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Abstract 

Optimization is a field of mathematics which studies and develops mathematical methods with the 

aim of optimizing a wide range of problems. In physics these methods are central. Essentially all the 

dynamical equations in physics can be expressed as a series of optimization problems in terms of 

action integrals. Optimization can better be explained as finding the optima, also known as extremes, 

of a mathematical object. Such object may be a continuous function, as the case of this thesis. The 

approaches for solving optimization problems are generally divided into two categories, 

deterministic optimization and stochastic optimization. The main difference is that the deterministic 

approach applies calculus and the stochastic approach applies a search technique. For solving 

complex optimization problems, the stochastic approach has long proven to be most efficient. 

This thesis focuses on improving the two stochastic search methods: Simulated Annealing and the 

Genetic Algorithm. This is performed by implementing two newly developed methods. The first 

method is the Tangent-based Evaluation method, which is better suited to detect abnormalities in 

continuous functions than the common one-point evaluation method. The other method is the 

Analytic Swap method for generation of solutions. Solution generation is an important part of any 

stochastic algorithm. Usually the new solutions generated by a random function, but the Analytic 

Swap method combines randomness with analytics to generate better solutions.  
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1 Introduction 

Optimization is a field of mathematics which studies and develops mathematical methods with the 

aim of optimizing a wide range of problems. In physics these methods are central. Essentially all the 

dynamical equations in physics can be expressed as a series of optimization problems in terms of 

action integrals. The Merriam-Webster's Collegiate Dictionary defines Optimization generally as:  

“[A]n act, process, or methodology of making something (as a design, system, or decision) as 

fully perfect, functional, or effective as possible;” [1] 

Generally, optimization is regarded as another word for improving or making better.  Within the field 

of mathematics, it has a more specific meaning. The same dictionary defines mathematical 

optimization as: 

“[T]he mathematical procedures (as finding the maximum [or minimum] of a function) 

involved in this” [1] 

Optimization can better be explained as finding the optima, also known as extremes, of a 

mathematical object.  The term object within mathematics has a wide definition. Some common 

types of objects within number theory are numbers, functions, functionals, series, matrices and sets. 

Objects are also found within other branches of mathematics like algebra, logic and algebra. The 

form of the extremes to an object depends of the object-type. For example, two dimensional 

functions have two types of optima, minima and maxima. Other types of objects may have more 

optima. A three dimensional geometrical figure has six optima types. An important subject, when 

discussing optima, is the notion of global and local optima. A global optimum is an optimum for any 

part of an object, but a local optimum is an optimum for a subsection of an object. 

Mathematical optimization problems are generally divided into two categories: continuous 

optimization problems and discreet optimization problems. The main difference is that continuous 

optimization problems have an infinite number of possible solutions, whereas discrete optimization 

problems have a finite number of possible solutions.  In both cases, the goal of optimization is to find 

the optima of the problem. Continuous optimization problems often takes form as a function, and 

the optima is to be found where the corresponding graph turns from going up, to turning down, or 

vice versa. 

The approaches for solving optimization problems are generally divided into two categories, 

deterministic optimization and stochastic optimization. The main difference is that stochastic 

optimization always implies some degree of randomness and uncertainty, while deterministic 

methods do not. The consequence of this is that if it is possible to find a solution deterministically, it 

will always be correct and a repetition of the procedure will always yield the same result. However, 

stochastic optimization will always have a statistical error and it is likely that on gets a different 

solution by repeating the procedure. To describe the statistical variation in the results, one tends to 

use a probability distribution. This makes it possible to describe the accuracy of a stochastic method 

and the likelihood of the actual solution being within a given range around a solution achieved 

stochastically. The rest of this thesis is generally conserving stochastic optimization of continuous 

functions. 
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1.1 Continuous Optimization 

The main concern in this thesis is the solution of continuous optimization problems by applying 

stochastic search algorithms. To understand stochastic optimization, it is important to know the 

differences between deterministic optimization and stochastic optimization. This can be 

demonstrated by optimizing the following continuous function.  ( )            . The goal is 

to find the global minimum by using the derivative of the function.   ( )            . This is 

the most common method used to optimize relatively simple functions. The procedure is as 

following: 

 

The procedure used above to find the global minimum can be illustrated by the following two graphs. 

The first graphs, Figure 1, shows the function,  ( ), with the three optima marked. It has one local 

minimum in addition to the global minimum and one local maximum. It has no global maximum, 

since it approaches infinity, when it divergences. The second graph, Figure 2, shows the derivative of 

the function and the optima are located where graph crosses the y-axis. 

 

Figure 1 - Graph showing the locations of the optima of f(x). The lowest local minimum is also the global minimum. 

1. Find the derivative of  ( )            . 
2. Find all optima by setting:    ( )             ⋀    ⋀        
3. Find the corresponding   ( ) values:  (     )         ( )     (    )        
4. Determine the global minimum:              . The global minimum is          
5. Additionally one may also determine that function’s extremes divergences to  infinity: 

       ( )            ( )    
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Figure 2 - Graph showing the derivative of f(x), f'(x). The optima of f(x) is located where f'(x) crosses the y-axis, f'(x)=0. 

Even though solutions derived by deterministic optimization is mathematical accurate, not all 

problems are possible to be solved with this approach. Common reasons are that it requires too 

much computation or that the calculus becomes too complex. For these types of problems, a 

stochastic optimization may be more appropriate. Stochastic optimization often performed by using 

a search technique. The simplest form of search is to just selecting possible solutions by random, and 

return the best solution as the global minimum or maximum. This method is neither efficient nor 

reliable. To increase efficiency and at the same time ensure a satisfying outcome of a search, it is 

important to apply some kind of search strategy. Common for many search strategies are that they 

uses previous explores solutions to determine where to search next. This also applies to stochastic 

search algorithms, but they also incorporate some random mechanism. The goal is to combine the 

benefits of random search and more analytic search.   

