
Analysis of Security in Cloud Platforms using
OpenStack as Case Study

by

JohnJohnJohnJohnDavidDavidDavidDavidCooperCooperCooperCooper

A Thesis Submitted In

Partial Fulfillment of the

Requirements for the of Degree of

Masters of Science
in ICT

The University Of Agder
Faculty of Engineering and Science

Supervised by:
Prof. Vladimir . A . Oleshchuk — University of Agder

Gunnar Gudlaugsson —DevoTeam AS

June, 2013.

Grimstad Norway.

ii

An intelligent mind acquires knowledge, and the ear of the wise seeks

knowledge.

────────ProverbsProverbsProverbsProverbs 18:1518:1518:1518:15

http://www.biblegateway.com/passage/?search=Proverbs+18:15&version=ESV

iii

Dedication
This thesis is dedicated to my parents,the late Mrs Cecilia Cooper and Mr

David John Cooper. It is also dedicated to my unborn children.

iv

Acknowledgment

First and foremost, I offer my sincerest gratitude to God for His love,

provision and wisdom throughout my life.

It is with immense gratitude that I acknowledge the support of my principal

supervisor, Prof Vladimir A. Oleschuk. This thesis would not have been

possible without his help and guidance, not to mention his advice and

unsurpassed knowledge in Information Security. Also, the good advice and

friendship of my external supervisor, Gunnar Gudlaugsson has been

priceless for both on academics and on personal level, for which I am

grateful.

I would like to acknowledge the entire management of DevoTeam AS

(Norway), for providing me with necessary tools, devices and platform to

undertake this project.

I am most grateful to my dad, Mr David John Cooper, my sister, Mrs Sarah.

M. Kamara, and also Mr and Mrs Emmanuel G Bowah, and Mrs Sarah Deen

for their unequivocal support throughout, as always, for which my mere

expression of thanks likewise does not suffice.

To my special friends Mr and Mrs Tomm Laurendz, and Mr and Mrs Ghislain

Maurice Norbert Isabwe, I say many thanks for supporting me in many ways.

Last, but by no means least, I would like to thank my fiancee and best friend,

Haja Saramba Kandeh for her great patience. For without her love,

encouragement and editing assistance, I would not have finished this thesis.

[For any errors or inadequacies that will remain in this work, of course, the

responsibility is entirely mine].

v

Abstract
In the last few years, cloud computing has grown from being a promising

business concept to one of the fastest growing segments of the IT industry.

Big companies like Amazon, Google, Microsoft etc., expand their market by

adopting Cloud Computing systems which enhance their services provided

to a large number of users. However, security and privacy issues present a

strong barrier for users to adapt into the Cloud.This research investigates

the security features and issues of cloud platforms using OpenStack as a

case study. The goal was to identify security weakness in terms of

Authentication and Identity Management(IAM), and Data Management. Base

on the findings, specific recommendations on security standards and

management models have been proffered in order to address these problems.

These Recommendations if implemented, will lead to trust in cloud

computing systems, which in turn would encourage more companies to

adopt cloud computing, as a means of providing better IT services.

Keywords: Cloud Computing, Security & OpenStack.

vi

Table of Contents
List of Tables...ix

List of Figures..x

Abbreviations...xi

CHAPTER ONE...1

1.1 Introduction...1

1.2 Prior Research on the Topic...3

1.3 Overview of OpenStack..5

1.4 OpenStack Projects..6

CHAPTER TWO..8

2.1 Motivations..8

2.2 Objectives and Limitations ...8

2.3 Methodology...9

2.4 Deployment of OpenStack..10

CHAPTER THREE..14

3.1 Security Issues From Public and Private Cloud Service Providers........14

3.1.1 Authentication and Identity Management..................................14

3.1.2 Access Control ...16

3.1.3 Privacy and Data Protection..17

3.2 Recommended Security and Privacy Approaches................................17

3.2.1 Authentication and Identity Management solution....................18

3.2.1.1 Details of Proposed Scheme ...19

3.2.1.2 Conclusion...24

3.2.2 Access Control Approach..25

3.2.2.1 Scheme Description... 25

3.2.2.2 Conclusion of proposed scheme....................................31

3.2.3 Privacy and Data Protection solution...31

vii

3.2.3.1 Architecture of the Scheme ..31

3.2.3.2 Privacy Requirement and Analysis32

3.2.3.3 Conclusion...35

CHAPTER FOUR..36

Identity and Access management...36
4.1 User Identity Provisioning/De-provisioning.. 36

4.1.1 Overview...36

4.1.2 Elevation of Privileges in OpenStack Object Storage...................38

4.2 Identity Federation...40

4.3 Authentication In OpenStack Object Storage......................................40

4.3.1 Overview...40

4.3. 2 Password Strength...41

4.3.3 Password storage..41

4.3.4 Analysis of Authentication Tokens..43

4.4 Authorization and Access Control..44

4.4.1 Overview...44

4.4.2 Too Much Access Rights for Reseller Admins..............................46

4.4.3 Elevation of Privileges Protection..48

4.5 Recommendations for IAM Issues in OpenStack Swift.........................49

CHAPTER FIVE..51

Data Management In OpenStack Object Storage51
5.1 Locating Data In OpenStack..51

5.2 OpenStack Isolation and Possible Attacks..52

5.2.1How Isolation is Done In OpenStack Object Storage...................52

5.2.2 Attacks on OpenStack Isolation..53

5.3 Backup and Recovery...53

5.4 Data Deletion...54

5.5 Encryption and Key Management...55

viii

5.6 Data Integrity ...55

5.7 Recommendations for Data Management...57

CHATER SIX...58

Summary of Contributions and Future Work...58

6.1 Contributions..58

6.2 Future Work..60

Glossary..61

Bibliography..63

Appendix A..69

Appendix B..71

ix

List of Tables

3.1 Description of Notations used in the AIM Scheme..............................20

3.2 Notations used In Access Control Scheme..25

x

List of Figures

1.1Cloud Computing logical Diagram...1

1.2 The relationship between the thee components...................................7

2.1 VirtualBox Installed on a host PC...10

2.2 Virtual Machine creation..11

2.3 OpenStack Object Storage Installed in a virtualized environment........12

2.4 VirtualBox Host-Only Networking on Windows....................................13

3.1 Architecture of the proposed scheme...18

3.2 Login and authentication Phase..23

3.3 Format of a data file stored on the cloud...27

3.4 Clod Data Protection System architecture...32

4.1 Swift Authentication (pluggable)...37

4.2 SwAuth Authentication System Password File Contents......................39

4.3 Analysis of Authentication Tokens from OpenStack using Burp...........44

4.4 Dashboard View of OpenStack Access & Security Section....................46

5.1OpenStack Object Storage Directory Structure....................................52

xi

Abbreviations

ACL Access Control List

AHL Attribute History List

APIs Application Programming Interfaces

VPN Virtual Private Network

CDPS Cloud Data Protection System

CNF Conjunctive Normal Form

CPU Central Processing Unit

CSA Cloud Security Alliance

CSP Cloud Service Provider

DaaS Data as a Service

DIFC Decentralized Information Flow Control

DEK Data Encryption Key

DoS Denial of Service

ENISA European Network and Information Security Agency

FIPS Federal Information Processing Standards

HTTP Hypertext Transfer Protocol

IBM International Business Machine

IDC International Data Cooperation

IaaS Infrastructure as a Service

IAM Authentication and Identity Management

xii

IDM Identity Management

I/O Input-Output

JSON JavaScript Object Notation

MK Master Key

NIST National Institute of Standards and Technology

OS Operating System

PaaS Platform as a Service

PK Public Key

PW Password

ReST Representational State Transfer

RSA Rivest, Shamir, and Adelman

SaaS Software as a Service

SAML Security Assertion Markup Language

SK Secret Key

SLA Service Level Agreement

SPML Service Provisioning Markup Language

SQL Structured Query Language

TLS Transport Layer Security

UI User Interface

UUID Universally Unique Identifier

VM Virtual Machine

XACML eXtensible Access Control Markup Language

- 1 -

CHAPTER ONE

1.1 Introduction
The term Cloud computing refers to the delivery of computing as a service rather

than a product. I.e providing resources, software, and information to computers

and other devices as service over a network (typically the Internet) as shown in

figure 1 below. Cloud computing provides services without requiring users to know

the location and details of its operation[1]. Furthermore, it is a design concept

which tries to separate the application from the operating system on which the

hardware runs.

Fig: 1.1 Cloud Computing logical Diagram [2]

Due to its high scalable nature, it can provide infinite computing resources on

demand, which remove lots of burden on cloud service providers when it comes to

hardware provisioning. Since an up-front commitment can be eliminated, smaller

- 2 -

cloud providers are able to provide services to companies and can also increase

their hardware resources only when there is high demand. During usage of cloud

services, users are charged based on short-term basis. For instance a user can be

charged for storage service on a daily base. Because of the scalability of Cloud in

providing services, users can benefit from different services (e.g. Data as a Service

(DaaS), Software as a Service (SaaS) or Platform as a Service (PaaS). Therefore, one

can say that Cloud Computing has evolved at an incredible pace.

In the last few years, cloud computing has grown from being a promising business

concept to one of the fastest growing segments of the Information Technology (IT)

industry. Big companies like Amazon, Google, Windows Azure, and OpenStack has

expanded their market by adopting Cloud Computing which has enabled them to

provide for large number of users.

However, security and privacy issues present a strong barrier for users to adapt to

this new form of IT. According to an International Data Cooperation (IDC) survey in

August 2008, security was regarded as the top challenge in cloud computing [3].

Security is one of the top concerns, says users of cloud computing who fear that

their business information and critical IT resources in the Cloud are vulnerable to

attacks. Furthermore, cloud computing became a hot topic at the RSA security

conference in San Francisco in April 2009, where Cisco CEO Chambers said that

Cloud computing was inevitable, but that it would shake up the way that networks

are secured[4].

Most cloud security problems arise because of lack of control, lack of trust

mechanisms, multitenancy etc. These problems exist mainly in third party

management models and also self-managed cloud platforms. Security is very

difficult to implement in cloud computing because of the different forms of attacks

in both the application side and in the hardware components. In fact, some attacks

with catastrophic effects only need one security flaw.

- 3 -

When it comes to privacy, its concept varies widely among countries, cultures, and

jurisdictions. Privacy rights or obligations are related to the collection, use,

disclosure, storage, and destruction of personal data. But in the end the general

idea about privacy lies in how organizations account for user's data, as well as the

transparency to an organization’s practice around personal information.

In this research, an investigation has been made on the security features of cloud

platforms using OpenStack as a case study. The goal of this thesis was to identify

security weakness related to Authentication and Identity Management (IAM), and

Data Management. Base on the findings, different recommendations have been

provided on how to address these problems. These Recommendations if

implemented, will lead to trust in cloud computing systems which in turn would

encourage companies to adopt cloud computing.

1.2 Prior Research on the Topic
The evolution of this new form of computing has become a very popular research

area, because it poses some risk in its operation. One important risk factor is that

of Security and privacy. And this needs to be corrected as early as possible. The

following enhances the variety of researches conducted in the area which have

been considered in this thesis.

Since 2009, there has been a number of articles and papers on cloud computing

with high focused on its security implementations. Cloud computing is a very

complex system which needs to be understood properly. The NIST defines Cloud

Computing as:

“A model for enabling convenient, on-demand network access to a shared pool of

configured computing resources (e.g., networks, servers, storage, applications, and

services as shown in fig1.1) that can be rapidly provisioned and released with

minimal management effort or service provider interaction. This cloud model

promotes availability and is composed of five essential-characteristics, three

- 4 -

service models, and four deployment models.” [5].

Base on the above definition, since the aim of cloud computing is sharing of

computing resources (networks, servers, storage, application, and services), this

raises lot of concerns for the security and privacy risks involved in such computing.

