. Such a PDF is given by

pζζζ(z) =
2z

σ2
µµµ

e
− z2

σ2
µµµ , z ≥ 0. (2.23)

Equation (2.23) can in turn be recognized as the Rayleigh PDF [Proa01, p. 44].

Figure 2.1 shows graphs of the channel’s envelope obtained by considering

cR ∈ {0, 2, 4}, σ2
ννν = 1, and fmax = 91 Hz (corresponding to a carrier frequency
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of 1.8 GHz and a MT traveling at around 54 km/h). The PDF of ξξξ(t) defined in

(2.22) is plotted also in that figure for the same values of cR and σ2
ννν .
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Figure 2.1: (a) Channel’s envelope ξξξ(t) (b) and its first-order PDF pξξξ(z) for
different Rician factors cR.

2.4.1.2 First-Order PDF of the Phase

In a similar way, one can show that the first-order PDF pψψψ(θ; t) of the channel’s

phase ψψψ(t) , arg{ννν(t)} is given by [Pae02a, Sec. 6.1.1.1], [Auli79]

pψψψ(θ; t) =
e
− ρ2

σ2
µµµ

2π
+

ρ√
4πσµµµ

cos (θ − 2πfρt− θρ) e
− ρ2

σ2
µµµ

sin2(θ−2πfρt−θρ)

·erfc
(

− ρ

σµµµ
cos(θ − 2πfρt− θρ)

)

, −π ≤ θ ≤ π (2.24)

where erfc(x) denotes the complementary error function, which is defined as

erfc(x) ,
2√
π

∞∫

x

exp
{
−y2

}
dy. (2.25)

Such a PDF can alternatively be presented in terms of the Rician factor as follows

pψψψ(θ; t) =
e−cR

2π
+

√
cR
4π

cos (θ − 2πfρt− θρ) e
−cR sin2(θ−2πfρt−θρ)

·erfc (−√
cR cos(θ − 2πfρt− θρ)) , −π ≤ θ ≤ π. (2.26)

An inspection to (2.26) reveals that the correlation properties of ννν(t) do not

influence the PDF of ψψψ(t). Besides, (2.26) shows that the channel’s phase is not
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a first-order stationary process, because the PDF pψψψ(θ; t) of ψψψ(t) is in general

time-dependent. Nevertheless, the PDF of ψψψ(t) happens to be time-independent

if either Condition 2.1 or Condition 2.2 [see Sec. 2.3.1] is observed. In particular,

if Condition 2.1 is met, so that cR = 0, then

pψψψ(θ; t) = pϕϕϕ(θ) (2.27)

=
1

2π
, −π ≤ θ ≤ π (2.28)

where pϕϕϕ(θ) is the first-order PDF of the diffuse component’s phase ϕϕϕ(t) ,

arg {µµµ(t)}.
The phase of the channel and its first-order distribution pψψψ(θ; t) are depicted

in Fig. 2.2 for σ2
ν = 1 and cR ∈ {0, 2, 4}. The graphs of pψψψ(θ; t) presented there

correspond to the time instants t = 0 s and t = 0.25 s.
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Figure 2.2: (a) Channel’s phase ψψψ(t) (b) and its first-order PDF pψψψ(θ; t) for
different Rician factors cR (fρ = 65 Hz and θρ = 0◦).

2.4.2 LCR and ADF

The first-order PDFs of the envelope and phase of ννν(t) do not provide information

about the coherence or rapidity of the signal fades, as both PDFs are blind to the

channel’s correlation properties. Such an information, which is fundamental for

the design of bit and symbol interleaving schemes [Proa01, pp. 467–470], should

instead be acquired from the LCR and ADF of the channel’s envelope. The LCR

gives a measure of the number of times the channel’s envelope crosses a given

level r with positive (or negative) slope within one second, whereas the ADF is

a measure of the average time the envelope remains below that level.
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2.4.2.1 LCR

In accordance to Rice [Rice44], the LCR N+
ξ (r) of the envelope ξξξ(t) is to be

computed for a given signal level r ≥ 0 by evaluating

Nξξξ(r) =

∞∫

0

ξ′pξξξξξξ′(r, ξ
′)dξ′ (2.29)

where pξξξξξξ′(ξ, ξ
′) is the joint PDF of ξξξ(t) and its derivative ξξξ′(t) = dξξξ(t)dt (the

notation (·)′ indicates time derivate). The analytical solution of (2.29) was derived

in [Pae02a, Sec. 6.1.1.2] for the envelope of a complex Gaussian process having

essentially the same statistical properties as ννν(t). Based on the result there

presented, we can write

Nξξξ(r) =
r(1 + cR)

√
8b0

σ2
νννπ

3/2
exp

{

− cR − r2(cR + 1)

σ2
ννν

}

×
π/2∫

0

cosh

(
2r

σννν

√

cR(cR + 1) cos(y)

)

·
{

exp
{

− cR[a0σννν sin(y)]2

cR + 1

}

+

√
πcR
cR + 1

a0σννν sin(y) · erf
(√

cR
cR + 1

a0σννν sin(y)

)}

dy (2.30)

for r ≥ 0, where

a0 =

√
2

b0

(

πfρ −
ṙµµµIµµµQ

(0)

σ2
µµµ

)

(2.31)

b0 = −r̈µµµIµµµI
(0) − 2

σ2
µµµ

ṙ2µµµIµµµQ
(0) (2.32)

and erf(x) is the error function, which is defined as

erf(x) ,
2√
π

x∫

0

exp
{
−y2

}
dy. (2.33)

Equation (2.30) shows that Nξξξ(r) do not depend on the exact shape of the ACF

of ννν(t), but only on its value, slope, and curvature at the origin. For the NLOS

case (cR = 0), Nξξξ(r) converges to the LCR Nζζζ of the envelope ζζζ(t) of µµµ(t). By

taking cR = 0 in (2.30), it can be shown that Nζζζ is equal to

Nζζζ =

√

b0
2π

· pζζζ(r), r ≥ 0 (2.34)

where pζζζ(r) is the Rayleigh PDF [see 2.23]. Interestingly, (2.34) shows that the

LCR of the diffuse component is proportional to the Rayleigh PDF.
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2.4.2.2 ADF

On the other hand, the ADF Tξξξ(r) is to be computed by evaluating the quotient

Tξξξ(r) =
Pξξξ(r)

Nξξξ(r)
(2.35)

where Pξξξ(x) ,
∫ x
0 pξξξ(y)dy is the cumulative distribution function (CDF) of the

Rice process ξξξ(t). Such a CDF is equal to [Proa01, Eq. (2.1–142)]

Pξξξ(x) = 1 −
∞∫

√
2r/σµµµ

xe−
x2+(

√
2r/σµµµ)2

2 I0

(

x
√

2
ρ

σµµµ

)

dx. (2.36)

For the particular case cR = 0, we find that Tξξξ(r) simplifies to the ADF Tζζζ(r)

of the envelope ζζζ(t) of the diffuse component µµµ(t). For this latter function, we

find the closed-form solution

Tζζζ(r) =
σ2
µµµ

2r

√

− 2π

r̈µµµIµµµI
(0)

·
(

e
r2

σ2
µµµ − 1

)

, r ≥ 0. (2.37)

2.4.3 ACF of the Channel’s Squared Envelope

Regarding the ACF rξξξ2ξξξ2(t1, t2) , E{ξξξ2(t1)ξξξ
2(t2)} of the channel’s squared enve-

lope ξξξ2(t), it is shown in Appendix A that

rξξξ2ξξξ2(t1, t2) = rξξξ2ξξξ2(τ) (2.38)

= rζζζ2ζζζ2(τ) +
4σ2

νννcR
cR + 1

{

rµµµIµµµI
(τ) cos (2πfρτ)

+rµµµIµµµQ
(τ) sin (2πfρτ)

}

+
cR σ

4
ννν(cR + 2)

(cR + 1)2
(2.39)

where

rζζζ2ζζζ2(τ) =
σ4
ννν

(cR + 1)2
+
∣
∣rµµµµµµ(τ)

∣
∣2 (2.40)

is the ACF of the squared envelope ζζζ2(t) , |µµµ(t)|2 of µµµ(t); the correlation func-

tions rµµµIµµµI
(τ) and rµµµIµµµQ

(τ) are defined in (2.11). It is worth mentioning that if

the IQ components of µµµ(t) are uncorrelated, so that rµµµIµµµQ
(τ) = 0, then (2.39)

and (2.40) reduce to the expressions presented in [Pars00, p. 129] and [Auli79]

for the squared envelope’s ACF of isotropic scattering channels.

We observe that the channel’s squared envelope ξξξ2(t) is a WSS process, since

its ACF ξξξ2(t) depends only on τ and its mean value mξξξ2(t) , E{ξξξ2(t)} can easily

be found to be time-invariant and equal to σ2
ννν , i.e., mξξξ2(t) = σ2

ννν .
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2.5 Distributions of the AOA and Particular Cases

In order to test and evaluate the performance of the simulation models pro-

posed in this thesis, it is necessary to specify a concrete distribution for the

random AOAs αααn. In this dissertation, we will consider two widely accepted

AOA distributions, namely, the von Mises distribution [VonM18], and the Lapla-

cian distribution [Kotz01]. We will concisely describe the characteristics of these

distributions in the remaining of this chapter, and we will analyze also the re-

sulting correlation and spectral properties of µµµ(t). We restrict our attention to

the diffuse component because the ACF and DPSD of ννν(t) can easily be obtained

once the ACF and DPSD of µµµ(t) are known—see (2.5), (2.14), and (2.15). Be-

sides, we observe that the average Doppler shift Aνννννν and Doppler spread Dνννννν of

ννν(t) can be written in terms of the corresponding averaged Doppler shift Aµµµµµµ and

Doppler spread Dµµµµµµ of µµµ(t) as follows:

Aνννννν = Aµµµµµµ + ρ2fρ (2.41)

Dνννννν =
√

ρ2f2
ρ + (Dµµµµµµ)2 + (Aµµµµµµ)2 − (Aνννννν)2. (2.42)

To prevent confusions with the notation, we will make use of the superscripts

(·)VM and (·)LA to indicate whether the statistics of µµµ(t) are to be associated

with the von Mises or the Laplacian AOA distributions.

2.5.1 The von Mises PDF of the AOA and the Associated ACF

and DPSD of the Channel’s Diffuse Component

The von Mises PDF is a distribution for angular (circular) variates [Wats82] that

was originally introduced by Richard E. von Mises to study deviations of atomic

weights from integer values [VonM18]. This distribution has widely been in use

in the field of directional statistics, and its applications span from geophysics

to vital statistics [Gumb54, Upto73]. It is also known as the circular normal

distribution—as it is analogous in many respects to the normal distribution for

linear variates [Gumb53], and it includes other important distributions as special

cases, such as the uniform, cardioid, and wrapped Gaussian [Mard99]. The use

of the von Mises PDF to model the AOA statistics of mobile fading channels

was proposed in [Abd02a]. In that paper, the authors provide evidence of the

suitability of such a PDF to match measured data.

The von Mises PDF and its even part are given by

pVM
ααα (α) ,

exp{κ cos(α−mα)}
2πI0(κ)

(2.43)

gVM
ααα (α) =

exp{κ cos(α) cos(mα)}
2πI0(κ)

· cosh (κ sin(α) sin(mα)) (2.44)
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respectively, where α ∈ [−π, π), mα ∈ [−π, π) denotes the mean AOA, and κ ≥ 0

is a concetration parameter determining the channel’s angular spread. Following

(2.15), one can readily verify that

SVM
µµµµµµ (f) = rect (f) · cosh

(

κ sin(mα)
√

1 − (f/fmax)2
)

×
σ2
µµµ exp {κ cos(mα)f/fmax}

πfmaxI0(κ)
√

1 − (f/fmax)2
(2.45)

whereas, by using (2.7), one may demonstrate that

rVM
µµµµµµ (τ) =

σ2
µµµI0

(√

κ2 − (2πfmaxτ)2 + j4πκfmax cos(mα)τ
)

I0(κ)
. (2.46)

It is worth noticing that for κ = 0, the DPSD shown in (2.45) reduces to the

well-known U-shaped DPSD

Sµµµµµµ(f) = rect (f) ·
σ2
µµµ

πfmax

√

1 − (f/fmax)2
(2.47)

characterizing isotropic scattering channels [Clar68], whilst the ACF in (2.46)

simplifies to

rµµµµµµ(τ) = σ2
µµµ J0(2πfmaxτ) (2.48)

where J0(·) is the Bessel function of the first kind and order zero.

On the other hand, we find by following (2.18) and (2.19) that the diffuse

component’s average Doppler shift AVM
µµµµµµ and Doppler spread DVM

µµµµµµ are given by

AVM
µµµµµµ = fmax cos(mα)

I1(κ)

I0(κ)
(2.49)

DVM
µµµµµµ =

{
f2
max

κI0(κ)

[
κ[I0(κ) + I2(κ)] cos

2(mα)

2

+I1(κ) sin2(mα)

]

− (AVM
µµµµµµ )2

}−1/2

(2.50)

where I1(·) and I2(·) denote the first and second order modified Bessel functions,

respectively. We observe that if κ = 0, then AVM
µµµµµµ = 0 and DVM

µµµµµµ = fmax/
√

2.

Figures 2.3–2.5 show how the von Mises PDF and the resulting ACF and

DPSD of µµµ(t) look like for different combinations of the parameters mα and

κ. The graphs presented in those figures were computed by choosing σ2
µµµ = 1

and fmax = 91 Hz. They are representative of scattering propagation conditions

ranging from isotropic (mα = 0 and κ = 0) to extremely non-isotropic (mα = 0

and κ = 20). We can see in Fig. 2.5 and deduce from (2.45) that the diffuse
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Figure 2.3: The von Mises PDF of the AOA.
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Figure 2.4: ACF of the channel’s diffuse component, rµµµµµµ(τ), by considering the
von Mises PDF of the AOA with parameters mα and κ.

component’s DPSD is symmetrical only when κ = 0 and/or mα = ±90◦, which

happen to be the only values ofmα and κ for which the ACF of µµµ(t) is real-valued.

This is in line with the statements made in Section 2.3.1 about the properties of

the DPSD of µµµ(t). The corresponding average Doppler shift and Doppler spread

of µµµ(t) are presented in Table 2.1.

2.5.2 The Laplacian PDF of the AOA and the Associated ACF

and DPSD of the Diffuse Component

Another relevant model for the AOA statistics of mobile fading channels is given

by the (symmetrical) Laplacian distribution [Pede97, Spen00, Aspl06]. Such a

PDF is used in the field of linear statistics to model data with long tails, and

its applications range from astronomy to biological sciences [Kotz01]. The use
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Table 2.1: Average Doppler shift AVM
µµµµµµ and Doppler spreadDVM

µµµµµµ of the channel’s
diffuse component by considering the von Mises PDF of the AOA
(fmax = 91 Hz).

Parameters (mα, κ): (0◦, 0) (0◦, 5) (0◦, 20) (0◦, 10) (30◦, 10) (90◦, 10)

AVM
µµµµµµ (Hz): 0 81.297 88.695 86.322 74.757 0

DVM
µµµµµµ (Hz): 64.346 13.857 3.2606 6.6239 15.142 28.027

of this distribution to characterize the AOA statistics of fading channels was

first proposed in [Pede97]. There, the authors demonstrated the goodness of fit

of such a distribution by direct comparison against measured data collected in

outdoor environments. The validity of the Laplacian model has also been tested

and corroborated by other researchers [Spen00].

The Laplacian PDF of the AOA has the form [Pede97, Spen00]

pLA
ααα (α) =

1

cs
exp

{

− |α|
√

2

σs

}

, α ∈ [−π, π) (2.51)

where the parameter σs > 0 controls the angular spread, and

cs = σs
√

2
{

1 − exp
(

−
√

2π
σs

)}

(2.52)

is a normalization quantity that guarantees
∫∞
−∞ pLA

ααα (α)dα = 1. This PDF is

depicted in Fig. 2.6 by considering σs ∈ {0.3, 0.5, 1, 5}. These values are repre-

sentative of scattering propagation conditions that vary from moderated (σs = 5)

to severe non-isotropic scattering (σs = 0.3).

The PDF defined in (2.51) is itself an even function (this is clear, since

pLA
ααα (−α) = pLA

ααα (α)). Thus, one can show, by substituting pLA
ααα (α) from (2.51)
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Figure 2.6: The Laplacian PDF of the AOA.

into (2.15), that

SLA
µµµµµµ (f) = rect(f) ·

2σ2
µµµ exp

{
−
√

2 arccos (f/fmax) /σs
}

csfmax

√

1 − (f/fmax)2
. (2.53)

In contrast to the case of the von Mises PDF, the ACF of µµµ(t) cannot be evaluated

analytically when the AOAs of the channel’s multipath components follow the

Laplacian distribution. Instead, one has to use numerical methods to solve

rLA
µµµµµµ (τ) =

fmax∫

−fmax

SLA
µµµµµµ (f) exp{j2πfτ}df. (2.54)

Except by the additional work, the numerical evaluation of (2.54) does not pose

any problems, since modern computers and programming languages—such as

MATLABR©—can accomplish the task easily.

Regarding the average Doppler shift ALA
µµµµµµ and Doppler spread DLA

µµµµµµ of µµµ(t),

we find by following (2.18) and (2.19) that

ALA
µµµµµµ =

fmax

√
8σs

cs(2 + σ2
s)

{

1 + e−π
√

2/σs

}

(2.55)

DLA
µµµµµµ =

{

f2
max

2

[

1 +
σs
√

2

cs(1 + 2σ2
s)

(1 − e−π
√

2/σs)

]

− (ALA
µµµµµµ )2

}−1/2

. (2.56)

Figures 2.7 and 2.8 show graphs of |rLA
µµµµµµ (τ)| and SLA

µµµµµµ (f) obtained for the

same values of σs as considered for the curves of pLA
ααα (α) depicted in Fig. 2.6.

The results obtained for the corresponding average Doppler shift and Doppler

spread are presented in Table 2.2.
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Figure 2.7: ACF of the channel’s diffuse component, rµµµµµµ(τ), by considering the
Laplacian PDF of the AOA with parameter σs.
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Figure 2.8: DPSD of the channel’s diffuse component, Sµµµµµµ(f), by considering
the Laplacian PDF of the AOA with parameter σs.

2.6 Chapter Summary and Conclusions

In this chapter, we reviewed the characteristics and statistical properties of the

narrowband Rician fading channel model that we will use as reference model to

design the parameter computation methods proposed in this dissertation.

It was shown in Section 2.3 that the ACF of the complex Gaussian process

ννν(t) characterizing our reference model does not depend on the choice of the

time origin. In spite of this noteworthy characteristic, ννν(t) is in general a non-

stationary process, since its mean value is a function of time. However, ννν(t)

proves to be a SSS process under two conditions: (i) Either the LOS component

is absent; (ii) or it is not Doppler shifted. The statistics of ννν(t) have been revised

thoroughly under NLOS conditions.



24 Channel Simulation Models for Mobile Broadband Communications

Table 2.2: Average Doppler shift ALA
µµµµµµ and Doppler spread DLA

µµµµµµ of the channel’s
diffuse component by considering the Laplacian PDF of the AOA
(fmax = 91 Hz).

Parameter, σs: 0.3 0.5 1 5

ALA
µµµµµµ (Hz): 87.0814 80.9113 62.1108 16.1574

DLA
µµµµµµ (Hz): 8.138 18.8202 40.7789 62.9335

The relevant statistics of the signal fading, such as the distributions of the

channel’s envelope and phase, ADF, and LCR were studied in Section 2.4. In

that section, it was shown that the envelope ξξξ(t) of ννν(t) is first-order stationary

and Rician distributed, while its phase ψψψ(t) has a PDF that depends on time. In

addition, we investigated the ACF of the squared envelope ξξξ2(t) of ννν(t). In accor-

dance to the results presented in Section 2.4.3, the channel’s squared envelope is

a WSS process. Finally, we described in Section 2.5 the distributions of the AOA

that we will consider throughout this dissertation to assess the performance of

the proposed channel simulation models.



Chapter 3

Narrowband SOC-Based

Simulation Models

3.1 Introduction

We can observe from (2.3) that a hardware/software realization of the mobile

fading channel described by ννν(t) is not possible, since it requires the implementa-

tion of a sum of an infinite number of cisoids. Fortunately, most of the statistical

properties of ννν(t) relevant for system performance analysis—such as its corre-

lation properties, spectral characteristics, and the first-order distributions of its

envelope and phase—can satisfactorily be approximated via a simulation model

based on a finite SOC. In this chapter, we present a narrowband stochastic SOC-

based simulation model suitable for performing the above mentioned task. Such

a stochastic SOC model constitutes in fact the core structure of the channel sim-

ulators proposed in this dissertation. In addition to analyzing the simulation

model’s correlation and spectral properties, the present chapter reviews the first-

order PDFs of the envelope and phase processes. What is more, the correlation

properties of the resulting squared envelope process are investigated here for the

first time. The ergodicity of the simulation model (in terms of the mean value,

power, and ACF) is also a topic addressed for the first time in this chapter.

We observe that some of the statistical properties of the stochastic SOC model

herein described have previously been analyzed in [Paet07] and [Hogs08]. Specifi-

cally, the simulation model’s ACF, average Doppler shift, and Doppler spread are

studied in [Paet07] for the NLOS case (simulation of Rayleigh fading channels).

The envelope and phase distributions of the simulator are investigated in the

same paper by considering a LOS scenario with a time-invariant specular compo-

nent (simulation of Rician fading channels), whereas the first-order stationarity

of the envelope process is studied in [Hogs08] upon the NLOS assumption. The

analysis presented throughout this chapter is broader in scope than the one made

25
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in the above quoted papers in the sense that we consider a LOS scenario with a

time-variant specular component.

3.2 SOC-Based Channel Simulators: General Struc-

ture and Classes

Figure 3.1 shows the general structure of an SOC-based simulation model for the

mobile Rician fading channel model described by the complex Gaussian process

ννν(t). Such a structure consists of two parts. One part is intended for the simu-

lation of the channel’s diffuse component µµµ(t), whereas the other part is aimed

at reproducing the specular component mρ(t). The simulation of µµµ(t) is carried

out upon an SOC model comprising a finite number N ∈ Z
+ (N <∞) of homo-

geneous cisoids1, the parameters of which—gains, frequencies, and phases—are

defined either as random variables or deterministic quantities. The symbol Z
+

stands for the set of positive integers. Such an SOC model can mathematically

be described by a complex random process µ̂̂µ̂µ(t) if any of the cisoids’ parameters

is random, otherwise, it is to be represented by a complex deterministic (pseudo-

random) process µ̃(t). The channel’s specular part mρ(t) is reproduced by means

of a properly parameterized deterministic cisoid. It goes without saying that the

superposition of µ̂̂µ̂µ(t) and mρ(t) (or µ̃(t) and mρ(t)) is expected to result into

a complex quasi-Gaussian random process ν̂̂ν̂ν(t) (or deterministic process ν̃(t))

whose statistical properties resemble those of ννν(t).

Based on the nature (random or deterministic) of the N homogeneous cisoids

underlying the process µ̂̂µ̂µ(t), we can identify eight fundamental classes of SOC-

based simulation models for ννν(t): Seven classes of stochastic models, and one class

of deterministic models—with the class of deterministic models being a superset

of the other seven classes. The eight classes, which were originally defined in

[Hogs08], are listed in Table 3.1. For the simulation of ννν(t), we will consider

a stochastic simulation model of Class II, meaning that the homogeneous SOC

model µ̂̂µ̂µ(t) comprises cisoids with random phases, constant gains, and constant

Doppler frequencies. Our motivation to choose an SOC model of such a class is

driven by the fact that only the Class II simulators are autocorrelation ergodic2

(given the restriction N < ∞). This important property allows for the design

of simulation models able to efficiently approximate the reference model’s ACF

without the need of averaging over multiple simulation runs. Besides, it will be

shown throughout this chapter that the resulting random process ν̂̂ν̂ν(t) possesses

stationarity characteristics similar as those of the reference model.

1By homogeneous cisoids we mean a group of cisoids characterized by the same type of
parameters.

2We point out that the concept of ergodicity does not apply on the Class I simulators, since
the nature of such a class of models is deterministic.
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Figure 3.1: Block diagram of an SOC-based simulation model for Rician fading
channels.

Table 3.1: Classification of SOC-based simulation models for Rician fading
channels according to the nature of the cisoids’ parameters.

Parameters† Gains Frequencies Phases

Class I Deterministic Deterministic Deterministic

Class II Deterministic Deterministic Random

Class III Deterministic Random Deterministic

Class IV Deterministic Random Random

Class V Random Deterministic Deterministic

Class VI Random Deterministic Random

Class VII Random Random Deterministic

Class VIII Random Random Random

†This attribute refers to the parameters of the SOC model described by µ̂̂µ̂µ(t) (or µ̃(t)).

3.3 The Stochastic SOC-Based Simulation Model

3.3.1 Structure and Considerations

The stochastic narrowband SOC-based simulation model of Class II considered

in this dissertation is characterized by a random process of the form

ν̂̂ν̂ν(t) =
N∑

n=1

ĉn exp
{
j
(
2πf̂nt+ θ̂̂θ̂θn

)}

︸ ︷︷ ︸

µ̂̂µ̂µ(t)

+ ρ exp{j(2πfρt+ θρ)}
︸ ︷︷ ︸

mρ(t)

. (3.1)
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For the underlying homogeneous random SOC model

µ̂̂µ̂µ(t) =
N∑

n=1

ĉn exp
{
j
(
2πf̂nt+ θ̂̂θ̂θn

)}
(3.2)

we assume the phases θ̂̂θ̂θn as being mutually independent random variables, each

having a uniform distribution over [−π, π). In addition, we impose the condition
∑N

n=1 ĉ
2
n = σ2

µµµ on the set of gains {ĉn}Nn=1 and define the deterministic Doppler

frequencies f̂n as

f̂n , fmax cos(α̂n), ∀n = 1, . . . , N (3.3)

where α̂n ∈ [−π, π).

3.3.2 Mean Value, Variance, and Average Power

Under the aforementioned considerations, µ̂̂µ̂µ(t) proves to be a zero-mean stochas-

tic process with constant variance Var{µ̂̂µ̂µ(t)} = σ2
µµµ. In turn, the composite pro-

cess ν̂̂ν̂ν(t) = µ̂̂µ̂µ(t) + mρ(t) is found to have a time-variant mean value mν̂̂ν̂ν(t) ,

E{ν̂̂ν̂ν(t)} = mρ(t) and a constant variance Var{ν̂̂ν̂ν(t)} = σ2
µµµ. Furthermore, the av-

erage power Pν̂̂ν̂ν(t) , E{|ν̂̂ν̂ν(t)|2} of ν̂̂ν̂ν(t) turns out to be time-invariant and equal

to σ2
ννν = σ2

µµµ + ρ2, i.e., Pν̂̂ν̂ν(t) = Pν̂̂ν̂ν = σ2
ννν . A comparison of these results with the

ones presented in Section 2.2 for ννν(t) reveals that the simulation model defined

in (3.1) is characterized by exactly the same mean value, variance, and average

power as the reference model.

3.3.3 Correlation Properties and Spectral Characteristics

3.3.3.1 ACFs

Regarding the ACF rµ̂̂µ̂µµ̂̂µ̂µ(t1, t2) , E{µ̂̂µ̂µ∗(t1)µ̂̂µ̂µ(t2)} of the zero-mean random process

µ̂̂µ̂µ(t), one can show without difficulty that [Paet07]

rµ̂̂µ̂µµ̂̂µ̂µ(t1, t2) = rµ̂̂µ̂µµ̂̂µ̂µ(τ) (3.4)

=

N∑

n=1

ĉ2n exp
{
j2πf̂nτ

}
. (3.5)

This result shows that the ACF of µ̂̂µ̂µ(t) depends only on the time difference

τ = t2 − t1. It can therefore be concluded that µ̂̂µ̂µ(t) is a WSS process, since

its mean value is constant and its ACF is not influenced by the choice of the

time origin. Other relevant characteristics of rµ̂̂µ̂µµ̂̂µ̂µ(τ) can readily be noticed by

expressing such a function in terms of the ACFs and CCFs of the IQ components
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µ̂̂µ̂µI(t) , Re{µ̂̂µ̂µ(t)} and µ̂̂µ̂µQ(t) , Im{µ̂̂µ̂µ(t)} of µ̂̂µ̂µ(t) as follows

rµ̂̂µ̂µµ̂̂µ̂µ(τ) =
[
rµ̂̂µ̂µI µ̂̂µ̂µI

(τ) + rµ̂̂µ̂µQµ̂̂µ̂µQ
(τ)
]
+ j
[
rµ̂̂µ̂µI µ̂̂µ̂µQ

(τ) − rµ̂̂µ̂µQµ̂̂µ̂µI
(τ)
]

= 2
[
rµ̂̂µ̂µI µ̂̂µ̂µI

(τ) + jrµ̂̂µ̂µI µ̂̂µ̂µQ
(τ)
]

(3.6)

where

rµ̂̂µ̂µI µ̂̂µ̂µI
(τ) = rµ̂̂µ̂µQµ̂̂µ̂µQ

(τ) =

N∑

n=1

ĉ2n
2

cos
(
2πf̂nτ

)
(3.7a)

rµ̂̂µ̂µI µ̂̂µ̂µQ
(τ) = −rµ̂̂µ̂µQµ̂̂µ̂µI

(τ) =
N∑

n=1

ĉ2n
2

sin
(
2πf̂nτ

)
. (3.7b)

One may observe from (3.6) and (3.7) that rµ̂̂µ̂µµ̂̂µ̂µ(τ) is a complex valued and hermi-

tian symmetric function if µ̂̂µ̂µI(t) and µ̂̂µ̂µQ(t) are cross-correlated. On the contrary,

if the IQ components of µ̂̂µ̂µ(t) are uncorrelated, then rµ̂̂µ̂µµ̂̂µ̂µ(τ) will be even and real

valued. We recall that the uncorrelation between the processes µ̂̂µ̂µI(t) and µ̂̂µ̂µQ(t)

is a requisite for the simulation of fading channels characterized by symmetri-

cal DPSDs [Paet98]. Taking account of the expression presented in (3.7b) for

rµ̂̂µ̂µI µ̂̂µ̂µQ
(τ) and rµ̂̂µ̂µQµ̂̂µ̂µI

(τ), we can deduce that a sufficient condition for guaranteeing

the uncorrelation between µ̂̂µ̂µI(t) and µ̂̂µ̂µQ(t) is the following:

Condition 3.1 The number of cisoids N is even, i.e., N = 2M , where M ∈ Z
+,

and for each pair of parameters (ĉn, f̂n), n = 1, . . . , N , there exists one and only

one pair (ĉm, f̂m), n 6= m, such that ĉn = ĉm and f̂n = −f̂m.

Notice that if the above mentioned requirements are met, then

rµ̂̂µ̂µµ̂̂µ̂µ(τ) = 2

N/2
∑

n=1

ĉ2n cos(2πf̂nτ). (3.8)

It is worth mentioning that the Condition 3.1 becomes a necessary condition for

the uncorrelation of the IQ components of µ̂̂µ̂µ(t) if the Doppler frequencies are

chosen in such a way that f̂n 6= 0 ∀n and f̂n 6= f̂m, n 6= m. These two latter

considerations are relevant indeed, as they are fundamental for the design of

ergodic channel simulators [see Sec. 3.5].

With respect to the ACF rν̂̂ν̂νν̂̂ν̂ν(t1, t2) , E{ν̂̂ν̂ν∗(t1)ν̂̂ν̂ν(t2)} of the simulation model,

it is straightforward to show that

rν̂̂ν̂νν̂̂ν̂ν(t1, t2) = rν̂̂ν̂νν̂̂ν̂ν(τ) (3.9)

= rµ̂̂µ̂µµ̂̂µ̂µ(τ) + ρ2 exp{j2πfρτ} (3.10)

=

N∑

n=1

ĉ2n exp
{
j2πf̂nτ

}
+ ρ2 exp{j2πfρτ}. (3.11)
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The equations above indicate that the ACF of ν̂̂ν̂ν(t) possesses the noteworthy

property of being time-shift insensitive. Nonetheless, in contrast to the zero-

mean process µ̂̂µ̂µ(t), ν̂̂ν̂ν(t) cannot be claimed to be a WSS process, because its

mean value is in general time-variant. However, this characteristic should not be

considered as a drawback, since the simulation model and the reference model

are similar in that respect. In fact, the wide-sense stationarity property of both

processes ν̂̂ν̂ν(t) and ννν(t) holds under the same conditions: The specular wave mρ(t)

is absent or not Doppler shifted [cf. Sec. 2.3.1].