One simple method is to perform an extensive search1. This is done by exploring every possible 

solution. For optimizing a continuous function, an extensive search is performed by exploring every 

possible solution with a given interval, since there are an infinite number of possible solutions. Its 

main advantage is that it always finds the correct solution. For simple problems with a small search 

range, this search method may be suitable. But for more complex problems, it may be too time 

consuming or require too much memory.  

Another search method is descent search. It is performed by random selecting one possible solution, 

  . Then another solution,     , in the neighborhood of the first solution,  ( ), is selected. The best 

solution is then selected, and the procedure is repeated until no further improvements are made.  

The main advantage is that it is little computational capacity and it is likely to find the closest 

optimum. The graph in Figure 3 shows how this method may be applied for solving the example 

above. 

                                                           
1
 Extensive Search is not defined as a stochastic search method since it does not include any randomness. 
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Figure 3 - Graph showing one round of the Descent Algorithm. The x selected here will lead to the discovery of the global 
minimum. 

Descent search has one major drawback, regarding global optimization, which is that it may easily be 

trapped in a local optimum, as showed in Figure 4.  This makes this search strategy more suited for 

finding a local optimum, rather than a global optimum. Instead, more advanced stochastic search 

strategies has to be applied. In the next chapter, some of the more common strategies are 

presented. 

 

Figure 4 - Graph showing one round of the Descent Algorithm. The x selected here will NOT lead to the discovery of the 
global minimum.   
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1.2 Stochastic Search 

Stochastic search methods are known for being efficient for solving complex optimization problems. 

However, this efficiency comes with the price of reduced statistical accuracy. For example, if one 

applies a stochastic search method on the same problem twice, without changing any parameters, it 

is very likely that one will get two close, but still different, results. By performing a search on the 

same problem multiple times, it is possible to calculate statistical accuracy. Usually, the Normal 

distribution is used for calculating the mean value and variance. 

For more than sixty years, research has been done to improve stochastic search, with the goals of 

improving efficiency and increasing accuracy. Another direction of research has been to expand the 

number of problems that stochastic search methods can be applied on. As research has progressed, 

several different algorithms have been proposed and further developed. Following are some of the 

more well-known methods presented. 

 Genetic Algorithm 
  The Genetic Algorithm was first proposed by John Holland in his book “Adaptation in 

Natural and Artificial Systems” published in 1975. [6] This version of the algorithm is 
today known as the Simple Genetic Algorithm. The Genetic Algorithm is an 
evolutionary algorithm and it is inspired by the process of procreation and evolution 
in the biology. 

 Simulated Annealing 
  Simulated Annealing was first introduced in 1983 by Kirkpatrick, Gelatt and Vecchi 

and it was initially intended to solve combinatorial optimization problems. [2] The 
name and concept are borrowed from metallurgy, where annealing is the process 
occurring when warm metals cools and settles. 

  Tabu Search 
  Tabu Search was first described by Glover and McMillan in 1986 and was initially 

used to solve the general employee scheduling problem. [3] Today, it is applied to a 
wide-range of optimization problems, including global optimization of continuous 
functions. The main concept of Tabu Search is a list of solutions which are taboo. 
Solutions are added to the list as they are explored, this to avoid previous explored 
solutions from being re-explored. Thus, avoid the problem of circling between 
solutions within a local optimum. 

 Variable Neighborhood Search 
  The key concept of Variable Neighborhood Search is to find multiple local optima by 

varying the search range, also known as neighborhood, hence the name. It was 
introduced by Hansen and Mladenovic in 1997. [4] Variable Neighborhood Search 
can be explained simply as: Applying a local search algorithm, for example the 
Descent Algorithm, systematically on multiple parts of the function and then 
selecting the best local optimum as global optimum, that is: the lowest local 
minimum as global minimum and the highest local maximum as global maximum. 

 Ant Colony Optimization 
  Ant Colony Optimization was first presented by Colorni, Dorigo and Maniezzo in 1991 

at the European Conference on Artificial Life in Paris. [5] Originally it was used for 
solving path optimization problems, but it has also been successfully applied on 
continuous optimization problems as well. [6] It mimics the mechanisms used by an 
ant colony to determine shortest path between two points. The basic concept is that 
each ant acts autonomously when trying to find a path between the points. Each 
ants has a certain amount of pheromone and it is distributed evenly long the path. If 



Havsø & Karlsen Metaheuristics Applied to the Optimization of Continuous Functions 

6 
 

an ant finds a short path, the pheromone is distributed with a high concentration, 
than if the ant finds a long path. By using a large swarm of ants and the shortest path 
is the path with highest level of pheromone. 

 Greedy Randomized Adaptive Search Procedure  
The Greedy Randomized Adaptive Search Procedure was developed by Feo and 
Resende and first publicized in 1989. [7] It was first applied on set cover problems, 
but has later been modified for solving continuous optimization problems as well.  
[8] It uses randomization and greediness to generate possible solutions, which are 
further used as starting-point for a series of local searches. This process is repeated 
until a predefined stop criterion is met. 

1.3 Problem and Hypothesis 

Within the fields of engineering and science, solving optimization problems is of great importance. 

There are many different optimization problems. Some of the more well-known are combinatorial, 

discreet, scheduling and continuous optimization problems. For this thesis, continuous optimization 

problems are the main concern. One of the most used approaches to solve optimization problems is 

to apply a stochastic search method, of which the Genetic Algorithm and Simulated Annealing are 

two. Both require a method for evaluation potential optima. Previous, Jensen, Bouhmala and Nordli 

have proposed a new tangent based method for evaluation of potential global optima. It has been 

presented in their paper [9], where it is combined with the Simple Genetic Algorithm. With this as a 

background, the following three research questions were created: 

 Is it possible to further increase the performance of combination of the tangent-based 
evaluation method and the Genetic Algorithm? 