In a final report on the topic “Understanding the Security, Privacy and Trust

Challenges” [6], the Security, Privacy and Trust challenges in cloud computing

have been identified accordingly. Other research papers have also highlighted

these problems in the areas of Authentication and Identity Management, Access

Control, Trust Management and Policy Integration, Secure-Service Management,

Privacy and Data Protection [7]. With respect to this research area, special interest

have been placed on Authentication and Identity management, and that of Privacy

and Data protection. In a Thesis Presented to the Faculty of the Computer Science

Department of Middlebury College by Bevan Barton, the issue of Cloud

Infrastructure Vulnerabilities which presents security issues at the network, host,

and application levels was also mentioned [8]. His thesis points out the difficulty of

applying encryption methods in the cloud. Of course this is another important

factor to look at, since most cloud platforms are yet to provide better encryption

facilities for user data.

In a specialization project report presented to the University of Agder, analyzes and

comparison of security features and solution provided by different cloud platforms;

OpenStack, Amazon and Windows Azure, was presented. Based on the theoretical

findings in that research, It was realized that out of the three, OpenStack has more

weaknesses than the remaining two especially in the aspect of data protection[21].

This observation presented more reasons to make an in-depth security scrutiny on

OpenStack Platform. Also, in Primož Cigoj’s masters seminar [9], security issues in

OpenStack where analyzed. His argument was that there are some underlying

security issues in the cloud and he pointed this out using OpenStack as case study

in his work.

- 5 -

Over the years, solutions to these problems have been suggested at conferences

and also written in research papers and documents. The notion of public

auditability has recently been proposed in order to ensure that the integrity of

remotely stored data under different security models is maintained [10], [11], [12],

[13]. This will allow external party, in addition to the user himself, to verify the

correctness of remotely stored data. However, most of these schemes [10], [11], [12],

do not support the privacy protection of users’ data against external auditors, i.e.,

they may potentially reveal users' information to the auditors, as it will be

discussed in this paper. This severe drawback greatly affects the security of these

protocols in Cloud Computing. In as much as providing auditing mechanisms is

good, it is also important that vulnerabilities leading to unauthorized information

leakage is not introduced into cloud systems[14].

However, there are legal regulations, such as the US Health Insurance Portability

and Accountability Act (HIPAA) [15], which demands that outsourced data must

not to be leaked to external parties. Applying data encryption before outsourcing

data is one way to mitigate privacy problems [13].

1.3 Overview of OpenStack
OpenStack is an open source software which anyone can use to build both private

and public cloud[16]. The aim of OpenStack is "to produce the ubiquitous open

source cloud computing platform that will meet the needs of public and private

clouds regardless of size, by being simple to implement and massively

scalable"[17].

The Platform was founded by Rackspace and that of NASA. It all started when

NASA was trying to build a private cloud on top of Eucalyptus, but encountered a

problem since Eucalyptus could not be scaled and open as NASA hoped it should

be [19][18]. As a result, NASA decided to build a cloud controller from scratch and

- 6 -

started a project call “NOVA” [19]. While NASA was making its project to be open

sourced, Rackspace was about to do the same with both its compute engine and

Storage controller. This made the two to collaborate and ended up creating an open

source cloud software [18]. OpenStack was first launched in July 2010. Later in

October of the same year, the first project(Austin) was released and made available

to the public [20]. The platform has made several releases since then. The following

are the different releases and dates of availability [20]:

I. Austin—21st October 2010. II. Bexar—03rd February 2011

III. Cactus—15th April 2011 IV. Diablo—22nd September 2011

V. Essex—5th April 2012 VI. Folsom—27th September 2012

VII. Grizzly—4th April 2012

1.4 OpenStack Projects

I) OpenStack Compute: It is also known for its code name as “Nova”. It’s from

NASA’s compute files and it provides and manages large networks, users and

projects [21]. The aim of Nova is to be hardware and hypervisor agnostic. Currently,

it supports different virtualization technologies such as; Citrix XenServer, UML,

Microsoft Hyper-V, Xen, KVM, QEMU, VMWare and LXC Containers [22].

II) OpenStack Object Storage: This component is also known for its code name

“Swift”. It’s also from Rackspace’s “Cloud Files” and provides storage system for

large amounts of static data by the use of clusters of standardized servers [21]. It

provides a ReSTful API for uploading and downloading files into the cluster. It

support Language-specific libraries such as Java, C#, PHP, Python and Ruby.

III) OpenStack Image Repository: Another name for this project is Glance. It

provides REST interface for querying information about virtual disk images. With

glance, clients can register and retrieve new virtual disk images from the

- 7 -

system[21]. The Image registry allows multiple formats, including the following:

Raw, VHD (Hyper-V), VDI (VirtualBox), qcow2 (Qemu/KVM), VMDK (VMWare),

OVF (VMWare, others) [23].

The diagram below (figure1.2) shows how the three major components are

connected.

Fig 1.2 The relationship between the thee components [9]

- 8 -

CHAPTER TWO

2.1 Motivations
Though cloud computing is growing very fast, there are still security barriers that

discourage more users from adopting this system. For two consecutive years,

security was listed as the most important concern of cloud computing according to

the survey conducted by International Data Corporation (IDC) [24], [25]. There was

also a warning issued by the National Institute of Standards and Technology (NIST)

that "security challenges [that] cloud computing presents are formidable", [26].

Researchers from Massachusetts Institute of Technology (MIT) also stated that

securing cloud computing is the "information technology’s next grand challenge"

[27]. These concerns on security issues in cloud computing serves as the primary

motivation behind this research.

When considering whether to adopt cloud usage or not, the first question most

potential customers ask is ‘How secure will our data be in the hands of the service

provider?”. Customers have right to ask such question and also to closely examine

a vendor’s security credentials before making any decision. Any incident pertaining

to privacy or security - even a minor one is capable of eroding brand equity and

consumer trust.

Furthermore, the privacy and security capabilities possessed by different cloud

platforms will affect their acceptance and how innovative applications are

developed. For instance, users who critically needs privacy may favor service

providers who honestly and seriously undertake to deliver specific levels of security

and privacy as part of a bundle of services. Hence it is very important to have more

research on the security issues that affects the adoption of cloud computing.

2.2 Objectives and Limitations
The main objective of this research is to analyze how various security issues

relevant to cloud computing are been handled in cloud platforms with reference to

- 9 -

OpenStack. It should be noted that what has been considered here for this

research is only the Object Storage component, since OpenStack consists of many

different projects. The security issues related to other OpenStack projects were not

considered in this thesis. Also when analyzing the security issues of OpenStack,

two major security areas was investigated; Identity and Access Management, and

Data Management.

In identifying cloud computing security issues in general, different cloud

computing security-related documents created by individual researchers and

organization have been analyzed and compared, with the findings presented

accordingly. Only the areas of Identity and Access Management, Access Control,

and that of Privacy and Data protection was studied.

2.3 Methodology
The approach towards this research involves two phases;

i) Theoretical research on security issues of cloud computing

ii)Experimental investigation on the security issues/weaknesses of OpenStack.

i) Theoretical Research on Security Issues of Cloud Computing and its

Platforms
This part of the research investigates the security issues of cloud computing in

general. By studying different documents which aim at helping companies and

organizations to provide better cloud security solutions for their customers, the

issues in certain security features like Authentication and Identity Management,

Access Control, and that of Privacy and Data Protection was analyzed. These

analysis have been presented in the third chapter.

ii) Experimental Investigation on Security Issues/Weaknesses of

OpenStack.
In this phase, the first approach was to Installed the open source software (Open-

- 10 -

Stack) using the configuration files in appendix B. Next, an investigation was then

carried in order to obtain the issues related to the Identity and Authentication

Method, and that of Privacy and Data Protection in OpenStack Object Storage.

2.4 Deployment of OpenStack
In the experimental setup, only the OpenStack Object Storage was used in order to

identify the security issues related to this platform. The software and devices used

in performing the experiment were:

i. Host Computer with 8GB RAM, at least 30GB free disk space, internet

connection, VT-X enabled in BIOS. The host Operating System being windows(can

also be Linux or Mac which can support VirtualBox).

ii. VirtualBox 4 : 4.1.12-dfsg-2 (from “universe”).

iii. Ubuntu 12.04 LTS Precise Pangolin ISO image

The First step in the experimental setup was to install virtual box and then

configuring it. This gave a complete multi-node cluster which can be accessed and

managed from the computer running VirtualBox. Figure 2.1 below shows an

illustration of the deployment of VirtualBox on a Host PC.

Fig 2.1: VirtualBox installed on a host PC [28]

- 11 -

The next step was to create different virtual machines, configuring and powering

them. All of this is performed in the virtualBox which was created initially. This is

shown in figure 2.2. These VMs further require the installation of ubuntu as their

operating system [29].

Fig 2.2: Virtual machine creation

Afterwards, with the creation and configuration of the Virtual Machines, the

OpenStack Object Storage software also known as swift, was then installed on

windows host machine with the help of the virtualBox [29]. In the deployment of

OpenStack Swift, the procedure described in "OpenStack Cloud Computing Cook

Book" [30] ws followed. In order to achieve better efficiency, only three zones were

created. Also, three storage nodes were then made within these zones and

connected to the windows host machine through the virtual box as shown in figure

2.3 bellow.

- 12 -

Figure 2.3: OpenStack Object Storage Installed in a virtualized environment

From figure 2.3, the first step in operation is to connect the host machine directly

to the internet. The VirtualBox should also be connected to the internet but

virtually (using virtual IP addressing method). In the next step of operation, the

host machine(User) makes request through the VirtualBox and this request is then

forwarded to the OpenStack Object Storage. The Object Storage will then verify the

user's credentials and if it proves to be correct, the host machine(user) will be

granted access to the the node(s) containing its own data. The host machine or

VirtualBox can only access these data via internet connection as shown in the

figure 2.3.

- 13 -

For you to be able to connect from the outer world and reach the storage nodes, it

is important to select the right networking mode. Because in a real world situation,

only proxy node should be able to communicate with storage nodes.

This is shown in figure 2.4.

Figure 2.4: VirtualBox Host-Only networking on windows

Finally, In order to observe and make good security analysis of OpenStack, the

network traffic should be intercepted between the proxy machine and that of the

storage nodes (A, B and C). This was done with the help of the VirtualBox

Host-Only Ethernet Adapter. With the use of a Wire-shark Protocol Analyzer,

network packets were captured, observed and analyzed.

- 14 -

CHAPTER THREE

This chapter outlines security issues in general that are related to both public and

private cloud platforms. Analysis has been made on the areas of Authentication

and Identity Management, Access Control, and that of Privacy and Data Protection.

This chapter also recommends solutions to these problems, as way of improving

cloud operation.

3.1 Security Issues From Public and Private Cloud

Service Providers
In order to succeed in cloud computing, it is very important to understand the

security and privacy risks involved. In as much as the cloud provides so many good

services like avoiding start-up costs, reducing operating costs, and infrastructural

resources when needed, they also raise a lot of security and privacy concerns.

Making data available on demand is quite important, but there comes in the

challenge in ensuring that only authorized persons or certain group are given

rights to access it.

Using cloud becomes even more critical since the usage of data and its decisions

are made by third parties. As at now, it is actually impossible to guarantee that

user's data cannot be misused by the cloud providers themselves, hence the very

reason why both technical and nontechnical solutions should be applied in order

to resolve the problems of the Cloud.

The following sub-sections outline the technological challenges in the cloud and its

associated services.

3.1.1 Authentication and Identity Management
The use of cloud services, makes it possible for users to easily access their personal

information and other useful services across the Internet. But for this to happen,

- 15 -

users have to provide their credentials through an identity management (IDM)

system [31].