3.3.3.2 DPSDs

Concerning the DPSD Sν̂̂ν̂νν̂̂ν̂ν(f) of the simulation model, we obtain on the basis of

[Mill04, pp. 373–375] the solution

Sν̂̂ν̂νν̂̂ν̂ν(f) =

∞∫

−∞

rν̂̂ν̂νν̂̂ν̂ν(τ) exp{j2πfτ}dτ

=
N∑

n=1

ĉ2nδ
(
f − f̂n

)
+ ρ2δ(f − fρ). (3.12)

The DPSD Sµ̂̂µ̂µµ̂̂µ̂µ(f) of µ̂̂µ̂µ(t) follows from Sν̂̂ν̂νν̂̂ν̂ν(f) by taking ρ = 0. Consequently,

we can write

Sµ̂̂µ̂µµ̂̂µ̂µ(f) =

N∑

n=1

ĉ2nδ
(
f − f̂n

)
. (3.13)

This latter result can be confirmed by computing the Fourier transform of the

ACF defined in (3.5) [Paet07]. Interestingly, if Condition 3.1 is fulfilled, meaning

that rµ̂̂µ̂µI µ̂̂µ̂µQ
(τ) = rµ̂̂µ̂µQµ̂̂µ̂µI

(τ) = 0, then

Sµ̂̂µ̂µµ̂̂µ̂µ(f) =

N/2
∑

n=1

ĉ2n
[
δ
(
f − f̂n

)
+ δ
(
f + f̂n

)]
. (3.14)

Thus, the DPSD of µ̂̂µ̂µ(t) happens to be an even (symmetrical) function upon

fulfillment of Condition 3.1, as was to be expected.

3.3.3.3 Average Doppler Shift and Doppler Spread

From (3.12), and taking into account that
∑N

n=1 ĉ
2
n = σ2

µµµ, one can verify that the

average Doppler shift Aν̂̂ν̂νν̂̂ν̂ν and Doppler spread Dν̂̂ν̂νν̂̂ν̂ν of ν̂̂ν̂ν(t) are given by:

Aν̂̂ν̂νν̂̂ν̂ν ,

∫∞
−∞ fSν̂̂ν̂νν̂̂ν̂ν(f)df
∫∞
−∞ Sν̂̂ν̂νν̂̂ν̂ν(f)df
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=
1

σ2
ννν

[

ρ2fρ +
N∑

n=1

ĉ2nf̂n

]

(3.15)

Dν̂̂ν̂νν̂̂ν̂ν ,

√
√
√
√

∫∞
−∞ Sν̂̂ν̂νν̂̂ν̂ν(f)

[
f −Aν̂̂ν̂νν̂̂ν̂ν

]2
df

∫∞
−∞ Sν̂̂ν̂νν̂̂ν̂ν(f)df

=

√
√
√
√ 1

σ2
ννν

[

ρ2f2
ρ +

N∑

n=1

ĉ2nf̂
2
n

]

− (Aν̂̂ν̂νν̂̂ν̂ν)
2. (3.16)

What is more, one can deduce by taking ρ = 0 in (3.15) and (3.16) that the

average Doppler shift Aµ̂̂µ̂µµ̂̂µ̂µ and Doppler spread Dµ̂̂µ̂µµ̂̂µ̂µ of µ̂̂µ̂µ(t) are equal to:

Aµ̂̂µ̂µµ̂̂µ̂µ = Aν̂̂ν̂νν̂̂ν̂ν

∣
∣
∣
ρ=0

=
1

σ2
µµµ

N∑

n=1

ĉ2nf̂n (3.17)

Dµ̂̂µ̂µµ̂̂µ̂µ = Dν̂̂ν̂νν̂̂ν̂ν

∣
∣
∣
ρ=0

=

√
√
√
√ 1

σ2
µµµ

N∑

n=1

ĉ2nf̂
2
n −

(
Aµ̂̂µ̂µµ̂̂µ̂µ

)2
(3.18)

which are the results presented in [Paet07]. We observe from (3.17) that the

average Doppler shift Aµ̂̂µ̂µµ̂̂µ̂µ of µ̂̂µ̂µ(t) is equal to zero if the Condition 3.1 is met.

This result is in line with the statement made in Section 2.3.3 regarding the

average Doppler shift of symmetrical DPSDs.

It is worth noticing that the simulation model’s ACF, DPSD, average Doppler

shift, and Doppler spread are fully specified by the sets of gains {ĉn, ρ} and

Doppler frequencies {f̂n, fρ}.

3.3.4 PDFs of the Stochastic SOC Model’s Envelope and Phase

The first-order distributions of the envelope ξ̂̂ξ̂ξ(t) , |ν̂̂ν̂ν(t)| and phase ψ̂̂ψ̂ψ(t) ,

arg{ν̂̂ν̂ν(t)} of ν̂̂ν̂ν(t) have recently been investigated in [Paet07]. There, analytical

expressions were derived for such statistical functions by assuming the specular

wave mρ(t) to be not Doppler shifted. In this section, we provide generalized ex-

pressions of those formulas covering the more realistic case wheremρ(t) is Doppler

shifted. The generalization of the results presented in [Paet07] is straightforward,

and can systematically be done by following the procedure outlined in [Paet07,

Sec. IV-E]. We will therefore omit details about the derivations and present

only the obtained generalized expressions. The correctness of our results will be

demonstrated by simulations in Chapter 4.
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3.3.4.1 First-Order PDF of the Envelope

By proceeding as in [Paet07, Sec. IV-E], one can verify that the first-order PDF

p
ξ̂̂ξ̂ξ
(z; t) of the envelope ξ̂̂ξ̂ξ(t) of ν̂̂ν̂ν(t) is equal to

p
ξ̂̂ξ̂ξ
(z; t) = p

ξ̂̂ξ̂ξ
(z) (3.19)

= z(2π)2
∞∫

0

[
N∏

n=1

J0(2π|ĉn|x)
]

J0(2πzx)J0(2π|ρ|x)x dx, z ≥ 0. (3.20)

It can be concluded from the previous equations that ξ̂̂ξ̂ξ(t) is a first-order station-

ary process, because its PDF does not change over time. Interestingly, the ex-

pression presented in (3.20) proves to be the same as the one obtained in [Paet07,

Eq. (26)]. This means that the time-variant behavior of the specular wave has

no influence on the first-order distribution of ξ̂̂ξ̂ξ(t). We notice that p
ξ̂̂ξ̂ξ
(z) is fully

specified by the set of gains {ĉn, ρ}. For the special case ρ = 0, the PDF given in

(3.20) reduces to the first-order distribution p
ζ̂̂ζ̂ζ
(z) of the envelope ζ̂̂ζ̂ζ(t) , |µ̂̂µ̂µ(t)| of

µ̂̂µ̂µ(t). Thus, we can explicitly write the PDF of ζ̂̂ζ̂ζ(t) as follows

p
ζ̂̂ζ̂ζ
(z) = z(2π)2

∞∫

0

[
N∏

n=1

J0(2π|ĉn|x)
]

J0(2πzx)x dx, z ≥ 0. (3.21)

Investigations in [Paet07] indicate that p
ξ̂̂ξ̂ξ
(z) is in good agreement with the

Rice distribution for values of N as small as ten if ĉn = σµµµ/
√
N ∀n. In fact, it

is shown in the above quoted paper that if ĉn = σµµµ/
√
N , then p

ξ̂̂ξ̂ξ
(z) converges

to the Rice density in the limit N → ∞. Figure 3.2 provides an exemplary

demonstration of the veracity of these statements. In this figure, we present a

comparison between the PDF defined in (3.20) and the Rice PDF introduced in

(2.22) by considering ĉn = σµµµ/
√
N ∀n, N ∈ {10, 50}, cR ∈ {0, 2, 4}, and σ2

ννν = 1.

We remind that cR = ρ2/σ2
µµµ is the Rician factor.

3.3.4.2 First-Order PDF of the Phase

With respect to the first-order PDF p
ψ̂̂ψ̂ψ
(θ; t) of the phase ψ̂̂ψ̂ψ(t) of ν̂̂ν̂ν(t), it can be

demonstrated that

p
ψ̂̂ψ̂ψ
(θ; t) = 2π

∞∫

0

∞∫

0

[
N∏

n=1

J0(2π|ĉn|x)
]

×J0

(

2πx
√

z2 + ρ2 − 2zρ cos(θ − 2πfρt− θρ)

)

xz dx dz (3.22)
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Figure 3.2: Comparison between the theoretical envelope PDF p
ξ̂̂ξ̂ξ
(z) of the

stochastic SOC-based simulation model and the Rice PDF pξξξ(z)
(reference model) by considering different values for both the Rician
factor cR and the number of cisoids N : (a) N = 10; (b) N = 50.

for θ ∈ [−π, π). The equation above shows that ψ̂̂ψ̂ψ(t) is in general not first-

order stationary, because its distribution p
ψ̂̂ψ̂ψ
(θ; t) is not necessarily time-invariant.

However, if mρ(t) is not Doppler shifted, implying that fρ = 0, then

p
ψ̂̂ψ̂ψ
(θ; t) = p

ψ̂̂ψ̂ψ
(θ) (3.23)

= 2π

∞∫

0

∞∫

0

[
N∏

n=1

J0(2π|ĉn|x)
]

×J0

(

2πx
√

z2 + ρ2 − 2zρ cos(θ − θρ)

)

xz dx dz, θ ∈ [−π, π) (3.24)

which is the result presented in [Paet07, Eq. (28)]. On other hand, if the specular

wave is absent (ρ = 0), then p
ψ̂̂ψ̂ψ
(θ; t) reduces to the first-order distribution pϕ̂̂ϕ̂ϕ(θ; t)

of the phase ϕ̂̂ϕ̂ϕ(t) , arg{µ̂̂µ̂µ(t)} of µ̂̂µ̂µ(t). It can be shown for the latter PDF that

pϕ̂̂ϕ̂ϕ(θ; t) = pϕ̂̂ϕ̂ϕ(θ) (3.25)

= 2π

∞∫

0

∞∫

0

[
N∏

n=1

J0(2π|ĉn|x)
]

J0(2πxz)xz dxdz (3.26)

=
1

2π
, θ ∈ [−π, π) (3.27)

which implies that the first-order distribution of ϕ̂̂ϕ̂ϕ(t) is time-invariant and uni-

form over [−π, π). Interestingly, the PDF of ϕ̂̂ϕ̂ϕ(t) is not influenced by any of the



34 Channel Simulation Models for Mobile Broadband Communications

parameters of µ̂̂µ̂µ(t) (not even by N). In view of (3.24) and (3.27), we can claim

that the phase ψ̂̂ψ̂ψ(t) of the simulation model is a first-order stationary process if

either fρ = 0 or ρ = 0.

Figure 3.3 shows a comparison between the PDF given in (3.22) and the

phase PDF of the reference model [see (2.26)]. The graphs presented in that

figure correspond to the time instants t = 0 s and t = 0.25 s, and they were

generated by choosing ĉn = 1/
√
N ∀n, N ∈ {10, 50}, cR ∈ {0, 2, 4}, fρ = 65 Hz,

and θρ = 0◦. One may observe from Fig. 3.3 that the first-order distribution of

the simulation model’s phase, p
ψ̂̂ψ̂ψ
(θ; t), is in excellent agreement with the phase

PDF pψψψ(θ; t) of reference model. Indeed, the graphs of p
ψ̂̂ψ̂ψ
(θ; t) are quite close to

the ones of pψψψ(θ; t) even with as few as ten cisoids, as can be seen in Fig. 3.3(a).
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Figure 3.3: Comparison between the theoretical phase PDF p
ψ̂̂ψ̂ψ
(θ; t) of the

stochastic SOC-based simulation model and the phase PDF pψψψ(θ; t)
of reference model by considering different values for both the Ri-
cian factor cR and the number of cisoids N : (a) N = 10; (b) N = 50
(fρ = 65 Hz and θρ = 0◦).

Before we move on to the next topic, we would like to draw the reader’s

attention to the fact that ξ̂̂ξ̂ξ(t) and ψ̂̂ψ̂ψ(t) exhibit the same first-order stationarity

characteristics as the envelope ξξξ(t) and phase ψψψ(t) of the reference model [cf.

Sec. 2.4.1].

3.3.5 A Note on the LCR and ADF of the Stochastic SOC Mod-

el’s Envelope

As of the time of witting of this thesis, exact solutions of the LCR N
ξ̂̂ξ̂ξ
(r) and

ADF T
ξ̂̂ξ̂ξ
(r) of ξ̂̂ξ̂ξ(t) are still lacking. A first attempt to close the gap was made in

[Pae08b]. Closed-form expressions were presented in that paper for both N
ξ̂̂ξ̂ξ
(r)
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and T
ξ̂̂ξ̂ξ
(r) by considering mρ(t) = ρ exp{jθρ} and assuming that

∑N
n=1 ĉ

2
nf̂n = 0,

i.e., Aµ̂̂µ̂µµ̂̂µ̂µ = 0. Early investigations showed a reasonably good resemblance between

the analytical solutions provided there and the empirical data obtained from

simulations. However, further analysis demonstrated that the expressions given

in [Pae08b] underestimate the number of crossings at medium levels (r ∈ [0.5, 2]).

Such an imprecision could be due to the fact that the cross-correlations at τ = 0

among the IQ components of µ̂̂µ̂µ(t) and their time derivatives were neglected when

deriving the formulas—it was assumed in [Pae08b] that rµ̂̂µ̂µI µ̂̂µ̂µ
′
I
(0) = rµ̂̂µ̂µQµ̂̂µ̂µ

′
Q
(0) =

rµ̂̂µ̂µ′
I µ̂̂µ̂µQ

(0) = rµ̂̂µ̂µ′Qµ̂̂µ̂µI
(0) = 0. Those expressions are currently being revisited by the

authors of [Paet07] by relaxing the aforementioned assumption.

3.3.6 ACF of the Stochastic SOC Model’s Squared Envelope

Concerning the ACF r
ξ̂̂ξ̂ξ2ξ̂̂ξ̂ξ2

(t1, t2) , E{ξ̂̂ξ̂ξ2(t1)ξ̂̂ξ̂ξ
2(t2)} of the squared envelope

ξ̂̂ξ̂ξ2(t) , |ν̂̂ν̂ν(t)|2 of ν̂̂ν̂ν(t), it is shown in Appendix B that

r
ξ̂̂ξ̂ξ2ξ̂̂ξ̂ξ2

(t1, t2) = r
ξ̂̂ξ̂ξ2ξ̂̂ξ̂ξ2

(τ) (3.28)

= r
ζ̂̂ζ̂ζ2ζ̂̂ζ̂ζ2

(τ) +
4σ2

νννcR
cR + 1

{

rµ̂̂µ̂µI µ̂̂µ̂µI
(τ) cos (2πfρτ)

+rµ̂̂µ̂µI µ̂̂µ̂µQ
(τ) sin (2πfρτ)

}

+
cR σ

4
ννν(cR + 2)

(cR + 1)2
(3.29)

where r
ζ̂̂ζ̂ζ2ζ̂̂ζ̂ζ2

(τ) is the ACF of the squared envelope ζ̂̂ζ̂ζ2(t) , |µ̂̂µ̂µ(t)|2 of µ̂̂µ̂µ(t). It is

also shown in Appendix B that

r
ζ̂̂ζ̂ζ2ζ̂̂ζ̂ζ2

(τ) =
σ4
ννν

(cR + 1)2
+ |rµ̂̂µ̂µµ̂̂µ̂µ(τ)|2 −

N∑

n=1

ĉ4n. (3.30)

One can verify without difficulty that the mean value m
ξ̂̂ξ̂ξ2

(t) , E{ξ̂̂ξ̂ξ2(t)}
of ξ̂̂ξ̂ξ2(t) is equal to σ2

ννν . Thus, we can conclude that ξ̂̂ξ̂ξ2(t) is a WSS process,

since the ACF r
ξ̂̂ξ̂ξ2ξ̂̂ξ̂ξ2

(t1, t2) depends only on the time difference τ = t2 − t1, i.e.,

r
ξ̂̂ξ̂ξ2ξ̂̂ξ̂ξ2

(t1, t2) = r
ξ̂̂ξ̂ξ2ξ̂̂ξ̂ξ2

(τ), and m
ξ̂̂ξ̂ξ2

(t) is constant over time.

3.4 The Deterministic SOC-Based Simulation Model

3.4.1 Structure

In practice, the simulation of ννν(t) is performed by generating sample functions of

µ̂̂µ̂µ(t) and combining the resulting process with the time-variant waveform mρ(t)

(as depicted in Fig. 3.1). Consequently, the simulator’s output proves to be a
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process of the form

ν̂(k)(t) = µ̂(k)(t) + ρ exp{j(2πfρt+ θρ)}, k ∈ Z
+ (3.31)

where ν̂(k)(t) and µ̂(k)(t) denote the kth sample functions of ν̂̂ν̂ν(t) and µ̂̂µ̂µ(t), re-

spectively. The complex process µ̂(k)(t) is given by

µ̂(k)(t) =

N∑

n=1

ĉn exp
{
j
(
2πf̂nt+ θ̂(k)

n

)}
, k ∈ Z

+ (3.32)

where θ̂
(k)
n is the outcome of θ̂̂θ̂θn associated to the kth sample function of µ̂̂µ̂µ(t).

We note that ν̂(k)(t) can unequivocally be predicted at any time instant t once

the values of θ̂
(k)
n are known (those values are to be resolved at random during

the simulation set-up phase and they are kept constant during the simulation

run). The simulator’s output can therefore be regarded as being a deterministic

process. In fact, ν̂(k)(t) and µ̂(k)(t) can be classified as deterministic SOC-based

simulators (Class I simulators).

Information about the time averages3 of the sample functions of ν̂̂ν̂ν(t) is also

relevant for the characterization of the simulation model. Such an information

is fundamental not only to analyze the properties of the generated waveforms

ν̂(k)(t), but also to determine whether the simulation model is ergodic or not. In

fact, to investigate the subject of ergodicity, it is necessary to find out under what

conditions the time averages of ν̂̂ν̂ν(t) are equal to the ensemble averages. In that

regard, we present in what follows an analysis of the time-averaged characteristics

of the simulation model’s sample functions.

3.4.2 Mean Value and Average Power

In the case of the random process µ̂̂µ̂µ(t), one can easily verify that the mean value

mµ̂(k) ,
〈
µ̂(k)(t)

〉
of µ̂(k)(t) is equal to the ensemble mean, mµ̂̂µ̂µ(t) , E{µ̂̂µ̂µ(t)} = 0,

if the following condition is fulfilled:

Condition 3.2 The N cisoids underlying µ̂̂µ̂µ(t) are all Doppler shifted, meaning

that f̂n 6= 0 ∀n.

Besides, one may demonstrate that the average power Pµ̂(k) ,
〈
|µ̂(k)(t)|2

〉
of

µ̂(k)(t) equals that of the ensemble, Pµ̂̂µ̂µ = E{|µ̂̂µ̂µ(t)|2} = σ2
ννν , if the above mentioned

condition is satisfied and:

Condition 3.3 The N cisoids underlying µ̂̂µ̂µ(t) are specified in such a way that

f̂n 6= f̂m for n 6= m.

3The time average of a function x(t) is denoted by 〈x(t)〉 and defined as 〈x(t)〉 ,

lim
T→∞

1
2T

∫ T

−T
x(t)dt.
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On the other hand, we find that the mean value mν̂(k) ,
〈
ν̂(k)(t)

〉
of the

sample functions of ν̂̂ν̂ν(t) equals mν̂(k) = 0 ∀k if Condition 3.2 holds and fρ 6= 0.

If the latter requirement is not satisfied, i.e., if fρ = 0, then mν̂(k) = ρ exp{jθρ}
∀k. Since the mean value of the ensemble is in general a function of time mν̂̂ν̂ν(t) ,

E{ν̂̂ν̂ν(t)} = ρ exp{j(2πfρt+ θρ)}, we have that mν̂(k) is equal to mν̂̂ν̂ν(t) only when

ρ = 0 or fρ = 0. Regarding the average power Pν̂(k) ,
〈
|ν̂(k)(t)|2

〉
of ν̂(k)(t),

we have Pν̂(k) = σ2
ννν ∀k if in addition to Conditions 3.2 and 3.3, the following is

observed:

Condition 3.4 The specular wave mρ(t) and the random cisoids underlying µ̂̂µ̂µ(t)

are specified in such a way that fρ 6= f̂n ∀n.
Notice that the average power of ν̂(k)(t) equals the mean power of the ensemble

upon fulfillment of such conditions, since Pν̂̂ν̂ν = E{|ν̂̂ν̂ν(t)|2} = σ2
ννν [Sec. 3.3.2].

3.4.3 Correlation Properties and Spectral Characteristics

3.4.3.1 Time-averaged ACFs

In order to analyze the correlation properties of the simulation model’s sample

functions, let us assume that the zero-mean process µ̂̂µ̂µ(t) is defined in such a way

that Conditions 3.2 and 3.3 are fulfilled, meaning that f̂n 6= 0 ∀n and f̂n 6= f̂m
for n 6= m. Under these considerations, the time-averaged ACF rµ̂(k)µ̂(k)(τ) ,
〈(
µ̂(k)(t)

)∗
µ̂(k)(t+ τ)

〉
of the kth sample function of µ̂̂µ̂µ(t) is found to be equal to

rµ̂(k)µ̂(k)(τ) =

N∑

n=1

ĉ2n exp{j2πf̂nτ}, ∀k. (3.33)

It follows from (3.33) that the ACF of µ̂(k)(t) is equal to the one of the ensemble,

rµ̂̂µ̂µµ̂̂µ̂µ(τ), since rµ̂̂µ̂µµ̂̂µ̂µ(τ) =
∑N

n=1 ĉn exp{j2πf̂nτ} [Eq. (3.5)]. We observe that the

time-averaged ACF rµ̂(k)µ̂(k)(τ) can be factorized in terms of the ACFs and CCFs

of the IQ components µ̂
(k)
I (t) and µ̂

(k)
Q (t) of µ̂(k)(t) in a similar way as described

in Section 3.3.3.1 for the ACF of the ensemble, that is,

rµ̂(k)µ̂(k)(τ) =
[
r
µ̂

(k)
I µ̂

(k)
I

(τ) + r
µ̂

(k)
Q µ̂

(k)
Q

(τ)
]
+ j
[
r
µ̂

(k)
I µ̂

(k)
Q

(τ) − r
µ̂

(k)
Q µ̂

(k)
I

(τ)
]

= 2
[
r
µ̂

(k)
I µ̂

(k)
I

(τ) + jr
µ̂

(k)
I µ̂

(k)
Q

(τ)
]

(3.34)

where

r
µ̂

(k)
I µ̂

(k)
I

(τ) = r
µ̂

(k)
Q µ̂

(k)
Q

(τ) =
N∑

n=1

ĉ2n
2

cos
(
j2πf̂nτ

)
, ∀k (3.35a)

r
µ̂

(k)
I µ̂

(k)
Q

(τ) = −r
µ̂

(k)
Q µ̂

(k)
I

(τ) =

N∑

n=1

ĉ2n
2

sin
(
j2πf̂nτ

)
, ∀k. (3.35b)
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Let us assume also that the Doppler frequency fρ of the specular wave mρ(t)

is defined in such a way that the Condition 3.4 holds, so that fρ 6= f̂n ∀n. One

can then show that the time-averaged ACF rν̂(k)ν̂(k)(τ) ,
〈(
ν̂(k)(t)

)∗
ν̂(k)(t+ τ)

〉

of the kth sample function of ν̂̂ν̂ν(t) meets

rν̂(k)ν̂(k)(τ) = rµ̂(k)µ̂(k)(τ) + ρ2 exp{j2πfρτ} (3.36)

=
N∑

n=1

ĉ2n exp{j2πf̂nτ} + ρ2 exp{j2πfρτ}, ∀k. (3.37)

Interestingly, a comparison between (3.37) and the result presented in (3.11) for

the ACF rν̂̂ν̂νν̂̂ν̂ν(τ) of the ensemble shows that rν̂(k)ν̂(k)(τ) = rν̂̂ν̂νν̂̂ν̂ν(τ) ∀k.

3.4.3.2 DPSDs

For completeness, we will also analyze the spectral characteristics of the simula-

tion model’s sample functions. To simplify our notation, we will henceforth omit

the superscript {·}(k) whenever there is no need to make a distinction among

sample functions, or among their statistical properties.

It is straightforward to show, by computing the Fourier transform of (3.37),

that the DPSD Sν̂ν̂(f) of the sample functions of ν̂̂ν̂ν(t) is given by

Sν̂ν̂(f) =

N∑

n=1

ĉ2nδ
(
f − f̂n

)
+ ρ2δ(f − fρ). (3.38)

Analogously, the DPSD Sµ̂µ̂(f) of the sample functions of µ̂̂µ̂µ(t) is found to be

equal to

Sµ̂µ̂(f) =

N∑

n=1

ĉ2nδ
(
f − f̂n

)
. (3.39)

3.4.3.3 Average Doppler Shift and Doppler Spread

By comparing the results presented in (3.38) and (3.12), we realize that the

DPSDs of ν̂(t) and ν̂̂ν̂ν(t) are exactly the same, i.e., Sν̂ν̂(f) = Sν̂̂ν̂νν̂̂ν̂ν(f). Consequently,

we can deduce that the average Doppler shift Aν̂ν̂ and Doppler spread Dν̂ν̂ of

ν̂(t) are equal to those of ν̂̂ν̂ν(t). In the spirit of this reasoning, we can write:

Aν̂ ν̂ = 1
σ2

ννν

[
ρ2fρ +

∑N
n=1 ĉ

2
nf̂n
]
; and Dν̂ ν̂ =

{
1
σ2

ννν

[
ρ2f2

ρ +
∑N

n=1 ĉ
2
nf̂

2
n

]
− (Aν̂ν̂)

2
}1/2

.

Accordingly, the average Doppler shift Aµ̂µ̂ and Doppler spread Dµ̂µ̂ of µ̂(t) can

be presumed to be equal to those of µ̂̂µ̂µ(t), so that Aµ̂µ̂ = 1
σ2

µµµ

∑N
n=1 ĉ

2
nf̂n and

Dµ̂µ̂ =
{

1
σ2

µµµ

∑N
n=1 ĉ

2
nf̂

2
n − (Aµ̂µ̂)

2
}1/2

. These results are remarkable indeed, as

they imply that the relevant spectral moments of the simulation model can be

measured from a single sample function ν̂(t).
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3.4.4 ACF of the Deterministic Squared Envelope

To close this section, we investigate the time-averaged ACF rξ̂2ξ̂2(τ) ,
〈
ξ̂2(t) ·

ξ̂2(t+ τ)
〉

of the sample functions ξ̂2(t) of ξ̂̂ξ̂ξ2(t). A closed-form solution for such

an ACF is derived in Appendix C upon the assumption that the Conditions 3.2,

3.3, and the three conditions stated below are satisfied altogether:

Condition 3.5 If N ≥ 4, then the N Doppler frequencies f̂n of µ̂̂µ̂µ(t) are specified

in such a way that

f̂l + f̂m = f̂n + f̂k, iff







l = m = n = k;

or l = n,m = k, l 6= m;

or l = k,m = n, l 6= m.

Condition 3.6 The specular wave mρ(t) and the random cisoids underlying µ̂̂µ̂µ(t)

are defined in such a way that |fρ| 6= |f̂n| ∀n.

Condition 3.7 If N ≥ 2, then the Doppler frequency fρ of the specular wave

mρ(t) and the N Doppler frequencies f̂n of µ̂̂µ̂µ(t) are defined in such a way that

fρ + f̂l 6= f̂m + f̂n, ∀l,m, n.

Under these considerations, it is shown there that

rξ̂2ξ̂2(τ) = rζ̂2ζ̂2(τ) +
4σ2

νννcR
cR + 1

{

rµ̂I µ̂I
(τ) cos (2πfρτ)

+rµ̂I µ̂Q
(τ) sin (2πfρτ)

}

+
cR σ

4
ννν(cR + 2)

(cR + 1)2
(3.40)

where rζ̂2ζ̂2(τ) ,
〈
ζ̂2(t)ζ̂2(t + τ)

〉
is the ACF of the squared envelope ζ̂2(t) ,

|µ̂(t)|2 of µ̂(t). For this latter ACF, it is shown in Appendix C that

rζ̂2ζ̂2(τ) =
σ4
µµµ

(cR + 1)2
+ |rµ̂µ̂(τ)|2 −

N∑

n=1

ĉ4n (3.41)

if the Condition 3.5 is met. Notice that the results presented in (3.40) and (3.29)

are equivalent to each other, implying that the ACF of ξ̂2(t) is equal to that of the

ensemble, i.e., r
ξ̂̂ξ̂ξ2ξ̂̂ξ̂ξ2

(τ) = rξ̂2ξ̂2(τ). With respect to the mean value mξ̂2 , 〈ξ̂2(t)〉
of the sample functions of ξ̂̂ξ̂ξ2(t), it can easily be shown that mξ̂2 = σ2

ννν . This

result holds provided that the Conditions 3.2 and 3.3 are fulfilled.

We pointed out in Section 3.3.3.1 that if the Doppler frequencies f̂n of µ̂̂µ̂µ(t)

satisfy the Conditions 3.2 and 3.3, i.e., if f̂n 6= 0 ∀n, and f̂n 6= f̂m, n 6= m, then the

fulfillment of the Condition 3.1 becomes necessary in order for the IQ components

of µ̂̂µ̂µ(t) to be uncorrelated. Under such circumstances, the solution given in (3.41)

for rζ̂2ζ̂2(τ) is no longer valid, since the Condition 3.1 is not compatible with the
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Condition 3.5. This is clear, as the former condition states that for each pair of

parameters (ĉn, f̂n), n = 1, . . . , N , there exists one and only one pair (ĉm, f̂m),

n 6= m, such that ĉn = ĉm and f̂n = −f̂m (N is even), whereas the latter condition

establishes that f̂l + f̂m = f̂n + f̂k iff: l = m = n = k; or l = n,m = k, l 6= m;

or l = k,m = n, l 6= m (N ≥ 4). Obviously, if the Condition 3.1 is met, then the

equation f̂l + f̂m = f̂n + f̂k will have more solutions than the ones specified by

the Condition 3.5.

Since the simulation of fading channels having diffuse components with uncor-

related IQ components is relevant for many practical purposes, e.g., for analyzing

the system performance under isotropic scattering conditions, we derive in Ap-

pendix D a solution for rζ̂2ζ̂2(τ) by assuming the fulfillment of the Conditions 3.1–

3.3. For notational convenience, and without loss of generality, we suppose that

the Doppler frequencies f̂n are indexed in such a way that f̂n < f̂m ∀n < m. The

expression we have obtained for such a particular case is the following

rζ̂2ζ̂2(τ) =
σ4
µµµ

(cR + 1)2
+ |rµ̂µ̂(τ)|2 −

N∑

n=1

ĉ4n

+ 4

{ ∣
∣
∣
∣

N/2
∑

m=1

ĉ2m cos
(
2πf̂mτ

)
exp

{
j(θ̂m + θ̂N−m+1)

}
∣
∣
∣
∣

2

−
N/2
∑

k=1

ĉ4k cos2
(
2πf̂kτ

)
}

(3.42)

where N is even. Interestingly, the result present above depends on the cisoids

phases θ̂n. This is in contrast to the solution given in (3.41), which is not in-

fluenced by those parameters. We notice that the result presented in (3.40) for

the time-averaged ACF rξ̂2ξ̂2(τ) of the sample functions ξ̂2(t) of ξ̂̂ξ̂ξ2(t) does not

change if we remove the Condition 3.5 from our assumptions. However, in this

case the function rξ̂2ξ̂2(τ) proves to be different from the ACF of the ensemble

r
ξ̂̂ξ̂ξ2ξ̂̂ξ̂ξ2

(τ), since rζ̂2ζ̂2(τ) 6= r
ζ̂̂ζ̂ζ2ζ̂̂ζ̂ζ2

(τ) [cf. (3.30) and (3.42)].

3.5 On the Ergodicity of the Stochastic SOC-Based

Simulation Model

On the basis of the statistical properties of µ̂̂µ̂µ(t) and ν̂̂ν̂ν(t) described so far, we can

analyze the mean, power, and autocorrelation ergodicity of our stochastic SOC-

based simulation model. Before we proceed to study the subject, we will define

the concepts of mean ergodicity, power ergodicity, and autocorrelation ergodicity

(cf. [Leon94, Sec. 6.6]).
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Definition 3.1 Let xxx(t) be a random process whose mean value mxxx(t) , E{xxx(t)}
is constant over time, i.e., mxxx(t) = mxxx. Then, xxx(t) is said to be mean-ergodic if:

• The mean value m
(k)
x (t) , 〈x(k)(t)〉 of every sample function x(k)(t) of xxx(t)

is equal to mxxx, i.e., m
(k)
x (t) = mxxx ∀k.

Definition 3.2 Let xxx(t) be a random process whose power Pxxx(t) , E{|xxx(t)|2} is

constant over time, i.e., Pxxx(t) = Pxxx. Then, xxx(t) is said to be power-ergodic if:

• The time-averaged power P(k)
x , 〈|x(k)(t)|2〉 of every sample function x(k)(t)

of xxx(t) is equal to Pxxx, meaning that P(k)
x = Pxxx ∀k.