 Is it possible to increase the performance of Simulated Annealing by applying the tangent-
based evaluation method? 

 Can the performance of the Genetic Algorithm and Simulated Annealing be enhanced by 
introducing an Analytic Swap method for crossover/generation of new solutions? 

The following hypotheses have been derived for the research questions: 

 Hypothesis #1: It is possible to improve the algorithm used in [9] by applying various 
strategies for crossover and by introducing elitism-based selection. 

 Hypothesis #2: It is possible to combine the tangent based method with Simulated 
Annealing. 

 Hypothesis #3: It is possible to improve the Genetic Algorithm and Simulated Annealing by 
introducing a new a sequential-swap based method for crossover/generation of new 
solutions. 

These hypotheses are to be proven by performing experiments and analysis of the results. The 

experiments consist of using the optimization method in various configurations to optimize a set of 

continuous functions.  
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1.4 Importance of Topic 

Optimization is useful for solving many different types of mathematical problems and this thesis is 

focusing upon the optimization of continuous functions. Today there are two main approaches to 

optimization, the deterministic approach and the stochastic approach. The deterministic approach 

always provides a solution which is mathematically correct, if it is able to solve the problem. The 

main drawback is that it can be very computational intensive and thereby slow to solve complex 

problems. For these kinds of problems, it may be beneficial to apply the stochastic approach. This 

because, stochastic search methods are generally faster, compared to the deterministic methods. 

However, stochastic search methods do not provide a mathematically correct solution. It may not 

event provide the exact same solution if it is repeated. Nevertheless, stochastic search methods are 

in many cases be accurate enough and their accuracy and efficiency are being improved as research 

progress. Altogether, the efficiency and high enough accuracy of the stochastic approach may in 

many cases outweigh the mathematical precision of the deterministic approach.  

Optimization plays an important part within many different fields of science and beyond. A few 

examples are: economics, engineering, physics, chemistry and biology. Today, there are a huge 

number of different ways of applying stochastic optimization and new applications emerges as 

research progresses. We will therefore present three possible applications.  

 Economic analysis. Imagine a case where an owner of a factory which can manufacture four 
different products. Previous analyzes of the production have resulted in one mathematical 
function for each product, which describes the cost of making each product based on the 
number of produced products. Marked research has also been performed and resulted in 
functions describing the expected sales income based on the number of products in the 
marked. By combining these functions and applying optimization, one can calculated how 
many of each product the factory should manufacture to ensure the highest total income. 

 Industrial engineering. Another case may be to design a pipe line system for transportation 
of some fluid or gas, the system may have several links to the outside and have variable load. 
To ensure that the system is designed to be able to withstand a worst case scenario, but also 
able to distribute the load and not to be more expensive than necessary, optimization may 
be applied. 

 Chemical processes. Many processes in the chemical industry are very complex and contain 
several stages. They may be energy intensive, require expensive additives and enzymes, and 
produce toxic waste products and other types of emissions. For both economic and 
environmental reasons, it may be of interest to simplify processes. One possible and often 
efficient approach is to apply optimization. For example a process may require an additive to 
produce a certain chemical product, but the additive may also result in a highly toxic by-
product, which may also be expensive to handle. The temperature may also be an important 
factor. By applying optimization, on may determine the best combination to ensure a high 
quality product and the lowest possible level of waste, but simultaneously ensuring high level 
of revenue. 

These are just three practical applications where optimization may be of great use. For many 

optimization problems, the deterministic approach may be too complicated to use. For such 

problems, the stochastic approach has proven be more suitable approach. We hope that our 

research will enhance the accuracy and usefulness of stochastic optimization. 
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1.5 Limitations and Key Assumptions 

In this chapter, the limitations and assumptions for this thesis are discussed. These are defined to 

avoid unnecessary extensions to the thesis. The main contributions are the further exploration of the 

Tangent-based method for evaluation of potential optima and the introduction of the Analytic Swap 

method for generation of new potential optima. The Tangent-based method is limited to be applied 

to functions with one variable, as it has not yet been expanded to handle functions with multiple 

variables. Thus, makes it not possible to apply this method on functions with multiple variables and 

only experiments with functions with one variable can be performed. The Analytic Swap method is 

however not depending on the number of variables a function has. Therefor it may be applied to 

generate new solutions for any function, regardless of the number of variables the function has. In 

this thesis, the experiments are limited to only consider functions with one and two variables.  The 

experiments are also limited to a set of benchmark functions and the experiments may only prove 

that our contribution can benefit the optimization of these functions. However, one may assume that 

our contributions may be successfully on other continuous optimization problems, if the experiments 

show a successful outcome. For full list of functions used for the experiments, see chapter 6. 

The implementation of the Genetic Algorithm and Simulated Annealing in this thesis is done in 

Python and the experiments have been performed on a regular workstation-type computer. Since 

the computer is not dedicated to the experiments and has to share resources with other processes, it 

was not possible to assure that the available computational capacity was constant. Also, the 

programing environment and implementation of the search methods may not be the most efficient 

one. Thus implying that, the measure of the efficiency may not be completely accurate, especially 

when it comes to time consumptions. Therefor the efficiency is measured in number of 

rounds/iterations, rather than time. However, this is of less importance since the main goals of this 

thesis are to improve the accuracy of the optimization and to further explore solution of new 

continuous problems.  
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1.6 Main Contributions of Thesis 

If the hypotheses show to be correct, the potential outcome of the research will be: 

 Expanding the knowledge of the accuracy of the optimization method presented in [9] by 
applying their method on additional problems and by applying it together with Simulated 
Annealing. This will show that the Tangent based method for evaluation of potential optima 
may be able to optimize any function with one variable.  