As authentication is done for users, there could be issues of interoperability

involved due to the usage of different identity tokens and identity negotiation

protocols within the system. An IDM system should be made in such a way that it

must be able to protect private and sensitive information. Unfortunately, there are

certainly some limitations and risks associated with the password-based

authentication system which is currently employed. Also, it is very important to

understand how the privacy of identity information can be affected by multi-tenant

cloud operations. Multi-jurisdictional issues are capable of complicating protection

measures [32]. In order words, user's identity and credentials must be protected

whenever these users interact with a front-end service [31], [33]. These challenges

can specifically be seen when using cloud as SaaS, PaaS and IaaS, which have

been mentioned bellow[34];

i) Software as a Service
For years now, there has been a constant evolution of complex SaaS but on the

other hand, there is a limited proprietary associated with it. Worst of it is that,

these complex SaaS have fastly grown than their standards. For instance, for three

to four years now , standards such as Service Provisioning Markup Language

(SPML) is still yet to be updated, but the rapid development of SaaS has created

lots of ways of provisioning and managing user profiles. It has even been noticed

that leading cloud service providers in SaaS chooses not to abide and work inline

with the new emerging set of standards. In cases where such has been

utilized,there are still insufficient standards in the ares of provisioning and

management [35].

Also when attending to request made by individual users, SPML providers seem to

lack authoritative third party source and this poses a very big challenge.

- 16 -

ii) Platform as a Service
PaaS challenges are similar to that of those in SaaS, in terms of Application

Programming Interfaces (API) developments. Currently,the APIs that support

provisioning of PaaS platforms are lacking. Most PaaS providers only offer simple

web forms to create user accounts and profiles [34].

iii) Infrastructure as a Service

In IaaS, it involves provisioning of VPN gateways, hosts, and applications for

individuals and business users. It is a requirement that Organizations should

follow the proprietary mechanisms when dealing with identity management within

the IaaS clouds [34].

3.1.2 Access Control
Providing total access control to data in cloud computing is very challenging and

even more difficult to implement when outsourcing sensitive data outside of the

same trust domain.

Applying cryptographic methods and sharing data encryption keys can help

maintain the confidentiality of sensitive user data against untrusted servers.

However, these solutions comes with lots of workload, and cannot be totally

depended on as the only solution.

Access control services should be made flexible enough when enforcing the

principle of least privilege and it should integrate privacy-protection requirements

by use of complex rules. It's vital to make these rules easy to understand and very

efficient. Also the system must be made in such a way that issues related to

cross-domain access are addressed[35].

- 17 -

3.1.3 Privacy and Data Protection
Nowadays, it is possible for people to access data related to anyone from any

source or location. Because of this rapid advancement in technology, we are left

with the challenge of “privacy and data protection”. The term privacy, covers the

rights and obligations of individuals and organizations with respect to the

collection, use, retention, disclosure, and disposal of both personal and collective

information. Privacy is considered to be a risk management issue when dealing

with the cloud and because of this particular reason it is essential to protect

identity information, policy components and transaction histories. It's difficult for

organization to trust applications on systems that reside outside of their

on-premise data center when storing their data. This is because private

information faces high risk of potential unauthorized access and exposure. The

only way that users can be sure that their data is protected is by implementing

high security measures. For instance on way of doing this is by encrypting

sensitive data and granting access to only specific users [37][36]

Providing assurance and high degree of transparency is of high importance.

These days, it’s important to know who created a piece of data, modified it and how

it was done. This could be used for different purposes including trace back,

auditing and history-based access control. Now the challenge will lie in balancing

between data provenance and privacy.

3.2 Recommended Security and Privacy Approaches
As a result of the complexity of the current security and privacy issues in the cloud,

researchers have been working and finding ways to come up with possible

solutions to these problems. This section will focus on proposed schemes (possible

solutions) which can be developed and used in order to improve the security

conditions in the cloud.

- 18 -

3.2.1 Authentication and Identity Management Solution
A strong user authentication framework, in which a legitimate user proves his/her

authenticity before gaining access into the cloud was proposed in a paper: “A

Strong User Authentication Framework for Cloud Computing” [38]. The scheme

uses a two-step verification and it makes use of password, smart-card and out of

band (i.e. strong two-factor) authentication. The purpose of this scheme is to

provides mutual authentication, identity management, session key establishment,

user privacy and security against many popular attacks.

Figure 3.1 Architecture of the proposed scheme [38]

The different steps of authentication as shown in figure 3.1, has been described

bellow[38]:

"Step 1. The user inserts the smart-card in the terminal and enter user ID and

Password (PW). Next, the local system verifies the authenticity of the user based on

smart-card, ID and Password.

Step 2. Once the local verification is over, the user send login request to the cloud

server.

- 19 -

Step 3. Upon receiving the login request, the cloud server sends some

authentication data based on the specific user.

Step 4. The cloud server sends the onetime key to the mobile network through

HTTP/SMS gateway [42].

Step 5. The mobile network delivers the onetime key to the user via SMS.

Step 6. The user authenticates the server and sends some message based on

smart-card, ID and onetime key.

Step 7. The server authenticates user based on data sent by the user in step 6"[38].

3.2.1.1 Details of Proposed Scheme

For this particular scheme, three assumptions must be taken into consideration

and must not be violated. They are as follows:

1. Assume that clients and service providers are honest during registration.

2. After registration, no client and server is to be trusted. Clients should be verified

during login phase by providing exact identification.

3. Once mutual authentication is attained, the server should always be trusted. It

is also assumed that the server never compromises with the network adversaries.

The notations used in this scheme are mentioned below in table 4.1.

- 20 -

Table 3.1 Description of notations used

NotationNotationNotationNotation DescriptionDescriptionDescriptionDescription
A Represents a user

S Server

ID User Identity

PW User Password

K Onetime Key

x User's Secret Number

y Server's Secret Number

P A Large Prime Number

G Primitive Element in the Galois field GF(p)

h(.) One way hash function, e,g SHA1, SHA2

║ Concatenation Operation

X→Y: M Message M sent, X to Y through Public Channel

X═>Y: M Message M sent, X to Y through Secure Channel

⊕ XOR Operation

The complete proposed scheme has three phases and one activity, i.e. registration

phase, login phase,authentication phase and the activity called password change.

A) Registration phase:

This phase involves registration of users. It is done at the server end, by providing

appropriate identification details. At the end of registration, the user details will

then be processed accordingly by the server. The procedure is as follows [38]:

"1. User AAAA generate a random number x and compute h (PW ⊕ x).

2. A=>S: ID, h (PW⊕ x), h(x)

3. S checks ID (new) =ID (existing). If equal, then reject registration request and
go back to the step 1. Otherwise, proceed to the step 2.

- 21 -

4. S generates y and compute J=h(ID⊕ h(PW⊕ x)), I= h(ID||y) and

B= g h(y)h(x)J)||h(I ++ mod p.

5. S store {I, J, B, p, g, h(.)} in the smart-card.

6. Upon receiving the smart-card, the user enters x into the smart-card. Now smart
card having {I, J, B, p, g, h (.), x}.

7. S stores ID in the ID table maintained in the server"[38].

B) Login Phase:
This phase describes the point where the user wants to login into the clouds. Every

user has to be verified before access is granted to the cloud. The procedure is

described below:

"1. User AAAA insert the smart-card and enter ID and PW.

2. Local system compute J1= h (ID⊕ h (PW ⊕ x)), and check if J1=J then proceed

to the next step, otherwise abort.

3. Compute, C=h (I||J) and A→S: M1. User AAAA sends login request message M1,

to the server over the public channel. Here, M1=<B, C> is login request message,.

4. Subsequently, the server generate K, compute B''=g^C+h(y)mod p, h(B''),

L=h(B''||K), and h(L). And the server generate message M2= <h(B''),h(L)>.

5. S→A: M2, S sends M2 to A using public channel. Also, S=>A: K, S sends AAAA,

- 22 -

onetime key, K using secure OOB channel to user’s mobile phone.

6. Upon receiving message M2, user AAAA computes: B'=Bg^-h(x) mod p and h(B') and

L*=h(B'||K), and h(L*)).

7. User AAAA Check the two conditions, h(B')=h(B'') and h(L*)=h(L), whether true or

not . If both conditions are true, then proceed to the next step, otherwise

terminate the login session.

8. User AAAA compute R=h (T||B'), and generate M3=<I, h(R), T>. A→S: M3. User AAAA

send message M3 to the server over the public channel. Here T is the user's current

time stamp."[38]

C) Authentication Phase:

This is the very last step in which the server decides whether user AAAA should be

permitted to login to the system or not. The authentication phase process is as

follows.

"1. Check if T′ - T≤ ∆T holds true or not. If the condition is false, then the session

should be rejected. Otherwise, proceed to the next step. ∆T is the maximum legal

time difference for an authentication session defined for a networking system and

T′ is the server's current time stamp.

2. Compute I'=h(ID||y) and R*=h(T||B′′).

3. Check whether h(R*)=h(R) and I'=I. If both conditions are true, then proceed

to the next step. Otherwise, terminate the login session.

4. The server generate a session key SK= (R ⊕ L) and compute h(Sk), which is

message M4 <h(Sk)>. S→A: M4 The message M4 is sent to the user over public

channel which contain the hash of a session key, i.e., h (Sk)." [38]

- 23 -

The login and authentication phase is shown in figure 3.2.

For the final authentication of the user, it required of all valid users to have the

session key SK for some constant definite time. The session key (SK), can be

calculated by the user as SK= (R ⊕ L).

Figure 3.2: Login and authentication phase [38]

- 24 -

D) Password change:
This is a user friendly facility which gives users the right to change their password

at anytime. It is a very important requirement in authentication schemes. The

procedure for password change is given below.

"1.User AAAA chooses a change of password, in the self system.

2. User AAAA enter ID and PW and compute J*=h (ID⊕ h(PW⊕ x)).

3. Local system checks whether J*=J, if yes, go to the next step, otherwise reject

request.

4. User AAAA enter new password, PW′ and generate x′.

5. Compute, J′= h(ID⊕ h(PW'⊕ x′)).

6. Replace J by J′ and x by x′ in the smart-card." [38]

3.2.1.2 Conclusion
There are two major advantages of this proposed secure cloud architecture. They

are as follows:

1) The scheme has an extra OOB (out of band) factor (other than only two factors)

which undoubtedly provide better security over two factor authentication.

2) It has two separate communication channels, which makes it very difficult for an

adversaries to attack.

Generally, it ensures Authentication and Identity Management by providing

mutual authentication, user privacy, session key agreement and also protecting

the system from so many attacks (like Replay attack, man in the middle attack,

denial of service attack, stolen verifier attack and data modification attack,etc)[38].

- 25 -

3.2.2 Access Control Approach
A better access control system in cloud computing has been proposed by Wang,

Ren and Lou in the paper "Achieving Secure, Scalable, and Fine-grained Data

Access Control in Cloud Computing". It provides security, scalability and a better

access control mechanism for outsourced data in the cloud. This is done by

combing three different advanced cryptographic techniques: KP-ABE, PRE and

lazy re-encryption [39].

3.2.2.1 Scheme Description
Firstly, it is important to note the notations used (see table 3.2).

Table 3.2 Notations used In Access Control scheme

NotationNotationNotationNotation DescriptionDescriptionDescriptionDescription

PK, MK Public Key & Master Key respectively.

T i Public Key Component for Attribute i

ti Master Key Component for Attribute i

SK Secret Key

ks i
Secret Key Component for Attribute i

E i Ciphertext Component for Attribute i

I Attribute Set assign to Data File

DEK Symmetric Data Encryption Key of Data File

P User Access Structure

L p Set of Attributes attached to Leaf Node of P

AttD Dummy Attribute

UL System User List

AHLi Attribute History List for Attribute i

rk ii '↔ Proxy Re-encryption key from current i to updated version i '

δ o , X Data Owner's signature on Message X

- 26 -

In this scheme, each data file is associated with a set of attributes, and each user is

assigned with an expressive access structure which is defined over these attributes.