Definition 3.3 Let xxx(t) be a random process whose ACF rxxxxxx(t1, t2) , E{xxx∗(t1) ·
xxx(t2)} depends only on the time difference τ = t2−t1, so that rxxxxxx(t1, t2) = rxxxxxx(τ).

Then, xxx(t) is said to be autocorrelation-ergodic if:

• The time-averaged ACF rx(k)x(k)(τ) , 〈(x(k)(t))∗x(k)(t+τ)〉 of every sample

function x(k)(t) of xxx(t) is equal to rxxxxxx(τ), that is, rx(k)x(k)(τ) = rxxxxxx(τ) ∀k.

We observe that an autocorrelation-ergodic random process is always power-

ergodic, but the converse is not necessarily true.

In accordance to the previous definitions, and from the results presented in

Sections 3.3 and 3.4, we can conclude that the WSS zero-mean process µ̂̂µ̂µ(t)

is mean-ergodic, power-ergodic, and autocorrelation-ergodic provided that the

Conditions 3.2 and 3.3 are satisfied. This is clear, since mµ̂̂µ̂µ = mµ̂(k) = 0, Pµ̂̂µ̂µ =

Pµ̂(k) = σ2
µµµ, and rµ̂̂µ̂µµ̂̂µ̂µ(τ) = rµ̂(k)µ̂(k)(τ) =

∑N
n=1 ĉ

2
n exp{j2πf̂nτ} for all k upon

fulfillment of the above mentioned conditions.

On the other hand, if the Conditions 3.2–3.4 are met, then the simulation

model described by ν̂̂ν̂ν(t) turns out to be power-ergodic and autocorrelation-

ergodic too, as Pν̂̂ν̂ν = Pν̂(k) = σ2
ννν and rν̂̂ν̂νν̂̂ν̂ν(τ) = rν̂(k)ν̂(k)(τ) = rµ̂̂µ̂µµ̂̂µ̂µ(τ) + ρ2 exp{j2π ·

fρτ} ∀k. However, the simulation model is in general not mean-ergodic, be-

cause its mean value mν̂̂ν̂ν(t) may vary over time [Sec. 3.3.2]. Nevertheless, if

the Conditions 3.2–3.4 are satisfied and the specular wave mρ(t) is not Doppler

shifted, so that fρ = 0, then ν̂̂ν̂ν(t) proves to be mean-ergodic. Notice that

mν̂̂ν̂ν(t) = mν̂(k) = ρ2 exp{j2πθρ} ∀k under such circumstances. Needless to say,

ν̂̂ν̂ν(t) is mean-ergodic if ρ = 0, since ν̂̂ν̂ν(t) reduces to µ̂̂µ̂µ(t) when ρ = 0.

In a similar spirit, we can conclude from the results presented in Sections 3.3.6

and 3.4.4, that the SOC model’s squared envelope ξ̂̂ξ̂ξ2(t) is a mean-ergodic and

an autocorrelation-ergodic process, since m
ξ̂̂ξ̂ξ2

= m
ξ̂2

(k) = σ2
ννν and r

ξ̂̂ξ̂ξ2ξ̂̂ξ̂ξ2
(τ) =

r
ξ̂2

(k)
ξ̂2

(k) (τ) ∀k. We point out, nonetheless, that these properties are subject to

the fulfillment of the Conditions 3.2, 3.3, and 3.5–3.7. If any of these conditions is

not met, then the time-averaged ACF r
ξ̂2

(k)
ξ̂2

(k) (t) of the kth sample function of

ξ̂̂ξ̂ξ2(t) will depend on the set of phases {θ̂(k)
n , θρ}, as mentioned in Appendix C. In
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such a case, the requirements stated in Definition 3.3 will not be satisfied, since

the ACF of the ensemble does not depend on the cisoids’ phases [see (3.29)].

Moreover, we can conclude on the basis of (3.29), (3.30), (3.40), and (3.42) that

the squared envelope processes ζ̂̂ζ̂ζ2(t) and ξ̂̂ξ̂ξ2(t) are non-autocorrelation-ergodic if

the simulation model is parameterized in such a way that the Doppler frequencies

f̂n of µ̂̂µ̂µ(t) satisfy the Conditions 3.1–3.3, i.e., if µ̂̂µ̂µ(t) is autocorrelation-ergodic

and its IQ components are uncorrelated.

3.6 Chapter Summary and Conclusions

In this chapter, we described the characteristics of the stochastic SOC-based sim-

ulation model that we have adopted as core structure for the narrowband channel

simulators proposed in this dissertation. Important statistics of the simulation

model, such as its ACF rν̂̂ν̂νν̂̂ν̂ν(τ) and DPSD Sν̂̂ν̂νν̂̂ν̂ν(f), as well as the first-order distri-

butions of its envelope ξ̂̂ξ̂ξ(t) and phase φ̂̂φ̂φ(t), were revised throughout the chapter.

It was shown in Section 3.3.3 that rν̂̂ν̂νν̂̂ν̂ν(τ) and Sν̂̂ν̂νν̂̂ν̂ν(f) are fully specified by the

cisoids gains and Doppler frequencies. In addition, it was shown in the same sec-

tion that the random process ν̂̂ν̂ν(t) characterizing our simulation model possesses

similar stationarity characteristics as the complex Gaussian process ννν(t) describ-

ing our reference model. We demonstrated in Section 3.3.4 that the envelope

ξ̂̂ξ̂ξ(t) of ν̂̂ν̂ν(t) is a first-order stationary process, whereas its phase φ̂̂φ̂φ(t) is in gen-

eral not (unless ρ = 0 or fρ = 0). Similar observations were made in Chapter 2

regarding the first-order stationarity of the envelope ξξξ(t) and phase φφφ(t) of ννν(t).

Interestingly, the numerical results presented in Figs. 3.2 and 3.3 [see Sec. 3.3.4]

indicate that the simulation model is well suited for approximating the first-order

distributions of ξξξ(t) and φφφ(t).

The mean, power, and autocorrelation ergodicity of ν̂̂ν̂ν(t) was also investigated

here. In this regard, it was found that ν̂̂ν̂ν(t) is both power and autocorrelation

ergodic, but its mean ergodicity is restricted to the cases where fρ = 0 or ρ = 0.

The mean and autocorrelation ergodicity of the SOC model’s squared envelope

ξ̂̂ξ̂ξ2(t) was analyzed in this chapter too. The results presented in Sections 3.3.6

and 3.4.4 show that ξ̂̂ξ̂ξ2(t) is mean ergodic and autocorrelation ergodic if the

cisoids’ parameters are computed in conformity with the Conditions 3.2, 3.3, and

3.5–3.7. We observe, nonetheless, that the squared envelope process ξ̂̂ξ̂ξ2(t) is not

autocorrelation ergodic when the simulation model’s random component µ̂̂µ̂µ(t) is

autocorrelation ergodic and its IQ components are uncorrelated.



Chapter 4

Parameter Computation

Methods

4.1 Introduction

Once the structure of the stochastic SOC-based simulation model has been de-

fined, the problem consists in finding values for the cisoids’ parameters that allow

for a proper emulation of the reference model. Basically, the problem lies in spec-

ifying the gains and the Doppler frequencies of the simulation model’s random

component, µ̂̂µ̂µ(t), in such a way that the statistical properties of µ̂̂µ̂µ(t) resemble

those of the zero-mean complex Gaussian process µµµ(t) characterizing the chan-

nel’s diffuse component. The computation of the phases of µ̂̂µ̂µ(t) does not require

any special attention, since these parameters have been defined in Section 3.3.1

as i.i.d. random variables uniformly distributed in [−π, π).

Currently, there exist only two methods suitable for the computation of the

gains and Doppler frequencies of µ̂̂µ̂µ(t), namely, the extended method of exact

Doppler spread (EMEDS) [Pae08a] and the Lp-norm method (LPNM) [Pae02a,

Sec. 5.1.5]. The EMEDS was introduced in [Hogs05] as an extension of the method

of exact Doppler spread (MEDS) [Paet98] for SOC-based channel simulators. The

LPNM, on the other hand, was proposed in [Paet98] as a parameter computation

method for SOS models, and the approach was later applied in [Paet01] to design

SOC-based channel simulators.

The EMEDS and the LPNM have widely been in use to simulate SISO and

MIMO mobile fading channels, e.g., [Rafi08], [Pae04a]. The performance of both

methods is remarkable indeed, as one may conclude from the analysis presented

in [Pae04a] and [Pae08a]. Unfortunately, the applicability of the EMEDS is re-

stricted to the simulation of isotropic scattering channels, while the numerical

optimization techniques, the LPNM relies upon, significantly increase the com-

plexity of the SOC-based simulator.

43
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Aiming at the simulation of both isotropic and non-isotropic scattering chan-

nels, and with the purpose of circumventing the computational burden of the

LPNM, we introduce in this chapter two simple and effective methods to address

the parameter computation problem at hand. One of such methods is built upon

a Riemann sum approximation of the ACF of µµµ(t), while the other is a gener-

alization of the method of equal areas (MEA) described in [Pae02a, Sec. 5.1.3].

Even though the generalized MEA (GMEA) and the Riemann sum approximation

method (RSAM) are presented here in the context of narrowband SISO systems,

these two fundamental methods can easily be applied to the simulation of nar-

rowband and wideband MIMO systems, as will be demonstrated in Chapters 5

and 6.

We herein analyze the performance of the proposed methods not only with

respect to the emulation of the correlation and spectral characteristics of µµµ(t), but

also in terms of the approximation of the envelope and phase distributions of the

Rician fading channel model characterized by the composite process ννν(t) = µµµ(t)+

mρ(t). In addition, we evaluate the accuracy of the methods for approximating

the ACF of the squared envelope of ννν(t). The results produced by the GMEA and

RSAM are compared with results obtained by using the LPNM. For the special

case of the design of simulation models for isotropic scattering channels, it will

be shown that both the GMEA and RSAM simplify to the EMEDS.

4.2 Overview of the Existing Parameter Computation

Methods for SOC-Based Channel Simulators

Before we proceed to introduce the GMEA and the RSAM, we will present in

this section a brief review of the EMEDS and the LPNM.

4.2.1 The EMEDS

In the case on the EMEDS, the parameters ĉn and f̂n are defined as [Hogs05]:

ĉn =
σµµµ√
N

(4.1)

f̂n = fmax cos

(
2π

N

[

n− 1

4

])

(4.2)

for n = 1, . . . , N . One can easily verify, by substituting (4.1) and (4.2) into

(3.18), that the Doppler spread of µ̂̂µ̂µ(t) reduces to the one of isotropic scattering

channels for any N ∈ Z
+, meaning that Dµ̂̂µ̂µµ̂̂µ̂µ = Dµµµµµµ = fmax/

√
2, ∀N ≥ 1. We

recall that Dµ̂̂µ̂µµ̂̂µ̂µ and Dµµµµµµ denote the Doppler spread of µ̂̂µ̂µ(t) and µµµ(t), respectively.

Thus, as the name suggests, the EMEDS exactly reproduces the Doppler spread

of isotropic scattering channels.
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4.2.2 The LPNM

The LPNM, as originally introduced in [Paet01] for the design of SOC channel

simulators, also defines the gains of µ̂̂µ̂µ(t) as in (4.1), but it requires the Doppler

frequencies f̂n to be computed in a way that minimizes the Lp-norm

ǫ(p)rµµµµµµ
,

{

1

τmax

τmax∫

0

∣
∣
∣rµµµµµµ(τ) − rµ̂̂µ̂µµ̂̂µ̂µ(τ)

∣
∣
∣

p
dτ

}1/p

, p ∈ Z
+ (4.3)

where τmax > 0 determines the length of the interval [0, τmax] inside of which the

approximation rµµµµµµ(τ) ≈ rµ̂̂µ̂µµ̂̂µ̂µ(τ) is of interest. We bring back to memory that

rµµµµµµ(τ) and rµ̂̂µ̂µµ̂̂µ̂µ(τ) denote the ACFs of µµµ(t) and µ̂̂µ̂µ(t), in that order.

There exist other versions of the LPNM, which are surveyed in [Pae02a,

Sec. 5.1.5]. In this chapter, we will consider two of them for the performance

comparison with the parameter computation methods herein proposed. For the

first variant under consideration, the gains and the Doppler frequencies of µ̂̂µ̂µ(t)

are to be computed in such a way that the cost function

ǫ(p)rµµµµµµ, pζζζ
, W1 · ǫ(p)rµµµµµµ

+W2 · ǫ(p)pζζζ
(4.4)

is minimized, where W1 and W2 are weighting factors and

ǫ(p)pζζζ
,

{ ∞∫

0

∣
∣
∣pζζζ(z) − p

ζ̂̂ζ̂ζ
(z)
∣
∣
∣

p
dz

}1/p

, p ∈ Z
+. (4.5)

We remember that pζζζ(z) and p
ζ̂̂ζ̂ζ
(z) stand for the first-order PDFs of the envelopes

of µµµ(t) and µ̂̂µ̂µ(t), respectively. The second variant aims to minimize ǫ
(p)
rµµµµµµ, pζζζ

too,

but it considers only N − 1 pairs of parameters (ĉn, f̂n) for that purpose. To

guarantee that the boundary conditions rµ̂̂µ̂µµ̂̂µ̂µ(0) = rµµµµµµ(0) and r̈µ̂̂µ̂µµ̂̂µ̂µ(0) = r̈µµµµµµ(0) are

fulfilled, the remaining parameters ĉN and f̂N are obtained by following:

ĉN =

√
√
√
√σ2

µµµ −
N−1∑

n=1

ĉ2n (4.6)

f̂N =
1

ĉN

√
√
√
√−r̈µµµµµµ(0)

4π2
−
N−1∑

n=1

(

ĉnf̂n

)2
. (4.7)

The minimums of the cost function in (4.4) can be found by applying the optimiza-

tion algorithm proposed in [Laga98], the which is implemented as fminsearch

function in MATLABR©. We will refer to the original version of the LPNM as

the LPNM I, while we will call the first and second variants described above the
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LPNM II and LPNM III, respectively. It is worth mentioning that, in accordance

to [Pae02a, Sec. 5.1.5], the LPNM III is the most efficient variant of the LPNM.

4.3 The GMEA

4.3.1 Description

The numerical results presented in Section 3.3.4 indicate that the envelope dis-

tribution of the simulation model’s random component is closely in line with the

Rayleigh distribution [2.23] when the gains ĉn are given as in (4.1) and N ≥ 10

(see Fig. 3.1(a) for the case cR = 0). In fact, it is shown in [Paet07] that the rms

error function

ǫ(2)pζζζ
=

{ ∞∫

0

[

pζζζ(z) − p
ζ̂̂ζ̂ζ
(z)
]2
dz

}1/2

(4.8)

is around 0.02 if N = 10, and smaller than 0.01 if N > 20. Motivated by these

results, we choose the same gains ĉn as in (4.1) for the GMEA.

Concerning the computation of the Doppler frequencies f̂n, we recall that the

ACF of µµµ(t) is given in terms of the PDF pααα(α) of the random AOAs αααn, or

more specifically, in terms of the even part gααα(α) of pααα(α) [see (2.7)–(2.9)]. On

the other hand, the ACF of µ̂̂µ̂µ(t) is completely specified by the parameters ĉn,

f̂n, and N [see (3.5)]. In view of this, it is reasonable to think that in order for

rµ̂̂µ̂µµ̂̂µ̂µ(τ) to resemble the ACF of the channel’s diffuse component for a given value

of N , the gains and Doppler frequencies of µ̂̂µ̂µ(t) should provide information about

the function gααα(α). In the spirit of this reasoning, and since the gains in (4.1)

are blind to the AOA statistics, we will compute the Doppler frequencies of µ̂̂µ̂µ(t)

such that the underlying deterministic AOAs α̂n satisfy the equation

α̂n∫

α̂n−1

gααα(α)dα =
1

2N
, n = 2, . . . , N (4.9)

with α̂n ∈ (0, π). We recall that the uncorrelation between the IQ components

of µ̂̂µ̂µ(t) is a fundamental feature for the design of simulation models for fad-

ing channels having diffuse components characterized by symmetrical DPSDs

[Sec. 3.3.3.1]. We show in Appendix E that if the DPSD of µµµ(t) is symmetrical,

and the deterministic AOAs α̂n satisfy (4.9), then the IQ components of µ̂̂µ̂µ(t) are

mutually uncorrelated if and only if

α̂1∫

0

gααα(α)dα =
1

4N
. (4.10)
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We will consider (4.10) as an initial condition for computing the AOAs α̂n to

ensure that the parameter computation method presented in this section is well

suited for the simulation of fading channels characterized by symmetrical DPSDs.

On the other hand, it was pointed out in Section 3.4.2 that the simulation

model described by µ̂̂µ̂µ(t) is mean-ergodic and autocorrelation-ergodic if:

Condition 3.2 : f̂n 6= 0, ∀n (4.11)

Condition 3.3 : f̂n 6= f̂m, n 6= m. (4.12)

An important implication of the requirement stated in (4.9) is that the AOAs α̂n
will satisfy α̂n 6= α̂m for n 6= m, and α̂n > 0 ∀n. Thus, by demanding the AOAs

α̂n to meet (4.9), we implicitly guarantee the fulfillment of the Condition 3.3, as

the equality f̂n = f̂m holds for some n 6= m if and only if α̂n = ±α̂m. Furthermore,

the Condition 3.2 is unsatisfied if and only if α̂n = π/2 for some n. This situation

is rather unlikely when the DPSD of µµµ(t), Sµµµµµµ(f), is asymmetrical, and it is never

the case when Sµµµµµµ(f) is symmetrical and the number of cisoids N is even.

On the basis of (4.9) and (4.10), we can compute the AOAs α̂n by employing

numerical root-finding techniques to solve

α̂n∫

0

gααα(α)dα =
1

2N

(

n− 1

2

)

, n = 1, . . . , N. (4.13)

The function gααα(α) may itself be regarded as being a PDF, the CDF of which is

given by Gααα(α) ,
∫ α
−∞ gααα(x)dx. The evaluation of Gααα(α) for α ≤ α̂n results into

Gααα(α̂n) = 1
2N

(
n+N − 1

2

)
. Hence, if a closed-form solution exist for the inverse

function G−1
ααα of Gααα, then the AOAs α̂n can be computed by evaluating

α̂n = G−1
ααα

(
1

2N

[

n+N − 1

2

])

, n = 1, . . . , N. (4.14)

Once the AOAs α̂n are known, the Doppler frequencies f̂n can easily be ob-

tained by using the transformation f̂n = fmax cos(α̂n) [Eq. (3.3)]. Often, however,

the channel’s ACF and/or DPSD are introduced without giving any explicit in-

formation about the distribution of the random AOAs αααn, such as in [Blau06].

For those cases, we observe that

α̂n∫

0

gααα(α)dα =

fmax∫

f̂n

gααα(arccos(f/fmax))

fmax

√

1 − (f/fmax)2
df

=
1

2

fmax∫

f̂n

pfff (f)df. (4.15)
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Taking into account the result presented in (4.13), and given that the DPSD of

µµµ(t) is equal to Sµµµµµµ(f) = σ2
µµµ pfff (f) [cf. Eqs. (2.9) and (2.15)], we have

f̂n∫

−fmax

Sµµµµµµ(f)df =
σ2
µµµ

N

(

N − n+
1

2

)

, n = 1, . . . , N (4.16)

where f̂n ∈ (−fmax, fmax). The integral in (4.16) describes a sort of cumulative

power function that is proportional to the CDF Pfff (f) ,
∫ f
−∞ pfff (x) dx of the

random Doppler frequencies of µµµ(t); notice that

Pfff (f) =
1

σ2
µµµ

f∫

−∞

Sµµµµµµ(y)dy. (4.17)

Thus, for the special case where the inverse P−1
fff of Pfff exists, the Doppler fre-

quencies of µ̂̂µ̂µ(t) can be computed by evaluating

f̂n = P−1
fff

(
1

N

[

N − n+
1

2

])

, n = 1, . . . , N. (4.18)

Otherwise, the deterministic Doppler frequencies f̂n are to be computed by solv-

ing (4.16) with the aid of numerical root-finding techniques.

4.3.2 Differences Between the GMEA and Other Versions of the

MEA

The parameter computation method presented in this section establishes the so-

called GMEA. This method is basically an extension of the MEA described in

[Pae02a, Sec. 5.1.3] with respect to the simulation of Rayleigh fading channels

characterized by asymmetrical DPSDs. Such an extension was necessary, since

the original MEA is specific for the SOS-based simulation of fading channels

with symmetrical DPSDs. In fact, the deterministic AOAs α̂n obtained by using

the MEA are confined within (0, π2 ), an interval that does not convey enough

information about the distribution of the random AOAs αααn as to allow for an

adequate simulation of channels having asymmetrical DPSDs.

We notice that a previous attempt to generalize the MEA was made in

[Pae02c, Sec. 4-B]. The generalization proposed in that paper was designed by

assuming that pααα(α) is symmetrical, implying that pααα(α) = gααα(α). Under this

consideration, the parameters α̂n are computed there by solving

α̂n∫

0

pααα(α)dα =
1

N
, α̂n ∈ (0, π) (4.19)
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for n = 1, . . . , N/2. The remaining N/2 AOAs α̂n are specified as mirrored ver-

sions of the solutions of (4.19), i.e., α̂n = −α̂N/2+1−n, n = 1, . . . , N/2. Such a pa-

rameter computation approach is obviously inadequate when pααα(α) is not an even

function. What is more, taking α̂n = −α̂N/2+1−n, n = 1, . . . , N/2 produces du-

plicated Doppler frequencies, since cos(α̂n) = cos(−α̂N/2+1−n), n = 1, . . . , N/2.

This characteristic not only results into a non-autocorrelation-ergodic simulator,

but also reduces the efficiency of the simulation model. Another problem of the

method in [Pae02c, Sec. 4-B] is that the solutions of (4.19) do not guarantee the

uncorrelation between the IQ components of µ̂̂µ̂µ(t) when the DPSD of the channel’s

diffuse component is symmetrical. For this reason, the generalized MEA there

presented proves to be unsuitable for the simulation of channels characterized by

such a type of DPSDs.

To illustrate the above mentioned problems, we present in Fig. 4.1 a compar-

ison between the ACFs of µµµ(t) and µ̂̂µ̂µ(t) by considering the method proposed in

[Pae02c, Sec. 4-B] with N = 20 and the von Mises distribution of the AOA with

pairs of parameters: mα = 30◦, κ = 10; and mα = 90◦, κ = 10. The former

pair of parameters is representative of the case pααα(α) 6= pααα(−α), while the latter

pair exemplifies the case where the IQ components of µµµ(t) are uncorrelated. It

can be observed from Fig. 4.1 that the generalization of the MEA described in

[Pae02c] produces a poor approximation to the ACF of µµµ(t). In contrast, it will

be shown in Section 4.5.1.1 that the GMEA proposed in this chapter provides a

good approximation to rVM
µµµµµµ (τ) in both cases.

4.3.3 Implementation

In what follows, we will apply the GMEA to the von Mises and Laplacian AOA

distributions with the purpose of demonstrating the method’s implementation.

4.3.3.1 von Mises Distributed AOAs

In the case of the von Mises PDF, pVM
ααα (α) [Eq. 2.43], neither the CDF of the even

part of such a distribution, nor the cumulative power function of the resulting

DPSD of µµµ(t) [Eq. (2.45)], can be evaluated analytically. The Doppler frequencies

of µ̂̂µ̂µ(t) shall therefore be computed by numerically finding the values of f̂n that

solve

1

πfmaxI0(κ)

f̂n∫

−fmax

cosh
(

κ sin(mα)
√

1 − (f/fmax)2
) exp {κ cos(mα)f/fmax}

√

1 − (f/fmax)2
df

− 1

N

(

N − n+
1

2

)

= 0, |f̂n| < fmax (4.20)
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Figure 4.1: Comparison between the ACF of the channel’s diffuse component
and the ACF of the SOC-based simulation model’s random com-
ponent by considering the von Mises PDF of the AOA and the
generalized version of the MEA proposed in [Pae02c] with N = 20.
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for n = 1, . . . , N . Alternatively, one may compute the underlying AOAs α̂n of

µ̂̂µ̂µ(t) by solving

1

2πI0(κ)

α̂n∫

0

exp{κ cos(α) cos(mα)} cosh
(
κ sin(α) sin(mα)

)
dα

− 1

2N

(

n− 1

2

)

= 0, α̂n ∈ (0, π) (4.21)

for n = 1, . . . , N . This latter approach is indeed the one we will follow in this dis-

sertation. We recall that the von Mises PDF reduces to the uniform distribution

when κ = 0. In that case, both (4.20) and (4.21) have the analytical solution

f̂n = fmax cos

(
π

N

[

n− 1

2

])

, n = 1, . . . , N. (4.22)

Without going into details, we observe that (4.22) and (4.2) produce the same set

of Doppler frequencies {f̂n}Nn=1. Therefore, we can state that the GMEA contains

the EMEDS as a special case for the simulation of isotropic scattering channels.

4.3.3.2 Laplacian Distributed AOAs

In the case of the Laplacian distribution, pLA
ααα (α) [see (2.51], the Doppler frequen-

cies f̂n are to be computed by finding the roots of

2

csfmax

f̂n∫

fmax

exp
{
−
√

2 arccos (f/fmax) /σs
}

√

1 − (f/fmax)2
df − 1

N

(

N − n+
1

2

)

= 0, |f̂n| < fmax (4.23)

for n = 1, . . . , N . One could also proceed by solving

1

cs

α̂n∫

0

exp

{

− 1

σs

√
2|α|

}

dα − 1

2N

(

n− 1

2

)

= 0, α̂n ∈ (0, π) (4.24)

for n = 1, . . . , N . In either case, we obtain the closed-form solution

f̂n = fmax cos

(
σs√
2

ln

{

1 − cs√
2Nσs

(

n− 1

2

)})

(4.25)

for n = 1, . . . , N , where ln{·} is the natural logarithm.

Figures 4.2 and 4.3 show a comparison between the DPSDs of the simulation

model and the reference model by applying the GMEA to the von Mises (Fig. 4.2)

and Laplacian (Fig. 4.3) AOA distributions. Such figures graphically demonstrate
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Figure 4.2: Comparison between the DPSD of the channel’s diffuse component
(blue-solid lines) and the DPSD of the random component of the
SOC-based simulation model (black-dotted lines with ‘◦’ markers)
by considering the von Mises PDF of the AOA and the GMEA
(fmax = 91 Hz, σ2

µµµ = 1, and N = 10).

that despite the fact that the GMEA assigns the same amount of power to each

of the cisoids in µ̂̂µ̂µ(t), the method specifies the Doppler frequencies f̂n in such a

way that the power of µ̂̂µ̂µ(t) is more densely concentrated within the zones where

the DPSD of µµµ(t) is higher. This characteristic enables the method to provide a

good approximation to the correlation and spectral properties of µµµ(t), as will be

demonstrated in Section 4.5.
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Figure 4.3: Comparison between the DPSD of the channel’s diffuse component
µµµ(t) (blue-solid lines) and the DPSD of the random component
µ̂̂µ̂µ(t) of the SOC-based simulation model (black-dotted lines with
‘◦’ markers) by considering the Laplacian PDF of the AOA and the
GMEA (fmax = 91 Hz, σ2

µµµ = 1, and N = 10).

4.4 The RSAM

4.4.1 Description

4.4.1.1 Basic Approach

For the second parameter computation method, the RSAM, we will assume that

the PDF of the random AOAs αααn contains no singularities, so that one can regard

the integral underlying the ACF of the channel’s diffuse component [see (2.7)] as

being a proper integral. Under such an assumption, the ACF of µµµ(t) can be
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written as a midpoint Riemann sum [Edwa98, Sec. 5.4] of the form

rµµµµµµ(τ) =
2πσ2

µµµ

N
lim
N→∞

N∑

n=1

gααα

( π

N

[

n− 1

2

])

exp

{

j2πfmax cos
( π

N

[

n− 1

2

])

τ

}

.

If we drop the limit from the equation above, then we may presume that

rµµµµµµ(τ) ≈ 2πσ2
µµµ

N

N∑

n=1

gααα

( π

N

[

n− 1

2

])

exp

{

j2πfmax cos
( π

N

[

n− 1

2

])

τ

}

. (4.26)

A comparison of (4.26) and the expression given in (3.5) for the ACF of µ̂̂µ̂µ(t)

suggests that rµ̂̂µ̂µµ̂̂µ̂µ(τ) will render a good approximation to rµµµµµµ(τ) if we choose:

α̂n =
π

N

(

n− 1

2

)

(4.27)

ĉn = σµµµ

√

gααα(α̂n)
∑N

m=1 gααα(α̂m)
(4.28)

for n = 1, . . . , N . The methodology given by (4.27) and (4.28) establishes a pa-

rameter computation method that we will refer to as the basic RSAM (BRSAM).

It is worth mentioning that the idea behind the BRSAM has recently been applied

in [Gut07a] to simulate mobile MIMO Rayleigh fading channels, yielding remark-

able results concerning the emulation of the spatial CCF and temporal ACF of

the channel. Interestingly, the Doppler frequencies f̂n = fmax cos
(
π
N

[
n− 1

2

])
ob-

tained by using this method always satisfy the Condition 3.3, and the fulfillment

of the Condition 3.2 is guaranteed too provided that [0, π) is partitioned into an

even number of segments, implying that N = 2M , M ∈ Z
+.

4.4.1.2 Problems of the Basic Approach

From experiments, we have observed that irrespective of the AOA statistics, the

BRSAM produces an excellent approximation to the ACF of µµµ(t) for values of τ

close to the origin, say, τ ∈
[

− N
4fmax

, N
4fmax

]

. However, our experiments have also

revealed that this method performs poorly regarding the emulation of the enve-

lope distribution of µµµ(t) if the range of gααα(α) is huge. Under such circumstances,

there is a large difference between the gains ĉn of the cisoids. While this charac-

teristic does not entail any problems for the emulation of rµµµµµµ(τ), it does affect the

ability of µ̂̂µ̂µ(t) for approximating the PDF of the envelope of µµµ(t), as the envelope

distribution of the simulation model’s random component is heavily influenced by

the gains ĉn [see (3.21)]. Figures 4.4 and 4.5 illustrate the problem by considering

the von Mises PDF pVM
ααα (α) with parameters mα = 0◦ and κ ∈ {10, 20}. Such

parameters characterize the AOA statistics of propagation scenarios that exhibit
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ĉ9
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Figure 4.4: Relationship between the gains ĉn and AOAs α̂n of the SOC-
based simulation model’s random component, µ̂̂µ̂µ(t), by applying
the BRSAM to the von Mises PDF of the AOA with parameters
mα = 0◦ and κ ∈ {10, 20}.
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Figure 4.5: Comparison between the Rayleigh PDF (pζζζ(z)) and the first-order
PDF of the envelope of the simulation model’s random component
(p
ζ̂̂ζ̂ζ
(z)) by applying the BRSAM to the von Mises PDF of the AOA

with parameters mα = 0◦ and κ ∈ {10, 20}.

severe non-isotropic scattering conditions. Figure 4.4 shows graphs of the rela-

tionship between the gains ĉn and AOAs α̂n obtained by applying the BRSAM

with N = 10. Plots of the Rayleigh distribution [Eq. (2.23)] and the PDF of the

envelope of µ̂̂µ̂µ(t) [Eq. (3.21)] are presented in Fig. 4.5.
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4.4.1.3 Improved Approach

To overcome the aforementioned problem, we will present in what follows an

improved version of the BRSAM. To that end, we will assume that the PDF of

the AOA is defined in such a way that its even part has at most one maximum in

[0, π). Thereby, for any given threshold γ ∈
(
0, sup{gααα(α)}α∈[0,π)

)
, where sup{·}

denotes the supremum, we can identify one and only one subinterval IU in [0, π)

satisfying

gααα(α) > γ, ∀α ∈ IU (4.29)

implying that gααα(α) is above the threshold only along IU . If the value of γ is

chosen small, so that gααα(α) ≈ 0 ∀α /∈ IU , then one can state that

rµµµµµµ(τ) ≈ σ2
µµµ

∫

α∈IU

gααα(α) exp{j2πfmax cos(α)τ}dα. (4.30)

In such a case, it makes sense to compute the gains and AOAs of the stochastic

SOC model described by µ̂̂µ̂µ(t) by taking into account only the subinterval IU .

Following this reasoning, we will redefine the AOAs α̂n as follows

α̂n = αℓ +
αu − αℓ
N

(

n− 1

2

)

, αu > αℓ (4.31)

for n = 1, . . . , N , where αℓ and αu designate the lower and the upper bound-

aries of IU . The methodology given by (4.28) and (4.31) constitutes the RSAM.

We observe that irrespective of the value of γ, the Doppler frequencies f̂n =

fmax cos
(
αℓ + αu−αℓ

N

[
n− 1

2

] )
obtained by applying the RSAM always meet the

Condition 3.3, such as in the case of the BRSAM. Nevertheless, in contrast to

the BRSAM, the RSAM does not ensure the fulfillment of the Condition 3.2.