 Improving the accuracy of the Genetic Algorithm when optimizing functions with one 
variable by introducing other strategies. In [9], it is showed that after a certain number of 
generations, the best solution in a generation is worse than, the best solution in the previous 
generation. The cause of this may be use of random selection of solutions or that the 
strategy paring and/or crossover are not good enough. By applying other, it may be possible 
to avoid this decline and possibly increase the accuracy of the optimization. 

 Proving that the new Analytic Swap method may be better than the traditional methods for 
generating new solutions by increasing efficiency and/or accuracy of the optimization. 

However, if the hypotheses show to not be correct, the results of the research will regardless 

contribute to the general knowledge about applying the Tangent based method and the Analytic 

Swap method and their appliance together with the Genetic Algorithm and Simulated Annealing.  

1.7 Literature review 

Various stochastic search methods have successfully been applied on many types of optimization 

problems.  

S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi were the first to describe the Simulated Annealing 

algorithm in their article “Optimization by Simulated Annealing” [2]. However, a similar algorithm 

was independently developed by V. Černý and presented in the paper “Thermo dynamical approach 

to the traveling salesman problem: An efficient simulation algorithm”. [10] 

The Genetic Algorithm was first described in the book “Adaptation in Natural and Artificial Systems” 

published by John Holland. [11] It describes the basic concepts of the algorithm and how it is derived 

for the field of biologically. Another important publication regarding optimization by applying the 

Genetic Algorithm is the book “Genetic Algorithms in Search, Optimization, and Machine Learning” 

by David. E. Goldberg. [12] 

The tangent-based method for evaluation of potential optima was developed by Bjørn Jensen, 

Noureddine Bouhmala and Thomas Nordli and presented in their paper: “A novel tangent based 

framework for optimizing continuous functions” [9], where it is combined whit the Genetic 

Algorithm.  
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1.8 Thesis Report Outline 

This rest of the thesis report has the following structure: 

Chapter 2. Titled “The Genetic Algorithm”. Gives an introduction to the Genetic Algorithm 
and how it has been implemented in this thesis. It also contains a short 
summary of recent research and development of the algorithm. 

Chapter 3. Titled “Simulated Annealing”. Introduces Simulated Annealing in a similar 
fashion as in chapter 2. 

Chapter 4. Titled “The Tangent-based Evaluation method”. Describes the evaluation 
method developed by Jensen, Bouhmala and Nordli. It also presents a 
mathematical proves of its accuracy. 

Chapter 5. Titled “The Analytic Swap Method”. Presents the new Analytic Swap method 
for the generation of new solutions to be used in a stochastic search. 

Chapter 6. Titled “Experiments and Results”. Presents the experiment setup and a 
summary of the experiment results. 

Chapter 7. Titled “Discussion”. Discusses the results of the experiments in detail. It 
focuses on the trends in the results and performance in general. 

Chapter 8. Titled “Conclusion”. Gives a short conclusion of the thesis in the light of the 
hypothesis in chapter 1.3. It also discusses possible future work briefly.  
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2 The Genetic Algorithm 

The Genetic Algorithm was first proposed by John Holland in his book “Adaptation in Natural and 

Artificial Systems” published in 1975 [11]. This version of the algorithm is today known as the Simple 

Genetic Algorithm. The Genetic Algorithm is an evolutionary algorithm and it is inspired by the 

process of procreation and evolution in the biology. Thus, much of the terminology used to explain 

this algorithm has it origin in biology. The idea behind it is that one may combine two solutions, 

called parents, into new solutions, called children. [13] This can be compared with how a child gets 

some features from the mother, and other features from the father. If this is done enough times, 

some of the children solutions will inheritance the best parts of both parents and one may end up 

with a better solution than the ones started with, usually known as optimization. One of the key 

differences, when GA is compared to the other the strategies, is that GA handles multiple solutions 

within every cycle (in the Genetic Algorithm known as generation). 

2.1 The Algorithm 

To be able to describe the algorithm, the following key-concepts have to be introduced. The 

algorithm works in cycles, which is known as Generations. Each generation contains a set of 

solutions, known as Individuals. Each individual has a Genome, which is the value of the individual’s 

solution. The smallest entity a genome may be divided into is a Gene. For genomes containing a 

numerical value, a gene is usually bits or digits. In addition of the genome, each individual also has a 

value which denotes how well it solves the given problem, known as the Fitness. The fitness is usually 

calculated before selection operation is performed. This is because many selection strategies rely on 

the fitness to decide which individuals which are to be brought forward to the next generation. The 

fitness may also be used by some pairing strategies. 

In each generation, there are two population sets, the Parent Population and the Children 

Population. In the first generation, the parent population is generated randomly. In the following 

generations, the parent population is the solutions which are brought forward from the previous 

generation. In each generation a new set of individuals is created. This is the children generation. 

The children population is created by applying a set of genetic operators on the parent population. 

They are always performed in the following order and they simulate the process of biological 

procreation. 

1. Pairing – Each individual in the parent generation is put into pairs. This can either happen 
randomly or by using a predefined strategy. The various pairing strategies used in this thesis, 
is described in chapter2.2.1. 

2. Crossover – The process of combining parent pairs into new children by combining the 
genome of both parents. The various crossover strategies used in this thesis, is described in 
chapter2.2.3. 

3. Mutation – It is when changes are performed on the genome of an individual and this may 
happen randomly or by following a strategy. The usage of mutations is optional and is not a 
part of the Simple Genetic Algorithm. 