It is also possible for different data files to have subset of attributes that are

common. Each attribute is associated with a version number for the purpose of

attribute update. Cloud Servers keep an attribute history list (AHL) which includes

the evolution history of each attribute and PRE keys used. In addition, one dummy

attribute (AttD) is used for key management purpose. This dummy attribute must

be included in every data file's attribute set and never to be updated. The access

control structure uses the tree like implementation in which the interior nodes are

threshold gates and the leaf nodes are associated with data file attributes. The root

node is only needed for the purpose of key management. This root node is

implemented as an AND gate (i.e., n-of-n threshold gate) with one child being

the leaf node and associated with the dummy attribute. The other child node can

have any threshold gate. In addition, a user list (UL) will record all valid user IDs in

the Cloud Servers [39].

The scheme is presented in two levels: System Level and Algorithm Level. The

description of these two are as follows.

1. System Level Operation
The System Level operations entails, system setup, new file creation, new user

grant, user revocation and file deletion. These operation have been described as

follows:

System Setup

Here, the data owner first chooses a security parameter κ and calls the algorithm

level interface ASetup(κ). This will then output the system public parameter PK and

the system master key MK. At this point, the owner will have to sign each compo-

nent of PK and then send this PK along with these signatures to Cloud Servers[39].

- 27 -

New File Creation

This operation involves the creation of a file and it is processed as follows:

I. The data owner fist selects a unique ID for the data file.

II. Next, a symmetric data encryption key KRDEK ⎯⎯← is randomly selected

where κ is the key space and DEK is used for encrypting the data file.

II. Finally, a set of attribute IIII for the data file is defined and DEK encrypted with IIII

using KP-ABE, i.e.)()(PKDEK,I, }{ I iEE, i
 ~

AEncript←∈

In the end, each of these data files is stored on the cloud and in the format shown

in Fig 3.3.

Fig. 3.3 Data File format stored in the Cloud

New User Grant

Adding a new user to the system involves two things; assigning an access structure

and generating a secret key to this user. This is given below as follows:

I. All new users are assigned a unique identity w and an access structure P;

II. A secret key SK is then generated for w, i.e., SK ←AKeyGen(P,MK);

III. Encrypt the tuple (P,SK,PK, δO,(P,SK,PK)) with user w’s public key. The

ciphertext is denoted as C;

IV. The tuple (T,C,δO,(T,C)) is sent to Cloud Servers, where T denotes the tuple

(w, {j, skj }j∈LP \AttD). When this tuple (T,C,δO,(T,C)) is received, the Cloud

Servers will then process it as follows:

V. verify δO,(T,C) and proceed if correct;

- 28 -

VI. Store T in the system user list (UL);

VII. Forward C to the user."[39]

When C is received, it is first decrypted using the user's private key. Next, the

signature δO, (P,SK,PK) has to be verified. If correct, the user will then accept (P,

SK, PK) as his access structure, secret key and the system public key respectively.

Because the secret key components of SK are stored in the cloud servers except for

the dummy attribute AttD, cloud servers can actually be able to update these

secret key components during user revocation. Now, since one undisclosed secret

key component (the one for AttD) still exists, it is impossible for the cloud servers to

use the known ones to correctly decrypt the ciphertexts. Literally, an unauthorized

user cannot decrypt the ciphertext even if he gets to know the disclosed secret key

components.

User Revocation
Before a user is revoked, the owner of the data will first find out the minimal set of

attributes. After which, he will update these attributes. This is done by redefining

their system master key components. The Public key components of these

attributes in PK are redefined accordingly. Next, all user secret keys will be

updated except for the one which is to be revoked. Lastly, in the affected files, the

DEKs are re-encrypted using the recent version of PK.

There is a lot of of computational work to be done in order to undertake this action,

but one way of resolving this is by combining proxy re-encryption with KP-ABE

technique, and then by using Cloud Servers to do data file re-encryption and user

secret key update.

- 29 -

File Deletion
For this operation to take place, only the data owner has to make the request. If at

all there is need to delete a file, the file’s unique ID is sent along with the data

owner's signature on this ID to Cloud Servers. When this signature has been

proven to be correct, the Cloud Servers can then go further to delete the data file.

2. Algorithm Level Operations

This level has eight algorithms: ASetup, AEncrypt, AKeyGen, ADecrypt,

AUpdateAtt, AUpdateSK, AUpdateAtt4File and AMinimalSet. The first four are

actually the same as Setup, Encryption, Key Generation, and Decryption of the

standard KP-ABE respectively. Much attention is paid on the last four during the

implementation.

AUpdateAtt: this algorithm is responsible for updating attributes to a newer

version. This is done by redefining its system master key and public key

component. With the use of both the old and new attribute versions, the algorithm

can also outputs a proxy re-encryption key. The algorithm used for this operation

is given as:

AUpdateAtt (i,MK)

Randomly pick Z'
p

Rti ⎯⎯← ;

Compute gt tii
'' ← , and

ti
tiiirk

'' ←↔ ;

Output ti' , Ti' , and iirk '↔ .

- 30 -

AUpdateAtt4File: Using this algorithm, the ciphertext component of an attribute i

of a file is translated from old to latest version. This is done by first checking the

attribute history list(AHL) and then locating the old version. Next, by using the old

and latest versions, all the PRE keys are multiplied in order to obtain a single PRE

key. This single PRE key is finally applied to the ciphertext component E i and

returns E i n)(. This coincides with the latest definition of attribute i. The

algorithm used for this operation is given as:

AUpdateAtt4File(i,E i , AHLi)
If i has the lates version, exit;

Search AHLi and locate the old version of i ;

// assume the latest definition if i MK is t ni)(.

t
t

ikrkrkkr
i

n i n

iiiirnii i
n

)(
'')()1(')(.... =↔−↔↔←↔ ;

Compute gtkrEn i
snnii

iEi
)())((=↔← ;

Output E
n
i .

AUpdateSK: This algorithm is responsible for the translation of the secret key

component with attribute i in the user secret key SK from old version to the latest

version. This implementation is similar to AUpdateAtt4File with the exception that,

the last step applies)(1
)(

−

↔kr i ni to ks i instead of kr i ni)(↔ . This is as a

result of the denominator of the exponent part of ks i while in E i it is a

numerator.

AMinimalSet: This algorithm is responsible for determining a minimal set of

attributes needed for the condition of an access tree to hold. This is done by

- 31 -

constructing the conjunctive normal form (CNF) of the access tree, and then

returning the attributes in the shortest clause of the CNF formula as the minimal

attribute set.

3.2.2.2 Conclusion of proposed scheme
If applied correctly, the scheme can address the following :

I)Fine-grained Access Control; it is possible to get a well defined and expressive,

and flexible access structure.

II)User Access Privilege confidentiality; only the leaf node information of a user's

access tree is disclosed to cloud servers, which makes it hard for cloud servers to

recover the access structure. And thus user access privilege confidentiality is

ensured.

III)User Secret Key Accountability; By using the enhanced construction of

KP-ABE , this property can be achieved[56]. This can then be used to disclose the

identities of key abusers.

IV)Data confidentiality; This scheme is secured enough to protect the system even

if there is collusion attacks between Cloud Servers and malicious users.

3.2.3 Privacy and Data Protection solution
In 2009, the International Business Machine Corporation (IBM) proposed a

solution on privacy and data protection, in which they developed a fully

homomorphic encryption scheme. This scheme allows data to be processed

without being decrypted [40].

Notwithstanding that, a Cloud Data Protection System (CDPS) has also been

proposed in another paper[42]. This scheme is described in the following sections.

3.2.3.1 Architecture of the Scheme

Figure 3.4 shows the architecture of Cloud Data Protection System (CDPS) in

which the upper part determines a composition of encryption algorithm and

- 32 -

division numbers which is used to protect users’ data. The lower half protect the

flow of data by means of selective security composition and Data Division

mechanisms.

Fig 3.4 Cloud data protection system architecture [42]

Furthermore, the diagram describes the privacy requirement and frequency of the

key used to encrypt data. The quantification model is used to achieve both the

security and algorithm execution speed. Basically, when executing encryption

algorithm, a measure of the cracking year of each encryption algorithm used by

CDPS is taken into account. Also the speed quantification mechanism will

measure the mega clock cycles per megabyte when executing each encryption

algorithm in specific machine [42]. This scheme adds more security to the data by

using data division techniques as shown in the CDPS architecture.

3.2.3.2 Privacy Requirement and Analysis
The sensitivity of data varies from one to the other and this is largely based on the

degree of importance. By using encryption algorithm and data division, it is

- 33 -

actually possible to obtain data confidentiality [42].

Addressing the privacy requirements of user’s data is also essential. This leads us

to the different entities responsible for the provision of privacy protection. These

entities has been described as follows:

1) Privacy Level
There are basically three privacy levels mentioned below and these are to be

selected based on the requirement by each user. These different levels can be

selected in line with the degree of security based on the data sensitivity. These have

been divided into three levels, speed, hybrid, and security [42].

In the Speed level, the requirement is that there should be no sensitive information

in the data. In order words this level deals with less sensitive data. A very weak

encryption is applied in this case. In the case of the Hybrid level, some amount of

sensitivity must be present in order for this level to be selected by a user. Meaning

weak encryption mechanism must not be applied here. Now for the last

level(Security level)to be applied, there must be high amount of sensitivity in the

data. This is used only when effective protection of data is needed. In this

particular case,users have to focus more on obtaining confidentiality instead of

performance.

2) Key Update Frequency

After a specific privacy level have been selected, the range of security required is

calculated as:

||||
max

Plevelrange
Security

Security = ………………….................................(eq. 1)

The maximum security which is the numerator part, is the security score obtained

by the CDPS when the most strong encryption algorithm is used. This value is 100.

Also, the denominator value obtained is refereed to as the privacy levels.

- 34 -

Another important factor which should be looked at is that of the key update

frequency. This parameter tends to affect the performance overheads when data is

frequently written in the cloud. This is only solved by revising the encryption

algorithm based on the obtained key update frequency. In order to solve this

problem, the encryption algorithm is revised according to the key update frequency

since the more the encryption key is updated, the shorter the average key life cycle

becomes. The frequency of the key update is thus calculated using equation 2[42].

∆
=

tPeriod
data

A
WriteFrequencyKeyUpdate …………………............................(eq. 2)

Writing the data frequently, will obviously reduce the life cycle of key.Thus, it is

better to select the high performance security algorithm in order to provide better

I/O performance.

Quantification Models

This model constitute two types; the Security Quantification and that of Speed

Quantification. The security strength of any encryption algorithm is measured

using the time taken for it to be cracked. This is normalized to map the security

strength into a range between 0 and 100. Speed Quantification deals with the time

taken for an encryption algorithm to be performed. In this case, the CPU

consumption rate can be used to determine the encryption time.

Data Division
This is the case where a particular data is split into different segments and then

stored in different location so as to improve the speed taken to execute them. This

is applied after encryption operation has been done on the data.

Mathematically, it can be found that the probability of hacking all divided parts

becomes smaller as the number of divided parts increases[42]. As a result, it

- 35 -

makes it very difficult for the attacker to obtain all of the divided encrypted parts.

Hence applying this method in any cloud environment can effectively enhance data

security.

3.2.3.3 Conclusion

Base on simulation work done, it shows that this scheme can effectively achieve

data privacy in cloud environment. It provides confidentiality of users’ data without

further increase in system performance overhead. Hence when compared to other

security schemes,the improved performances is up to 50% and at least 35%[42].

- 36 -

CHAPTER FOUR

Identity and Access management
This chapter looks at identity and access management(IAM) implementation in

OpenStack Object Storage (swift). Upon conducting a security investigation,

different issues related to IAM in swift were found out.