Choosing a proper value for the threshold γ is clearly the critical step in the

RSAM. In fact, when setting the threshold, one has to be aware that the method

will be affected by the same problems of the BRSAM if γ is too small. On the

other hand, if γ is given a large value, then the RSAM will become more precise

regarding the approximation of the envelope distribution of µµµ(t), but it will loose

accuracy with respect to the approximation of rµµµµµµ(τ). While determining an

optimal value for γ is not a trivial issue, we have found from practice that setting

γ = 1 × 10−3 results in case of the von Mises and Laplacian AOA distributions

in a good approximation to rµµµµµµ(τ) and pζζζ(z), as will be shown in Section 4.5.

The parameters α̂n and ĉn can alternatively be computed by applying the

RSAM directly on the DPSD of µµµ(t). We can claim that if there exist only

one subinterval IU in [0, π) for which (4.29) holds, then there exist only one
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subinterval VU = (fℓ, fu] in (−fmax, fmax] satisfying

Sµµµµµµ(f) ≥
γ · 2σ2

µµµ

fmax

√

1 − (f/fmax)2
, ∀f ∈ VU . (4.32)

The transformation α = arccos (f/fmax) establishes a one-to-one relation between

the points in VU and IU . Thus, by means of such a transformation, we can rewrite

(4.28) and (4.31) as follows:

ĉn = σµµµ

√
√
√
√
√

Sµµµµµµ
(
arccos(f̂n/fmax)

)
√

f2
max − f̂2

n

∑N
m=1 Sµµµµµµ

(
arccos(f̂m/fmax)

)
√

f2
max − f̂2

m

(4.33)

α̂n =
1

π
arccos

(
fu
fmax

)

+
1

N

(

n− 1

2

)

× arccos




fℓfu +

√
(
f2
max − f2

ℓ

)(
f2
max − f2

u

)

f2
max



 (4.34)

for n = 1, . . . , N .

The RSAM has been presented here upon the implicit assumption that there

exists only one cluster of scatterers in the proximities of the receiver. However, it

has been reported from measurements [Spen00] that several clusters of scatterers

may surround the mobile terminal. Consequently, the function gααα(α) could have

two or more maximums in [0, π), so that various disjoint subintervals IU,m might

be identified in [0, π) satisfying gααα(α) > γ ∀α ∈ IU,m, m = 1, . . . ,M , 2 ≤M <∞.

For the simulation of such a kind of channels, we refer the reader to [Gut09a],

where the RSAM has been extended with respect to multiple clusters of scatters.

4.4.2 Implementation

In order to demonstrate the implementation of the RSAM, let us consider again

the von Mises and the Laplacian AOAs distributions. The parameters ĉn and α̂n
can be computed by applying the method either on the PDF of the AOA or on

the DPSD of µ̂̂µ̂µ(t). In this dissertation, we will focus our attention on the former

approach.

4.4.2.1 von Mises Distributed AOAs

In the case of the von Mises PDF1, pVM
ααα (α), the boundaries of the subinterval

IU = [αℓ, αu) are to be found by identifying the points in [0, π) at which the

function gVM
ααα (α) crosses the threshold γ from up to down (corresponding to αu)

1We note that the von Mises PDF pVM
ααα (α) and its even part gVM

ααα (α) have only one maximum
in [0, π), so that at most one subinterval IU can be identified in [0, π) satisfying (4.29).
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and/or from down to up (corresponding to αℓ). This has to be done in general

by solving gVM
ααα (α) − γ = 0 with the aid of numerical root-finding techniques.

However, if mα ∈ {−π, 0, π} and κ > 0, then the von Mises PDF proves to

be an even function that decreases (for mα = 0) or increases (for mα = ±π)

monotonically in [0, π). Thus, for such values of mα and κ, there is at most one

real solution to gVM
ααα (α) − γ = 0, α ∈ (0, π), which if happens to exist is then

given by

α+ = arccos

(
ln (2πγIo(κ))

κ cos(mα)

)

. (4.35)

Consequently, the boundaries of IU can be found by following

αℓ =







α+, if g8VM
ααα (α+) > 0

0,

{

if g8VM
ααα (α+) ≤ 0

or gVM
ααα (α) 6= γ, ∀α ∈ [0, π)

(4.36)

αu =







α+
k , if g8VM

ααα (α+) < 0

π,

{

if g8VM
ααα (α+) ≥ 0

or gVM
ααα (α) 6= γ, ∀α ∈ [0, π)

(4.37)

for κ > 0, where α+ is given by (4.35) and

g8VM
ααα (α) =

dgVM
ααα (α)

dα
(4.38)

=
−κ

2πI0(κ)

{

sin(α−mα) exp{κ cos(α−mα)}

+ sin(α+mα) exp{κ cos(α+mα)}
}

. (4.39)

On the other hand, if κ = 0, then the boundaries of IU are equal to αℓ = 0

and αu = π, and it can be shown that f̂n = fmax cos
(
π
N

[
n− 1

2

])
and ĉn =

σµµµ
√

1/N , n = 1, . . . , N . Under such circumstances, the RSAM and the GMEA

are equivalent to each other, and the EMEDS happens to be a special case also of

the RSAM for the design of simulation models for isotropic scattering channels. In

fact, the RSAM and the EMEDS are developed upon similar approaches. This

is evident, as the latter method has essentially been derived from a Riemann

sum approximation of the ACF rµµµµµµ(τ) = J0(2πfmaxτ) characterizing isotropic

scattering channels [Pae02a, Sec. 5.1.6].

4.4.2.2 Laplacian Distributed AOAs

In the case of the Laplacian distribution, pLA
ααα (α), the lower boundary of IU is in all

cases equal to αℓ = 0, since the even part of pLA
ααα (α) is a monotonically decreasing
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function in [0, π) and therefore no up-crossings occur within that interval. In

turn, the upper boundary of IU is found to be given as

αu = − σs√
2

ln(γcs) (4.40)

which is the solution of gLA
ααα (α)− γ = 0. If the equation above has no solution in

[0, π), then αu is set equal to π.

A comparison between the DPSDs of µ̂̂µ̂µ(t) and µµµ(t) by applying the RSAM

to the von Mises and Laplacian PDFs is given in Figs. 4.6 and 4.7, respectively.

One may notice from these figures that the DPSD of µ̂̂µ̂µ(t) exhibits a trend similar

as the one described by the DPSD of µµµ(t). Such a characteristic is reflected by

the power of the cisoids of µ̂̂µ̂µ(t).

4.5 Performance Analysis

In this section, we will analyze the performance of the proposed parameter com-

putation methods with respect to the emulation of the correlation and spectral

characteristics ofµµµ(t), as well as in terms of the approximation of the fading statis-

tics of the reference model described by the composite process ννν(t) = µµµ(t)+mρ(t).

In addition, the performance of such methods will be compared with that of the

LPNM I, LPNM II, and LPNM III. For the aforementioned purposes, we will

assume that the channel’s AOA statistics follow the von Mises distribution. We

focus our attention on this distribution since a wide variety of propagation sce-

narios can be studied from it, spanning from isotropic to non-isotropic scattering

scenarios. However, results obtained by considering the Laplacian PDF can be

found in2 [Gut09b]. The conclusions drawn in that paper about the methods’

performance are the same as the ones presented in this chapter.

We carry out our simulations by choosing fmax = 91 Hz, σ2
µµµ = 1, and taking

into account six different propagation scenarios characterized by the von Mises

PDF with pairs of parameters: (mα = 0◦, κ = 0); (mα = 0◦, κ = 5); (mα =

0◦, κ = 20); (mα = 0◦, κ = 10); (mα = 30◦, κ = 10); (mα = 90◦, κ = 10). The

first and the last of such pairs of parameters are related to channels having diffuse

components characterized by symmetrical DPSDs, whereas the other four pairs

are associated to channels with asymmetrical DPSDs, as illustrated in Fig. 2.5.

Regarding the methods’ configuration, we set γ = 1 × 10−3 for the RSAM,

whilst we consider p = 2 and τmax = N/(4fmax) for the three versions of the

LPNM. In the case of the LPNM I, we use the Doppler frequencies produced

by the GMEA as initial values to minimize the Lp-norm ǫ
(p)
rµµµµµµ defined in (4.3).

On the other hand, for the LPNM II and LPNM III, we employ the gains and

2We point out, nonetheless, that due to the space limitation, the results obtained for the
LPNM II and LPNM III are not presented in [Gut09b].
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Figure 4.6: Comparison between the DPSD of the channel’s diffuse component
(blue-solid lines) and the DPSD of the random component of the
SOC-based simulation model (black-dotted lines with ‘◦’ markers)
by considering the von Mises PDF of the AOA and the RSAM
(fmax = 91 Hz, σ2

µµµ = 1, γ = 1 × 10−3, and N = 10).

Doppler frequencies produced by the RSAM as initial conditions to minimize the

cost function ǫ
(p)
rµµµµµµ,pζζζ

introduced in (4.4). Following the experiments performed in

[Pae02a, Sec. 5.1.5], we set the underlying weighting factors W1 and W2 of ǫ
(p)
rµµµµµµ,pζζζ

to W1 = 1/4 and W2 = 3/4.
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Figure 4.7: Comparison between the DPSD of the channel’s diffuse component
(blue-solid lines) and the DPSD of the random component of the
SOC-based simulation model (black-dotted lines with ‘◦’ markers)
by considering the Laplacian PDF of the AOA and the RSAM
(fmax = 91 Hz, σ2

µµµ = 1, γ = 1 × 10−3, and N = 10).

4.5.1 Emulation of the Correlation and Spectral Characteristics

of the Reference Model’s Random Component

4.5.1.1 ACF

Figures 4.8–4.10 show a comparison between the absolute value of the ACF of

the channel’s diffuse component [see (2.46)] and the absolute value of the ACF of

µ̂̂µ̂µ(t) by applying the parameter computation methods under consideration with

N = 20. For the sake of clarity, we present the results obtained for the three

version of the LPNM in different figures. In addition to theoretical curves of
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Figure 4.8: Comparison among the GMEA, RSAM, and LPNM I in terms of
the emulation of the ACF of channel’s diffuse component (reference
model) by considering the von Mises PDF of the AOA with different
pairs of parameters mα and κ (fmax = 91 Hz, σ2

µµµ = 1, N = 20,
γ = 1 × 10−3, p = 2, and τmax = N/(4fmax)).
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Figure 4.9: Comparison among the GMEA, RSAM, and LPNM II in terms of
the emulation of the ACF of channel’s diffuse component (reference
model) by considering the von Mises PDF of the AOA with different
pairs of parameters mα and κ (fmax = 91 Hz, σ2

µµµ = 1, N = 20,
γ = 1 × 10−3, p = 2, and τmax = N/(4fmax)).
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Figure 4.10: Comparison among the GMEA, RSAM, and LPNM III in terms
of the emulation of the ACF of channel’s diffuse component (ref-
erence model) by considering the von Mises PDF of the AOA with
different pairs of parameters mα and κ (fmax = 91 Hz, σ2

µµµ = 1,
N = 20, γ = 1 × 10−3, p = 2, and τmax = N/(4fmax)).
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|rµ̂̂µ̂µµ̂̂µ̂µ(τ)| [see (3.5)], Figs. 4.8–4.10 present empirical graphs of the absolute value

of the time-averaged ACF rµ̂µ̂(τ) of the sample functions of µ̂̂µ̂µ(t). Such graphs

were generated by considering a single realization of µ̂̂µ̂µ(t). It can be seen in the

figures that the graphs of |rµ̂µ̂(τ)| match perfectly the ones of |rµ̂̂µ̂µµ̂̂µ̂µ(τ)|, meaning

that the autocorrelation-ergodicity of µ̂̂µ̂µ(t) is preserved by all methods.

Concerning the methods’ performance, one may observe from the results pre-

sented in the three figures that the RSAM outperforms by far the LPNM and the

GMEA. In fact, in the case of the RSAM, no differences between |rVM
µµµµµµ (τ)| and

|rµ̂̂µ̂µµ̂̂µ̂µ(τ)| are visible within the interval [0, 5/fmax]. The six curves of |rµ̂̂µ̂µµ̂̂µ̂µ(τ)| corre-
sponding to such a method can be distinguished from those of |rVM

µµµµµµ (τ)| only with

the aid of the markers ‘⋄’ and ‘·’. Even though the performance of the LPNM and

GMEA is not as impressive as that of the RSAM, these two methods produced

a quite good approximation to rVM
µµµµµµ (τ). Interestingly, the LPNM II provided

very good results for τ ∈ [1/fmax, 5/fmax], although the quality of the relation-

ship |rµ̂̂µ̂µµ̂̂µ̂µ(τ)| ≈ |rVM
µµµµµµ (τ)| is rather poor around the origin. Indeed, Fig. 4.8 clearly

shows that the LPNM II does not satisfy the boundary condition rµ̂̂µ̂µµ̂̂µ̂µ(0) = rµµµµµµ(0),

meaning that
∑N

n=1 ĉ
2
n 6= σ2

µµµ.

Without surprise, we can see in Figs. 4.8–4.10 that the LPNM performs better

than the GMEA. Nonetheless, the graphs of |rµ̂̂µ̂µµ̂̂µ̂µ(τ)| associated to the GMEA are

in general closer to those of |rVM
µµµµµµ (τ)| at the vicinities of the origin than the graphs

obtained by using the LPNM I and the LPNM II. This remarkable characteristic

suggests that the GMEA is better suited than those versions of the LPNM to

approximate the statistics of µµµ(t) that depend only on the value, slope, and

curvature of rµµµµµµ(τ) at τ = 0 (e.g., the average Doppler shift, Doppler spread,

LCR, and ADF).

The resulting rms error, ǫ
(2)
rµµµµµµ , between rµ̂̂µ̂µµ̂̂µ̂µ(τ) and rVM

µµµµµµ (τ) [see (4.3)] is shown

in Fig. 4.11. The error ǫ
(2)
rµµµµµµ is plotted there by consideringN ∈ {10, 20, 30, 40, 50}.

To enable a fair comparison with the LPNM, we set τmax to N/(4fmax). The

obtained results confirm that the RSAM is better suited than the other methods

to approximate rVM
µµµµµµ (τ). The results also show that the LPNM produces a smaller

error than the GMEA, as was to be expected. Among the three versions under

analysis, the LPNM II performed the best, although in some cases it registered a

larger error than the LPNM I. Interestingly, the LPNM III produced in general

worse results than the other two versions of the LPNM, specially when the number

of cisoids was small (N ≤ 30). This is due to the fact that the LPNM III has

to sacrifice some accuracy in the approximation of rµµµµµµ(τ) to ensure that the

boundary conditions rµ̂̂µ̂µµ̂̂µ̂µ(τ) = rµµµµµµ(τ) and r̈µ̂̂µ̂µµ̂̂µ̂µ(τ) = r̈µµµµµµ(τ) are fulfilled. However,

such a sacrifice pays off when it comes to the emulation of the average Doppler

shift and Doppler spread of µµµ(t), as will be shown next.
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Figure 4.11: Root mean square error function between the ACF of the chan-
nel’s diffuse component and the ACF of the SOC-based simulation
model’s random component by considering the von Mises PDF of
the AOA and the GMEA, RSAM, and LPNM (τmax = N/(4fmax)).
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4.5.1.2 Average Doppler Shift and Doppler Spread

With respect to the emulation of the spectral characteristics of µµµ(t), we plot in

Fig. 4.12 the absolute error

ǫAµµµµµµ = |Aµµµµµµ −Aµ̂µµµ̂µµ| (4.41)

between the average Doppler shift of µµµ(t) [Eq. (2.49)] and the average Doppler

shift of µ̂̂µ̂µ(t) [Eq. 3.17]. In addition, results obtained for the relative error

ǫDµµµµµµ =
|Dµµµµµµ −Dµ̂µµµ̂µµ|

Dµµµµµµ
(4.42)

between the Doppler spreads of µµµ(t) [Eq. 2.50] and µ̂̂µ̂µ(t) [Eq. 3.18] are shown in

Fig. 4.13. Again, we have considered N ∈ {10, 20, 30, 40, 50} to evaluate these

error functions.

The results presented in Figs. 4.12 and 4.13 indicate that the RSAM performs

better than the LPNM and GMEA regarding the emulation of Aµµµµµµ and Dµµµµµµ.

Furthermore, the obtained results confirm that GMEA is in general better suited

than the LPNM I and LPNM II to approximate the average Doppler shift and the

Doppler spread of µµµ(t). Interestingly, the performance of the RSAM is essentially

the same irrespective of the value of N , meaning that the number of cisoids exerts

little influence on the slope and curvature of rµ̂̂µ̂µµ̂̂µ̂µ(0) when the parameters of µ̂̂µ̂µ(t)

are computed by applying such a method. On the contrary, the results produced

by the LPNM and GMEA reveal that the slope and curvature of rµ̂̂µ̂µµ̂̂µ̂µ(0) are highly

sensitive to the value of N when applying these methods.

We mentioned in Section 2.3.3 that the average Doppler shift of µµµ(t) is equal

to zero when the DPSD characterizing such a process is symmetrical with respect

to the origin. In this respect, it can be shown that the average Doppler shift of the

simulation model’s random component is equal to zero for both the RSAM and the

GMEA if Sµµµµµµ(f) is symmetrical—the proof of this statement is a consequence of

the theorems presented in Appendix E. The results presented in Fig. 4.12 for the

two propagation scenarios associated with symmetrical DPSDs (cases: mα = 0◦,
κ = 0; and mα = 90◦, κ = 10) provide evidence of the veracity of such a

claim. Since the observation of Aµ̂̂µ̂µµ̂̂µ̂µ = 0 indicates that the IQ components of µ̂̂µ̂µ(t)

are uncorrelated [see Sec. 3.3.3.1 and 3.3.3.3], we can conclude that the GMEA

and RSAM are suitable methods for the design of SOC-based simulation models

for fading channel having diffuse components with uncorrelated IQ components.

Such a conclusion cannot be extrapolated to the case of the LPNM, because

this method produces in general an average Doppler shift that is different from

zero, as one can observe in Figs. 4.12(a) and 4.12(f). Not even the LPNM III,

which satisfies the boundary conditions rµ̂µµµ̂µµ(0) = rµµµµµµ(0) and r̈µ̂µµµ̂µµ(0) = r̈µµµµµµ(0), is



68 Channel Simulation Models for Mobile Broadband Communications

(a)

10 15 20 25 30 35 40 45 50

10
−15

10
−10

10
−5

10
0

10
5

Number of cisoids, N

A
b
so

lu
te

er
ro

r,
ǫ A

µ
µ

 

 

LPNM I
LPNM II
LPNM III
GMEA
RSAM

mα = 0◦

κ = 0

(b)

10 15 20 25 30 35 40 45 50
10

−2

10
−1

10
0

10
1

Number of cisoids, N

A
b
so

lu
te

er
ro

r,
ǫ A

µ
µ

 

 

LPNM I
LPNM II
LPNM III
GMEA
RSAM

mα = 0◦

κ = 10

(c)

10 15 20 25 30 35 40 45 50
10

−2

10
−1

10
0

10
1

Number of cisoids, N

A
b
so

lu
te

er
ro

r,
ǫ A

µ
µ

 

 

LPNM I
LPNM II
LPNM III
GMEA
RSAM

mα = 0◦

κ = 5

(d)

10 15 20 25 30 35 40 45 50
10

−2

10
−1

10
0

10
1

Number of cisoids, N

A
b
so

lu
te

er
ro

r,
ǫ A

µ
µ

 

 

LPNM I
LPNM II
LPNM III
GMEA
RSAM

mα = 30◦

κ = 10

(e)

10 15 20 25 30 35 40 45 50
10

−3

10
−2

10
−1

10
0

10
1

Number of cisoids, N

A
b
so

lu
te

er
ro

r,
ǫ A

µ
µ

 

 

LPNM I
LPNM II
LPNM III
GMEA
RSAM

mα = 0◦

κ = 20

(f)

10 15 20 25 30 35 40 45 50

10
−15

10
−10

10
−5

10
0

10
5

Number of cisoids, N

A
b
so

lu
te

er
ro

r,
ǫ A

µ
µ

 

 

LPNM I
LPNM II
LPNM III
GMEA
RSAM

mα = 90◦

κ = 10

Figure 4.12: Absolute error ǫAµµµµµµ between the average Doppler shift of the chan-
nel’s diffuse component and the average Doppler shift of the SOC-
based simulation model’s random component by considering the
von Mises PDF of the AOA and the GMEA, RSAM, and LPNM.
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Figure 4.13: Relative error ǫDµµµµµµ between the Doppler spread of the channel’s
diffuse component and the Doppler spread of the SOC-based sim-
ulation model’s random component by considering the von Mises
PDF of the AOA and the GMEA, RSAM, and LPNM.
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able to guarantee the uncorrelation of the IQ components of µµµ(t) when Sµµµµµµ(f) is

symmetrical. Actually, the LPNM III is the method that registered the highest

error ǫAµµµµµµ in the propagation scenarios that are related to fading channels having

uncorrelated IQ components.

4.5.2 Emulation of the Fading Statistics of the Reference Model

In the remaining of this section, we will evaluate the methods’ performance in

terms of the emulation of the fading statistics of the mobile Rician fading channel

model characterized by the random process ννν(t) = µµµ(t) + mρ(t). To that end,

we will assume that the specular wave mρ(t) is parameterized in such a way that

the channel’s power equals σ2
ννν = 1, and cR ∈ {0, 2, 4}, where cR = σ2

µµµ/ρ
2 is the

Rician factor. Besides, we will suppose that the Doppler frequency and the phase

of mρ(t) are equal to fρ = 65 Hz and θρ = 0◦, respectively.

4.5.2.1 PDF of the Envelope

Figures 4.14–4.18 show a comparison between the first-order PDF pξξξ(z) of the

envelope of ννν(t) and the first-order PDF p
ξ̂̂ξ̂ξ
(z) of the envelope of the SOC-based

simulation model. Curves of p
ξ̂̂ξ̂ξ
(z) corresponding to the GMEA and LPNM I are

presented in Figs. 4.14 and 4.15, respectively, whilst those corresponding to the

LPNM II, LPNM III, and RSAM are shown in Figs. 4.16–4.18, in that order.

Such curves were generated by considering N = 10.

The above mentioned figures present both analytical and empirical graphs of

p
ξ̂̂ξ̂ξ
(z). The analytical graphs were generated by numerically evaluating (3.20) with

the aid of the MATLABR© trapz function. For the particular case of the LPNM I

and the GMEA, we notice that (3.20) results always in the same theoretical PDF

p
ξ̂̂ξ̂ξ
(z) regardless of the simulated propagation scenario. This is due to the fact

that (3.20) is solely influenced by the set of gains {ĉn, ρ}, and these two methods

define a unique set of gains ĉn for each value of N irrespective of the channel

statistics [cf. (4.1)]. In contrast, the solution of (3.20) varies in the case of the

LPNM II, LPNM III, and RSAM from one propagation scenario to another, as

these methods specify the gains ĉn by taking into account the distribution of the

AOA or the ACF of µµµ(t).

On the other hand, the empirical graphs of p
ξ̂̂ξ̂ξ
(z) were obtained by measuring

the distribution of 50×106 samples of ξ̂̂ξ̂ξ(t) = |ν̂̂ν̂ν(t)|2. Such samples were collected

at the same time instant t = ti, where the value of ti was chosen at random

over a time interval of two hours. We can see in the figures that the analytical

graphs of p
ξ̂̂ξ̂ξ
(z) are in excellent agreement with the empirical ones, so that one

can presume the correctness of (3.20). In fact, the thesis implied by (3.20) about

p
ξ̂̂ξ̂ξ
(z) being a function that depends only on the set of gains {ĉn, ρ} is supported

by the empirical data obtained for the LPNM I and GMEA. Despite the fact
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Figure 4.14: Comparison between the first-order PDF of the reference model’s
envelope and the first-order PDF of the envelope of the SOC-
based simulation model by applying the GMEA to the von Mises
PDF of the AOA with different pairs of parameters mα and κ
(fmax = 91 Hz, σ2

ννν = 1, fp = 65 Hz, θρ = 0◦, and N = 10.
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Figure 4.15: Comparison between the first-order PDF of the reference model’s
envelope and the first-order PDF of the envelope of the SOC-
based simulation model by applying the LPNM I to the von Mises
PDF of the AOA with different pairs of parameters mα and κ
(fmax = 91 Hz, σ2

ννν = 1, fp = 65 Hz, θρ = 0◦, and N = 10).

that these methods produce different sets of Doppler frequencies {f̂n}Nn=1 for

each scenario, the resulting empirical PDFs of ξ̂̂ξ̂ξ(t) converged in all cases to the

same curve of p
ξ̂̂ξ̂ξ
(z). What is more, the empirical graphs of p

ξ̂̂ξ̂ξ
(z) obtained by

using the LPNM I and GMEA are identical to each other, as one can observe by

comparing Figs. 4.15 and 4.14. This was to be expected, since these two methods
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Figure 4.16: Comparison between the first-order PDF of the reference model’s
envelope and the first-order PDF of the envelope of the SOC-
based simulation model by applying the LPNM II to the von Mises
PDF of the AOA with different pairs of parameters mα and κ
(fmax = 91 Hz, σ2

ννν = 1, fp = 65 Hz, θρ = 0◦, and N = 10).

specify the gains ĉn in the same way.

The graphs depicted in Figs. 4.14–4.18 show a good concordance between

the envelope distributions of the reference model and simulation model. It is

worth mentioning that the curves of p
ζ̂̂ζ̂ζ
(z) plotted in Fig. 4.18 for the RSAM,

specifically those corresponding to the case cR = 0, mα = 0◦, and κ ∈ {10, 20}, are

significantly better than the graphs shown in Fig. 4.5 for the BRSAM. However,

despite of such an improvement, a close inspection of Figs. 4.14–4.18 reveals

that the RSAM is less accurate than the LPNM and the GMEA regarding the

emulation of pζζζ(z).
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Figure 4.17: Comparison between the first-order PDF of the reference model’s
envelope and the first-order PDF of the envelope of the SOC-based
simulation model by applying the LPNM III to the von Mises
PDF of the AOA with different pairs of parameters mα and κ
(fmax = 91 Hz, σ2

ννν = 1, fp = 65 Hz, θρ = 0◦, and N = 10).

In order to quantitatively measure the methods’ performance, we present in

Fig. 4.19 the resulting rms error ǫpξξξ
between pξξξ(z) and p

ξ̂̂ξ̂ξ
(z) [see (4.8)], computed

for each method by considering cR = 0 and N = {10, 20, 30, 40, 50}. The results

presented in Fig. 4.19 leave no doubt that the LPNM I and GMEA are better

suited than the other methods to approximate the envelope distribution of the

reference model when the scattering conditions are non-isotropic. In turn, the

results show that the LPNM II performs better than the rest of the methods

under isotropic scattering conditions. On the other hand, the figure shows that

the highest error was produced by the RSAM. Even though the rms error ǫpξξξ
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Figure 4.18: Comparison between the first-order PDF of the reference model’s
envelope and the first-order PDF of the envelope of the SOC-
based simulation model by applying the RSAM to the von Mises
PDF of the AOA with different pairs of parameters mα and κ
(fmax = 91 Hz, σ2

ννν = 1, fp = 65 Hz, θρ = 0◦, and N = 10.

registered by such a method is rather small, it is around two to three times higher

than the one produced by the GMEA/LPNM I. With respect to the LPNM II

and LPNM III, it can be observed that only the former method provides a real

advantage over the RSAM, since the LPNM III and the RSAM perform basically

the same when the number of cisoids is higher than thirty.

4.5.2.2 PDF of the Phase

Concerning the emulation of the first-order PDF of the reference model’s phase,

pψψψ(θ; t), we present in Figs. 4.20–4.24 a comparison between pψψψ(θ; t) and the
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Figure 4.19: Root mean square error between the envelope distributions of the
channel’s diffuse component and SOC-based simulation model’s
random component by considering the von Mises PDF of the AOA
and the GMEA, RSAM, and LPNM (τmax = N/(4fmax)).
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Figure 4.20: Comparison between the first-order PDF of the reference model’s
phase and the first-order PDF of the phase of the SOC-based
simulation model by applying the GMEA to the von Mises PDF
of the AOA (fmax = 91 Hz, σ2

ννν = 1, fp = 65 Hz, θρ = 0◦, t ∈
{0, 0.25}, and N = 10).
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Figure 4.21: Comparison between the first-order PDF of the reference model’s
phase and the first-order PDF of the phase of the SOC-based
simulation model by applying the LPNM I to the von Mises PDF
of the AOA (fmax = 91 Hz, σ2

ννν = 1, fp = 65 Hz, θρ = 0◦, t ∈
{0, 0.25}, and N = 10).

first-order PDF of the simulation model’s phase, p
ψ̂̂ψ̂ψ
(θ; t). The graphs of p

ψ̂̂ψ̂ψ
(θ; t)

presented in those figures were computed both analytically and empirically for

the methods under investigation by considering N = 10 and t ∈ {0, 0.25}. Fig-

ures 4.20 and 4.21 show results obtained for the GMEA and LPNM I, in that

order, while results obtained for the LPNM II, LPNM III, and RSAM are pre-
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Figure 4.22: Comparison between the first-order PDF of the reference model’s
phase and the first-order PDF of the phase of the SOC-based
simulation model by applying the LPNM II to the von Mises PDF
of the AOA (fmax = 91 Hz, σ2

ννν = 1, fp = 65 Hz, θρ = 0◦, t ∈
{0, 0.25}, and N = 10).

sented in Figs. 4.22–4.24, respectively. For the analytical graphs, we evaluated

(3.22) with the aid of the MATLAB’s trapz function. For the empirical graphs,

we made the same considerations and followed the same procedure as described

in Section 4.5.2.1 concerning the computation of the empirical envelope distri-

bution. The figures graphically demonstrate the correctness of the analytical

solution given in (3.22) for the PDF of the simulation model’s phase.

The results presented in Figs. 4.20–4.24 show that the phase of the simulation

model is in general not a first-order stationary process, since p
ψ̂̂ψ̂ψ
(θ; 0) 6= p

ψ̂̂ψ̂ψ
(θ; 0.25)

for cR ∈ {2, 4}. However, p
ψ̂̂ψ̂ψ
(θ; t) proves to be time-invariant and equal to p

ψ̂̂ψ̂ψ
(θ) =
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Figure 4.23: Comparison between the first-order PDF of the reference model’s
phase and the first-order PDF of the phase of the SOC-based
simulation model by applying the LPNM III to the von Mises
PDF of the AOA (fmax = 91 Hz, σ2

ννν = 1, fp = 65 Hz, θρ = 0◦,
t ∈ {0, 0.25}, and N = 10).

1/(2π) irrespective of the parameter computation method when cR = 0. These

remarks are in line with the statements made in that respect in Section 3.3.4.2.

With regard to the methods’ performance, one may observe from Figs. 4.21–

4.24 that the five methods provide a close approximation to the phase PDF of the

reference model. Indeed, all methods render an exact match of pψψψ(θ; t) for the

Rayleigh fading scenario (cR = 0). However, for the Rician fading case (cR > 0),

the obtained results show clearly that the RSAM and LPNM III are less effective

than the other methods.
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Figure 4.24: Comparison between the first-order PDF of the reference model’s
phase and the first-order PDF of the phase of the SOC-based
simulation model by applying the RSAM to the von Mises PDF
of the AOA with different pairs of parameters mα and κ (fmax =
91 Hz, σ2

ννν = 1, fp = 65 Hz, θρ = 0◦, t ∈ {0, 0.25}, and N = 10).

4.5.2.3 ACF of the Squared Envelope

To close this section, we present in Figs. 4.25–4.33 a comparison between the

ACF of the reference model’s squared envelope, rξξξ2ξξξ2(τ), and the ACF of the

squared envelope of the simulation model, r
ξ̂̂ξ̂ξ2ξ̂̂ξ̂ξ2

(τ), by considering N = 20 and

cR ∈ {0, 2, 4}. To keep the figures readable, we have plotted the results produced

by each versions of the LPNM against results obtained for the GMEA and RSAM

in different figures. The figures show both theoretical and empirical curves of

the ACF of ξ̂̂ξ̂ξ2(t) = |ν̂̂ν̂ν(t)|2. The theoretical graphs of r
ξ̂̂ξ̂ξ2ξ̂̂ξ̂ξ2

(τ) were produced by
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evaluating (3.29), while the empirical curves were generated by averaging over the

measured ACFs of 60 samples functions of ξ̂̂ξ̂ξ2(t). Such an averaging was necessary,

since the process ξ̂̂ξ̂ξ2(t) is not always autocorrelation ergodic3. However, with the

purpose of demonstrating the correctness of the analytical solutions provided

in Section 3.4.4 for the time-averaged ACF rξ̂2ξ̂2(τ) of the sample functions of

ξ̂̂ξ̂ξ2(t), we present results obtained for rξ̂2ξ̂2(τ) in Appendix F. We pointed out in

Section 4.5.1.1 that the LPNM II does not satisfy the condition
∑N

n=1 ĉ
2
n = σ2

µµµ.