4. Selection – It is the process of selecting which individuals, which is to become the next 
parent generation. When selecting individuals, one may either only take the whole children 
population, or from both the parent and the children population. The various selection 
strategies used in this thesis, is described in chapter 2.2.4. 
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As for any stochastic search algorithm, The Genetic Algorithm reaches a state when it terminates and 

the genome of the individual with the best fitness is returned as the solution. This happens when the 

predefined conditions of termination is met. Common example of such conations may be when the 

best fitness converges or that a predefined number of generations have been created. 

The Genetic Algorithm: 

 

This thesis is based on a previous implementation of the genetic Algorithm, presented in [9]. In this 

implementation, the Simple Genetic Algorithm is used, which does not apply the mutation operation. 

It also uses random paring and uniform crossover and only the children population is selected to be 

carried forward to the next generation. In this thesis, one of the hypothesis is that is it possible to 

improve the implementations of the Genetic Algorithm. This is to be explored by applying various 

combinations of the four operation types. 

1. Initiation: 
2.   Generate population. 

3.   Evaluate the fitness of each individual in population. 

4. While: (Best fitness is being improved) Do: 
5.  { 

6.   Create parents pairs by applying a paring strategy. 

7.   Create new children population by applying crossover on 

parent pairs. 

8.   Perform mutations (Not mandatory). 

9.   Evaluate the fitness of individuals in new population. 

10. Perform selection for next generation of parents. 

11. } 

12. Finish: 
13. Return the individual with best fitness as the ultimate 

solution. 
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Figure 5 – Flow chart showing the structure of GA. The 
Goal is usually that the best solution has not been 
improved for a certain number of rounds. 
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2.2 Implementation 

The implementation of the Genetic Algorithm requires one parameter, the size of the population, 

and minimum one strategy for each of the three operators, pairing, crossover and selection. All the 

three strategies may be selected individually. In addition, the mutation operator may be 

implemented, which requires its own strategy. The selection of strategies may have a great impact 

on the performance of the algorithm. It is thereby important the correct strategies are selected. 

Since one of the goals of this thesis is to explore how well different combinations of strategies 

performer, multiple variants of the various strategies were implements. The concept of mutations is 

not addressed in this thesis. All the implemented strategies are presented in this sub-chapter. 

 Size of Population 2.2.1

Through all the experiments in this thesis, the same population size has been used. This is to reduce 

the complexity when the results are analyzed. The population size was determined by performing a 

limited number of test experiments. The selection has to take two factors into account. Firstly, it is 

important that the population is large enough to provide a sufficient gene-pool. If the population is 

too small, many solutions may not be explored. Secondly, the population cannot be too large, 

because the required computational resources are proportional to the population size. The result of 

a too large population may usually reduce efficiency and theoretically, it may exhaust the 

computational resourced. Efficiency is especially in this thesis, because the experiments consist of a 

long series of optimizations. By balancing the two factors against each other, a population size of 100 

was selected for all experiments. 

 Pairing Strategies 2.2.2

The pairing operator is the first operator to be applied in every generation and is the process where 

the parent population is divided into pairs, which later are used to generate a new children 

population. There exist many different strategies to use for selecting pairs. The pairing strategy used 

in this thesis is based on a roulette algorithm. It selects pairs by random, but the algorithm weights 

the fitness of each parent. This makes it more likely that both parents in a pair have the same fitness 

level. 
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 Crossover Strategies 2.2.3

The crossover operator is the second operator and it combines two parents to create two new 

children. The genomes, also known as the solution, of both parents are divided into the same 

number of sections. The children are then created by taking sections from both parents. It is 

important to notice that a section can only be a part of one of the children and that all sections have 

to be used. There are several strategies that can be used for performing a crossover. The selection of 

strategies is depending on multiple factors: 

 Static or variable length of genome. 

 Dependency between genes. 

 Number of parents used in crossover. 

In this thesis, all genomes are of same length and only two parents are used when performing 

crossover. Also, genes, in this case: bits, in the solution, may occur multiple times in each solution. 

Based on this, the following crossover strategies have been implemented.  

Crossover Strategy Description 

Single-Point The simplest crossover strategy. A single point is selected randomly and both 
parents are divided into two sections. The children are then created by 
combining the first section from one parent and the second section from the 
other parent.  

Uniform Crossover is applied on gene level (e.g. bit or digit level), instead of on sections. 
For each gene, it is selected by random if it is to be switched or not. This is 
done by generate a random binary value, also known as a mask, with the same 
length as the parents’ genome, where 1 represents switch and 0 represents not 
switch. 

Analytic Swap Consists of a series of gene-swaps like in uniform crossover, but the order is 
random. Between each swap, the fitness of the new interim solution is 
evaluated. In the end, the interim solution with the highest fitness is selected. 
For a detailed description, see chapter 5. 

Table 1 – Crossover strategies implemented in this thesis. 

 

Figure 6 – Visual representation of single point crossover. The 
horizontal line represents the crossover points. 
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 Selection Strategies 2.2.4

The selection operator is the last to be applied and it is used for selecting the individuals, which are 

to be brought forward into the next generation. There are many different selection strategies, but 

common to all is that the number of selected individual always is the same as the number of parents. 

This is in contrast to the situation in biology, where a generation may be larger than the previous 

generation. This limitation is crucial to avoid uncontrollable growth of individuals. The most extreme 

scenario is where the initial population,   , and both parents and children are brought forward into 

next generation. After   generations, the total population,   , will be   
 . The following selection 

strategies are the ones implemented as a part of this thesis.  

Selection Strategy Description 

Only Children The simplest selection strategy. As the name says, only the newly generated 
children are brought into the next generation. Since the number of children is 
equal to the number of parents, none of the children are discarded. 

Elitism All children are first sorted by fitness level, and then the two children with the 
lowest fitness level are discarded and replaced by the two parents with the 
highest fitness level. 