The following sections in this chapter provides description of IAM in Openstack

Object storage and the issues associated with it.

4.1 User Identity Provisioning/De-provisioning

4.1.1 Overview
The process of creating users, registering users, and managing access to resources

in a system is know as user provisioning. The opposite operation is called

de-provisioning. It is very important to automate user management tasks. In

OpenStack, the authentication/authorization system is pluggable and thus, it

does not depend on the project itself. Figure 4.1 describes how the swift

authentication mechanism is done. Firstly, the client submit his user credentials

to the public authentication system. When these credentials have been verified, he

will then send a token request to the proxy server. The proxy server further ask the

the private authentication for a token. A token will then be generated and sent to

the client. The received token is what the client uses before it can be granted access

to the storage nodes that he has permissions to.

- 37 -

Fig 4.1 Swift authentication (pluggable) [44]

OpenStack Object Storage uses both DevAuth and SwAuth as its

authentication/authorization systems [45].The main difference between the two

lies in how the data is stored. DevAuth uses SQLite database as a user data storage,

while SQLite stores data in a single cross-platform file on disk [46]. One significant

issue with SQLite is that it allows multiple reads but allows only a single write

operation to be done to a file. This means using DevAuth in a system which will

require simultaneous registration of many users can definitely cause performance

slowdown. Though this problem exist, OpenStack Object Storage still uses

DevAuth as its default authentication system. SwAuth seems to be a more

"scalable authentication and authorization system when compared to DevAuth,

and it uses Swift itself as its backing store" [47]. Swift account is created on a

cluster in which the information from users are stored as JSON -encoded data text

files.

User roles are based on OpenStack Object Storage and its source code. The

following types of user roles exist:

I) Users:Users:Users:Users: These are considered to be the ordinary users of the service and they are

- 38 -

not granted any administrative rights.

II) Admin:Admin:Admin:Admin: these set of people have administrative rights but they can only add

users to accounts which they have rights to administrate. In SwAuth, users can be

barned from administering accounts.

III) ResellerResellerResellerReseller Admin:Admin:Admin:Admin: For these set of users, they have Administrative permissions

on all of the accounts but they are not allowed to add other Reseller Admins

IV) SuperSuperSuperSuper Admin:Admin:Admin:Admin: These are the most powerful users/administrators. They can

perform all user management tasks, to the extent of even adding Reseller Admins.

4.1.2 Elevation of Privileges in OpenStack Object Storage
When adding or removing users from a system, a possible arising issue is elevation

of privileges. OpenStack object storage user management is role based, and also

the access permissions are specified directly in the code. When ever someone tries

to add another user into the system, the code will check to see if the user executing

a given action is acting in a role of Super Admin or not. It is feasibly impossible to

delegate the permission of adding a Reseller Admin, except if a Super Admin power

is assign to the user which is to be added.

Devauth
User information are stored by Devauth in SQLite database and these files are

located in etc/-swift/auth.db. In the case where a user is acting in a role of Super

Admin, his password will be checked from the configuration file of the Swift

authentication service. Otherwise, the user data will be retrieved from the database.

It has been found that the code that connects to database might be susceptible to

SQL injection. As a result of this, the source code used during installation was

examined to see whether such attacks are really possible. By using the python

code below, it can be verified whether users have administrative privileges or not

[48]:

1 row=conn.execute(' ' '

2 SELECT reseller_admin , admin FROM account

- 39 -

3 WHERE account = ? AND user = ? AND password = ? ' ' ' ,

4 (account, user, request.headers.get(' X-Auth-Admin-Key ')))

5 .fetchone ()

The user data is passed to the SQL code without filtering the inputs (see

request.headers.get(’X-Auth--Admin-Key’)) and this makes one to think that the

code is vulnerable. However, after thorough checking, it was found that actually

there are no vulnerabilities in the sqlite3 library itself [50] and at the same time,

there are no possibilities to elevate privileges using SQL injection attacks.

Swauth
The figure 4.2, shows how User information are stored by Swauth as

JSON-encoded data. The user groups are stored in an array of objects with single

attribute namenamenamename in which the attribute's value represents the name of user groups .

In the case where the user is a Reseller Admin, he will belong to the group

reseller_adminreseller_adminreseller_adminreseller_admin but if he is an Admin, then he will belong to the group adminadminadminadmin (the

user in Figure 4.2 has Administrative privileges). Super Admin information is

stored in the configuration file of OpenStack Object Storage just as in devauth.

Fig 4.2 Swauth authentication system password file contents[48]

In order to examine wether it is possible to inject .reseller_admin or .admin values

into the groups array, the following Python codes was used to create

JSON-encoded string with user data[48]:

1 groups =[' %s : % ' (account , user) , account]

2 if admin:

3 groups . append('.admin')

4 if reseller_admin:

- 40 -

5 groups . Append(' , reseller_admin ')

6 json . dumps ({ ' auth ' : ' plaintext :%s ' % key , ' groups ' : [{ ' name ' : g}

for g in groups] })

The protection against injections is found in json.dumpsjson.dumpsjson.dumpsjson.dumps method. This method

accepts an object and converts its properties to a string, performing proper

escaping of input, which is why we could not find a way to affect the value of one

property by injecting input via another property (for example, we can not affect

group information by injecting data to key input). If a JSON data was created using

simple string concatenation, then injection attacks would be feasible.

To conclude this section, it was found that there are no vulnerabilities in devauth

and swauth systems that lead to the elevation of privileges during identity

provisioning.

4.2 Identity Federation
The process of exchanging identity information between identity providers and that

of service providers is termed as identity federation[51]. SAML or WS-Federation

are mostly recommended as enabling technologies in Cloud computing [52].

OpenStack Object Storage does not support identity federation. But using the

PySAML2 codes[53], it is feasible to incorporate PySAML2 into OpenStack in order

to add Identity Federation functionality to the software, Since authentication

system in OpenStack Object Storage is written as WSGI middleware itself [54].

4.3 Authentication In OpenStack Object Storage

4.3.1 Overview
Both DevAuth and SwAuth authentication systems use username and password

during authentication. When a user has been successfully authenticated into the

system, a token will be sent to him, which he will further use to identify himself .

- 41 -

Normally, the received token will last for a period of 24 hours (which in fact is the

default expiration time). Also, an account URL is created upon account registration

and not supposed to be ever changed [55].

Almost all documents related to cloud security make it clear on the need to allow

authentication delegation by accepting confirmations in SAML format.

Notwithstanding that, this SAML feature has still not yet been implemented in

OpenStack.

4.3. 2 Password Strength
It is important to take a close study on the password strength requirement since

both DevAuth and SwAuth in OpenStack Object Storage uses username and

password combination to authenticate users. There is currently a guideline which

provides rules as to how users should choice their passwords. This includes

checking passwords in order to avoid possible dictionary attack, making emphases

on minimal password length, and also applying a combination of different

characters (lower-case, upper-case, non-alphabetic) [56]. Unfortunately no such

requirements (password length and special characters) exist in OpenStack. Also

there is no dictionary checks, this makes it possible for users to register with

password as short as one character even.

4.3.3 Password storage
Storing passwords in a very secured way has been an issue throughout the history

of information systems. In general, the golden rule in Information Security is "don't

store passwords in clear-text", and this must be ensured by the administrator. It is

better to use encryption methods and also very important to provide a limited

access to locations of stored passwords. In order words only administrators with

special access rights should be able to locate these passwords.

DevAuth stores username and password in a configuration file, located at

etc/swift/auth.db. Interestingly, it can be noticed that passwords are stored in

plain text format. An instance of stored username and password in DevAuth is

- 42 -

shown below:

Jdcooper@openstack:~/swift$ locate proxy-server.conf

/etc/swift/proxy-server.conf

/home/jdcooper/swift/doc/proxy-server.conf.4

/home/jdcooper/swift/etc/proxy-server.conf-sample

jdcooper@openstack:~?swift$ cat/etc/swift/proxy-server.conf |grep admin

operator_roles = admin

admin_token = ADMIN

#user_admin_admin = admin.admin.reseller_admin

#user_test_tester = testing. admin

#user_test2_tester = testing2.admin

jdcooper@openstack:~/swift$

Another problem also is that, the default settings in DevAuth actually give users

the right to read from this file. This makes it possible for system users to easily

obtain password and gain access to accounts of other users. Hence the reason why

DevAuth is not usually considered for developing purposes. This weakness should

be well noted and documented in order to warn users about it consequences .

Initially during the setup, the access rights should be changed such that only

system administrators must have read permissions to such sensitive file.

On the other hand, Super User’s password is stored in /etc/swift/auth-server./etc/swift/auth-server./etc/swift/auth-server./etc/swift/auth-server. confconfconfconf

for DevAuth and /etc/swift/proxy-server.conf/etc/swift/proxy-server.conf/etc/swift/proxy-server.conf/etc/swift/proxy-server.conf for SwAuth. This is also done in

different manner compared to how other user's passwords are stored. Only that

the password in this configuration file is also stored in clear text. Which brings us

back to the need of changing passwords after OpenStack installation and making

sure that access rights are reviewed, such that only legitimate owners of file(s)

should have read/write permissions.

- 43 -

Unlike DevAuth, SwAuth possesses properly configured access rights in securing

password data. The only security concerns with swAuth is that passwords are also

stored in clear text in the file as shown in figure 4.2 . As a result, this can lead to an

insider attack, in the case where a system administrator uses UNIX superuser

(root) account to find out user passwords.

In a simple conclusion, both DevAuth and SwAuth lack appropriate protection

scheme for storing passwords.

4.3.4 Analysis of Authentication Tokens
Tokens are received when a user authenticate successfully into a system. And they

are used inline with a service request, in which username and password are given

as an input to the interface. Tokens can become invalid in two cases:

I) When they run out of time. In order words, they become expired.

II) If revoked.

It is important to note that authentication should be performed over a secure

channel (TLS), otherwise, there are chances that an attacker could retrieve a user

token, and use it to perform attacks (like "man in the middle" attack), and ends up

impersonating the actual user who received the token from the authentication

system.

However, in an experiment conducted by Rostyslav Slipetskyy [48], the algorithms

from token generation were first imported and examine using webscarab and later

exported to Burp Sequencer in order to run randomness test on the token data.

This is shown in figure 4.3.

- 44 -

Figure 4.3: Analysis of authentication tokens from openStack using burp

Sequencer[48]

According to the results obtained from the tool, the overall quality of randomness

within the sample is estimated to be excellent and it was summed up that the

approach taken to generate UUID uses a solid source of randomness which has no

known weaknesses. With such result, one can conclude that the system is pretty

much secured[48].

4.4 Authorization and Access Control

4.4.1 Overview
This section looks at the authorization procedures with regards to accounts,

containers and objects. In OpenStack Object Storage, accounts are created both

for single group usage. Objects in OpenStack Object Storage looks like files in

traditional operating systems, and containers resemble folders (or directories).

The different actions which can be undertaken by different types of users with

accounts are:

User:User:User:User: these kind of people have account management rights.

- 45 -

Admin:Admin:Admin:Admin: these types are permitted to obtain only account information (URL, users,

etc.).

ResellerResellerResellerReseller Admin:Admin:Admin:Admin: they have rights that can enable them to add and remove

accounts. They also have Administrative permissions to get information about an

account.

SuperSuperSuperSuper AdminAdminAdminAdmin : they have the same permissions just as Reseller Admin.

And the actions that users in different roles can perform with containers are:

User:User:User:User: For this type, they can only access containers which they have permissions

to based on the access control list(ACL).

Admin:Admin:Admin:Admin: This type of users are permitted to undertake all operations within there

own account (add/remove containers, upload/download objects, etc.)

ResellerResellerResellerReseller Admin:Admin:Admin:Admin: For this type, they have permissions to all accounts

SuperSuperSuperSuper Admin:Admin:Admin:Admin: These users have no permissions to undertake container/object

management. Figure 4.4 shows the dashboard view of the admin(access control

and security) section of OpenStack.