For this reason, the theoretical ACF of ξ̂̂ξ̂ξ2(t) was computed for that particular

method by evaluating

r
ξ̂̂ξ̂ξ2ξ̂̂ξ̂ξ2

(τ) = rζ̂2ζ̂2(τ) +
c2R σ

4
ννν

(cR + 1)2
+

4σ2
νννcR

cR + 1

{

rµ̂̂µ̂µI µ̂̂µ̂µI
(τ) cos (2πfρτ)

+rµ̂̂µ̂µI µ̂̂µ̂µQ
(τ) sin (2πfρτ) −

1

2

N∑

n=1

ĉ2n

}

(4.43)

where

rζ̂2ζ̂2(τ) = |rµ̂̂µ̂µµ̂̂µ̂µ(τ)|2 +

[
N∑

n=1

ĉ2n

]2

−
N∑

n=1

ĉ4n. (4.44)

One can observe from Figs. 4.25–4.33 that the results predicted by the theory

are in excellent agreement with the ones obtained in practice. This can be taken

as an indicator of the correctness of the analytical expressions introduced in

Section 3.3.6 for r
ξ̂̂ξ̂ξ2ξ̂̂ξ̂ξ2

(τ).

Figures 4.28–4.33 show that the three methods under consideration yield a

very good approximation to the graphs of rξξξ2ξξξ2(τ) when cR > 0. This is not

surprising, since under such circumstances the correlation properties of ξ̂̂ξ̂ξ2(t) (and

also of ξξξ2(t)) are mainly determined by the time-variant specular wave mρ(t). The

characteristics of the parameter computation methods exert in consequence little

influence on the quality of the relationship r
ξ̂̂ξ̂ξ2ξ̂̂ξ̂ξ2

(τ) ≈ rξξξ2ξξξ2(τ). However, for the

NLOS scenario (cR = 0), it is clear that the methods’ characteristics determine

the capability of the simulation model for emulating the function rξξξ2ξξξ2(τ). In

this respect, we can see in Figs. 4.25–4.27 that the best fitting of the ACF of

ξ̂̂ξ̂ξ2(t) is produced by the GMEA and the LPNM I, while the LPNM II yields the

worst. The LPNM III and the RSAM perform similarly, although the LPNM III

is slightly more accurate.

An inspection of the results presented in Figs. 4.25–4.33 reveals that, irre-

spective of the parameter computation method, there exists an offset between

3We pointed out in Section 3.5 that ξ̂̂ξ̂ξ2(t) is non-autocorrelation-ergodic when the IQ compo-
nents of µ̂̂µ̂µ(t) are uncorrelated and the Doppler frequencies f̂n satisfy the Conditions 3.2 and 3.3.
Such a situation ensues in the case of the GMEA and RSAM when the DPSD of the channel’s
diffuse component is symmetrical [Appx. E] (cases: mα = 0◦, κ = 0; and mα = 90◦, κ = 10).
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Figure 4.25: Comparison among the GMEA, RSAM, and LPNM I in terms of
the emulation of the ACF of the reference model’s squared enve-
lope by considering a Rician factor cR = 0 and the von Mises PDF
of the AOA with different pairs of parameters mα and κ (N = 20,
σ2
ννν = 1, p = 2, τmax = 5/fmax, γ = 1 × 10−3).
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Figure 4.26: Comparison among the GMEA, RSAM, and LPNM II in terms of
the emulation of the ACF of the reference model’s squared enve-
lope by considering a Rician factor cR = 0 and the von Mises PDF
of the AOA with different pairs of parameters mα and κ (N = 20,
σ2
ννν = 1, p = 2, τmax = 5/fmax, γ = 1 × 10−3).
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Figure 4.27: Comparison among the GMEA, RSAM, and LPNM III in terms of
the emulation of the ACF of the reference model’s squared enve-
lope by considering a Rician factor cR = 0 and the von Mises PDF
of the AOA with different pairs of parameters mα and κ (N = 20,
σ2
ννν = 1, p = 2, τmax = 5/fmax, γ = 1 × 10−3).
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Figure 4.28: Comparison among the GMEA, RSAM, and LPNM I in terms of
the emulation of the ACF of the reference model’s squared enve-
lope by considering a Rician factor cR = 2 and the von Mises PDF
of the AOA with different pairs of parameters mα and κ (N = 20,
σ2
ννν = 1, p = 2, τmax = 5/fmax, γ = 1 × 10−3).
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Figure 4.29: Comparison among the GMEA, RSAM, and LPNM II in terms of
the emulation of the ACF of the reference model’s squared enve-
lope by considering a Rician factor cR = 2 and the von Mises PDF
of the AOA with different pairs of parameters mα and κ (N = 20,
σ2
ννν = 1, p = 2, τmax = 5/fmax, γ = 1 × 10−3).
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Figure 4.30: Comparison among the GMEA, RSAM, and LPNM III in terms of
the emulation of the ACF of the reference model’s squared enve-
lope by considering a Rician factor cR = 2 and the von Mises PDF
of the AOA with different pairs of parameters mα and κ (N = 20,
σ2
ννν = 1, p = 2, τmax = 5/fmax, γ = 1 × 10−3).
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Figure 4.31: Comparison among the GMEA, RSAM, and LPNM I in terms of
the emulation of the ACF of the reference model’s squared enve-
lope by considering a Rician factor cR = 4 and the von Mises PDF
of the AOA with different pairs of parameters mα and κ (N = 20,
σ2
ννν = 1, p = 2, τmax = 5/fmax, γ = 1 × 10−3).
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Figure 4.32: Comparison among the GMEA, RSAM, and LPNM II in terms of
the emulation of the ACF of the reference model’s squared enve-
lope by considering a Rician factor cR = 4 and the von Mises PDF
of the AOA with different pairs of parameters mα and κ (N = 20,
σ2
ννν = 1, p = 2, τmax = 5/fmax, γ = 1 × 10−3).
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Figure 4.33: Comparison among the GMEA, RSAM, and LPNM III in terms of
the emulation of the ACF of the reference model’s squared enve-
lope by considering a Rician factor cR = 4 and the von Mises PDF
of the AOA with different pairs of parameters mα and κ (N = 20,
σ2
ννν = 1, p = 2, τmax = 5/fmax, γ = 1 × 10−3).
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the ACFs of ξ̂̂ξ̂ξ2(t) and ξξξ2(t). Such an offset, which can clearly be distinguished

at τ = 0, is caused by the term
∑N

n=1 ĉ
4
n affecting the ACF r

ζ̂̂ζ̂ζ2ζ̂̂ζ̂ζ2
(τ) of the

squared envelope ζζζ2(t) = |µµµ(t)|2 of the simulation model’s random component

[see (3.30)]. It is evident from Figs. 4.25–4.27 that the smallest offset is produced

by the GMEA and LPNM I, and the largest by the LPNM II.

4.6 Chapter Summary and Conclusions

In this chapter, we presented two simple and effective parameter computation

method for the design of SOC-based channel simulation models. The proposed

methods, which we have named the GMEA and the RSAM, are intended to

allow for an accurate emulation of the channel’s correlation properties and fading

statistics. We evaluated the performance of the proposed methods in terms of

the approximation of the ACF, average Doppler shift, and Doppler spread of the

channel’s diffuse component. In addition, we evaluated the methods’ performance

with respect to the emulation of the envelope and phase distributions of a Rician

fading channel model, as well as in terms of the approximation of the squared

envelope ACF. Results obtained by applying three different versions of the LPNM

were also reported in this section and compared with those produced by the

GMEA and RSAM.

All in all, the results presented in Section 4.5 show that the GMEA and

the RSAM are suitable methods for the simulation of mobile fading channels

characterized by symmetrical and asymmetrical DPSDs. However, our investiga-

tions indicate that the RSAM is better suited than the GMEA, and also than the

LPNM, to emulate the channel’s correlation and spectral characteristics. In turn,

the GMEA and the LPNM perform better than the RSAM in terms of the emu-

lation of the channel’s fading statistics. The three version of the LPNM produce

a better approximation to the channel ACF than the GMEA, but the GMEA

proves to be more accurate than the LPNM I and LPNM II in reproducing the

channel’s average Doppler shift and Doppler spread.

Owing to their flexibility and good performance, the methods herein proposed

can easily be used to design efficient simulation platforms for the software-assisted

analysis of MBWCS, as we will demonstrate in Chapters 5 and 6.



Chapter 5

Simulation of Mobile MIMO

Fading Channels Under

Single-Bounce Non-Isotropic

Scattering Conditions

5.1 Introduction

Simulation models having the ability to reproduce the statistical properties of

mobile MIMO fading channels in non-isotropic scattering environments are highly

desirable for the laboratory analysis of modern wireless communication systems.

They are important, for example, to study the channel capacity [Abd02a] and

the system bit error rate performance [Miti04] under directional propagation

conditions.

It has been shown in a number of papers, e.g., [Gut07a, Han02, Pae04a,

Paet05], that the simulation of MIMO fading channels can efficiently be per-

formed by means of a SOC model. In fact, investigation carried out in [Mayy07]

and [Pae04a] demonstrate, respectively, that a SOC channel simulator is a very

useful tool for the performance assessment of multi-element antenna OFDM sys-

tems and for the analysis of the second order statistics of the channel capacity.

However, as mentioned in the preceding chapter, the LPNM is currently the

only method available for the design of SOC simulators for fading channels under

non-isotropic scattering conditions. The development of new methods is therefore

necessary to bypass the computational burden of the LPNM and facilitate the

analysis of MIMO communication systems operating in non-isotropic scattering

environments.

In this chapter, we show that the GMEA and the RSAM introduced in Chap-

ter 4 can be applied, after some simple modifications, to the simulation of MIMO

91
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channels with specified space-time correlation properties. Specifically, we ad-

dress here the design of SOC simulation models for narrowband mobile MIMO

Rayleigh fading channels in single-bounce scattering environments. It is impor-

tant to notice that the GMEA and the RSAM cannot directly be applied as they

were presented in Chapter 4 to the case of MIMO channels, since an accurate ap-

proximation of the channel spatial CCF (SCCF) requires special considerations.

The outline to the rest of the chapter is as follows. In Section 5.2, we describe

the characteristics of a geometrical narrowband single-bounce scattering mobile

MIMO channel model that will act as a reference model throughout this chapter.

We also provide in that section a brief review of the autocorrelation, spectral,

and spatial cross-correlation properties of such a channel model. In Section 5.3,

we give a concise description of the stochastic SOC model that we will employ as

a basis for the simulation of the reference model. The extension of the GMEA

and the RSAM to the case of MIMO channels is presented in Section 5.4. The

methods’ performance is evaluated in Section 5.5 with respect to the emulation

of the ACF and the SCCF of the reference model. An application of the GMEA

and the RSAM to the simulation of wideband MIMO channels is discussed in

Section 5.6. Finally, Section 5.7 summarizes the main points of the chapter.

5.2 Reference Model

5.2.1 The Geometrical One-Ring Scattering Model

The frequency-non-selective mobile MIMO channel model considered in this chap-

ter is an extension of the SISO channel model described in Chapter 2 with re-

spect to an elementary 2×2 multi-element antenna system and a two-dimensional

single-bounce scattering environment. We assume that the transmitter (BS) is

fixed and unobstructed by local scatterers, whereas the receiver (MT) moves at

a speed v and is surrounded by a ring of local scatterers. The geometrical con-

figuration of such a propagation scenario is depicted in Fig. 5.1. The symbols

introduced in that figure stand for:

Tm: the mth transmitter antenna;

Rk: the kth receiver antenna;

Sn: the nth scatterer;

OT : the center of the transmitter antenna array;

OR: the center of the receiver antenna array;

D: the distance from OT to OR.

R: the radius of the ring of scatterers;

∆T : the distance between the transmitter antennas;
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Figure 5.1: The geometrical one-ring scattering propagation model

∆R: the distance between the receiver antennas;

dddTm,n: the distance from the mth transmitter antenna to the nth scatter;

dddRn,k: the distance from the nth scatter to the kth receiver antenna;

δδδT,n: the distance from OT to the nth scatter;

αααR,n: the AOA of the nth scattered wave;

αααT,n: the angle of departure (AOD) of the transmitted wave impinging the

nth scatterer;

αT,max: one half of the maximum angle of spread seen at the BS;

βT : the orientation angle of the transmitter antenna array;

βR: the orientation angle of the receiver antenna array;

ϑ: the angle of the vector ~v pointing at the direction of motion of the receiver.

The geometrical one-ring scattering model shown in 5.1 was originally proposed

in [Jake74, Sec. 1.6.1] to study the channel spatial correlation at the base station,

and it was extended in [Shiu00] to the case of MIMO channels. The model has

widely been in use as a basis for assessing the performance of multi-element

antenna systems, e.g., [Chen00, Mayy07].

We will assume that the AOAs αααR,n are i.i.d. random variables characterized

by a circular PDF pαααR
(α), whereas αααT,n, ddd

R
n,k, ddd

T
m,n, and δδδT,n can be defined as

functions of αααR,n. Specifically, δδδT,n and αααT,n can be determined by solving the

following equations in the triangle OTSnOR [Abd02a, Chen00]

D

sin(αααR,n −αααT,n)
=

R

sin(αααT,n)
=

δδδT,n
sin(αααR,n)

(5.1)
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while the distances dddRn,k and dddTm,n are defined as

dddTm,n =
∆T

4
+ δδδ2T,n + (−1)m∆T δδδT,n cos(βT −αααT,n) (5.2)

dddRn,k =
∆R

4
+R2 + (−1)m∆RR cos(αααR,n − βR). (5.3)

Notice that the dependence of dddTm,n on αααR,n is implicit in the random parameters

δδδT,n and αααT,n. We will suppose that the far-field assumption holds, meaning that

D ≫ R ≫ sup{∆T ,∆R} and αmax,T is small. Thereby, dddTm,n and dddRn,k can be

rewritten as [Abd02a, Chen00]

dddTm,n = δδδT,n +
(−1)m∆T

2
[cos(βT ) + αT,max sin(βT ) sin(αααR,n) (5.4)

dddRn,k = R+
(−1)m∆R

2
cos(αααR,n − βR). (5.5)

5.2.2 Narrowband MIMO Rayleigh Fading Channel Model

Following the modeling approach described in Section 2.2, we characterize the

channel gain associated to the link between the mth transmitter antenna and the

kth receiver antenna in the equivalent complex baseband by a stationary com-

plex Gaussian process µµµkm(t) with mean zero and variance σ2
µµµkm

. For simplicity,

we assume that σ2
µµµkm

= σ2
µµµ ∀m,k, where 0 < σ2

µµµ < ∞. The random process

µµµkm(t) can be represented, in the context of the single-bounce scattering model

in Fig. 5.1, by means of a sum of an infinite number of azimuthal plane waves as

follows [Abd02a, Pae04a]

µµµkm(t) = lim
N→∞

N∑

n=1

aaam,n bbbk,n cccn exp {j (2πfffn t+ θθθn)} (5.6)

where aaam,n , am(αααR,n) and bbbk,n , bk(αααR,n), with

am(αααR,n) = exp

{
jπ(−1)m+1∆T

λ
[cos(βT ) + αT,max sin(βT ) sin(αααR,n)

}

(5.7)

bk(αααR,n) = exp

{
jπ(−1)k+1∆R

λ
cos(αααR,n − βR)

}

. (5.8)

In (5.7) and (5.8), λ designates the wavelength of the transmitted signal. In

conformity with the considerations made in Section 2.2, we assume that the

random gains cccn, the random Doppler frequencies fffn, and the random phases θθθn
are statistically independent. The phases θθθn are i.i.d. random variables uniformly

distributed in [−π, π), and the gains cccn satisfy E{|cccn|2} = σ2
µµµ/N . On the other
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hand, the Doppler frequencies fffn are defined as

fffn , fmax cos
(
αααR,n − ϑ

)
, ∀n. (5.9)

The equation above is a consequence of the fact that the MT (receiver) can move

in any arbitrary direction over the reference Cartesian plane. This is in contrast

to the case of the mobile SISO channel model described in Chapter 2, where it

is assumed that the MT is moving along the x-axis of the Cartesian plane, and

thus ϑ ∈ {0, π} [Clar68]. The angle ϑ is an important parameter of the MIMO

channel model. Indeed, ϑ exerts a strong influence on the autocorrelation and

spectral properties of µµµkm(t), as will be shown next.

5.2.3 Correlation Properties of the Reference Model

5.2.3.1 ACF and DPSD of the MIMO Channel Gains

Under the above considerations, one can easily verify that the ACF rµµµkmµµµkm
(τ) ,

E{µµµ∗km(t)µµµkm(t + τ)} of the Gaussian process µµµkm(t) describing the complex

channel gain between Tm and Rk is given by

rµµµkmµµµkm
(τ) = σ2

µµµ

π∫

−π

pαααR
(α) exp

{
j2πfmax cos(α− ϑ)τ

}
dα. (5.10)

For the analysis of the spectral characteristics of µµµkm(t), it is convenient to per-

form the change of variable x = α − ϑ in (5.10). By doing so, and taking into

account that pαααR
is a circular PDF, we obtain the expression

rµµµkmµµµkm
(τ) = σ2

µµµ

π∫

−π

pαααR
(x+ ϑ) exp

{
j2πfmax cos(x)τ

}
dx (5.11)

which can be rewritten as follows

rµµµkmµµµkm
(τ) = 2σ2

µµµ

π∫

0

gαααR
(α+ ϑ) exp

{
j2πfmax cos(α)τ

}
dα (5.12)

where gαααR
(α) = [pαααR

(α)+pαααR
(−α)]/2 is the even part of pαααR

(α). From (5.12), it

is straightforward to show that the DPSD Sµµµkmµµµkm
(f) ,

∫∞
−∞ rµµµkmµµµkm

(τ) exp
{
−

j2πfτ
}
dτ of µµµkm(t) is equal to

Sµµµkmµµµkm
(f) = 2σ2

µµµ rect(f) · gαααR
(arccos(f/fmax) + ϑ)

fmax

√

1 − (f/fmax)2
. (5.13)
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It follows from (5.12) and (5.13) that the ACF and DPSD of µµµkm(t) are com-

pletely specified by the even part of pαααR
(α) and the parameters ϑ, fmax, and σ2

µµµ.

We observe that Sµµµkmµµµkm
(f) is symmetrical if the IQ components µµµI,km(t) and

µµµQ,km(t) of µµµkm(t) are uncorrelated. On the contrary, Sµµµkmµµµkm
(f) is asymmetrical

if µµµI,km(t) and µµµQ,km(t) are cross-correlated. In this respect, it is worth mention-

ing that the shape of Sµµµkmµµµkm
(f) depends not only on gαααR(α), but also on the an-

gle ϑ. In fact, Sµµµkmµµµkm
(f) is symmetrical if and only if gαααR(α+ϑ) = gαααR(π−α+ϑ)

for α ∈ [0, π). This condition is more general than the one that applies on

the DPSD Sµµµµµµ(f) of the SISO channel model described in Chapter 2, where

Sµµµµµµ(f) = Sµµµµµµ(−f) if and only if gααα(α) = gααα(π − α) for α ∈ [0, π).

5.2.3.2 Space-Time CCF of the MIMO Channel Gains

Information about the cross-correlation properties of the complex channel gains

is also relevant for the characterization of the MIMO channel model. Such an

information is important for the analysis of space-time block coding schemes

and space diversity systems [Gold05, Ch. 10], just to give a few examples. The

correlation between µµµkm(t) and µµµql(t) can be studied on the basis of the space-

time CCF function (STCCF) rµµµkmµµµql
(∆T ,∆R, τ) , E{µµµ∗km(t)µµµql(t + τ)}. This

function gives a measure of the correlation between µµµkm(t) and µµµql(t) in terms

of the time difference τ and the size of the transmitter and the receiver antenna

arrays. From the expression given in (5.6) for µµµkm(t), one can show that

rµµµkmµµµql
(∆T ,∆R, τ) = σ2

µµµ

π∫

−π

pαααR
(α) exp {j2πfmax cos(α− ϑ)τ}

×a∗m(α,∆T ) al(α,∆T ) b∗k(α,∆R) bq(α,∆R)dα. (5.14)

The SCCF ρµµµkmµµµql
(∆T ,∆R) , E{µµµ∗km(t)µµµql(t)} between µµµkm(t) and µµµql(t) is

important too. This function is relevant for the capacity analysis of MIMO fading

channels [Shiu00, Abd02a]. By taking τ = 0 in (5.14), we obtain the result

ρµµµkmµµµql
(∆T ,∆R) = σ2

µµµ

π∫

−π

pαααR
(α) a∗m(α,∆T ) al(α,∆T )

×b∗k(α,∆R) bq(α,∆R)dα. (5.15)

5.3 The Simulation Model

5.3.1 The Stochastic SOC Simulation Model

Following the simulation approach presented in Chapter 3, we can approximate

the statistical properties of the complex Gaussian processes µµµkm(t) by means of
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a stochastic SOC simulation model of the form

µ̂̂µ̂µkm(t) =

N∑

n=1

am(α̂n) bk(α̂n) ĉn exp
{
j
(
2πf̂n t+ θ̂̂θ̂θn

)}
(5.16)

where

f̂n = fmax cos(α̂n − ϑ) (5.17)

and α̂n ∈ [−π, π). We assume that the phases θ̂̂θ̂θn are i.i.d. random variables

uniformly distributed in [−π, π) and the gains ĉn satisfy
∑N

n=1 |ĉn|2 = σ2
µµµ. The

functions am(α) and bk(α) are defined in (5.7) and (5.8), respectively.

5.3.2 Correlation Properties of the SOC Simulation Model

It is easy to show that µ̂̂µ̂µkm(t) is a zero mean WSS random process with variance

equal to σ2
µµµ and ACF rµ̂̂µ̂µkmµ̂̂µ̂µkm

(τ) , E{µ̂̂µ̂µ∗km(t) · µ̂̂µ̂µkm(t+ τ)} given by

rµ̂̂µ̂µkmµ̂̂µ̂µkm
(τ) =

N∑

n=1

ĉ2n exp{j2πfmax cos(α̂n − ϑ)τ}. (5.18)

In addition, one can show that the STCCF rµ̂̂µ̂µkmµ̂̂µ̂µql
(∆T ,∆R, τ) , E{µ̂̂µ̂µ∗km(t) ·

µ̂̂µ̂µql(t+ τ)} between µ̂̂µ̂µkm(t) and µ̂̂µ̂µql(t) is equal to

rµ̂̂µ̂µkmµ̂̂µ̂µql
(∆T ,∆R, τ) =

N∑

n=1

ĉ2n exp{j2πfmax cos(α̂n − ϑ)τ}

× a∗m(α̂n,∆T ) al(α̂n,∆T ) b∗k(α̂n,∆R) bq(α̂n,∆R). (5.19)

With respect to the SCCF ρµ̂̂µ̂µkmµ̂̂µ̂µql
(∆T ,∆R) , E{µ̂̂µ̂µ∗km(t)µ̂̂µ̂µql(t)} between µ̂̂µ̂µkm(t)

and µ̂̂µ̂µql(t), we have

ρµ̂̂µ̂µkmµ̂̂µ̂µql
(∆T ,∆R) =

N∑

n=1

ĉ2n a
∗
m(α̂n,∆T ) al(α̂n,∆T ) b∗k(α̂n,∆R) bq(α̂n,∆R). (5.20)

We observe that if f̂n 6= 0 ∀n and f̂n 6= f̂m ∀n 6= m, then the processes µ̂̂µ̂µkm(t)

are ergodic with respect to the mean value, the ACF, and the STCCF.

5.4 Parameter Computation Methods

For the simulation of the MIMO channel model, the problem consists in finding

proper values for the gains ĉn and the AOAs α̂n such that the autocorrelation

and cross-correlation properties of the random processes µ̂̂µ̂µkm(t) resemble those
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of the Gaussian processes µµµkm(t). In particular, we are interested in emulating

the ACF rµµµkmµµµql
(τ) and the SCCF ρµµµkmµµµql

(∆T ,∆R) of the reference model. In

what follows, we will explain how to apply the GMEA and the RSAM to solve

this parameter computation problem.

5.4.1 The GMEA

The results presented in Chapter 4 indicate that the ACF of µµµkm(t) can satis-

factorily be approximated by defining the gains ĉn as in (4.1), i.e., ĉn = σ2
µµµ/

√
N ,

and computing the Doppler frequencies f̂n by solving the equation

f̂n∫

−fmax

Sµµµkmµµµkm
(f)df =

σ2
µµµ

N

(

N − n+
1

2

)

(5.21)

for n = 1, . . . , N . Since f̂n = fmax cos(α̂n − ϑ) [see (5.17)], one can alternatively

compute the Doppler frequencies f̂n by finding the AOAs α̂n that solve

α̂n−ϑ∫

0

gαααR
(α+ ϑ)dα =

1

2N

(

n− 1

2

)

. (5.22)

We notice, nonetheless, that the solutions of (5.21) and (5.22) provide information

only about the even part of pαααR
(α). This is sufficient to emulate the autocor-

relation and spectral characteristics of µµµkm(t), but the emulation of the SCCF

between µµµkm(t) and µµµql(t) requires information also about the odd part of pαααR
(α)

[see (5.15)]. In order to take the odd part of pαααR
(α) into account, we propose to

compute the AOAs α̂n by solving

α̂n−ϑ∫

−π

pαααR
(α+ ϑ)dα =

1

N

(

n− 1

4

)

. (5.23)

In the equation above, the factor of 1/(4N) has been introduced to guarantee the

uncorrelation between the IQ components of µ̂̂µ̂µkm(t) and to ensure that f̂n 6= f̂m
∀n 6= m when the DPSD Sµµµkmµµµkm

(f) of the reference model is symmetrical. Such

a factor also ensures that f̂n 6= 0 ∀n when Sµµµkmµµµkm
(f) = Sµµµkmµµµkm

(−f) and the

number of cisoids is even, i.e., when N = 2M , where M ∈ Z
+. We emphasize

that the number of cisoids shall be even in order for this latter characteristic to

hold. Otherwise, if N is odd and Sµµµkmµµµkm
(f) is symmetrical, then the solutions

of (5.23) will produce a Doppler frequency f̂n equal to zero. The inequalities

f̂n 6= f̂m ∀n 6= m and f̂n 6= 0 ∀n are in general fulfilled when Sµµµkmµµµkm
(f) is

asymmetrical, irrespective of the value of N .
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5.4.2 The RSAM

In the case of the RSAM, we observe that the STCCF between µµµkm(t) and µµµql(t)

can be expressed as

rµµµkmµµµql
(∆T ,∆R, τ) =

2πσ2
µµµ

N
lim
N→∞

N∑

n=1

pαααR
(αn) exp {j2πfmax cos(αn − ϑ)τ}

×a∗m(αn,∆T ) al(αn,∆T ) b∗k(αn,∆R) bq(αn,∆R) (5.24)

where αn = n2π/N −α0, and α0 is a real number in [0, 2π/N ]. By removing the

limit in the previous equation, we can write

rµµµkmµµµql
(∆T ,∆R, τ) ≈

2πσ2
µµµ

N

N∑

n=1

pαααR(αn) exp {j2πfmax cos(αn − ϑ)τ}

×a∗m(αn,∆T ) al(αn,∆T ) b∗k(αn,∆R) bq(αn,∆R). (5.25)

Based on the above result, and taking account of the expression given in (5.19)

for the STCCF rµ̂̂µ̂µkmµ̂̂µ̂µql
(∆T ,∆R, τ) of the simulation model, we can state that

rµ̂̂µ̂µkmµ̂̂µ̂µql
(∆T ,∆R, τ) ≈ rµµµkmµµµql

(∆T ,∆R, τ) if

α̂n =
n2π

N
− α0 (5.26)

ĉn = σµµµ

√

pααα(α̂n)
∑N

m=1 pααα(α̂m)
. (5.27)

Even though the value of α0 can arbitrarily be chosen within [0, 2π/N ], we recom-

mend to set α0 = π/(2N) to ensure that f̂n 6= f̂m ∀n 6= m and to guarantee the

uncorrelation between the IQ components of µ̂̂µ̂µkm(t) when the DPSD Sµµµkmµµµkm
(f)

of the reference model is symmetrical. Furthermore, choosing α0 = π/(2N) also

assures that f̂n 6= 0 ∀n when Sµµµkmµµµkm
(f) = Sµµµkmµµµkm

(−f) and N = 2M , M ∈ Z
+.

This latter condition does not hold if N is odd, as in the case of the GMEA.

We have demonstrated in [Gut07a] that the methodology in (5.26) and (5.27)

provides excellent results concerning the emulation of the ACF rµµµkmµµµkm
(τ) and

the SCCF ρµµµkmµµµql
(∆T ,∆R). However, to properly approximate the envelope

distribution of the complex Gaussian processes µµµkm(t), it is important to impose

a constraint in the range of values that the gains ĉn may take. With this in mind,

we will assume that pαααR
(α) has only one maximum in [−π, π). Then, following

the idea behind the RSAM described in Section 4.4.1.3, we redefine

α̂n = αℓ +
αu − αℓ
N

(

n− 1

4

)

, αu > αℓ. (5.28)

In (5.28), αu and αℓ designate, in that order, the lower and the upper boundaries
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of the subinterval IU = [αℓ, αu] within the which the PDF pαααR
(α) is above a

given threshold γ ∈
(
0, sup{pαααR

(α)}α∈[−π,π)

)
.

5.5 Performance Analysis

5.5.1 Considerations

In this section, we will present some simulation examples demonstrating the good

performance of the GMEA and the RSAM concerning the emulation of the ACF

rµµµkmµµµkm
(τ) and the SCCF ρµµµkmµµµql

(∆T ,∆R) of the reference model. To that end,

we will assume that the random AOAs αααR are von Mises distributed, so that:

pαααR
(α+ ϑ) =

exp{κ cos(α−mα + ϑ)}
2πI0(κ)

(5.29)

gαααR
(α+ ϑ) =

exp
{
κ cos(α) cos(mα − ϑ)

}

2πI0(κ)
· cosh

(
κ sin(α) sin(mα − ϑ)

)
(5.30)

where α ∈ [−π, π). It is easy to show, by substituting (5.30) into (5.13), that the

DPSD of the complex Gaussian processes µµµkm(t) is given by

SVM
µµµkmµµµkm

(f) = rect(f) · cosh
(

κ sin(mα − ϑ)
√

1 − (f/fmax)2
)

×
σ2
µµµ exp

{
κ cos(mα − ϑ) f/fmax

}

πfmaxI0(κ)
√

1 − (f/fmax)2
. (5.31)

In turn, by following (5.12), one can show that the ACF of µµµkm(t) is equal to

rVM
µµµkmµµµkm

(τ) =
σ2
µµµ I0

(√

κ2 − (2πfmaxτ)2 + j4πκfmaxτ cos(mα − ϑ)
)

I0(κ)
. (5.32)

The STCCF rVM
µµµkmµµµql

(∆T ,∆R, τ) between µµµkm(t) and µµµql(t) can also be expressed

in closed form by substituting (5.29) into (5.14). Particularly, for the MIMO

channel gains µµµ11(t) and µµµ22(t), we have [Abd02a]

rVM
µµµ11µµµ22

(∆T ,∆R, τ) =
σ2
µµµ exp{−j2π∆̄T cos(βT )}

I0(κ)

×I0
({

κ2 − 4π2
[

τ̄2 + ∆̄2
R +

(
∆̄T αmax,T sin(βT )

)2

−2τ̄∆̄R cos(βR − ϑ) − 2∆̄T αmax,T sin(βT )

×
(
τ̄ sin(ϑ) − ∆̄R sin(βR)

) ]

+j4πκ
[

τ̄ cos(mα − ϑ) − ∆̄R cos(mα − βR)

−∆̄T αmax,T sin(βT ) sin(ϑ)
]}−1/2 )

. (5.33)
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where τ̄ = τ · fmax, ∆̄T = ∆T /λ, and ∆̄R = ∆R/λ. One can deduce from (5.33)

that the SCCF ρVM
µµµkmµµµql

(∆T ,∆R) = rVM
µµµkmµµµql

(∆T ,∆R, 0) is equal to

ρVM
µµµ11µµµ22

(∆T ,∆R) =
σ2
µµµ exp{−j2π∆̄T cos(βT )}

I0(κ)

×I0
({

κ2 − 4π2
[

∆̄2
R +

(
∆̄T αmax,T sin(βT )

)2
+ 2∆̄T ∆̄R

×αmax,T sin(βT ) sin(βR)
]

− j4πκ
[

∆̄R cos(mα − βR)

+∆̄T αmax,T sin(βT ) sin(ϑ)
]}−1/2 )

. (5.34)

For the simulations, we will consider the following triplets of parameters for

the von Mises PDF in (5.29): (κ = 0,mα = 0◦, γ = 0◦); (κ = 5,mα = 0◦, γ = 0◦);
(κ = 20,mα = 0◦, γ = 0◦); (κ = 10,mα = 0◦, γ = 0◦); (κ = 10,mα = 20◦, γ =

−10◦); (κ = 10,mα = 40◦, γ = −50◦). We notice that the first and the last

of such triplets produce a symmetrical DPSD SVM
µµµkmµµµkm

(f), while the other four

triplets result in an asymmetrical DPSD. We choose βT = βR = 90◦, αmax,T = 2◦,
fmax = 91 Hz, σ2

µµµ = 1, and N = 24. Except by the number of cisoids, these

parameters are the same as the ones considered in [Pae04a] for evaluating the

performance of SOC simulators designed by applying the LPNM. In that paper,

the number of cisoids was equal to N = 25. Here, we have chosen N = 24

to ensure that the GMEA and the RSAM satisfy the inequality f̂n 6= 0 ∀n.