Table 2 – The main classes of selection strategies implemented in this thesis. 

 Mutation 2.2.5

Crossover is the common operator used to create new solutions or children. It requires two parents, 

in some cases more, and all the parents’ genes are used when creating the children. Thou, no genes 

are discarded during crossover, no new genes are introduced. In nature, errors, or mutations, may 

occur when an offspring is created. The concepts of mutations can also be implemented in the 

Genetic Algorithm. This is usually implemented by using a random function with low probability, as it 

is done in this thesis. It selects if one or more genes are to be changed, or mutated. If the genome is 

divided into bits, as in this thesis, the selected bits are switched. In other cases, where the genome is 

divided into digit, the selected digits are discarded and new digit is selected by random. The mutation 

operator is not implemented as a part of this thesis.  

Figure 7 – Visual representation of uniform crossover. The horizontal 
lines represent the division into genes (e.g. bits) and the mask 
determines which genes are to be switched. 
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2.3 Prior Research  

The Genetic Algorithm has it origin in the research of evolutionary programing in the 1960’s. [14] 

One of the pioneers was John Holland at the University of Michigan, who was the first to use the 

term “Genetic Algorithm” in 1975 in his book “Adaptation in Natural and Artificial Systems”. [11] This 

implementation is today known as the Simple Genetic Algorithm. The main advantage of this 

algorithm was that it was problem independent, compared to previous evolutionary algorithms, 

which usually were more problem specific. Since then, many variants of the Genetic Algorithm have 

been developed and genetic algorithms have been applied to a wide range of optimization problem, 

as well as to other problem types. 

In attrition to widen the possible appliances for the algorithm, much research has also been put into 

improving the algorithm by increasing the diversity among the individuals, thus increase the number 

of explored solutions. One of the latest trends in this research is to apply various continuous 

probability distributions to create new crossover strategies. Both Laplace and Gaussian distribution 

have been applied successfully for solving optimization problems. [15; 16]Increased diversity is also 

being achieved by applying various mutation strategies, with one of the latest being Adaptive 

Directed Mutation proposed by Tang and Tseng in 2013. [17] The development of new pairing and 

selection strategies has lately been of less important. 

Research in genetic algorithms is not only focused on how to improve the performance of the 

algorithm alone. Much effort has also been devoted to creating hybrid algorithms. Three of the 

lasted hybrids, which have been applied to solve continuous optimization problems is the, previously 

mentioned, Gauss-VNS-GA-IPA, the GAAPI algorithm and Tabu Search-Genetic Algorithm. GAAPI is 

developed by Ciornei and Kyriakides and first published in 2012. [18] It is a hybrid between the 

Genetic Algorithm and a variant of Ant Colony Optimization for continuous functions called API. The 

Genetic Algorithm is used for fining possible starting points, also known as nests. Ant Colony 

Optimization is then used to explore the starting point with the highest fitness. This is repeated until 

the termination criteria are met. 

The Tabu Search-Genetic Algorithm hybrid was proposed by Ramkumar, Schoen and Lin in 2010. [19] 

It applies Tabu Search for the approximation of ranges, which contains a local optima, and the 

Genetic Algorithm used within these rages for determine the accurate location of the optima. 
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3 Simulated Annealing 

Simulated Annealing is inspired by annealing within metallurgy, which is a process used to modify the 

ductility and hardness of metal by heating and regulating the cooling process. It was first described 

by    Kirkpatrick, Gelatt and Vecchi in 1983. [2] The idea behind Simulated Annealing is that in the 

same way that the metal atoms tries to achieve an ideal state when the metal cools, it will provide an 

ideal solution. It is very similar to the simpler Descent Algorithm, but instead of discarding all inferior 

solutions, it uses a probability function to determine if an inferior solution is to be accepted or not. 

When metal is hot, the metal atoms are more likely to move into a less ideal state. As the metal 

cools, it is becoming less likely that atoms may move into a less ideal state. In Simulated Annealing, 

this is represented by the probability function, which by time makes it less likely that inferior 

solutions are to be selected. By continuing the usage of terminology from metallurgy, one may say 

that the algorithm starts out to be hot, and are cooling by time. 

3.1 The Algorithm 

In this chapter, the basic operation of Simulated Annealing is explained, for a close description of our 

implementation, see next chapter. Simulated Annealing operates with three solutions 

simultaneously: the current solution,   , the accepted solution,   ,  and the best solution,  . The 

current solution is the solution which is generated in a round, either randomly or by modifying the 

accepted solution. The accepted solution is a solution generated in a previous round. It is always 

replaced with the new solution, if it is better, but is there is also a probability of it being replaced if 

the new solution is inferior. The best solution is always the best solution yet explored and can only be 

improved. The algorithm consists of three phases: 

The first phase of the algorithm is the initiation phase. During this phase the first solution is 

generated randomly and predefined parameters, like the initial temperature, are set. 

The second phase is the search phase and it is in this phase solutions are explored, in this case 

potential optima. This phase consists of two loops, the outer and the inner loop. The outer loop 

handles the decrease in temperature and it ends when the stop criterion is met. Possible stop criteria 

are number of iterations, convergence in best solution or that temperature has reached a predefined 

minimum. Within the outer loop, the inner loop is also found. The inner loop handles the exploration 

of possible solutions and starts with the generation of a new solution,   ,. If the new solution is 

better than the accepted solution, the accepted solution is replaced. If not, a number,  , between 0 

and 1 is generated randomly and compared to the probability function,  . If the   is lower than the 

value of  , the new solution replaces the previous accepted solution, even though it being inferior. If 

the new solution also is the best solution yet explored, it also replaces the current best solution. 