In the authorization system, it is not possible to make permissions at the object

level,but rather at the container level. Users are granted access right only by the

administrator and it depends on the access control lists (ACL).

Specific separate ACLs for read and write operations can be made. Each item in

ACL can either grant or deny access based on any of the following parameters:

Referrer designation based on HTTP Referrer header.

All users of a specific account.

Specific user of a specific account.

Security documents recommend the use of eXtensible Access Control Markup

Language (XACML) to control access to cloud resources [58], but unfortunately,

OpenStack Object Storage does not use any of them since it relies on a proprietary

solution.

- 46 -

Figure 4.4 OpenStack admin section prototype for Access Control & Security

4.4.2 Too Much Access Rights for Reseller Admins
Reseller Admins have permissions to all accounts. They can do anything within

any account as long as they possess the URL to that account. The documentation

of OpenStack Object Storage does not mention in detail the actual permission of

Reseller Admins. Only Admins and Users Permissions are mention in it [40].

- 47 -

In order to check wether this was true, an investigation was conducted on the

system as follows:

Firstly, a user is added in the place of a Reseller Admin with name sarambasarambasarambasaramba to

accountaaccountaaccountaaccounta. Secondly, container filesbfilesbfilesbfilesb is created on accountbaccountbaccountbaccountb and then files are

uploaded to it. Afterwards, an attack was performed by using authentication

service to obtain token and account URL for Reseller Admin as shown below:

The HTTP response above, reveals that the authentication service is saying that the

user sarambasarambasarambasaramba should use the URL from X-Storage-UrlX-Storage-UrlX-Storage-UrlX-Storage-Url header to get access to the

account.

Using the received authentication token (X-Auth-Token), but changing the storage

URL to the one pointing to accountb,accountb,accountb,accountb, can literally allow a Reseller Admin to

successfully receive statistics of accountbaccountbaccountbaccountb and the name of containers within this

account (filesb):

- 48 -

The files names from this container was obtain using the container name. Because

these file names can be known, it is possible for anyone to issue HTTP requests in

order to download these files or even delete them. Hence this confirms that any

user with ResellerResellerResellerReseller AdminAdminAdminAdmin role and with knowledge of the URL to this account has

permissions to perform any action with the objects within any account.

This severely violates privacy of users who store their files on OpenStack Object

Storage. Wether files are encrypted or not, it is not correct for Reseller Admins to

have permissions to view other account details.

4.4.3 Elevation of Privileges Protection
In OpenStack Object Storage system, account management is similar to that of

user management, and the protection against illegal elevation of privileges is

literally the same for the two, since access control to objects is done based on

access rights to a container where an object is stored. Access rights to containers

are stored in ACLs. ACL itself is stored in a container database that is created for

each of the existing containers. The source code that manipulates ACLs

- 49 -

((((common/db.pycommon/db.pycommon/db.pycommon/db.py)))) was checked and found that there is no possibility for injections

[48].

4.5 Recommendations for IAM Issues in OpenStack Swift
The following recommendations can be used to mitigate the issues that have been

found in the Identity and Access Management in OpenStack Object Storage. The

following provides recommendations for the issues experienced by both users and

developers of OpenStack:

Firstly, the file(etc/swift/auth.db) in DevAuth which stores user information must

be examine in order to make a change to the access right. Only the swift user

actually needs read right to this file. This mitigates the risk of obtaining user

informations(like passwords) by other users.

Secondly, during installation of the OpenStack swift the default super user's

password must be changed. The access right to the file having this information

must be set such that only the owner should have read/write permission and

users should take note of the excess rights given to Reseller Admins in viewing

other account details. Also though ACL manipulation seems to be impossible, it is

still recommended that users use HTTPS instead the HTTP Referrer field when

making authorization decisions, since the HTTP field can easily be forge.

Thirdly, developers should implement user provisioning functionality using Service

Provisioning Markup Language (SPML) and for that of authentication functionality,

they should use Security Assertion Markup Language (SAML) to allow identity

federation and avoid locking into proprietary solutions. The PySAML2 Python

library can be used by the developers.

Lastly, Having a system which can check for the strength of password before

registering users, can help eliminate weak passwords (python-crack Library can be

- 50 -

very useful) and these passwords should be hashed before stored in either

DevAuth or SwAuth authentication system. It is even wiser for passwords to be

concatenated to a salt and/or username and then hashing them with an

appropriate algorithm, before storing [56]. Preferably, the SHA-256 algorithm can

be used to hash them. And in the case where a salt value is used (not username), it

can be stored alongside hashed password [48].

- 51 -

CHAPTER FIVE

Data Management In OpenStack Object Storage
This chapter analyses data management in OpenStack Object Storage. It looks at

the legal issues of data location compliance, data isolation,backup, recovery and

deletion, encryption and key management and data integrity.

The issues have been analyzed and recommendations provided as well.

5.1 Locating Data In OpenStack
Locating user's data in OpenStack Object Storage is done via HTTP calls to a Proxy

server. The logical path to an account, container, or object is known using obtained

storage URL from the authentication server. This path normally ends with the

account name for which the user is registered. For instance,the code below show

logical path to the user object myObject, which is stored in container myContainer:

https://<PROXYhttps://<PROXYhttps://<PROXYhttps://<PROXY────IP>:IP>:IP>:IP>:8080/v1/AUTH_e5825ba750324be4abf5c4faa6cdc5248080/v1/AUTH_e5825ba750324be4abf5c4faa6cdc5248080/v1/AUTH_e5825ba750324be4abf5c4faa6cdc5248080/v1/AUTH_e5825ba750324be4abf5c4faa6cdc524

/myContainer/myObject/myContainer/myObject/myContainer/myObject/myContainer/myObject

Having the storage account, the proxy server is then used to translate the logical

path to a physical location where the data actually reside in the cluster. The proxy

server uses the concept of rings to determine the physical data location in the

cluster[59]. This cluster is divided into partitions, and each of these partition is

then mapped to a device (a hard disk on one of the nodes in the cluster). The ring

structure is used to determine on which nodes the partition has to be replicated.

When the proxy server finally finds the physical location, it will then contact a

dedicated server process on a Storage node. The data is then sent from Proxy

server to a corresponding service entity.

https://<PROXY%E2%94%80IP>:

- 52 -

5.2 OpenStack Isolation and Possible Attacks

5.2.1 How Isolation is Done In OpenStack Object Storage
One of the main features of cloud computing is sharing resources among different

users (customers). When it comes to OpenStack Object storage, its all about

storage sharing. The issue of data isolation is irrelevant when dealing with private

cloud deployment, since utilization of the cloud storage is done only by a single

organization. However, for public deployment, this issue is of high importance.

The separation of data that belong to different users (customers) has been given

enough attention in most security documents. Data isolation can be referred to as

words isolation, or compartmentalization. But the main idea here, is that of "data

separation".

The directory structure for OpenStack Object Storage entities is shown in figure

5.1. From figure 5.1, accounts, containers, and objects have different directory on

the storage device. All information about accounts and containers are stored in

SQLite database files, while those about objects are stored as files with extension

".data". The temporary directory is used for storing file chunks during upload.

There are partitions within each of the directories of OpenStack entities and these

partitions are referred to as a directory whose name equals to a number between 1

and 2 max >−−< numberpartition [48]. The Max-partition-numberMax-partition-numberMax-partition-numberMax-partition-number is selected when

creating the ring structure. Since the partition number is determined by bit shift

arithmetic, it is possible that files belonging to different users from different

accounts will be stored within the same partition directory.

Fig. 5.1OpenStack Object Storage directory structure

- 53 -

5.2.2 Attacks on OpenStack Isolation
OpenStack relies only on path hashing to isolate files belonging to different

users[48]. In order to investigate this further whether OpenStack approach to

isolation can be abused, let's assume that there is an attacker within the system.

Two possible attacks can be considered: the preimage attack and that of collision

attack.

In the Preimage Attack, attacker needs to have knowledge of the path to a file and

then find the names for a container and object that will hash to the same value as

that of the user’s file of known path. But as at now, there are no such algorithm to

find an input which will match the desired output of a hash function. It's hard to

conclude that the said algorithm is unknown to any intelligence agencies or that it

will not be found in the nearest future. However, there are no reasons to state that

this approach taken by OpenStack is flawed.

The Collision Attack involves the case where an attacker tries to generate names of

files, which will eventually result in the same hash value and then changing the

"container/object" suffix. This attack can possibly be performed on MD5 [60].

Fortunately enough, this attack can actually be prevented by OpenStack. It is done

by adding the hash_path_suffixhash_path_suffixhash_path_suffixhash_path_suffix, to a file path before passing the input to a hash

function[61].

However, it is important to note that the best measure to take if one must avoid

such attack is by keeping the hash_path_suffixhash_path_suffixhash_path_suffixhash_path_suffix value as secret [64]. Besides, other

hashing functions than MD5 can also be considered [63].

5.3 Backup and Recovery
Data backup is the process of making a complete secondary copy of a data. The

objective of this mechanism is to prevent "data loss, unwanted data overwrite, and

destruction" [65]. By doing backup operations, data can be easily recovered if there

is any kind of disaster in the system.

- 54 -

OpenStack Object Storage prevents data loss and provides availability by use of

replication mechanism. That is, storing data in several location across a cluster. A

dedicated server process called replicator is responsible to propagate data copies to

different nodes within the Object Storage system. And of course there are separate

processes responsible for the replication of accounts, containers, and objects.

Literally, OpenStack does not support data backup/recovery and this is a big

problem. When a new object is uploaded with a name equal to an existing one, all

the previous versions of this file will be deleted. Though replication prevents data

loss, in the case of unwanted data overwrite, it is impossible to restore file to a

previous version [66] [67].

Backup/recovery operation can possibly be added to OpenStack without much

changes in the source code. After a file has been successfully uploaded via PUT

method, the stored file will then receive a name equal to timestamp, and all the

previous versions of the file will be deleted.

5.4 Data Deletion
Data deletion basically deals with the removal of all copies of the data that exists in

a cluster. One should take note of the fact that it's possible for the data to be

deleted in all, but one storage node becomes restored afterwards due to recovery

procedure. Also a major issue with deleting data is dealing with proper storage

recycling since files (or some parts of it) that were deleted can be recovered from the

hard disk later.

In OpenStack Object Storage, the files are first written to a temporary location on a

storage device, which by default is set to /srv/node/sdb1/tmp. The temporary

directory is common for all the users (customers) on the system.

Afterwards, when all the file chunks are uploaded, this file is then moved to a new

location by using the Python os.rename function. Also the new location for the file

- 55 -

is determined by the hashing approach that was described earlier in section 5.1.

The new file will take a name equal to the timestamp specified in the HTTP header

X-Timestamp.

When a user wants to delete a file, OpenStack will then creates a new zero-size file

with extension *.ts (tombstone) and new timestamp as a name. Afterwards, the

algorithm which is used to delete files with older time-stamps is run. With the help

of the tombstone file, OpenStack can safely resolve the problem of removing file

from all the nodes: the tombstone file can later be propagated to other nodes using

the replication process, and at the same time the actual content of the file is been

deleted.

5.5 Encryption and Key Management
In OpenStack Object Storage, files are not encrypted before they are stored in a

cluster [68]. In order words, users having sensitive information should first encrypt

their files before storing them in OpenStack swift system and also manage their

encryption keys themselves.

One reason for users to encrypt their files before storing in OpenStack is that,

users in role of Reseller Admin can view any file on any of the accounts, as noted in

section 4.4.2.