Regarding the threshold γ of the RSAM, we set γ = 1 × 10−3.

5.5.2 Emulation of the ACF

Figure 5.2 shows a comparison between the ACF rVM
µµµkmµµµkm

(τ) of the reference

model [see (5.32)] and the ACF rµ̂̂µ̂µkmµ̂̂µ̂µkm
(τ) of the simulation model [see (5.18)]

by applying the GMEA and the RSAM. We can observe from Fig. 5.2 that both

methods produce a very good approximation to the ACF of the reference model.

This indicates that the modifications introduced in this Chapter to the GMEA

and the RSAM do not affect the capability of these methods to emulate the

autocorrelation properties of the complex Gaussian processes µµµkm(t).

5.5.3 Emulation of the SCCF

To evaluate the accuracy of the GMEA and the RSAM for approximating the

SCCF ρµµµkmµµµql
(∆T ,∆R) of the reference model, we define the following absolute

error function

ǫρµµµ11µµµ22
(∆T ,∆R) , |ρµµµ11µµµ22(∆T ,∆R) − ρµ̂̂µ̂µ11µ̂̂µ̂µ22

(∆T ,∆R)|. (5.35)
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Figure 5.2: Comparison between the ACF rµµµkmµµµkm
(τ) of the MIMO channel

gains (reference model) and the ACF rµ̂̂µ̂µkmµ̂̂µ̂µkm
(τ) of the simulation

model by applying the GMEA and the RSAM with N = 24 to the
von Mises PDF of the AOA with different triplets of parameters κ,
mα, and ϑ, (fmax = 91 Hz and σ2

µµµ = 1).

The absolute value of ρµµµ11µµµ22(∆T ,∆R) is depicted in Fig. 5.3 for ∆T ∈ [0, 20/λ]

and ∆R ∈ [0, 3/λ]. The resulting error function ǫρµµµ11µµµ22
(∆T ,∆R) is plotted in

Figs. 5.4 and 5.5 for the GMEA and RSAM, respectively.

The results presented in Figs. 5.4 and 5.5 demonstrate that the GMEA and

the RSAM provide a close approximation to the SCCF ρµµµ11µµµ22(∆T ,∆R). This

is clear, since the error produced by the GMEA under non-isotropic scattering

conditions is smaller than 8×10−2, while the one produced by the RSAM is lower

than 6 × 10−4. In turn, the error registered by both methods in the isotropic

scattering scenario is smaller than 1 × 10−11.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Absolute value of the SCCF ρµµµ11µµµ22(∆T ,∆R) of the MIMO channel
model by considering the von Mises PDF of the AOA with different
triplets of parameters κ, mα, and ϑ (σ2

µµµ = 1).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Error function ǫrµµµ11µµµ22
(∆T ,∆R) between the SCCF ρµµµ11µµµ22(τ)

of the MIMO channel gains (reference model) and the SCCF
ρµ̂̂µ̂µ11µ̂̂µ̂µ22

(∆T ,∆R) of the simulation model by applying the GMEA
with N = 24 to the von Mises PDF of the AOA.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Error function ǫrµµµ11µµµ22
(∆T ,∆R) between the SCCF ρµµµ11µµµ22(τ)

of the MIMO channel gains (reference model) and the SCCF
ρµ̂̂µ̂µ11µ̂̂µ̂µ22

(∆T ,∆R) of the simulation model by applying the RSAM
with N = 24 to the von Mises PDF of the AOA.



106 Channel Simulation Models for Mobile Broadband Communications

5.6 Simulation of Wideband MIMO Fading Channels

So far, we have focused our attention on the simulation of narrowband mobile

MIMO fading channels. However, the design of simulation models for wideband

MIMO channels is also an important research topic. It is relevant, for example,

for the analysis of multi-element antenna systems that require a large bandwidth

to operate, e.g., those based on spread-spectrum [Moli05, Ch. 18] and ultra-

wideband [Roys04] technology. In this section, we will discuss an application

of the GMEA and the RSAM to the design of simulation models for wideband

MIMO fading channels in single-bounce scattering environments.

5.6.1 Modeling and Statistical Characterization of Wideband

Mobile MIMO Fading Channels

From a system-theoretic point of view, the mobile fading channel can be described

as a randomly time-variant linear filter (TVLF) [Bell63, Pars00, Pae02a, Proa01].

In this line of thought, we model the wideband subchannel connecting the mth

transmitter antenna Tm with the kth receiver antenna Rk as a randomly TVLF

with an equivalent complex baseband impulse response

hhhkm(t, η) =

L−1∑

ℓ=0

µµµkm,ℓ(t) δ(η − ηℓ). (5.36)

In the equation above, µµµkm,ℓ(t) denotes the complex attenuation factor due to the

superposition of the transmitted signal’s replicas that reached the kth receiver

antenna through different paths but with the same propagation delay η = ηℓ. In

line with the narrowband MIMO channel model described in Section 5.2.2, we will

assume that the attenuation factors µµµkm,ℓ(t) are stationary zero-mean complex

Gaussian processes with corresponding variances equal to σ2
µµµℓ

, ℓ = 0, . . . ,L−1. In

addition, we will assume that the channel exhibits uncorrelated scattering (US)

[Bell63], meaning that E{hhh∗km(t, η1)hhhkm(t+ τ, η2)} 6= 0 iff η1 = η2. This implies

that the Gaussian processes µµµkm,ℓ(t) are mutually uncorrelated. Considering a

two-dimensional single-bounce scattering scenario, we can write

µµµkm,ℓ(t) = lim
N→∞

N∑

n=1

am(αααR,n,ℓ) bk(αααR,n,ℓ)cccn,ℓ exp {j (2πfffn,ℓ t+ θθθn,ℓ)} (5.37)

for ℓ = 0, . . . ,L−1. The parameters of µµµkm,ℓ(t) can be defined in a similar manner

as we defined their counterparts introduced in Section 5.2.2. Particularly, we will

suppose that the gains cccn,ℓ are given such that
∑N

n=1 ccc
2
n,ℓ = σ2

µµµℓ
, ℓ = 0, . . . ,L− 1,

and the AOAs αααR,n,ℓ are i.i.d. random variables, n = 1, . . . , N and ℓ = 1, . . . ,L.

It should be noticed that if the received signal is composed of a continuum of
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multipath components, then the summation in (5.36) becomes an integration.

This results in a diffuse impulse response given as [Proa01, p. 802]

hhhkm(t, η) = µµµkm(t, η). (5.38)

The attenuation factor µµµkm(t, η) in (5.38) is a stationary zero-mean complex

Gaussian processes with variance σ2
µµµkm

. In this case, the US assumption implies

that E{µµµ∗km(t, η1)µµµkm(t + τ, η2)} 6= 0 iff η1 = η2. The subchannel between Tm
and Rk can alternatively be described by means of the transfer function

HHHkm(t, υ) ,

∞∫

−∞

hhhkm(t, η) exp{−2πη υ}dη. (5.39)

For narrowband systems, HHHkm(t, υ) can be seen as a function that fluctuates in

the time domain and remains constant in the frequency domain, at least along

the frequency range of the system bandwidth. For wideband systems, HHHkm(t, υ)

is to be treated as a function that fluctuates within the system bandwidth.

An exact statistical characterization of the random impulse response in (5.36)

is a formidable task that requires knowledge of the multidimensional joint PDFs

of hhhkm(t, η) (or HHHkm(t, υ)). However, since the attenuation factors µµµkm,ℓ(t) are

assumed to be complex Gaussian processes, the statistical properties of the MIMO

channel model are completely specified by the ACFs, PSDs, CCFs, and cross-

PSDs of the random processes hhhkm(t, η). The characterization of MIMO channels

in terms of correlation functions and PSDs is surveyed somewhere else, e.g.,

[Fleu00] and [Moli05, Secs. 6.7 and 7.4]. For the purposes of this section, it is

sufficient to know that the selectivity of the channel in space, time, and frequency

domains can be studied with respect to the following correlation functions:

rhhhkmhhhql
(∆T ,∆R) , E {hhh∗km(t, η)hhhql(t, η)} (5.40)

rhhhkmhhhkm
(τ) , E {hhh∗km(t, η)hhhql(t+ τ, η)} (5.41)

rHHHkmHHHkm
(̺) , E {HHH∗

km(t, υ)HHHkm(t, υ + ̺)} . (5.42)

The functions defined in (5.40)–(5.42) are known as the temporal ACF (TACF),

the SCCF, and the frequency correlation function (FCF), respectively.

5.6.2 Simulation Approach

The simulation of hhhkm(t, η) can be carried out upon a time-variant tapped-delay

line (TDL) model of the form

ĥ̂ĥhkm(t, η) =
L−1∑

ℓ=0

µ̂̂µ̂µkm,ℓ(t) δ(η − ηℓ). (5.43)
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For the simulation of wideband MIMO channels in single-bounce scattering en-

vironments, we define the complex gains µ̂̂µ̂µkm,ℓ(t) as follows

µ̂̂µ̂µkm,ℓ(t) =
N∑

n=1

am(α̂n,ℓ) bk(α̂n,ℓ) ĉn,ℓ exp
{
j
(
2πf̂n,ℓ t+ θ̂̂θ̂θn,ℓ

)}
. (5.44)

The parameters of µ̂̂µ̂µkm,ℓ(t) are analogous to those of the narrowband SOC simu-

lation model presented in Section 5.3.1, and they can be defined accordingly. In

particular, we suppose that the phases θ̂̂θ̂θn,ℓ are i.i.d. random variables uniformly

distributed in [−π, π), for n = 1, . . . , N and ℓ = 0, . . . ,L − 1. This considera-

tion guarantees the wide-sense stationarity and the mutual uncorrelation of the

processes ĥ̂ĥhkm(t, η).

The problem at hand lies in computing the gains ĉn,ℓ and the AOAs αn,ℓ of

µ̂̂µ̂µkm,ℓ(t) such that:

r
ĥ̂ĥhkmĥ̂ĥhql

(∆T ,∆R) ≈ rhhhkmhhhql
(∆T ,∆R) (5.45)

r
ĥ̂ĥhkmĥ̂ĥhkm

(τ) ≈ rhhhkmhhhkm
(τ) (5.46)

r
Ĥ̂ĤHkmĤ̂ĤHkm

(̺) ≈ rHHHkmHHHkm
(̺) (5.47)

where r
ĥ̂ĥhkmĥ̂ĥhql

(∆T ,∆R), r
ĥ̂ĥhkmĥ̂ĥhkm

(τ), and rĤ̂ĤHkmĤ̂ĤHkm
(̺) designate, in that order,

the TACF, the SCCF, and the FCF of ĥ̂ĥhkm(t, η). These functions are given as

r
ĥ̂ĥhkmĥ̂ĥhql

(∆T ,∆R) , E
{

ĥ̂ĥh∗km(t, η) ĥ̂ĥhql(t, η)
}

(5.48)

r
ĥ̂ĥhkmĥ̂ĥhkm

(τ) , E
{

ĥ̂ĥh∗km(t, η) ĥ̂ĥhql(t+ τ, η)
}

(5.49)

rĤ̂ĤHkmĤ̂ĤHkm
(̺) , E

{

Ĥ̂ĤH∗
km(t, υ) Ĥ̂ĤHkm(t, υ + ̺)

}

. (5.50)

A solution to this problem has recently been provided in [Paet06]. In that paper,

the authors approximate the TACF and the SCCF of a wideband MIMO channel

model derived from the geometrical one-ring scattering model by applying the

EMEDS and the LPNM. Regarding the emulation of the FCF rHHHkmHHHkm
(̺) of the

MIMO channel, it was demonstrated in that paper that the TDL model in (5.43)

exactly reproduces such an statistical function if the impulse response hhhkm(t, η) is

a discrete function in the delay domain and the gains ĉn,ℓ satisfy
∑N

n=1 ĉ
2
n,ℓ = σ2

µµµℓ
.

We will refrain ourselves from providing details about the simulation approach

presented in [Paet06], since it was developed independently by other researchers.

However, we observe that the idea can be implemented in a more efficient manner

by employing either the GMEA or the RSAM. In fact, a third party demonstrated

in [Mayy08] that the simulation of wideband MIMO channels can effectively be

performed by applying the idea described in [Paet06] in connection with the

GMEA. We notice that the authors of [Mayy08] made use of an alternative version
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of the GMEA that we proposed in [Gut07b].

The simulation approach described in [Paet06] is based on the assumption

that the impulse responses of the MIMO subchannels are discrete functions in

the delay-domain, meaning that the processes hhhkm(t, η) are given as in (5.36).

Under this consideration, it is evident that the TDL model defined in (5.43) is

a natural structure for the simulation/representation of hhhkm(t, η). However, the

characterization of hhhkm(t, η) by means of a TDL model is not straightforward

when the impulse responses of the MIMO subchannels are given as in (5.38), i.e.,

when hhhkm(t, η) is a continuous (diffuse) function in η. In the following chapter,

we will revisit a well-known procedure for the design of TDL for WSS complex

Gaussian channels characterized by diffuse impulse responses that satisfy the US

condition. The concepts studied in that chapter can be applied together with

the idea proposed in [Paet06] to design simulation models for wideband mobile

MIMO fading channels with continuous-delay impulse responses.

5.7 Chapter Summary and Conclusions

In this chapter, we demonstrated that the GMEA and the RSAM introduced in

Chapter 4 can be applied to the simulation of narrowband mobile MIMO fading

channels with specified correlation properties. We explained here that a proper

emulation of the SCCF of the MIMO channel requires information about both

the even and the odd parts of the PDF of the AOA. For this reason, some minor

modifications were made in Section 5.4 to the GMEA and the RSAM in order to

incorporate information about the odd part of the AOA distribution.

We evaluated the performance of the proposed parameter computation meth-

ods with respect to the approximation of the ACF and SCCF of the MIMO

subchannels. The obtained results indicate that the modifications made to the

GMEA and the RSAM do not affect the methods’ capability for emulating the

ACF of the MIMO subchannels. Concerning the emulation of the SCCF, the ob-

tained results show that both methods provide a very good approximation to such

a correlation function. Particularly, our investigations indicate that the RSAM is

better suited than the GMEA to emulate the correlation properties of the MIMO

channel. Finally, we discussed in Section 5.6 an application of the methods pro-

posed in this dissertation to the design of simulation models for wideband mobile

MIMO fading channels.
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Chapter 6

Design of TDL Models for

WSSUS Channels with Diffuse

Impulse Responses

6.1 Introduction

The wide-sense stationary uncorrelated scattering (WSSUS) model proposed by

Bello [Bell63] is a widely accepted model for small-scale mobile fading channels

[Stei87, Skla88, Jeru00, Proa01, Pae02a, Pae02b]. A variety of standardized chan-

nel models for wireless and mobile communication systems has been developed

on the basis of this stochastic model [Cos207, EtsGSM, Etsi99, Med98a, Med98b,

Erce04]. In order to obtain realizable and well specified representations of WSSUS

channels, one often has to resort in practice to the use of simulation models. Dif-

ferent types of models can be used for the simulation of WSSUS channels, e.g.,

those presented in [Yip95], [Chri02]. However, a fundamental requirement for

any of such simulators is the proper emulation of the essential characteristics of

the WSSUS model. This is necessary to allow for a reliable and reproducible

system performance investigation.

Several simulation models basing on the time-variant TDL filter concept have

been proposed for the simulation of WSSUS channels with continuous-delay im-

pulse responses, such as those in [Pae02b] and [Yip95]. Among them, the sim-

plest and perhaps most popular one is a so-called symbol-spaced TDL (SSTDL)

model. Briefly speaking, a SSTDL model can be considered as a sampled ver-

sion of the time-variant channel impulse response (CIR) obtained by using a

sampling rate equal to the reciprocal of the symbol duration. Such a kind of

TDL models was originally introduced by Kailath [Kail59] and Bello [Bell63] as

canonical channel models—which are essentially simulation models—for band-

limited time-variant linear systems. SSTDL models are nowadays widely in use

111
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for the performance analysis of modern wireless communication systems, e.g.,

[Choi01, Yang02, Hou04].

It might seem that the applicability of SSTDL models is unquestionable, since

they were developed in the framework of the sampling theorem [Bell63]. Nev-

ertheless, the results reported in [Guti05] suggest that the validity of such TDL

models is rather doubtful when the concept is applied to WSSUS channels. In

fact, the answer to the question whether SSTDL models are suitable for modeling

WSSUS channels is still lacking in the literature. What is more, despite the fact

that this modeling approach dates back more than forty years [Bell63], [Kail59],

the statistical properties of the resulting SSTDL are not well known. Most of

the literature on this topic concentrates only on describing the structure of the

SSTDL model [Stei87], [Proa01], and even though a statistical analysis can be

found in [Bell63], [Jeru00] and [Syko00], no information concerning the channel

FCF is provided there. The information about the FCF is very important because

this function influences the performance of many wideband and frequency diver-

sity wireless communication systems, such as multicarrier code division multiple

access (MC-CDMA) systems [Choi01, Yang02, Hou04, Hara97, Schu05].

Closing the above mentioned gaps is necessary not only for a better under-

standing of channel modeling aspects, but also for carrying out a reliable system

performance investigation. In this chapter, we aim at closing them by analyzing

the validity and statistical behavior of SSTDL models for WSSUS channels. It

is also our objective to discuss the problems associated with these TDL models,

as well as to present a simple and effective strategy to avoid them.

The rest of the chapter is organized as follows. Section 6.2 is devoted to

analyzing the suitability of SSTDL models to simulate WSSUS channels. It is

shown in that section that using SSTDL models to model the CIR of WSSUS

channels results in a violation of the US condition from the perspective of band-

limited systems. In Section 6.3, we provide a concise description of the statistical

behavior of these type of simulation models. We show in that section that SSTDL

models suffer from strong limitations in emulating the FCF of WSSUS channels.

In Section 6.4, we show that SSTDL models lead to an imprecise performance

analysis of wireless communication systems sensitive to the FCF. To cope with

this problem, we discuss a solution in Section 6.5 by doubling the sampling rate

of the channel, resulting in a half-symbol-spaced TDL (HSSTDL) model. The

usefulness of this solution is exemplary demonstrated by analyzing the bit error

probability of a down-link MC-CDMA system. Finally, we present our conclusions

in Section 6.6.
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6.2 About the Validity of SSTDL Models

6.2.1 The SSTDL Modeling Approach

Before we proceed to analyze the suitability of SSTDL models for modeling

WSSUS channels, it is convenient to review the approach followed in [Bell63]

to develop such a type of simulation models. Toward that end, consider a wire-

less communication system characterized by the input-output relationship

y(t) = x(t) ∗ h(t, η) =

∫

x(t)h(t, η)dη (6.1)

where ∗ denotes convolution, x(t) is the transmitted signal, y(t) is the received

signal, and h(t, η) is the time-variant CIR, which is continuous in both t and η

variables. The CIR h(t, η), called the input delay-spread function by Bello, may

be regarded as being the system response at time t to a unit impulse applied η

seconds in the past.

For practical purposes, it is possible to derive a discrete-delay1 representa-

tion of the CIR h(t, η) on the basis of the sampling theorem by assuming that

either the transmitted signal or the channel itself is bandwidth restricted. For

the latter case, it was shown in [Bell63, pp. 378-379] that if the corresponding

channel transfer function H(t, υ) =
∫∞
−∞ h(t, η) exp{−j2πυη}dη is confined to a

bandwidth W (meaning that H(t, υ) = 0 for |υ| > W), then, according to the

sampling theorem, the CIR h(t, η) may equivalently be expressed as [Bell63, eq.

(123)]

h(t, η) ≡
∞∑

n=−∞
h
(

t,
n

W

)

sinc
(

W
[

η − n

W

])

(6.2)

where sinc(η) , sin(πη)/(πη) and W ≥ W is an arbitrary sampling rate.

In conformity with the thesis in [Bell63], it turns out that the CIR h(t, η) is

well modeled by a TDL linear filter having a time-variant impulse response

ĥ(t, η) = ∆η ·
∞∑

n=−∞
h(t, n∆η)δ(η − n∆η) (6.3)

where the tap spacing ∆η , 1/W is given such that ∆η ≤ 1/W. The equivalent

discrete-delay CIR described by ĥ(t, η) establishes the so-called SSTDL model

when W = W = Ws, where Ws = 1/T is the nominal bandwidth of the transmit-

1In this chapter, we will be concerned only with the discrete-delay modeling of the CIR
h(t, η). The reader is referred to [Pae02a] for a detailed study on the modeling of h(t, η) in
discrete-time domain
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ted symbols2, and T is usually equal to the symbol duration3. Throughout the

chapter, we will refer to ĥ(t, η) either as the SSTDL model or as the T -spaced

TDL model to stress the fact that ∆η = T (Ws = W = W ), while we will

use the term ∆η-spaced TDL model for the more general case where ∆η ≤ T

(Ws ≤ W ≤W ).

The equivalence between the CIR h(t, η) and its discrete-delay version defined

by ĥ(t, η) in (6.3) holds in the sense that the former impulse response can be

reconstructed from the interpolation of the latter one, as indicated by (6.2).

6.2.2 The Validity of SSTDL Models

The SSTDL modeling approach may at first seem to be sound and thorough.

Nevertheless, important problems arise when the random nature of the mobile

fading channel is brought into consideration. The main source of conflict comes

from the fact that the SSTDL model was derived on the basis of the sampling

theorem for deterministic signals. If the CIR h(t, η) is deemed to be a random

process, as it is done usually for wireless communication system, then its discrete-

delay representation should be obtained by invoking the sampling theorem for

stochastic processes instead [Proa01, p. 71]. Thus, the bandwidth restriction is

not to be associated with the (random) channel transfer function HHH(t, υ), but

with the power density spectrum of hhh(t, η). Fortunately, the amendment of such

an imprecision results in an equivalent discrete-delay CIR ĥ̂ĥh(t, η) similar as the

one defined in (6.3), and the results and conclusions drawn in [Bell63] remain

basically unchanged. In this case, however, the equivalence defined in (6.2) holds

only in the zero-mean-square-error sense [Proa01, p. 71]

E

{∣
∣
∣
∣
hhh(t, η) −

∞∑

n=−∞
hhh
(

t,
n

W

)

sinc
(

W
[

η − n

W

])
∣
∣
∣
∣

2
}

= 0. (6.4)

We point out that the sampling theorem for stochastic processes applies only on

stationary processes.

A further problem arises if the random CIR hhh(t, η) meets per definition the

WSSUS condition. If hhh(t, η) is a WSSUS random process, then the simulation

approach described in Section 6.2.1 is not applicable, because the US condition is

incompatible with the bandwidth constraint required to obtain ĥ̂ĥh(t, η) [Schu05].

2The nominal bandwidth may be defined as the width of the main lobe of the power spectral
density of a digitally modulated signal.

3For instance, T equals the duration of the quadrature-amplitude-modulation (QAM) sym-
bols in a conventional single carrier system, whereas T equals the chip duration in direct-sequence
spread spectrum (DS-SS) systems [Schu05]. Multicarrier systems [Schu05], [VanN04] are a spe-
cial case, where T is equal to the (non-cyclic-extended) symbol duration divided by the total
number of subcarriers. In all cases, Ws = 1/T holds. We note that the term “symbol” is used
in this chapter for those digital signals that carry the information through the channel.
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Such an incompatibility often passes unnoticed in the literature. Take as an

example the conclusions drawn in [Proa01] at the end of Section 14.5.1. There,

it is stated that the uncorrelation of the tap gains of ĥ̂ĥh(t, η) is a consequence of

the US condition of hhh(t, η). This statement is not adequate in the way it was

postulated in [Proa01], because it is based on the implicit assumption that the

CIR hhh(t, η) satisfies both the WSSUS condition and the bandwitdh constraint.

Notice that the equation (14.5–4) given in [Proa01, Sec. 14.5.1] holds only if the

channel transfer function is band-limited.

Bello proposed a second TDL model which circumvents the incompatibil-

ity between the bandwidth limitation of HHH(t, υ) and the US condition of hhh(t, η)

[Bell63, pp. 379, second column]. In deriving that model, Bello shifted the band-

width constraint onto the input signal x(t). Thereby, since the bandwidth re-

striction is external to the CIR hhh(t, η), one can assume without problems that

hhh(t, η) is a WSSUS process. In that case, it can be shown that the equivalent

discrete-delay CIR is given by [Syko00]

h̃̃h̃h(t, η) =

∞∑

n=−∞

[∫

hhh(t, ξ)sinc(W [ξ − n∆η])dξ

]

δ(η − n∆η). (6.5)

The impulse response h̃̃h̃h(t, η) is not equivalent to hhh(t, η) in the sense of (6.2), but

in what

yyy(t) ≡
∞∑

n=−∞
x(t− n∆η)

∫

hhh(t, ξ)sinc([ξ − n∆η])dξ. (6.6)

The previous equation implies that the output of the system remains the same

if the CIR hhh(t, η) is replaced by its discrete-delay version h̃̃h̃h(t, η); as yyy(t) = ỹ̃ỹy(t),

where ỹ̃ỹy(t) = x(t) ∗ h̃̃h̃h(t, η). Similar observations can be made for the SSTDL

model, or more generally, for the ∆η-spaced TDL model, since yyy(t) ≡ ŷ̂ŷy(t) ∗
sinc (Wt), where ŷ̂ŷy = x(t) ∗ ĥ̂ĥh(t, η).

Even though the TDL model described in (6.5) is compatible with WSSUS

channels, it is strictly speaking not a valid simulation model for them, since the

tap gains of the equivalent discrete-delay CIR h̃̃h̃h(t, η) are mutually correlated.

The cross-correlation among the taps can be neglected, nonetheless, if the auto-

correlation function of hhh(t, η) varies slowly in the delay domain, as pointed out

in [Bell63] and [Syko00]. However, since the US condition of the CIR hhh(t, η) is in

general not reflected by h̃̃h̃h(t, η), it can be conclude that this simulation model is

not adequate for WSSUS channels. In fact, the random process h̃̃h̃h(t, η) belongs

to the class of non-WSSUS processes [Matz05].
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6.3 Statistical Behavior of SSTDL Models

Despite the SSTDL model proves to be incompatible with WSSUS channels from

the perspective of band-limited systems, simulation models of this kind are widely

being in use in connection with the WSSUS model to evaluate the performance

of wireless communication systems, e.g., [Choi01, Yang05, Hou04]. In defense

of such a system performance investigation approach, we can argue that the

SSTDL model might coexist with WSSUS channels if the bandwidth constraint

imposed on the CIR hhh(t, η) is neglected4. To find out if this is the case, it is

necessary to know whether ĥ̂ĥh(t, η) satisfactorily emulates the statistical properties

of WSSUS channels. It should also be determined whether the resulting SSTDL

model lends itself to system performance investigations. To accomplish the above-

mentioned tasks, we need a complete description of the statistical behavior of the

(nonequivalent) discrete-delay CIR ĥ̂ĥh(t, η). In this section, we provide such a

description by assuming that hhh(t, η) is a zero-mean WSSUS complex Gaussian

process. We will also assume that the CIR hhh(t, η) is causal and has finite duration.

Consequently, we can write

ĥ̂ĥh(t, η) = ∆η ·
N∑

n=0

hhh(t, n∆η)δ(η − n∆η) (6.7)

where the number of taps N , ⌊W · ηmax⌋ + 1 is defined with respect to the

sampling rate W and the channel’s maximum excess delay ηmax [Skla88]. The

operator ⌊·⌋ denotes the nearest integer toward minus infinity.

6.3.1 Statistical Description of the Reference Channel Model

Before we proceed, we will summarize the statistical properties of the WSSUS

complex Gaussian CIR hhh(t, η) that are relevant for the purposes of this chapter.

For a detailed discussion on the statistical properties of WSSUS channels, we

refer the reader to [Bell63, Proa01, Pae02a, Schu05].

In line with the WSSUS Gaussian model, hhh(t, η) is characterized by its ACF

rhhhhhh(t1, t2; η1, η2) , E {hhh(t1, η1)hhh
∗(t2, η2)}

= rhhhhhh(τ ; η1) δ(η1 − η2) (6.8)

where rhhhhhh(τ ; η) , E{hhh(t, η)hhh∗(t+ τ, η)} and τ = t1 − t2. Similarly, hhh(t, η) can be

4Note, however, that the equivalences described in Section 6.2 for each of the pairs HHH(t, η),
hhh(t, η) and ŷ(t), y(t) will no longer be valid. In any case, the corresponding relationships
between those functions should be established as mere approximations in terms of their statistical
properties.
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characterized by means of its time-frequency ACF (TF-ACF)

RHHHHHH(t1, t2;υ1, υ2) , E {HHH(t1, υ1)HHH
∗(t2, υ2)}

=

∫ ∫

rhhhhhh(t1, t2; η1, η2)

× exp{j2π(υ1η1 − υ2η2)} dη1 dη2 (6.9)

= RHHHHHH(τ ; ̺) (6.10)

where RHHHHHH(τ ; ̺) , E{HHH(t, η)HHH∗(t+ τ, η+ ̺)} and ̺ = υ1 − υ2. Equation (6.10)

results from the substitution of rhhhhhh(t1, t2; η1, η2) from (6.8) into (6.9), and states

that the channel is WSS in both the time and the frequency variables5.

The multipath behavior of hhh(t, η) is characterized in the frequency domain

by the FCF RHHHHHH(̺) , RHHHHHH(0; ̺) and in the delay domain by the power delay

profile (PDP)

Sη(η) , E{|hhh(t, η)|2}

=

∫ ∞

−∞
RHHHHHH(̺) exp{j2πη̺} d̺. (6.11)

We will focus our attention on these two statistical quantities (especially on the

FCF), since a TDL channel model is mostly intended to emulate them.

6.3.2 Statistical Description of ∆η-Spaced TDL Models

Since ĥ̂ĥh(t, η) is a sampled version of a Gaussian process, it is in turn a Gaussian

process, which is therefore completely characterized by its ACF

r
ĥ̂ĥhĥ̂ĥh

(t1, t2; η1, η2) = E{ĥ̂ĥh(t1, η1)ĥ̂ĥh
∗(t2, η2)}

=
1

W 2
rhhhhhh(τ ; η1) δ(η1 − η2)

∞∑

n=−∞
δ(η1 − nT ) (6.12)

where W , 1/∆η. We recall that W = Ws for the T -spaced TDL model. Equa-

tion (6.12) shows that ĥ̂ĥh(t, η) is a WSSUS process, which was to be expected

since the tap gains of ĥ̂ĥh(t, η) are samples of a WSS random process that fulfills

the US condition. We can therefore conclude that ĥ̂ĥh(t, η) is an adequate simu-

lation model for WSSUS channels. This is in line with the conclusion drawn in

[Proa01]. In order to determine how accurate is this simulation model in emulat-

ing the statistical behavior of the reference model described by the CIR hhh(t, η),

it is convenient to turn our attention to the FCF of ĥ̂ĥh(t, η).