The last phase is the finishing phase, where the best solution,  , is presented. For a continuous 

optimization problem, the best solution is the global minimum or maximum. Other data may be 

returned as well. During this phase no calculations are performed. 
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Symbols used in the algorithm: 

  : Denotes the current round. 

     The current solution. 

  : Best solution,    . 

  ( ): The function which the algorithm is applied to. 

   : The function value given by the current solution,     (  ). 

  : The function value given by the best solution,    ( ). 

  : The probability function used to decide if an inferior solution is to be accepted. Various 
functions may be used, but it is required that the probability decreases by time and 
         

  : A random number,         

   : Accepted solution. 

   : The function value given by the accepted solution,     (  ). 

  : Length of inner loop. 

1. Initiation: 

2.   Select a random solution,        . 

3.   Calculate       (  ). 
4. While:(Stop criterion NOT reached) Do: 

5.   { 

6.   Set     
7.   While:(   ) Do: 
8.    { 

9.    Generate new solution,    

10.    Calculate     (  ). 
11.    If: (   is better than   ) Then: 

12.     { 

13.          , and      . 

14.     Set     
15.     } 

16.    Else: 

17.     { 

18.     Generate random number,  . 
19.     If: (  <  ) Then: 
20.      { 

21.           , and      . 

22.      } 

23.     } 

24.        . 
25.    If: (   is better than  ̅) Then: 
26.     { 

27.         , and     . 
28.     } 

29.    } 

30.   Reduce temperature. 

31.   } 

32. Finish: 

33.   Return   as the best solution. 
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Figure 8 – Simplified flowchart showing the structure of SA. In the beginning, it is hot and any solution 
may be accepted, even though they are inferior. The probability for accepting an inferior solution is 
decided by a probability function and the probability is reduced as time passes. This is known as the 
cooling period. Usual goals for this algorithm are either that the solution converges or that the 
temperature has reached a certain level. 
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3.2 Implementation 

Our implementation of Simulated Annealing is based upon the standardized version, which includes 

the usage of a probability function based on the Boltzmann distribution. Main contribution to this 

algorithm is the appliance of the tangent-based method for evaluation of potential optima and the 

introduction of the new Analytic Swap method for solution generation. 

 Solution Generation 3.2.1

In this implementation of Simulated Annealing, two methods for generating new solutions are used. 

The first method is standard bit inversion. One bit is selected randomly and inverted. The second 

method is a new method and is based on a sequence of bit-swapping operations. For further 

information about this method, see chapter 5.  

 Initial temperature 3.2.2

Selecting an appropriate initial temperature is an important part of configuring Simulated Annealing. 

A common method is to define it a static constant with a value between 0.5 and 1. To reduce the 

time required for parameter tuning, “Partitioning of Unstructured Meshes for Parallel Processing” 

was used to determine the initial temperature automatically and individually for each problem. This 

algorithm was developed by Bouhmala as a part of his doctoral thesis and first publicized in 1998. 

[20] The algorithm has the following structure: 

  

1. Initiation: 

2.   Generate initial random solution,   . 

3.   Set:       

4.   Set:                             
5. For: (n=1; n<100’000; n++) Do: 

6.   { 

7.   Generate random solution,   . 

8.   Calculate difference,         . 

9.   If: (     ) Then: 

10.    { 

11.          

12.                                       
13.              
14.    } 

15.   } 

16.         
               

      
 

17.    
       

      
 

18. Finish: 

19.   Return   as the initial temperature solution. 
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 Probability Function 3.2.3

The acceptance probability function is a variant of the Boltzmann distribution. This distribution was 

used when Simulated Annealing was first presented and is today very common among 

implementations of Simulated Annealing. [2] This distribution takes two variables, the current 

temperature and the difference between the new solution and the accepted solution. The current 

temperature is calculated by multiplying the old temperature with a predefined constant. 

 

It is important to notice that the above calculation of    is only correct when solving minimization 

problems, when solving maximization problems, the signing has to be inverted. 

3.3 Prior Research 

Simulated Annealing was first introduced in 1983 by Kirkpatrick, Gelatt and Vecchi and it was initially 

intended to solve combinatorial optimization problems. [2] It has later been applied to solve many 

different optimization problems, including discrete and global continuous optimization problems. For 

global optimization of functions with multiple variables, the Enhanced Simulated Annealing algorithm 

presented by Siarry, Berthiau, Durbin and Haussy has been an important contribution. [21] 

The main advantage is that it can be applied without any prior knowledge about the solution. [22] 

Nevertheless, it has two major drawbacks: it is computational intensive [22; 23] and requires that the 

length of the cooling period is scheduled correctly. [24]  Since it was first publicized, many variations 

have been developed to minimize the drawbacks, as well as enhancing the accuracy of the algorithm. 

One important milestone was the introduction of parallelism done by Ram, Sreenivas and 

Subramaniam in 1996 [23] and one of the latest contributions to parallelism and optimization of 

continuous functions is the Temperature Parallel Simulated Annealing proposed by Cai, Ewing and 

Ma in 2012. [22] 

A lot of research on Simulated Annealing has been on how to schedule the cooling period. To reduce 

the need of manually adjusting the scheduling of the cooling period, Adaptive Simulated Annealing 

was introduced by Ingber in 1987.2 [24] Several improvements to the Adaptive Simulated Annealing 

have been proposed. One of the later is the Fuzzy-based Adaptive Sample-sort Simulated Annealing 

proposed by Shukla, Sun and Tiwari in 2007. [25] It combines Adaptive Simulated Annealing with 

parallelism and fuzzy logic. A similar algorithm was presented by Oliveira and Petraglia in 2011, when 

they combined Simulated Annealing and fuzzy logic with Particle Swarm Optimization. [26] It has 

showed great results, when used to solve global optimization problems.   