5.6 Data Integrity
In OpenStack, it's a possible to perform integrity verification on the server side.

This is done by providing the MD5 hash of the uploaded object in ETag HTTP

header [69]. OpenStack will then calculate the MD5 hash on the server and

compare the two values. If the user-supplied value and calculated value are not the

same, an HTTP response code 422 is returned. According to the RFC 4918, it

literally means that the "server understands the content type of the request entity,

and the syntax of the request entity is correct, but was unable to process the

- 56 -

contained instructions" [70].

OpenStack Object Storage provides the following possibilities for integrity checks:

1. End-to-end data integrity checks during the transfer, done on the server side.

2. End-to-end data integrity checks during the transfer, done on the client side.

3. Continuous integrity monitoring of objects stored in the cluster.

In the case of the client-side, users do the integrity checks by using the ETag value

from the HTTP response. However, in case of integrity errors, the erroneous version

of a file will be stored and replicated across OpenStack cluster. As a way of

preventing others from downloading incorrect data, users will have to upload the

same file again. Hence the need to perform server-side integrity checks during

upload.

When analyzing the source code on the Storage server, a daemon process is

responsible for making integrity checks and is called auditor. The accounts,

containers, and objects all have their separate auditors. The account and container

auditors are limited to checking the possibility of reading data from the database.

While that of the Object auditor is responsible for checking file size and hash value

by comparing the actual size and MD5 hash value to that which is stored in the

object meta-data. Object meta-data is known to be stored as extended attributes

on a file-system, and this is the reason why only those file-systems that support

the said attributes can be used. If the server process discovers that the actual hash

value of an object different from that stored in meta-data, a file will be quarantined

and a correct version of it will be reloaded correctly from another replica in a

cluster.

- 57 -

5.7 Recommendations for Data Management
This chapter has been concluded with the following recommendations:

It must be ensured that the file /etc/swift/swift.conf/etc/swift/swift.conf/etc/swift/swift.conf/etc/swift/swift.conf is protected from modifications.

If the hash_path_suffixhash_path_suffixhash_path_suffixhash_path_suffix value is modified, previously uploaded files to OpenStack

Object Storage will become inaccessible. It is necessary to encrypt all important

and sensitive files before uploading them to OpenStack, in order to stop users

(those acting in a role of Reseller Admin) from viewing files which belong to other

users.

Data location compliance can be assured by either making modification to ring

structure, or building a wrapper over the Ring class that reuses get_more_nodes

method since this will allow restriction of data location to only specific zones.

Finally, it is recommended to make a number of kept backup copies configurable,

and to change unlinkoldunlinkoldunlinkoldunlinkold method in DiskFileDiskFileDiskFileDiskFile class to delete only those previous

versions of files that exceed the configured value. This will allow backup and

recovery operations to take place in OpenStack Object Storage.

- 58 -

CHATER SIX

Summary of Contributions and Future Work

6.1 Contributions
This thesis contributes towards improving the security related issues which are

present in cloud computing in general and also to those within the Open-Stack

Object Storage. It attempts in showing that there is still more to be done in

implementing proper security and privacy mechanisms the cloud.

The research work looks at possible security flaws found in OpenStack Object

Storage(swift). Different documents which are geared towards facilitation of the

adoption of cloud computing were examined and the most important security

issues were considered. These issues were recorded in chapter three.

Also, by installing the OpenStack cloud, several security weaknesses were found in

the areas of Identity and Access Management, and that of Data Management.

These two major areas were covered in chapter four and five respectively.

From the investigation done using the installed OpenStack Object Storage, it was

found that there are possibilities for administrators with lower permissions to

obtain credentials of other administrators with higher permissions. Another

instance of security weakness, is the possibility of a particular administrators to be

granted with too much access rights. This subsequently gives the said

administrator the permission to read/delete any file belonging to any user. Also,

issues of poor password management procedures for both authentication systems

(SwAuth and DevAuth) was a found.

With further investigations of how data is managed in OpenStack, it was found

that there is possibility for isolated files to be compromised. This could possibly

- 59 -

lead to legal claims from dishonest customers(users). Another major problem with

most cloud providers is that they don't afford to encrypt user's data. OpenStack is

not an exception to this problem.

Nevertheless, some security measures can be implement in order to mitigate these

weaknesses. First and foremost, it is essential to have a system which can check

the strength of user's password during registration. The file in DevAuth which

stores user information must be properly examined in order to make change to the

access rights. Only the swift user actually needs read right to this file. This will

prevent unauthorized people from obtaining user informations.

For user provisioning functionality, developers should use Service Provisioning

Markup Language (SPML) and for that of authentication functionality, Security

Assertion Markup Language (SAML) can be recommended. The PySAML2 Python

library can be used. Lastly, users must ensure to encrypt all sensitive data/files

before storing them in cloud. More details of the findings and recommendations

can be found in chapter three and four of this thesis.

Conclusion

Both the theoretical and practical findings have clearly shown that there is great

need to improve the security and privacy situation in cloud computing . Since

cloud computing is relatively new, it is necessary to undertake more studies of

security issues in cloud computing. This will improve the current security status of

the cloud and as a result more people will find it necessary to adopt and become

users of cloud services,thereby creating a steady economic growth for both the

service providers and users.

- 60 -

6.2 Future Work
Cloud computing is still a new innovative approach on IT usage and there are

many issues still to be considered for its improvement. It has many security

concerns which involve both technical (for instance, reliability, security and

privacy etc) and non-technical (for instance, legal and economic) issues. Therefore,

more research work should be done in the direction of Security.

ConsiderationConsiderationConsiderationConsideration ofofofof otherotherotherother OpenStackOpenStackOpenStackOpenStack ProjectProjectProjectProject: This research considers only the

OpenStack Object Storage (swift) which is just one of the three projects. In the

future, the OpenStack Compute and OpenStack Image Service should also be

investigate for security issues.

ProvideProvideProvideProvide betterbetterbetterbetter datadatadatadata encryptionencryptionencryptionencryption methods:methods:methods:methods: more research should be done in order

to develop better data encryption methods. And, cloud service providers must

endeavour to implement these data encryption methods, for proper protection of

user(customer) data.

- 61 -

Glossary

Collision Attack
An attack on hash function that aims to find

two messages that have same hash values.

Hypervisor

See Virtual Machine Monitor

Infrastructure as a Service (IaaS)

Cloud service delivery model under which

customer can use provider’s computing

resources to deploy and run arbitrary

software which can include operating

systems and applications

Platform as a Service (PaaS)

Cloud service delivery model under which

customer can use provider’s development

environment to create applications and

deploy them on provider’s cloud

Infrastructure.

- 62 -

Preimage Attack

An attack on hash function that aims to find

a message that has a specific hash value.

Private Cloud

Cloud deployment model under which cloud

infrastructure is utilized by a single

organization.

Public Cloud

Cloud deployment model under which cloud

infrastructure is made available to the

general public.

Software as a Service (SaaS)

Cloud service delivery model under which

customer can use provider’s applications

running on a cloud infrastructure.

User De-provisioning

A process of un-registering users from a

system.

User Provisioning

A process of registering new users in a

system.

Virtual Machine Monitor

A layer of software between an operating

system and hardware that is used to operate

virtual machines

- 63 -

Bibliography

[1] : http://en.wikipedia.org/wiki/Cloud_computing. (Accessed date 12/10/2012)

[2]http://www.matthewb.id.au/index.php?option=com_content&view=article&id=
31:cloudcomputin. (Accessed date:04/01/2013)

[3] Minqi Zhou, Rong Zhang, Wei Xie, Weining Qian, Aoying Zhou: " Security and
Privacy in Cloud Computing": A Survey, 2010.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5663489. (Accessed
date 10/10/2012)

[4] C. Wang, “Forrester: A close look at cloud computing security issues,”
http://www.csoonline.com/article/496388/forrester-a-close-look-at-cloud-comp
uting-security-issues
(Accessed date 10/11/2012)

[5]Peter Mell and Tim Grance. The NIST definition of cloud computing. October
2009.
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf.(Accessed
date 10/06/2012)

[6]N.Robinson, L. Valeri, J.Cave & T. Starkey ,H.Graux, S. Creese & P. Hopkins,
“ The Cloud: Understanding the Security, Privacy and Trust Challenges” Nov, 10'.
http://tofudi.net/read-file/the-cloud-understanding-the-security-privacy-and-tr
ust-challenges-pdf-757583/. (Accessed date 17/11/2012)

[7] H.Takabi and J.b.d. Joshi (University of Pittsburgh) and Gail-Joon Ahn,”
Security and Privacy Challenges in Cloud Computing Environments” Nov/Dec 10'.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5655240 (Accessed
date 10/11/2012)

[8]Bevan Barton, “Security and Privacy in Cloud Computing”(Middlebury College),
May 2010. http://vision.middlebury.edu/~cs702/. (Accessed date 15/01/2013)

[9]Cigoj P. Security Issues in OpenStack. Master’s Seminar (2012).
http://kt.ijs.si/markodebeljak/Lectures/Seminar_MPS/2012_2013/Seminars/S
eminar%20I_Primoz_Cigoj.pdf. (Accessed date 05/02/2013)

[10]G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D.
Song, “Provable data possession at untrusted stores,” Cryptology ePrint Archive,
Report 2007/202, 2007, http://eprint.iacr.org/. (Accessed date 10/01/2013)

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://tofudi.net/read-file/the-cloud-understanding-the-security-privacy-and-trust-challenges-pdf-757583/.
http://tofudi.net/read-file/the-cloud-understanding-the-security-privacy-and-trust-challenges-pdf-757583/.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5655240
http://vision.middlebury.edu/~cs702/.
http://kt.ijs.si/markodebeljak/Lectures/Seminar_MPS/2012_2013/Seminars/Seminar%20I_Primoz_Cigoj.pdf.
http://kt.ijs.si/markodebeljak/Lectures/Seminar_MPS/2012_2013/Seminars/Seminar%20I_Primoz_Cigoj.pdf.

- 64 -

[11]Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling public verifiability and
data dynamics for storage security in cloud computing,”in Proc. of ESORICS’09,
Saint Malo, France. http://eprint.iacr.org/2009/281.pdf (Accessed 14/01/13)

[12]H. Shacham and B. Waters, “Compact proofs of retrievability,” in Proc. of
Asiacrypt 2008, vol. 5350, Dec 2008, pp. 90–107.

[13]A. Juels and J. Burton S. Kaliski, “Pors: Proofs of retrievability for large files,”
in Proc. of CCS’07, Alexandria, VA, October 2007, pp. 584–597.

[14]M. A. Shah, M. Baker, J. C. Mogul, and R. Swaminathan, “Auditing to keep
online storage services honest,” in Proc. of HotOS’07. Berkeley, CA, USA: USENIX
Association, 2007, pp. 1–6.

[15] 104th United States Congress, “Health Insurance Portability and
Accountability Act of 1996 (HIPPA),” Online at http://aspe.hhs.gov/admnsimp/
pl104191.htm, 1996. (Accessed :16/07/ 2011).

[16] OpenStack. OpenStack Open Source Cloud Computing Software.
http://openstack.org/. (Accessed 10/11/ 2012).

[17] J. Curry. OpenStack Blog: Introducing OpenStack.
http://www.openstack.org/blog/2010/07/introducing-openstack/.
(Accessed 09/10/12).

[18] C. Metz. The New Linux: OpenStack aims for the heavens.
http://www.theregister.co.uk/2011/01/08/openstack/, January 2011.
(Retrieved February 2013).

[19] T. Morgan. NASA and Rackspace open source cloud fluffer. http://www.
theregister.co.uk/2010/07/19/nasa_rackspace_openstack/, July 2010.
(Retrieved February 2013).

[20] http://en.wikipedia.org/wiki/OpenStack. (Retrieved February 2013).

[21] John David Cooper “A Comparison and Analysis of Security Features and
Solutions Provided by Current Cloud Platforms” Dec 2012.