We can express the TF-ACF R
Ĥ̂ĤHĤ̂ĤH

(t1, t2;υ1, υ2) , E{Ĥ̂ĤH(t1, υ1) Ĥ̂ĤH
∗(t2, υ2)} of

5Actually, the channel is SSS in both domains, since the underlying process is a Gaussian
process.
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ĥ̂ĥh(t, η), where Ĥ̂ĤH(t;υ) =
∫∞
−∞ ĥ̂ĥh(t, η) exp{−j2πυη}dη, as the convolution of the

channel TF-ACF RHHHHHH(t1, t2;υ1, υ2) = RHHHHHH(τ ; ̺) and the train of delta functions
∑∞

n=−∞ δ(υ1 − nW )/W . In this way, we obtain

RĤ̂ĤHĤ̂ĤH(t1, t2;υ1, υ2) =
1

W

∞∑

n=−∞
RHHHHHH(τ ; ̺− nW ) (6.13)

= R
Ĥ̂ĤHĤ̂ĤH

(τ ; ̺) (6.14)

where R
Ĥ̂ĤHĤ̂ĤH

(τ ; ̺) , E{Ĥ̂ĤH(t, η) Ĥ̂ĤH∗(t+ τ, η + ̺)}. In turn, we can define the FCF

of ĥ̂ĥh(t, η) as R
Ĥ̂ĤHĤ̂ĤH

(̺) , R
Ĥ̂ĤHĤ̂ĤH

(0; ̺). Thereby, we can write

R
Ĥ̂ĤHĤ̂ĤH

(̺) =
1

W

∞∑

n=−∞
RHHHHHH(0; ̺− nW ). (6.15)

An equivalent expression that allows for the analytical evaluation of the FCF

RĤ̂ĤHĤ̂ĤH(̺) may be written as follows:

R
Ĥ̂ĤHĤ̂ĤH

(̺) =
1

W 2

N∑

n=0

Sη(n/W ) exp{−j2πn̺/W}. (6.16)

We observe that Ĥ̂ĤH(t;υ) is WSS in the time domain and wide-sense periodic

in the frequency domain with period W . In mathematical terms, this means

that R
Ĥ̂ĤHĤ̂ĤH

(t1, t2;υ1, υ2) = R
Ĥ̂ĤHĤ̂ĤH

(τ ; ̺ + kW ), where k is an integer. Notice that

R
Ĥ̂ĤHĤ̂ĤH

(̺) = R
Ĥ̂ĤHĤ̂ĤH

(̺ + kW ). The FCF R
Ĥ̂ĤHĤ̂ĤH

(∆η) is also an Hermitian symmetric

function, meaning that R
Ĥ̂ĤHĤ̂ĤH

(̺) = R∗
Ĥ̂ĤHĤ̂ĤH

(−̺).

For an exact emulation of the FCF RHHHHHH(̺) of the reference model, it is re-

quired that RĤ̂ĤHĤ̂ĤH(̺) = RHHHHHH(̺). However, this equality can be fulfilled only

within the frequency interval ̺ ∈ [−W/2,W/2], because RĤ̂ĤHĤ̂ĤH(̺) 6= RHHHHHH(̺)

for |̺| > W/2 due to the periodicity of RĤ̂ĤHĤ̂ĤH(̺). What is more, the FCF

RĤ̂ĤHĤ̂ĤH(̺) of the simulation model ĥ̂ĥh(t, η) is a weighted sum of shifted replicas

of RHHHHHH(̺), as one can observe from (6.15). Hence, to ensure that the relation

RĤ̂ĤHĤ̂ĤH(̺) = RHHHHHH(̺) holds for ̺ ∈ [−W/2,W/2], it is necessary that RHHHHHH(̺) = 0

for |̺| > W/2, otherwise the replicas of RHHHHHH(̺) will overlap and RĤ̂ĤHĤ̂ĤH(̺) will

be affected by aliasing. Unfortunately, the fulfillment of this condition cannot be

guaranteed because the FCF of WSSUS channels is not band-limited, and ĥ̂ĥh(t, η)

does not include any external bandwidth restriction for RHHHHHH(̺)—which is actu-

ally the main difference between ĥ̂ĥh(t, η) and the TDL model h̃̃h̃h(t, η) described in

Section 6.2. The FCF of ĥ̂ĥh(t, η) will therefore be affected by a certain degree of

aliasing, which will reduce its accuracy for emulating the FCF of hhh(t, η). This is

in fact the main drawback of the ∆η-spaced TDL model. Owing to the aliasing

effects, the FCF R
Ĥ̂ĤHĤ̂ĤH

(̺) of ĥ̂ĥh(t, η) provides just an approximation to the FCF
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RHHHHHH(̺) of hhh(t, η) valid for −W/2 ≤ ̺ ≤ W/2. Aliasing is a well-known effect,

but it is generally not recognized in the literature that this effect influences the

statistical properties of the TDL simulation model in (6.3).

On the other hand, a reliable system performance analysis requires an ac-

curate emulation of RHHHHHH(̺) along the frequency range of the system band-

width. Hence, satisfying the relation RĤ̂ĤHĤ̂ĤH(̺) ≈ RHHHHHH(̺) within the interval

̺ ∈ [−Ws,Ws] is highly desirable for system evaluation purposes. Unfortunately,

this is not possible when we employ a T -spaced TDL model, because the periodW

of the FCF of this simulation model is equal to Ws, i.e., W = Ws, implying that

the approximation RĤ̂ĤHĤ̂ĤH(̺) ≈ RHHHHHH(̺) cannot be satisfied for Ws/2 ≤ |̺| ≤ Ws.

As will be shown next, this characteristic of T -spaced TDL models affects the

performance evaluation of wireless communication systems sensitive to the FCF.

6.4 Numerical Examples

6.4.1 The Truncated-Exponential-Decay PDP

In what follows, we will provide some examples illustrating the issues discussed

in Section 6.3.2. To this end, let us assume that the CIR hhh(t, η) of the reference

model has a truncated-exponential-decay PDP (TED-PDP)

Sη(η) =

{
1
c · exp {−η/σ} , 0 ≤ η ≤ ηmax

0, else
(6.17)

where σ > 0 is the falling factor of the PDP, and c = [1 − exp{−ηmax/σ}] /σ. The

TED-PDP has been shown to be an adequate model for characterizing the PDP

of outdoor and indoor wideband channels [Erce99]. Indeed, this type of PDP

has been adopted as a reference by several bodies of standardization for wireless

communication systems [Cos207, EtsGSM, Med98b, Med98a, Corr06, Erce04].

In the case of the TED-PDP in (6.17), the FCF RHHHHHH(̺) of the reference

model is given by

RHHHHHH(̺) =
1 − exp

{
−ηmax

σ (1 − j2π̺σ)
}

(1 − j2π̺σ) · (1 − exp
{
−ηmax

σ

}
)
. (6.18)

From (6.16) and (6.17), we can express the FCF R
Ĥ̂ĤHĤ̂ĤH

(̺) of the ∆η-spaced TDL

model ĥ̂ĥh(t, η) as

RĤ̂ĤHĤ̂ĤH(̺) =

(
1 − exp

{
− 1
σW

}) (
1 − exp

{
− N
σW (1 + j2π̺σ)

})

(
1 − exp

{
− N
σW

}) (
1 − exp

{
− 1
σW (1 + j2π̺σ)

}) . (6.19)

We normalized (6.16) to obtain the above expression, so that R
Ĥ̂ĤHĤ̂ĤH

(0) = 1.
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6.4.2 Effects of Aliasing on the FCF

In Fig. 6.1, we present a comparison between the absolute values of RHHHHHH(̺)

and R
Ĥ̂ĤHĤ̂ĤH

(̺) by considering ηmax = 800 ns, W = Ws = 20 MHz, and σ ∈
{30 ns, 60 ns, 105 ns}. These parameters are representative of the propagation

conditions encountered inside office buildings (σ = 30 ns), at large open space

environments (σ = 60 ns), and at outdoor environments under non-line of sight

conditions (σ = 105 ns) [Med98a] for applications in wireless local area networks

(WLANs), such as HIPERLAN/2, where the system bandwidth Ws is equal to

20 MHz [Etsi99].

From the graphs depicted in Fig. 6.1, it is evident that the SSTDL model

does not provide a good approximation to the FCF of the reference model within

the relevant interval [−Ws/2,Ws/2]. Actually, by taking the graphs of |RHHHHHH(̺)|
as a reference, we can observe that |R

Ĥ̂ĤHĤ̂ĤH
(̺)| exhibits a correlation offset that

increases monotonically as ̺ moves from zero to ±W/2. The above mentioned

offset is indeed an effect caused by aliasing. We can also observe in Fig. 6.1 that

RHHHHHH(̺) and R
Ĥ̂ĤHĤ̂ĤH

(̺) follow different trends for frequencies in excess of W/2.

From the graphs depicted in that figure, it is evident that |R
Ĥ̂ĤHĤ̂ĤH

(̺)| 6= |RHHHHHH(̺)|
for |̺| > W/2.

6.4.3 The Influence of the FCF on the System Performance

Consider a frequency diversity system described by the following baseband equiv-

alent signal model (it is assumed that the system is free from inter-symbol inter-

ference (ISI))

~yyy = ~CCC~x+ ~nnn (6.20)

where ~x, ~yyy, ~nnn ∈ C
M×1 represent a vector of M transmitted signals, a random

vector of M received signals, and a random vector with M complex additive

white Gaussian noise (AWGN) components, respectively. The random channel

matrix ~CCC is defined as ~CCC = diag{~HHH}, where ~HHH ∈ C
M×1 and 〈~HHH〉n = HHH(t;nυ0)

for all t. The symbol υ0 stands for the fundamental frequency of the system.

The notation C
m×n designates the set of all m× n complex matrices, and 〈·〉n,m

denotes the entry of a matrix at its mth column and nth row (subindex m is

omitted for vectors). The diag{·} operator produces a diagonal matrix from a

vector, where the diagonal elements of the matrix are equal to the elements of the

vector between curly braces. The channel correlation matrix is given as follows
~RCCC = E{~CCC~CCC∗}. We define the (n,m)th entry of ~RCCC as

〈~RCCC〉n,m = RHHHHHH(W · ∆m−n/M) (6.21)
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Figure 6.1: Comparison between the absolute value of the FCF of the reference
model and the absolute value of the FCF of the SSTDL by con-
sidering the TED-PDP with τmax = 800 ns, Ws = 20 MHz, and
different values for the decay factor σ of the PDF.
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where ∆m−n = m − n denotes the (m − n)th lag of ~RCCC . By assuming binary

phase shift keying (BPSK) modulation, and maximal ratio combining (MRC), we

obtain the following expression for the BEP of this system [Schu05, Sec. 2.4.6]

PBEP =
1

π

∫ π/2

0

M∏

i=1

(

1 +
Eb
N0

· λi

M · sin2θ

)−1

dθ (6.22)

where Eb is the bit energy, N0 is the noise density, and λi is the ith eigenvalue

of the correlation matrix ~RCCC .

When using a T -spaced TDL model for the laboratory analysis of such a

frequency diversity system (or any other ∆η-spaced TDL model), the channel

matrix ~CCC in (6.20) is substituted by a random matrix ~̂CCC = diag{ ~̂HHH}, where

~̂HHH ∈ C
M×1, and 〈 ~̂HHH〉n = Ĥ̂ĤH(t;nυ0) for all t. The correlation matrix of ~̂CCC is then

given by ~RĈCC = E{~̂CCC ~̂CCC∗}, where

〈~RĈCC〉n,m = RĤ̂ĤHĤ̂ĤH(W · ∆m−n/M). (6.23)

For an accurate system performance analysis, it is desirable that ~R
ĈCC

= ~RCCC .

However, due to the problems discussed in the preceding section, we have

〈~R
ĈCC
〉n,m ≈ 〈~RCCC〉n,m, for |∆m−n| ≤ ⌊M/2⌋ (6.24)

〈~R
ĈCC
〉n,m 6= 〈~RCCC〉n,m, for |∆m−n| > ⌊M/2⌋ . (6.25)

From (6.24) and (6.25), it follows that the eigenvalues λ̂i of ~RĈCC are not the

same as those of ~RCCC . Consequently, the simulated system

~̂yyy = ~̂CCC~x+ ~nnn (6.26)

will provide an imprecise picture of the BEP of the actual system defined in (6.20).

To demonstrate the veracity of this remark, let us analyze the BEP of a down-

link MC-CDMA system [Guti06] comprising M = 64 orthogonal subcarriers with

υ0 = 312.5 kHz, all of them used as data subcarriers. The nominal bandwidth

of this system is Ws = 20 MHz (Ws = 64 × 312.5 kHz). The sampling rate T is

therefore equal to T = 1/Ws = 50 ns. We assume a multiple-user-interference-

(MUI)-free network scenario and BPSK modulation with MRC at the receiver.

With respect to the spreading factor MSF of the system, we consider MSF ∈
{1, 2, 4, 8, 16, 32, 64}. To compute the BEP for different spreading factors, we use

a slightly modified version of (6.22), which is given by

PBEP−SF =
1

π

∫ π/2

0

MSF∏

i=1

(

1 +
Eb
N0

· ℓ
(MSF)
i

MSF · sin2θ

)−1

dθ (6.27)
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where ℓ
(MSF)
i is the ith eigenvalue of an arbitrary correlation matrix ~R(MSF) ∈

C
MSF×MSF . To measure the BEP of the reference system for a spreading factor

MSF, we define the (n,m)th entry of ~R(MSF) as 〈~R(MSF)〉n,m = 〈~RCCC〉n,m. Anal-

ogously, to compute the BEP of the simulated system, we set 〈~R(MSF)〉n,m =

〈~RĈ̂ĈC〉n,m. We have evaluated (6.27) by considering the TED-PDP [see (6.17)]

with ηmax = 800 ns and the same values of the falling factor σ as considered for

drawing the graphs presented in Fig. 6.1. The obtained results are plotted in

Fig. 6.2.

It can be seen in Figs. 6.2(a), 6.2(b), and 6.2(c) that the BEP of the reference

system is not exactly the same as that of the simulated system when MSF > 1.

In fact, the difference between the BEP of both systems increases with increasing

the value of the spreading factor. This is because the aliasing effects affecting

the FCF of the SSTDL model are more severe as the spreading factor increases.

Interestingly, the results presented in Fig. 6.2(c) show that the aliasing effects

can be neglected if σ is large. This is not surprising, since the FCF RHHHHHH(̺) of

hhh(t, η) decays fast for large values of σ [cf. Fig. 6.1]. However, the BEP of ~̂yyy is

clearly different from that of ~yyy when MSF = 64, even for a large value of σ. The

reason for such a sharp difference is that half of the elements in ~R
(64)

ĈCC
do not meet

the relation 〈~R(64)

ĈCC
〉m,n ≈ 〈~R(64)

CCC 〉m,n [see (6.25)].

6.5 Avoiding the Problems Caused by SSTDL Models

SSTDL models lead to an imprecise system performance evaluation because of

two reasons. On the one hand, the quality of the relation RĤ̂ĤHĤ̂ĤH(̺) ≈ RHHHHHH(̺) is

affected by aliasing effects within [−Ws/2,Ws/2]. On the other hand, RĤ̂ĤHĤ̂ĤH(̺) 6=
RHHHHHH(̺) for |̺| > Ws/2 since RĤ̂ĤHĤ̂ĤH(̺) behaves different from RHHHHHH(̺) when |̺| >
Ws/2. Fortunately, these problems can be solved, or at least sufficiently reduced,

simply by increasing the sampling rate of the channel, i.e., by reducing the tap

spacing ∆η of hhh(t, η).

Reducing ∆η will result in less severe aliasing effects provided that RHHHHHH(̺) →
0 as ̺ → ±∞ (most PDPs, including the TED-PDP in (6.17), meet this condi-

tion). In addition, it is obvious from (6.15) that a higher sampling rate will result

in a larger period for RĤ̂ĤHĤ̂ĤH(̺) and, consequently, in a larger approximation inter-

val. Indeed, it can be shown that RĤ̂ĤHĤ̂ĤH(̺) → RHHHHHH(̺) as ∆η → 0. Particularly,

if we choose ∆η = T/2, then the period W of RĤ̂ĤHĤ̂ĤH(̺) will be conveniently equal

to twice Ws, i.e., W = 2Ws. In this way, the approximation RĤ̂ĤHĤ̂ĤH(̺) ≈ RHHHHHH(̺)

will hold for the relevant interval ̺ ∈ [−Ws,Ws]. As a result, we will obtain a

more reliable picture of the system’s performance while keeping the complexity

of the TDL model low. For the above mentioned reasons, we suggest to sample

the CIR at a rate equal to twice Ws to avoid the problems caused by T -spaced
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Figure 6.2: Comparison between the theoretical and the empirical BEPs of a
MUI-free downlink MC-CDMA system with MRC by considering
the T -spaced TDL model and the TED-PDP with different values
of the decay factor σ (SF stands for the spreading factor).
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TDL models. We will indistinctly refer to the oversampled TDL model having a

tap spacing of ∆η = T/2 as the T/2–spaced TDL model or as the HSSTDL.

Figure 6.3 illustrates the advantages of using T/2-spaced TDL models by

comparing the absolute value of the FCF of the reference model with that of the

FCFs of the T -spaced and T/2-spaced TDL models. This figure demonstrates

that the aliasing effects are less severe for the T/2-spaced TDL model than for

the T -spaced TDL models.

As a numerical example of the benefits of using a T/2-spaced TDL model

for system evaluation, let us consider again the MC-CDMA system described

in Section 6.4. We have recalculated the BEP of this system under the same

considerations as in Section 6.4, but with the difference that ∆η = T/2, meaning

that the tap spacing is equal to ∆η = 25 ns and ~̂HHH ∈ C
128×1 with N = 33. The

obtained results are shown in Figs. 6.4.

It is clear from Figs. 6.4(a), 6.4(b), and 6.4(c), that the simulation system

~̂yyy matches better the BEP of the reference system ~yyy when the T/2–spaced TDL

model is used. What is more, we can observe from the results obtained for a

spreading factor of 64 that the difference between the BEP of ~̂yyy and ~yyy is con-

siderably smaller than when we use the T–spaced TDL model (see Figs. 6.2(a),

6.2(b), and 6.2(c)). The reason for such an impressive improvement is that the

approximation RĤ̂ĤHĤ̂ĤH(̺) ≈ RHHHHHH(̺) is valid for ̺ ∈ [−Ws,Ws] when we use a

T/2-spaced TDL model. We shall mention, nonetheless, that the T/2-spaced

TDL model has been introduced mainly as a solution to enable the approxima-

tion of the FCF RHHHHHH(̺) along the relevant range of frequencies of the system

−Ws ≤ ̺ ≤ Ws. It does not remove completely the aliasing effects observed

within ̺ ∈ [−W/2,W/2], which explains the slight differences between the BEP

of the reference system and the simulation system when σ = 30 ns and MSF = 64

[see Fig. 6.4(c)]. Other solutions, more sophisticated than the one discussed here,

are necessary to neutralize the aliasing effects, e.g., see [Pae02b].

6.6 Chapter Summary and Conclusions

In this chapter, we showed that important inconsistencies arise when SSTDL

models, or ∆η-spaced TDL models in general, are used within the context of

band-limited systems to model WSSUS channels. Such inconsistencies involve

the violation of the US condition. Nevertheless, a ∆η-spaced TDL model is a

valid simulation model for WSSUS channels if it is considered out of the context

of band-limited systems.

We showed that the FCF of a ∆η-spaced TDL model is a periodic function

with a period equal to W = 1/∆η . Because of this characteristic, a ∆η-spaced

TDL models provides just an approximation to the FCF of the reference model,
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Figure 6.3: Comparison between the absolute value of the FCF of the reference
model and the absolute value of the FCF of the HSSTDL by con-
sidering the TED-PDP with τmax = 800 ns, Ws = 20 MHz, and
different values for the decay factor σ of the PDF.
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Figure 6.4: Comparison between the theoretical and the empirical BEPs of a
MUI-free downlink MC-CDMA system with MRC by considering a
T/2-spaced TDL model and the TED-PDP with different values of
the decay factor σ (SF stands for the spreading factor).
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which is valid only within ̺ ∈ [−W/2,W/2]. We also showed that such an

approximation is affected by aliasing effects.

The relation R
Ĥ̂ĤHĤ̂ĤH

(̺) ≈ RHHHHHH(̺) does not hold for |̺| > W/2 when ∆η = T .

For this reason a SSTDL model is not able to emulate the FCF of the reference

model within the frequency range of the system’s bandwidth. This drawback seri-

ously affects the performance analysis of wireless communication systems sensitive

to the FCF.

To avoid the problems caused by T -spaced TDL models, we proposed the use

of T/2-spaced TDL channel models, which are obtained by sampling the CIR at a

rate equal to 2Ws, i.e., ∆η = T/2. A T/2-spaced TDL model is more resilient to

the aliasing effects than a T -spaced TDL model provided that the FCF RHHHHHH(̺)

of the reference model approaches to zero as ̺ → ∞. Another advantage of

T/2 spaced TDL models is that they enable the approximation of the reference

model’s FCF along the complete frequency range of the system bandwidth. For

this reason, using T/2-spaced TDL models instead of T -spaced TDL models turns

out to be of great advantage for system evaluation purposes.



Chapter 7

Summary of Contributions and

Open Problems

7.1 Contributions

The contributions of this doctoral project can be summarized as follows:

• We presented a thorough analysis of the statistical properties of a stochas-

tic SOC simulation model for mobile Rician fading channels having a time-

variant LOS component. We analyzed the correlation and spectral proper-

ties of the SOC simulator, as well as its envelope and phase PDFs.

• We provided closed-form solutions for the squared envelope ACF of the

simulation model. Closed-form expressions were derived for the squared

envelope ACF of the ensemble and also for the squared envelope ACF of

the sample functions. For this latter function, we provided solutions not

only for the case where the IQ components of the SOC model are cross-

correlated, but also for the case where they are mutually uncorrelated. The

correctness of such expressions was demonstrated by simulations.

• We investigated the stationarity properties of the SOC simulation model.

In this respect, we showed that the simulation model is a WSS process

provided that its LOS component is time-invariant or equal to zero.

• We analyzed the ergodicity of the stochastic SOC simulation model with

respect to the mean value, the power, and the ACF. We found out that

the simulation model is always power ergodic and autocorrelation ergodic,

but the mean-ergodicity property holds only when the LOS component is

time-invariant or equal to zero.

• We also analyzed the mean- and the autocorrelation-ergodicity properties of

the simulation model’s squared envelope. We showed that the squared en-

129
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velope of the SOC model is a mean-ergodic and an autocorrelation-ergodic

process only when its IQ components are uncorrelated.

• We presented a generalized version of the MEA that is well-suited for the

design of SOC simulators for narrowband SISO fading channels charac-

terized by any type of DPSDs. We called such a generalized method the

GMEA.

• We proposed the RSAM as a suitable method for the design of SOC simu-

lators for narrowband SISO fading channels with arbitrary DPSDs.

• We extended the GMEA and the RSAM with respect to the design of SOC

simulators for single-bounce scattering narrowband mobile MIMO fading

channels.

• We revisited the concept of the SSTDL model for WSSUS channels. We

showed that, from the perspective of band-limited systems, the SSTDL

model violates the US condition of the channel. However, the SSTDL model

is compatible with the US condition when the model is considered out of

the context of band-limited systems. It was shown that a SSTDL suffers

from strong limitations in emulating the FCF of WSSUS channels. Such

limitations seriously affect the performance analysis of wireless communica-

tions systems sensitive to the FCF. A simple solution to avoid the problems

produced by SSTDL models was presented by reducing the tap spacing by

a factor of two.

7.2 Open Problems

We close this chapter by noticing that closed-form solutions are still lacking for

the LCR and the ADF of SOC channel simulation models. Closing this gap is

important to determine whether or not a SOC model is able to reproduce the

fading coherence of the envelope of mobile fading channels. On the other hand,

in this dissertation we focused our attention on the design of SOC simulation

models for mobile fading channels in two dimensional single-bounce scattering

environments. Further research is necessary to enable the SOC simulation of

fading channels in three dimensional multiple-bounce scattering scenarios. This

is particularly relevant to investigate the effects that the spatial polarization of

the received signal exerts on the system performance.



Appendix A

Derivation of the Squared

Envelope ACF of the

Reference Model

In this appendix, we derive a closed-form expression for the ACF rξξξ2ξξξ2(t1, t2) ,

E{ξξξ2(t1)ξξξ
2(t2)} of the squared envelope ξξξ2(t) , |ννν(t)|2 of the narrowband Rician

fading channel model described by the complex Gaussian process ννν(t) = µµµ(t) +

mρ(t). The obtained solution is valid irrespective of the PDF characterizing the

AOA statistics of the channel’s multipath components.

From the definition of rξξξ2ξξξ2(t1, t2), and taking into account that E{µµµ(t)} = 0

[see Sec. 2.2], one can easily verify that

rξξξ2ξξξ2(t1, t2) , E{ξξξ2(t1)ξξξ
2(t2)}

= E
{
|µµµ(t1) +mρ(t1)|2 |µµµ(t2) +mρ(t2)|2

}

= E
{[

|µµµ(t1)|2 + |mρ(t1)|2 +µµµ∗(t1)mρ(t1) +µµµ(t1)m
∗
ρ(t1)

]

[
|µµµ(t2)|2 + |mρ(t2)|2 +µµµ∗(t2)mρ(t2) +µµµ(t2)m

∗
ρ(t2)

]}

= rζζζ2ζζζ2(t1, t2) + ρ4 + 2σ2
µµµ ρ

2 +wµµµ,mρ(t1, t2)

+uµµµ,mρ(t1, t2) + uµµµ,mρ(t2, t1) (A.1)

where rζζζ2ζζζ2(t1, t2) , E{ζζζ2(t1)ζζζ
2(t2)} is the ACF of the squared envelope ζζζ2(t) ,

|µµµ(t)|2 of the channel’s diffuse component µµµ(t), whilst the functions wµµµ,mρ(t1, t2)

and uµµµ,mρ(t1, t2) are equal to

wµµµ,mρ(t1, t2) = E
{[
µµµ∗(t1)mρ(t1) +µµµ(t1)m

∗
ρ(t1)

]

×
[
µµµ∗(t2)mρ(t2) +µµµ∗(t2)m

∗
ρ(t2)

]}
(A.2)

uµµµ,mρ(t1, t2) = E
{
|µµµ(t1)|2 ·

[
µµµ∗(t2)mρ(t2) +µµµ(t2)m

∗
ρ(t2)

]}
. (A.3)
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A compact expression for rζζζ2ζζζ2(t1, t2) can be obtained by noticing that

rζζζ2ζζζ2(t1, t2) , E{ ζζζ2(t1) ζζζ
2(t2) }

= E{ |µµµ(t1)|2|µµµ(t2)|2 }
= E{ [µµµI(t1)

2 +µµµQ(t1)
2] · [µµµI(t2)2 +µµµQ(t2)

2] }
= E{µµµ2

I(t1)µµµ
2
I(t2)} + E{µµµ2

Q(t1)µµµ
2
Q(t2)}

+E{µµµ2
I(t1)µµµ

2
Q(t2)} + E{µµµ2

Q(t1)µµµ
2
I(t2)} (A.4)

where µµµI(t) and µµµQ(t) are the inphase and quadrature components of µµµ(t), re-

spectively. The expectations in (A.4) satisfy the relationships [Auli79]

E{µµµ2
I(t1)µµµ

2
I(t2)} = E{µµµ2

I(t1)} ·E{µµµ2
I(t2)} + 2E2{µµµI(t1)µµµI(t2)} (A.5a)

E{µµµ2
Q(t1)µµµ

2
Q(t2)} = E{µµµ2

Q(t1)} · E{µµµ2
Q(t2)} + 2E2{µµµQ(t1)µµµQ(t2)} (A.5b)

E{µµµ2
I(t1)µµµ

2
Q(t2)} = E{µµµ2

I(t1)} ·E{µµµ2
Q(t2)} + 2E2{µµµI(t1)µµµQ(t2)} (A.5c)

E{µµµ2
Q(t1)µµµ

2
I(t2)} = E{µµµ2

Q(t1)} · E{µµµ2
I(t2)} + 2E2{µµµQ(t1)µµµI(t2)}. (A.5d)

Hence, by taking account of the autocorrelation and cross-correlation properties

of µµµI(t) and µµµQ(t) [see (2.11)], we find that

rζζζ2ζζζ2(t1, t2) = E2{µµµ2
I(t)} + E2{µµµ2

Q(t)} + E{µµµ2
I(t)}E{µµµ2

Q(t)}
+E{µµµ2

Q(t)}E{µµµ2
I(t)} + 2

[

E2{µµµI(t1)µµµI(t2)}

+E2{µµµQ(t1)µµµQ(t2)} + E2{µµµI(t1)µµµQ(t2)} +E2{µµµQ(t1)µµµI(t2)}
]

= 4r2µµµIµµµI
(0) + 2

[
r2µµµIµµµI

(τ) + r2µµµQµµµQ
(τ) + r2µµµIµµµQ

(τ) + r2µµµQµµµI
(τ)
]

= σ4
µµµ + 4

[
r2µµµIµµµI

(τ) + r2µµµIµµµQ
(τ)
]

= σ4
µµµ + |rµµµµµµ(τ)|2. (A.6)

This result indicates that the ACF of ζζζ2(t) is not influenced by the choice of the

time origin, so that rζζζ2ζζζ2(t1, t2) = rζζζ2ζζζ2(τ).

The function wµµµ,mρ(t1, t2), on the other hand, may be rewritten as follows

wµµµ,mρ(t1, t2) = E
{[
µµµ∗(t1)mρ(t1) +µµµ(t1)m

∗
ρ(t1)

]

×
[
µµµ∗(t2)mρ(t2) +µµµ(t2)m

∗
ρ(t2)

]}

= 4E
{
Re{µµµ∗(t1)mρ(t1)} · Re{µµµ∗(t2)mρ(t2)}

}

= 4ρ2E
{[

cos(2πfρt1 + θρ)µµµI(t1) + sin(2πfρt1 + θρ)µµµQ(t1)
]

[
cos(2πfρt2 + θρ)µµµI(t2) + sin(2πfρt2 + θρ)µµµQ(t2)

]}
. (A.7)

From (A.7), we obtain after straightforward calculations the result

wµµµ,mρ(t1, t2) = wµµµ,mρ(τ) (A.8)



Appendix A – Squared Envelope ACF of the Reference Model 133

= 4ρ2
[
cos(2πfρτ)rµµµIµµµI

(τ) + sin(2πfρτ)rµµµIµµµQ
(τ)
]
. (A.9)

In turn, the function uµµµ,mρ(t1, t2) may be expressed as

uµµµ,mρ(t1, t2) , E
{
|µµµ(t1)|2 ·

[
µµµ∗(t2)mρ(t2) +µµµ(t2)m

∗
ρ(t2)

]}

= 2E
{
|µµµ(t1)|2 · Re{µµµ∗(t2)mρ(t2)}

}

= 2E
{

[µµµ2
I(t1) +µµµ2

Q(t1)] ·
[
cos(2πfρt2 + θρ)µµµI(t2)

+ sin(2πfρt2 + θρ)µµµQ(t2)
] }

= 2
{

cos(2πfρt2 + θρ)
[

E
{
µµµ2
I(t1)µµµI(t2)

}
+ E

{
µµµ2
Q(t1)µµµI(t2)

}]

+ sin(2πfρt2 + θρ)
[

E
{
µµµ2
I(t1)µµµQ(t2)

}
+ E

{
µµµ2
Q(t1)µµµQ(t2)

}]}

.

(A.10)

It can be shown that the four expectations in (A.10) are equal to zero, so that

uµµµ,mρ(t1, t2) = 0. (A.11)

In order to demonstrate the veracity of this result, let us explicitly evaluate the

case E
{
µµµ2
I(t1)µµµI(t2)

}
. To this end, we recall that

µµµI(t) = Re
{
µµµ(t)

}
= lim

N→∞

N∑

n=1

cccn cos(2πfffnt+ θθθn). (A.12)

The expectation E
{
µµµ2
I(t1)µµµI(t2)

}
can then be arranged as an infinite series

E
{
µµµ2
I(t1)µµµI(t2)

}
= lim

N→∞

N∑

n=1

N∑

m=1

N∑

p=1

E{cccncccmcccp} · E{hhhn,m,p(t1, t2)} (A.13)

where

hhhn,m,p(t1, t2) =
[
cos(2πfffnt1) cos(θθθn) − sin(2πfffnt1) sin(θθθn)

]

×
[
cos(2πfffmt1) cos(θθθm) − sin(2πfffmt1) sin(θθθm)

]

×
[
cos(2πfffpt2) cos(θθθp) − sin(2πfffpt2) sin(θθθp)

]
. (A.14)

The average value of hhhn,m,p(t1, t2) with respect to the random phases proves to

be equal to zero, since E{cos(θθθn) cos(θθθm) cos(θθθp)} = E{sin(θθθn) sin(θθθm) sin(θθθp)} =

E{cos(θθθn) cos(θθθm) sin(θθθp)} = E{sin(θθθn) sin(θθθm) cos(θθθp)} = 0 for all combinations

of n, m, and p (even for n = m = p). In view of this, we can state that

E{hhhn,m,p(t1, t2)} = 0, ∀n,m, p (A.15)

which in turn implies that E
{
µµµ2
I(t1) µµµI(t2)

}
= 0.
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Analogously, it can be proved that E
{
µµµ2
Q(t1) µµµI(t2)

}
= E

{
µµµ2
I(t1) µµµQ(t2)

}
=

E
{
µµµ2
Q(t1) µµµQ(t2)

}
= 0 (we will omit the details for reasons of brevity). Conse-

quently, uµµµ,mρ(t1, t2) = uµµµ,mρ(t2, t1) = 0.

By substituting the results presented in (A.6), (A.9), and (A.11)) into (A.1),

we finally obtain the expression

rξξξ2ξξξ2(t1, t2) = rζζζ2ζζζ2(τ) + ρ4 + 2σ2
µµµρ

2 + 4ρ2
[
rµµµIµµµI

(τ) cos (2πfρτ)

+rµµµIµµµQ
(τ) sin (2πfρτ)

]
. (A.16)

We notice that rξξξ2ξξξ2(t1, t2) is time-shift insensitive, i.e., rξξξ2ξξξ2(t1, t2) = rξξξ2ξξξ2(τ).