[22] J. Purrier. OpenStack Announces Cactus Release.
http://www.openstack.org/blog/2011/04/openstack-announces-cactus-release/.
(Retrieved February 2013)

[23] OpenStack. OpenStack Image Service.
http://openstack.org/projects/image-service/ (Accessed Feb 2013).

http://eprint.iacr.org/2009/281.pdf
http://aspe.hhs.gov/admnsimp/
http://www.openstack.org/blog/2010/07/introducing-openstack/.
http://www.theregister.co.uk/2011/01/08/openstack/
http://en.wikipedia.org/wiki/OpenStack. Retrieved February 2013
http://www.openstack.org/blog/2011/04/openstack-announces-cactus-release/
http://openstack.org/projects/

- 65 -

[24] F. Gens. IT Cloud Services User Survey, pt.2: Top Benefits & Challenges.
http://blogs.idc.com/ie/?p=210, October 2008. (Retrieved February 2011).

[25] F. Gens. New IDC IT Cloud Services Survey: Top Benefits and Challenges.
http://blogs.idc.com/ie/?p=730, December 2009. (Retrieved February 2011).

[26] W. Jansen and T. Grance. Guidelines on security and privacy in public cloud
computing. Technical report, National Institute of Standards and Technology,
January 2011. Draft Special Publication 800 -144. Available at
http://csrc.nist.gov/publications/drafts/800-144/ Draft-SP-800-14
4_cloud-computing.pdf.(Accessed date 02/11/2012)

[27] D. Talbot. Security in the Ether. Technology Review, pages 36–42, February
2010.

[28]http://uksysadmin.wordpress.com/2011/02/17/running-openstack-under-v
irtualbox-a-complete-guide/ (Accessed date 04/01/2013)

[29]http://www.tikalk.com/alm/blog/expreimenting-openstack-essex-ubuntu-12
04-lts-under-virtualbox (Accessed date: 04/01/2013)

[30] Jackson K. (2012) OpenStack Cloud Computing Cookbook. PACKT:
Birmingham- Mumbai

[31] E. Bertino, F. Paci, and R. Ferrini, “Privacy- Preserving Digital Identity
Management for Cloud Computing,” IEEE Computer Society Data Engineering
Bulletin, Mar. 2009, pp. 1–4.

[32.] P.J. Bruening and B.C. Treacy, “Cloud Computing: Privacy, Security
Challenges,” Bureau of Nat’l Afairs, 2009; www.hunton.com/f i les/tbl_s47Detai
ls/Fi leUpload265/2488/CloudComputing
_Bruening-Treacy.pdf. (Accessed date 02/02/2013)

[33.] E. Bertino, F. Paci, and R. Ferrini, “Privacy- Preserving Digital Identity
Management for Cloud Computing,” IEEE Computer Society Data Engineering
Bulletin, Mar. 2009, pp. 1–4.

[34.] Guidance for Identity & Access Management V2.1 Prepared by theCloud
Security AllianceApril 2010:
https://cloudsecurityalliance.org/guidance/csaguide-dom12-v2.10.pdf

[35.] J. Joshi et al., “Access Control Language for Multi-domain Environments,”
IEEE Internet Computing, vol. 8, no. 6, 2004, pp. 40–50

https://cloudsecurityalliance.org/guidance/csaguide-dom12-v2.10.pdf

- 66 -

[36] Hassan Takabi and James B.D. Joshi: ‘Security and Privacy Challenges in
Cloud Computing Environments’, November/December 2010:
26-28.http://www.sis.pitt.edu/~jjoshi/courses/IS2620/
Spring13/S&P.pdf. (Accessed 10/11/2012)

[37.] Krešimir Popović, Željko Hocenski: ‘Cloud Computing Security Issues and
Challenges’, May 24-28, 2010, Opatija, Croatia: 344-345.

[38.] A. Jyoti Choudhury et al: “A Strong User Authentication Framework for Cloud
Computing” in IEEE Asia -Pacific Services Comp Conf., pp 110 -115, 2011.

[39.] S. Yu, C. Wang,K. Ren and W. Lou ” Achieving Secure, Scalable, and
Fine-grained Data Access Control in Cloud Computing” the IEEE INFOCOM
proceedings,2010.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5462174. (Accessed
20/12/2012)

[40] “IBM Discovers Encryption Scheme That Could Improve Cloud Security, Spam
Filtering,” at
http://www.eweek.com/c/a/Security/IBM-Uncovers-Encryption-Scheme-That-C
ould-Improve-Cloud-Security-Spam-Filtering-135413/. (Accessed 02/12/2012)

[41] Roy I, Ramadan HE, Setty STV, Kilzer A, Shmatikov V, Witchel E. “Airavat:
Security and privacy for MapReduce,” In: Castro M, eds. Proc. of the 7th Usenix
Symp. on Networked Systems Design and Implementation. San Jose: USENIX
Association, 2010. 297.312.

[42] I-H Chuang, S-H Li, K-C Huang, Y-H Kuo; “An Effective Privacy Protection
Scheme for Cloud Computing”in Center for Research of E-life Digital Technology
(CREDIT), Taiwan, pp 260-265, Feb 2011

[43]S. Lee, I. Ong, H.T. Lim, H.J. Lee, “Two factor authentication for cloud
computing”, International Journal of KIMICS, vol 8, Pp. 427-432.

[44]http://www.usebox.net/jjm/charlas/deploying_openstack_object_storage.pdf
. (Retrieved date: 26/02/2013)

[45]OpenStack. The Auth System - Swift v1.2.0 documentation.
http://docs.openstack.org/developer/swift/overview_auth.html. (Accessed
26/02/2013).

[46] SQLite. Features. http://www.sqlite.org/features.html. (Accessed Date
02/09/12).

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5462174.
http://docs.openstack.org/developer/swift/overview_auth.html

- 67 -

[47]OpenStack. Open Source Cloud Computing Software.
http://swift.openstack.org/1.2/overview_auth.html (Accessed date 15/10/2011).

[48] Slipetsky, R : Security Issues in OpenStack. Master’s Thesis (2011)
http://nordsecmob.aalto.fi/en/publications/theses_2011/thesis_slipetskyy.pdf.
(Accessed date 03/04/2013)

[49] Python Software Foundation. sqlite3 - DB-API 2.0 interface for SQLite
databases. http://docs.python.org/library/sqlite3.html. (Retrieved March 2013)

[50] SecurityFocus. SecurityFocus Vulnerability Database.
http://www.securityfocus.com/bid. (Accessed March 2013)

[51] Sky Worth: Identity Federation; http://www.skyworthttg.com/en/solutions/
identity-federation/. (Accessed March 2013).

[52]G. Brunette and R. Mogull. "Security Guidance for Critical Areas of Focus in
Cloud Computing", Version 2.1. Technical report, Cloud Security Alliance,
December 2009.http://www.cloudsecurityalliance.org/guidance/csaguide.v2.
1.pdf. (Accessed date 07/03/2012)

[53] Launchpad Project. Python implementation of SAML2.
https://launchpad.net/pysaml2. (Accessed March 2013)

[54] OpenStack. The Auth System - Swift v1.2.0 documentation.
http://swift.openstack.org/1.2/overview_auth.html. (Accessed March 2013).

[55] OpenStack. IRC Log for April 26, 2011.
http://eavesdrop.openstack.org/irclogs/%23openstack/%23openstack.2011-04-
26.log . (Retrieved March 2013).

[56] Burr, W. E.; Dodson, D. F.; Polk, W. T. Electronic Authentication Guideline.
Technical report 800-63, National Institute of Standards and Technology (2006)

[57]Python Software Foundation. hashlib - Secure hashes and message digests.
http://docs.python.org/library/hashlib.html. (Accessed March 2013).

[58]W. Jansen and T. Grance. Guidelines on security and privacy in public cloud
computing. Technical report, National Institute of Standards and Technology,
January 2011. Draft Special Publication 800-144.
http://csrc.nist.gov/publications/drafts/800-144/Draft-SP-800-144_cloud-com
puting.pdf. (Accessed date 09/05/12)

http://nordsecmob.aalto.fi/en/publications/theses_2011/thesis_slipetskyy.pdf.
http://www.skyworthttg.com/en/solutions/identity-federation/.
http://www.skyworthttg.com/en/solutions/identity-federation/.
http://www.cloudsecurityalliance.org/guidance/csaguide.v2.1.pdf.
http://www.cloudsecurityalliance.org/guidance/csaguide.v2.1.pdf.
http://swift.openstack.org/1.2/overview_auth.html.
http://eavesdrop.openstack.org/irclogs/%23openstack/%23openstack.2011-04-26.log
http://eavesdrop.openstack.org/irclogs/%23openstack/%23openstack.2011-04-26.log
http://csrc.nist.gov/publications/drafts/800-144/Draft-SP-800-144_cloud-computing.pdf.
http://csrc.nist.gov/publications/drafts/800-144/Draft-SP-800-144_cloud-computing.pdf.

- 68 -

[59] OpenStack. The Rings - Swift v1.2.0 documentation.
http://swift.openstack.org/1.2/overview_ring.html. (Accessed date April 2013).

[60] M. Stevens, A. Lenstra, and B. Weger. Chosen-prefix collisions.
http://www.win.tue.nl/hashclash/ChosenPrefixCollisions/, February 2007.
Accessed April 2013.

[61] M. Stevens, A. Lenstra, and B. Weger. Chosen-prefix collisions.
http://www.win.tue.nl/hashclash/ChosenPrefixCollisions/, February 2007.
(Accessed 26/03/2013)

[62] M. Stevens, A. Lenstra, and B. Weger. Predicting the winner of the 2008 US
Presidential Elections using a Sony PlayStation 3.
http://www.win.tue.nl/hashclash/Nostradamus/, November 2007.
(Accessed April 2013).

[63] R. Slipetskyy. Two paths to the files hashing to the same value.
https://answers.launchpad.net/swift/+question/156307,
April 2011. (Accessed April 2013).

[64] J. Dickinson. Ensure that the docs explicitly caution to keep the hash path
suffix secret. https://bugs.launchpad.net/swift/+bug/791620, June 2011.
(Accessed April 2013).

[65] G. Brunette and R. Mogull. Security Guidance for Critical Areas of Focus in Cloud
Computing, Version 2.1. Technical report, December 2009. Available at
http://www.cloudsecurityalliance.org/guidance/csaguide.v2.1.pdf. (Accessed date
07/03/2012)

[66] R. Slipetskyy. Re: Suggestion for data backup/recovery in swift.
https://lists.launchpad.net/openstack/msg02664.html, May 2011. (Accessed April
2013).

[67] R. Slipetskyy. Suggestion for data backup/recovery in swift.
https://lists.launchpad.net/openstack/msg02632.html, May 2011. (Accessed 04/ 2013).

[68] OpenStack. Containers and Objects.
http: //docs.openstack.org/cactus/openstack-object-storage/
admin/content/containers-and-objects.html. (Accessed April 2013)

[69] OpenStack. Create/Update Object.
http://docs.openstack.org/cactus/openstack-object
storage/developer/content/create-update-object.html. (Accessed May 2011).

[70] IETF Network Working Group. RFC 4918: HTTP Extensions for Web Distributed
Authoring and Versioning (WebDAV). http://tools.ietf.org/html/rfc4918, June 2007.
(Retrieved May 2011).

http://swift.openstack.org/1.2/overview_ring.html.
http://www.win.tue.nl/hashclash/ChosenPrefixCollisions/,
http://www.win.tue.nl/hashclash/ChosenPrefixCollisions/,
http://www.cloudsecurityalliance.org/guidance/csaguide.v2.1.pdf.

- 69 -

Appendix A
Suggestion for Implementing Backup/Recovery in OpenStack
The information below is only an extract from the mailing list discussion analyzing

backup and recovery in OpenStack.

- 70 -

- 71 -

Appendix B
Configuration Files Used for the Deployment of OpenStack

Object Storage

- 72 -

- 73 -

- 74 -