Equation (2.39) follows from (A.16) by rewriting rξξξ2ξξξ2(τ) in terms of the Rician

factor cR = ρ2/σ2
µµµ.



Appendix B

Derivation of the Squared

Envelope ACF of the

Stochastic SOC-Based

Simulation Model

In this appendix, we derive a closed-form solution for the ACF r
ξ̂̂ξ̂ξ2ξ̂̂ξ̂ξ2

(t1, t2) ,

E
{
ξ̂̂ξ̂ξ2(t1)ξ̂̂ξ̂ξ

2(t2)
}

of the squared envelope ξ̂̂ξ̂ξ2(t) , |ν̂̂ν̂ν(t)|2 of the stochastic SOC-

based simulation model described by the random process ν̂̂ν̂ν(t) = µ̂̂µ̂µ(t) +mρ(t).

Starting from the definition of r
ξ̂̂ξ̂ξ2ξ̂̂ξ̂ξ2

(t1, t2), one can show that [cf. Appx. A]

r
ξ̂̂ξ̂ξ2ξ̂̂ξ̂ξ2

(t1, t2) = r
ζ̂̂ζ̂ζ2ζ̂̂ζ̂ζ2

(t1, t2) + ρ4 + 2σ2
µµµ ρ

2 + wµ̂̂µ̂µ,mρ
(t1, t2)

+uµ̂̂µ̂µ,mρ
(t1, t2) + uµ̂̂µ̂µ,mρ

(t2, t1) (B.1)

where r
ζ̂̂ζ̂ζ2ζ̂̂ζ̂ζ2

(t1, t2) , E{ζ̂̂ζ̂ζ2(t1)ζ̂̂ζ̂ζ
2(t2)} is the ACF of the squared envelope ζ̂̂ζ̂ζ2(t) ,

|µ̂̂µ̂µ(t)|2 of the simulation model’s random component µ̂̂µ̂µ(t), whereas the functions

wµ̂̂µ̂µ,mρ
(t1, t2) and uµ̂̂µ̂µ,mρ

(t1, t2) are defined as

wµ̂̂µ̂µ,mρ(t1, t2) , E
{[
µ̂̂µ̂µ∗(t1)mρ(t1) + µ̂̂µ̂µ(t1)m

∗
ρ(t1)

]

×
[
µ̂̂µ̂µ∗(t2)mρ(t2) + µ̂̂µ̂µ∗(t2)m

∗
ρ(t2)

]}
(B.2)

uµ̂̂µ̂µ,mρ(t1, t2) , E
{
|µ̂̂µ̂µ(t1)|2 ·

[
µ̂̂µ̂µ∗(t2)mρ(t2) + µ̂̂µ̂µ(t2)m

∗
ρ(t2)

]}
. (B.3)

One can easily verify, by proceeding as we did in Appendix A to obtain the results

presented in (A.9) and (A.11), that

uµ̂̂µ̂µ,mρ
(t1, t2) = 0 (B.4)

wµ̂̂µ̂µ,mρ
(t1, t2) = wµ̂̂µ̂µ,mρ

(τ)

= 4ρ2
[
cos(2πfρτ) rµ̂̂µ̂µI µ̂̂µ̂µI

(τ) + sin(2πfρτ) rµ̂̂µ̂µI µ̂̂µ̂µQ
(τ)
]

(B.5)
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where rµ̂̂µ̂µI µ̂̂µ̂µI
(τ) and rµ̂̂µ̂µI µ̂̂µ̂µQ

(τ) are the correlation functions defined in (3.7). In

addition, it is straightforward to show that

r
ζ̂̂ζ̂ζ2ζ̂̂ζ̂ζ2

(t1, t2) =
N∑

l=1

N∑

m=1

N∑

n=1

N∑

p=1

ĉl ĉm ĉn ĉp · exp
{
j2π(f̂l − f̂m)t1

}

× exp
{
j2π(f̂n − f̂p)t2

}
· E
{

exp
{
j(θ̂̂θ̂θl − θ̂̂θ̂θm + θ̂̂θ̂θn − θ̂̂θ̂θp)

}}
. (B.6)

Since the random phases θ̂̂θ̂θn are mutually independent and uniform over [−π, π)

[Sec. 3.3], the expectation in (B.6) is different from zero only when: l = m = n =

p; l = m, n = p, l 6= n; and l = p, m = n, l 6= m. Consequently, we have

r
ζ̂̂ζ̂ζ2ζ̂̂ζ̂ζ2

(t1, t2) =

N∑

l=1

ĉ4l

︸ ︷︷ ︸

Case: l=m=n=p

+

N∑

m=1

N∑

n=1
n 6=m

ĉ2mĉ
2
n

︸ ︷︷ ︸

Case: l=m,n=p,l 6=n

+
N∑

p=1

N∑

q=1
q 6=p

ĉ2p ĉ
2
q exp

{
− j2πf̂p(t2 − t1)

}
exp

{
j2πf̂q(t2 − t1)

}

︸ ︷︷ ︸

Case: l=p,m=n,l 6=m

=
N∑

l=1

ĉ4l +

[
N∑

m=1

ĉ2m

]2

−
N∑

n=1

ĉ4n

+

N∑

p=1

N∑

q=1

ĉ2p ĉ
2
q exp{−j2πf̂pτ} exp{j2πf̂qτ} −

N∑

k=1

ĉ4k. (B.7)

It follows from (B.7) that the ACF of ζ̂̂ζ̂ζ2(t) is time shift insensitive, that is,

r
ζ̂̂ζ̂ζ2ζ̂̂ζ̂ζ2

(t1, t2) = r
ζ̂̂ζ̂ζ2ζ̂̂ζ̂ζ2

(τ). Taking account of the property
∑N

n=1 ĉ
2
n = σ2

µµµ [Sec. 3.3.1],

and given that rµ̂̂µ̂µµ̂̂µ̂µ(τ) =
∑N

n=1 ĉ
2
n exp{j2πf̂nτ} [Eq. (3.5)], we finally obtain

r
ζ̂̂ζ̂ζ2ζ̂̂ζ̂ζ2

(τ) = σ4
µµµ + |rµ̂̂µ̂µµ̂̂µ̂µ(τ)|2 −

N∑

n=1

ĉ4n. (B.8)

By substituting the results presented in (B.4), (B.5), and (B.8) into (B.1), we

find that the ACF of the simulation model’s squared envelope ξ̂̂ξ̂ξ2(t) is equal to

r
ξ̂̂ξ̂ξ2ξ̂̂ξ̂ξ2

(t1, t2) = r
ξ̂̂ξ̂ξ2ξ̂̂ξ̂ξ2

(τ)

= r
ζ̂̂ζ̂ζ2ζ̂̂ζ̂ζ2

(τ) + ρ4 + 2σ2
µµµ ρ

2 + 4ρ4
[
cos(2πfρτ) rµ̂̂µ̂µI µ̂̂µ̂µI

(τ)

+ sin(2πfρτ) rµ̂̂µ̂µI µ̂̂µ̂µQ
(τ)
]

(B.9)

where r
ζ̂̂ζ̂ζ2ζ̂̂ζ̂ζ2

(τ) is given by (B.8). The expression presented in (3.29) follows from

(B.9) by rewriting r
ξ̂̂ξ̂ξ2ξ̂̂ξ̂ξ2

(τ) in terms of the Rician factor cR.



Appendix C

Derivation of the Squared

Envelope ACF of the

Deterministic SOC-Based

Simulation Model

In this appendix, we compute a closed-form solution for the time-averaged ACF

rξ̂2ξ̂2(τ) of the squared envelope ξ̂2(t) , |ν̂(t)|2 of the deterministic SOC-based

simulation model ν̂(t) = µ̂(t) +mρ(t) introduced in Section 3.4.1. To that end,

we start by noticing that

rξ̂2ξ̂2(τ) ,
〈
|ν̂(t)|2|ν̂2(t+ τ)|2

〉

= rζ̂2ζ̂2(τ) + ρ4 + 2σ2
µµµρ

2 + uµ̂,mρ(t, t+ τ) + uµ̂,mρ(t+ τ, t)

+zµ̂,mρ(t, t+ τ) + zµ̂,mρ(t+ τ, t) + wµ̂,mρ(τ) (C.1)

where rζ̂2ζ̂2(τ) ,
〈
ζ̂2(t)ζ̂2(t+ τ)

〉
is the time averaged ACF of the squared enve-

lope ζ̂2(t) , |µ̂(t)|2 of µ̂(t), and:

uµ̂,mρ(t, t+ τ) ,
〈
|µ̂(t)|2 ·

[
µ̂∗(t+ τ)mρ(t+ τ) + µ̂(t+ τ)m∗

ρ(t+ τ)
]〉

(C.2)

uµ̂,mρ(t+ τ, t) ,
〈
|µ̂(t+ τ)|2 ·

[
µ̂∗(t)mρ(t) + µ̂(t)m∗

ρ(t)
]〉

(C.3)

zµ̂,mρ(t, t+ τ) ,
〈
|mρ(t)|2 ·

[
µ̂∗(t+ τ)mρ(t+ τ) + µ̂(t+ τ)m∗

ρ(t+ τ)
]〉

= ρ2
[〈
µ̂∗(t+ τ)mρ(t+ τ)

〉
+
〈
µ̂(t+ τ)m∗

ρ(t+ τ)
〉]

(C.4)

zµ̂,mρ(t+ τ, t) ,
〈
|mρ(t+ τ)|2 ·

[
µ̂∗(t)mρ(t) + µ̂(t)m∗

ρ(t)
]〉

= ρ2
[〈
µ̂∗(t)mρ(t)

〉
+
〈
µ̂(t)m∗

ρ(t)
〉]

(C.5)

wµ̂,mρ(τ) ,
〈[
µ̂∗(t)mρ(t) + µ̂(t)m∗

ρ(t)
]

×
[
µ̂∗(t+ τ)mρ(t) + µ̂(t)m∗

ρ(t+ τ)
]〉
. (C.6)
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In order to obtain a compact expression for rξ̂2ξ̂2(τ), we need first to find a closed-

form solution for rζ̂2ζ̂2(τ) and the time-averaged functions defined in (C.2)–(C.6).

For that purpose, we will make the following assumptions regarding the Doppler

frequencies f̂n of the SOC model µ̂(t) =
∑N

n ĉn exp
{
j(2πf̂nt + θ̂n)

}
and the

Doppler frequency fρ of the specular wave mρ(t) = ρ exp
{
j(2πfρt+ θρ)

}
:

Condition 3.2 : f̂n 6= 0, ∀n (C.7)

Condition 3.3 : f̂n 6= f̂m, n 6= m (C.8)

Condition 3.5 : If N ≥ 4, then (C.9)

f̂l + f̂m = f̂n + f̂k, iff







l = m = n = k;

or l = n,m = k, l 6= m;

or l = k,m = n, l 6= m.

(C.10)

Condition 3.6 : |fρ| 6= |f̂n|, ∀n (C.11)

Condition 3.7 : If N ≥ 2, then fρ + f̂l 6= f̂m + f̂n, ∀l,m, n. (C.12)

In the case of the function uµ̂,mρ(t, t+ τ), we have

uµ̂,mρ(t, t+ τ) =
〈
|µ̂(t)|2 ·

[
µ̂∗(t+ τ)mρ(t+ τ) + µ̂(t+ τ)m∗

ρ(t+ τ)
]〉

=
N∑

l=1

N∑

m=1

N∑

n=1

ĉl ĉm ĉn ρ exp{j2π(fρ − f̂n)τ}

× exp{j(θ̂l − θ̂m − θ̂n + θρ)}

× lim
T→∞

1

2T

T∫

−T

exp{j2π(f̂l − f̂m − f̂n + fρ)t} dt

+
N∑

p=1

N∑

q=1

N∑

k=1

ĉp ĉq ĉk ρ exp{j2π(f̂k − fρ)τ}

× exp{j(θ̂p − θ̂q + θ̂k + θρ)}

× lim
T→∞

1

2T

T∫

−T

exp{j2π(f̂p − f̂q + f̂k − fρ)t} dt.

The two integrals above are equal to zero in the limit T → ∞ if the condition

established in (C.12) is satisfied. Consequently, we can state that

uµ̂,mρ(t, t+ τ) = 0, if fρ + f̂l 6= f̂m + f̂n, ∀l,m, n. (C.13)

Analogously, one can show that the time average uµ̂,mρ(t+ τ, t) equals

uµ̂,mρ(t+ τ, t) = 0, if fρ + f̂l 6= f̂m + f̂n, ∀l,m, n. (C.14)
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Notice that uµ̂,mρ(t, t+ τ) = uµ̂,mρ(t+ τ, t) upon fulfillment of the Condition 3.7.

However, such a relationship is in general not valid.

On the other hand, for the time-averaged function zµ̂,mρ(t, t+ τ), we have

zµ̂,mρ(t, t+ τ) = ρ2
[〈
µ̂∗(t+ τ)mρ(t+ τ)

〉
+
〈
µ̂(t+ τ)m∗

ρ(t+ τ)
〉]

= ρ3

[
N∑

l=1

ĉl exp{j2π(fρ − f̂l)τ} exp{j(θρ − θ̂l)}

× lim
T→∞

1

2T

T∫

−T

exp{j2π(fρ − f̂l)t} dt

+

N∑

m=1

ĉm exp{j2π(f̂m − fρ)τ} exp{j(θ̂m − θρ)}

× lim
T→∞

1

2T

T∫

−T

exp{j2π(f̂m − fρ)t} dt
]

.

If the Condition 3.6 is met, then the integrals introduced in the previous expres-

sion are equal to zero in the limit T → ∞, implying that

zµ̂,mρ(t, t+ τ) = 0, if |f̂n| 6= |fρ| ∀n. (C.15)

In a similar way, one can show that

zµ̂,mρ(t+ τ, t) = 0, if |f̂n| 6= |fρ| ∀n. (C.16)

It is worth noticing that the results presented in (C.15) and (C.16) hold even

when the absolute value is removed from the Condition 3.6, i.e., if f̂n 6= fρ ∀n.

In turn, for the function wµ̂,mρ(τ), it can be shown that if the Condition 3.6

is fulfilled, then

wµ̂,mρ(t, t+ τ) =
〈[
µ̂∗(t)mρ(t) + µ̂(t)m∗

ρ(t)
]

×
[
µ̂∗(t+ τ)mρ(t) + µ̂(t+ τ)m∗

ρ(t+ τ)
]〉

= ρ2
[

exp{−j2πfρτ}
〈
µ̂∗(t)µ̂(t+ τ)

〉

+ exp{j2πfρτ}
〈
µ̂(t)µ̂∗(t+ τ)

〉]

= 2ρ2 Re
{
exp{j2πfρτ} · r∗µ̂µ̂(τ)

}

= 4ρ2
{
cos(2πfρτ) · rµ̂I µ̂I

(τ) + sin(2πfρτ) · rµ̂I µ̂Q
(τ)
}

(C.17)

where rµ̂µ̂(τ), rµ̂I µ̂I
(τ), and rµ̂I µ̂Q

(τ) denote, in that order, the ACF of µ̂(t)

[see (3.33)], the ACF of the inphase component of µ̂(t) [see (3.35a)], and the

CCF between the IQ components of µ̂(t) [see (3.35b)].
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Finally, for the time-averaged ACF rζ̂2ζ̂2(τ) of ζ̂2(t), we have

rζ̂2ζ̂2(τ) =
〈
|µ̂(t)|2|µ̂(t+ τ)|2

〉

=

N∑

l=1

N∑

m=1

N∑

n=1

N∑

p=1

ĉl ĉm ĉn ĉp

× exp
{
j(θ̂l − θ̂m + θ̂n − θ̂p)

}
· exp

{
j2π(f̂n − f̂p)τ

}

× lim
T→∞

1

2T

T∫

−T

exp{j2π(f̂l − f̂m + f̂n − f̂p)t} dt. (C.18)

If the condition stated in (C.9) is met, then the integral in (C.18) will be different

from zero only when: l = m = n = p; l = n,m = p, l 6= m; l = p,m = n, l 6= n.

In such a case, we obtain [cf. Appx. B]

rζ̂2ζ̂2(τ) =
N∑

l=1

ĉ4l

︸ ︷︷ ︸

Case: l=m=n=p

+
N∑

m=1

N∑

n=1
n 6=m

ĉ2mĉ
2
n

︸ ︷︷ ︸

Case: l=m,n=p,l 6=n

+
N∑

p=1

N∑

q=1
q 6=p

ĉ2p ĉ
2
q exp

{
− j2πf̂p(t2 − t1)

}
exp

{
j2πf̂q(t2 − t1)

}

︸ ︷︷ ︸

Case: l=p,m=n,l 6=m

=

N∑

l=1

ĉ4l +

[
N∑

m=1

ĉ2m

]2

−
N∑

n=1

ĉ4n

+

N∑

p=1

N∑

q=1

ĉ2p ĉ
2
q exp{−j2πf̂pτ} exp{j2πf̂qτ} −

N∑

k=1

ĉ4k

= σ4
µµµ + |rµ̂µ̂(τ)|2 −

N∑

n=1

ĉ4n. (C.19)

On the basis of the results presented in (C.1), (C.13)–(C.17), and (C.19), we

can conclude that

rξ̂2ξ̂2(τ) = rζ̂2ζ̂2(τ) + ρ4 + 2σ2
µµµ ρ

2 + 4ρ4
[
cos(2πfρτ) · rµ̂I µ̂I

(τ)

+ sin(2πfρτ) · rµ̂I µ̂Q
(τ)
]

(C.20)

if the conditions established in (C.7)–(C.12) are fulfilled. Notice that the expres-

sion in (C.20) does not depend on the set of phases {θ̂n, θρ}. However, without

going into details, we observe that this characteristic does not hold if any of the

conditions in (C.7)–(C.12) is not met.



Appendix D

Closed-Form Expression for

the Squared Envelope ACF of

the Sample Functions of the

Stochastic Homogeneous SOC

Model with Uncorrelated IQ

Components

In this appendix, we outline the derivation of the time-averaged ACF rζ̂2ζ̂2(τ) ,
〈
ζ̂2(t) · ζ̂2(t + τ)

〉
of the squared envelope ζ̂2(t) , |µ̂(t)|2 of the deterministic

process µ̂(t) characterizing the sample functions of the stochastic homogeneous

SOC model µ̂̂µ̂µ(t). We do so under the assumption that the Conditions 3.1–3.3 are

fulfilled, meaning that:

Condition 3.1 : The number N of cisoids in µ̂̂µ̂µ(t) is even, i.e., N = 2M,

M ∈ Z
+, and for each pair of parameters (ĉn, f̂n) there

exist one and only pair (ĉm, f̂m),m 6= n, such that

ĉn = ĉm and f̂n = −f̂m.
Condition 3.2 : f̂n 6= 0, ∀n.
Condition 3.3 : f̂n 6= f̂m, n 6= m.

Notice that if these conditions are satisfied, then the IQ components µ̂̂µ̂µI(t) and

µ̂̂µ̂µQ(t) of µ̂̂µ̂µ(t) are uncorrelated [cf. (3.6) and (3.7)]. For notational convenience,

and without compromising the generality of our results, we will furthermore as-

sume that the cisoids’ parameters are indexed in such a way that f̂n < f̂m ∀n < m.
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Our starting point is the expression given in (C.18) for rζ̂2ζ̂2(τ), the which we

present again for completeness:

rζ̂2ζ̂2(τ) =
〈
|µ̂(t)|2|µ̂(t+ τ)|2

〉

=

N∑

l=1

N∑

m=1

N∑

n=1

N∑

p=1

ĉl ĉm ĉn ĉp

× exp
{
j(θ̂l − θ̂m + θ̂n − θ̂p)

}
· exp

{
j2π(f̂n − f̂p)τ

}

× lim
T→∞

1

2T

T∫

−T

exp{j2π(f̂l − f̂m + f̂n − f̂p)t} dt. (D.1)

For the case analyzed in Appendix C, the integral in (D.1) is different from zero

in the limit T → ∞ only when: l = m = n = p; l = n,m = p, l 6= m; and

l = p,m = n, l 6= n. However, for the case at hand, the integral is different

from zero also whenever l 6= m 6= n 6= q and: f̂l = −f̂n, f̂m = −f̂p; f̂l = −f̂n,
f̂p = −f̂m; f̂n = −f̂l, f̂m = −f̂p; and f̂n = −f̂l, f̂p = −f̂m. Under such

circumstances, we have

rζ̂2ζ̂2(τ) = σ4
µµµ + |rµ̂µ̂(τ)|2 −

N∑

n=1

ĉ4n

+

N/2
∑

l=1

ĉ2l exp
{
j
(
θ̂l + θ̂N−l+1

)}
· exp

{
− j2πf̂lτ

}

×
{ N/2
∑

m=1

ĉ2m exp
{
− j
(
θ̂m + θ̂N−m+1

)}
· exp

{
j2πf̂mτ

}

+

N/2
∑

n=1

ĉ2n exp
{
− j
(
θ̂n + θ̂N−n+1

)}
· exp

{
− j2πf̂nτ

}

}

+

N/2
∑

p=1

ĉ2p exp
{
j
(
θ̂p + θ̂N−p+1

)}
· exp

{
j2πf̂pτ

}

×
{N/2
∑

q=1

ĉ2q exp
{
− j
(
θ̂q + θ̂N−q+1

)}
· exp

{
j2πf̂qτ

}

+

N/2
∑

k=1

ĉ2k exp
{
− j
(
θ̂k + θ̂N−k+1

)}
· exp

{
− j2πf̂kτ

}

}

(D.2)

where rµ̂µ̂(τ) is the ACF defined in (3.8). One can easily verify that

rζ̂2ζ̂2(τ) = σ4
µµµ + |rµ̂µ̂(τ)|2 −

N∑

n=1

ĉ4n
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+

N/2
∑

l=1

N/2
∑

m=1

ĉ2l ĉ
2
m exp

{
j(θ̂l + θ̂N−l+1 − θ̂m − θ̂N−m+1)

}

×
[

exp
{
− j2π(f̂l − f̂m)τ

}
+ exp

{
− j2π(f̂l + f̂m)τ

}]

+

N/2
∑

n=1

N/2
∑

p=1

ĉ2n ĉ
2
p exp

{
j(θ̂n + θ̂N−n+1 − θ̂p − θ̂N−p+1)

}

×
[

exp
{
j2π(f̂n + f̂p)τ

}
+ exp

{
j2π(f̂n − f̂p)τ

}]

= σ4
µµµ + |rµ̂µ̂(τ)|2 −

N∑

n=1

ĉ4n

+

N/2
∑

l=1

N/2
∑

m=1

ĉ2l ĉ
2
m exp

{
j(θ̂l + θ̂N−l+1 − θ̂m − θ̂N−m+1)

}

×
[

exp
{
− j2π(f̂l − f̂m)τ

}
+ exp

{
− j2π(f̂l + f̂m)τ

}

+ exp
{
j2π(f̂l + f̂m)τ

}
+ exp

{
j2π(f̂l − f̂m)τ

}]

= σ4
µµµ + |rµ̂µ̂(τ)|2 −

N∑

n=1

ĉ4n

+4

N/2
∑

l=1

N/2
∑

m=1
m6=l

ĉ2l ĉ
2
m exp

{
j(θ̂l + θ̂N−l+1 − θ̂m − θ̂N−m+1)

}

× cos
(
2πf̂lτ

)
· cos

(
2πf̂mτ

)
. (D.3)

Hence, by taking into account the identity
∑N

n=1

∑N
m=1
m6=n

xnx
∗
m =

∣
∣
∣
∑N

n=1 xn

∣
∣
∣

2
−

∑N
m=1 |xm|2, we can finally write

rζ̂2ζ̂2(τ) = σ4
µµµ + |rµ̂µ̂(τ)|2 −

N∑

n=1

ĉ4n

+4

{∣
∣
∣
∣
∣

N/2
∑

l=1

ĉ2l exp
{
j(θ̂l + θ̂N−l+1)

}
· cos

(
2πf̂lτ

)
∣
∣
∣
∣

2

−
N/2
∑

m=1

ĉ4m cos2
(
2πf̂mτ

)
}

. (D.4)
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Appendix E

Theorems About the Design of

SOC-Based Simulation Models

with Uncorrelated IQ

Components

Theorem E.1 Let the DPSD of the channel’s diffuse component, Sµµµµµµ(f), be a

symmetrical and continuous function in (−fmax, fmax], and suppose that the gains

ĉn and the AOAs α̂n of the SOC model described by the complex random process

µ̂̂µ̂µ(t) are given such that

ĉn =
σµµµ√
N
, n = 1, . . . , N (E.1)

α̂n∫

α̂n−1

gααα(α)dα =
1

2N
, n = 2, . . . , N. (E.2)

Then, the IQ component µ̂̂µ̂µI(t) and µ̂̂µ̂µQ(t) of µ̂̂µ̂µ(t) are mutually uncorrelated if and

only if

α̂1∫

0

gααα(α)dα =
1

4N
. (E.3)

Proof To prove this theorem, we start by noticing from (E.2) that the deter-

ministic AOAs α̂n fulfill the relationships 0 < α̂n < π ∀n and α̂n 6= α̂n ∀n 6= m.

Consequently, the Doppler frequencies f̂n , fmax cos(α̂n) of µ̂̂µ̂µ(t) satisfy f̂n 6= f̂m
for all n 6= m. Now, if f̂n 6= f̂m and ĉn = ĉm for all n 6= m (as in the present
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case), then µµµI(t) and µµµQ(t) are mutually uncorrelated if and only if [see (3.7b)]

f̂n = −f̂N−n+1, n = 1, . . . , N. (E.4)

For notational convenience, and without loss of generality, we assume that the

Doppler frequencies are indexed such that f̂n < f̂m for n < m. The equality

f̂n = −f̂N−n+1 implies that the underlying AOAs satisfy α̂n = π−α̂N−n+1, where

α̂n ∈ (0, π). In turn, the symmetry of Sµµµµµµ(f) implies that gααα(α) = gααα(π−α), for

α ∈ (0, π]. Consequently, if Sµµµµµµ(f) = Sµµµµµµ(−f) and the Doppler frequencies f̂n
satisfy (E.4), then

α̂n∫

0

gααα(α)dα =

π∫

α̂N−n+1

gααα(α)dα, ∀n. (E.5)

Thus, to prove the theorem, it is sufficient to demonstrate that if the AOAs α̂n
fulfill (E.2), then the previous equality holds if and only if (E.3) is met. The

proof follows immediately by noticing that the requirement in (E.2) entails that

α̂n∫

0

gααα(α)dα =
n− 1

2N
+

α̂1∫

0

gααα(α)dα (E.6)

π∫

α̂N−n+1

gααα(α)dα =
1

2
−

α̂N−n+1∫

0

gααα(α)dα

=
n

2N
−

α̂1∫

0

gααα(α)dα. (E.7)

Obviously, (E.6) equals (E.7) if and only if
∫ α̂1

0 gααα(α)dα = 1/(4N).

Theorem E.2 If the DPSD of the channel’s diffuse component, Sµµµµµµ(f), is sym-

metrical, and the parameters of the SOC simulator described by the random pro-

cess µ̂̂µ̂µ(t) are computed by following the RSAM, then the IQ components of µ̂̂µ̂µ(t)

are mutually uncorrelated.

Proof To prove this theorem, it is sufficient to demonstrate that the Doppler

frequencies f̂n and the gains ĉn of µ̂̂µ̂µ(t) satisfy the following condition when the

RSAM is applied and Sµµµµµµ(f) is symmetrical:

Condition E.1 For each pair of parameters (ĉn, f̂n), where f̂n 6= 0, there exists

one and only one pair (ĉm, f̂m), n 6= m, such that f̂n = −f̂m and ĉn = ĉm.
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Notice that the above is a more general condition for the uncorrelatedness of the

IQ components of µ̂̂µ̂µ(t) than the Condition 3.1 stated in Section 3.3.3.1.

The proof of the theorem follows immediately by noticing that if Sµµµµµµ(f) =

Sµµµµµµ(−f), and assuming that the even part gααα(α) of the AOA distribution has at

most one maximum in [0, π), then the points αℓ and αu at which gααα(α) crosses

a threshold γ ∈
(
0, sup{gααα(α)}α∈[0,π)

)
from down to up and from up to down,

respectively, meet the relation αℓ = π−αu. Consequently, the AOAs α̂n obtained

by applying the RSAM satisfy the equation [cf. (4.31)]

α̂n = π − α̂N−n+1, n = 1, . . . , N. (E.8)

Taking account of the relationship f̂n = fmax cos(α̂n), and given that gααα(α) =

gααα(π − α) when Sµµµµµµ(f) is symmetrical, we find that [see 4.28]

f̂n = fmax cos(α̂n)

= fmax cos(π − α̂N−n+1)

= −fmax cos(α̂N−n+1)

= −f̂N−n+1, n = 1, . . . , N (E.9)

ĉn = σµµµ

√

gααα(α̂n)
∑N

m=1 gααα(α̂m)

= σµµµ

√

gααα(π − α̂N−n+1)
∑N

m=1 gααα(α̂m)

= σµµµ

√

gααα(α̂N−n+1)
∑N

m=1 gααα(α̂m)

= ĉN−n+1, n = 1, . . . , N. (E.10)

We recall that the Doppler frequencies f̂n produced by the RSAM fulfill f̂n 6= f̂m
for n 6= m [see Sec. 4.4.1.3]. Bearing this in mind, and in view of (E.9) and

(E.10), we can state that the Condition E.1 is fulfilled when the RSAM is applied

and Sµµµµµµ(f) = Sµµµµµµ(−f). This concludes the proof.
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Appendix F

Validation of the Expressions

Obtained for the Squared

Envelope ACF of the

Deterministic SOC-Based

Simulation Model

In order to demonstrate the correctness of the analytical expression presented in

Section 3.4.4 for the ACF rξ̂2ξ̂2(τ) of the squared envelope ξ̂2(t) of the stochastic

SOC model’s sample functions, we present in Figs. F.1–F.3 a comparison between

the measured ACF of ξ̂2(t) and the solution given in (3.40) for rξ̂2ξ̂2(τ). The

graphs of |rξ̂2ξ̂2(τ)| depicted in those figures were generated by applying the

RSAM with N = 20 to the von Mises PDF of the AOA. The results presented

in Figs. F.1–F.3 illustrate the case where the IQ components of the simulation

model’s random component are mutually uncorrelated as well as the case where

they are cross-correlated. One can observe from Figs. F.1–F.3 that the theoretical

curves of rξ̂2ξ̂2(τ) match perfectly the empirical one. This can be taken as a proof

of the correctness of the solutions presented in Section 3.4.4 for rξ̂2ξ̂2(τ).
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Figure F.1: Comparison between the theoretical and the empirical squared en-
velope ACFs of the SOC-based simulation model’s sample functions
by considering a Rician factor equal to cR = 0 and applying the
RSAM to the von Mises PDF of the AOA with different pairs of
parameters mα and κ (fmax = 91 Hz, σ2

ννν = 1, fp = 65 Hz, θρ = 0◦,
and N = 20).
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Figure F.2: Comparison between the theoretical and the empirical squared en-
velope ACFs of the SOC-based simulation model’s sample functions
by considering a Rician factor equal to cR = 2 and applying the
RSAM to the von Mises PDF of the AOA with different pairs of
parameters mα and κ (fmax = 91 Hz, σ2

ννν = 1, fp = 65 Hz, θρ = 0◦,
and N = 20).
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Figure F.3: Comparison between the theoretical and the empirical squared en-
velope ACFs of the SOC-based simulation model’s sample functions
by considering a Rician factor equal to cR = 4 and applying the
RSAM to the von Mises PDF of the AOA with different pairs of
parameters mα and κ (fmax = 91 Hz, σ2

ννν = 1, fp = 65 Hz, θρ = 0◦,
and N = 20).
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2001.

[Paet05] Pätzold M. and Hogstad B. O., “Design and performance of MIMO chan-
nel simulators derived from the two-ring scattering model,” in Proc. 14th
IST Mobile & Communications Summit, IST 2005, Dresden, Germany, Jun.
2005, pp. 19-23.

[Paet06] Pätzold M. and Hogstad B. O., “A wideband space-time MIMO channel
simulator based on the geometrical one-ring model,” in Proc. 64th IEEE
Vehicular Technology Conference, VTC 2006-Fall, Montreal, Canada, Sep.
2006.

[Paet07] Pätzold M. and Talha B., “On the statistical properties of sum-of-cisoids-
based mobile radio channel simulators,” in Proc. 10th International Sym-
posium on Wireless Personal Multimedia Communications, WPMC 2007,
Jaipur, India, Dec. 2007.

[Papo02] Papoulis A. and Pillai S. U., Probability, Random Variables and Stochastic
Processes, New York: McGraw-Hill, 4th ed., 2002.

[Pars00] Parsons J. D., The Mobile Radio Propagation Channel, Chichester: John
Wiley & Sons, 2000.
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