                                                           
2
 In the original publication from 1987, it was known as Very Fast Simulated Re-annealing. It was renamed in 

1993 by Ingber. [25] 
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4 The Tangent-based Evaluation method 

In the first chapter of this thesis, the concept of optimization of continuous functions was introduced. 

An important part of any optimization process is the evaluation of potential global optima. The 

common method to evaluate a potential global optimum is to insert it into the function,  ( ) and a 

value is returned. This value is then compared to the value of other potential global optima. This is 

called one-point evaluation. For deterministic optimization, evaluation of potential global optima 

only has to be performed once, since the set of potential optima is known to be all the local optima 

of the function.  

 

Figure 9 – By applying one-point evaluation, only f(x) is evaluated and the evaluation is valid for this x-value. To evaluate 
nearby x-values, new evaluations have to be performed. 

The same method for evaluation is also often used when preforming stochastic optimization. 

Stochastic optimization usually involves the usage of a search algorithm, which returns possible 

solutions to the problem. These solutions are then evaluated and the results are then used in the 

next round of the searching process. When the stop criterion for the search is achieved, the best 

solution is returned and is considered the global optimum. When using stochastic optimization, some 

degree of uncertainty always has to be expected. In some cases the difference between the result 

and the actual global optima may be relatively large. This applies particular for complex functions 

with many abnormalities. Abnormalities may for example be spices, which may be hard to detect by 

a stochastic search algorithm. This is especially, if the abnormality only affects a small portion of a 

function. In these cases, it is likely that points on both sides of an abnormality are evaluated, but the 

abnormality is not detected.  

To increase the probability of detecting such abnormalities, it would be beneficial to evaluate a small 

portion of the function, instead of just a point. This is known as two-point evaluation. The simplest 

method used to perform two-point evaluation, is to apply a modified version of the derivation 

operator. By definition, any function is the derivative of another function: 
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Two-point evaluation is achieved by choosing a small  -value, but still larger than zero. This will 

provide an evaluation of the range between   and    . This will reduce the need of evaluation 

nearby  -values. However, by using this is an approximation, a mathematical error is introduced and 

the accuracy is reduced. 

 

 

Figure 10 – By applying two-point evaluation, on does not only evaluate the points x and x+h, but also the range 
between. Since this is an approximation, it will introduce an error. The degree of error is dependent on the size of h and 
the development of the curve. 

Using the formula for two-point evaluation, one can reduce the number of  -values to be evaluated. 

This increases the efficiency, to the cost of the introduction of a small mathematical error. This is 

because this approximation seldom equals the one-point evaluation and that the evaluation is the 

asymmetric, regarding point  . This error can be reduced by introducing a symmetric method for 

evaluation. This can be performed by evaluating a range on both sides of the point  . It is important 

that the ranges on both sides of   are of equal size, and suitable ranges are       〉 and       〉.  
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Evaluating the range       〉: 

 

Evaluating the range       〉: 

 

Combining the evaluation of whole range: 

 

By applying the same approximation as used on the regular derivation formula, the following 

symmetric two-point evaluation formula is created: 

 

This makes it possible to perform a symmetric two-point evaluation of a given  -value. Thus, making 

the evaluation more accurate, than if the asymmetric two-point evaluation formula is used. The two 

points used in this evaluation also forms a tangent to the point  , hence the name of this method. 
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Figure 11 – Symmetric two-point evaluation proves to be more mathematical accurate. However, the error introduced by 
applying an h-value greater than zero is not eliminated, only reduced. 

4.1 Estimation of Accuracy 

As mentioned earlier, the approximation in the Tangent-based Evaluation method introduced a 

mathematical inaccuracy. The order of the inaccuracy can be estimated by combining two Tailor 

series. This is performed as following: 

Step1: We start by introducing the standard definition of a Tailor series.  

 

Step 2: To evaluation of the left side of  ,   and   is set as     and      . This creates the 

following series: 
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Step 3: To evaluation of the right side of  ,   and   is set as     and      . This creates the 

following series: 

 

Step 4: The two series from step 2 and 3 is then combined into one series to create a symmetric 

evaluation.  

 

Step 5: To reduce the complexity of the series, it can be simplified by defining the terms containing 

third and higher derivatives of  ( ) as the reminder of third order. 

 

Step 6: The remainder is then to be omitted, which introduces an error of  (  ), and the following 

approximation is made: 

 

Step 7: By definition, the derivative of one function may be viewed as another function. 

 

These calculations proves that the error introduced by applying the Tangent-based Evaluation 

method can be estimated to be no more than of  (  ).  
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5 The Analytic Swap Method 

The Analytic Swap method is a new method for generating new solutions. It combines randomness 

with analytics, which together have showed to be very powerful. Due to the differences between 

various stochastic search algorithms, it has to be adapted individually. It is bit-based and to generate 

a new solution, it requires that an initial solution is provided. The method consists of a series of bit-

swap operations. A bit-swap operation may only be performed once on a bit and stops when all bits 

are switched. Each swap creates an interim solution, which consist of all previous swaps. After each 

swap, an evaluation is performed and in the end, the interim solution with the best score is selected. 

In the end when all swaps are performed, the interim solution with the highest score is selected. 

Due to the differences between the Genetic Algorithm and Simulated Annealing, the Analytic Swap 

method has to be adapted differently. For other appliances, different adaptations may be required. 

In the Genetic Algorithm, new solutions are generated during crossover. It always generates two new 

solutions, known as children, with the basis in two initial solutions, known as parents. The bit-swap 

operation used in this case is that the selected bit is interchanged between the two solutions and the 

evaluation of each interim solution is performed individually. After all bit-swaps are performed, the 

best interim solution for the first and the second child is selected individually, even though the best 

interim solution may be worse than the initial solution. The following implementation is used in this 

thesis, when applying the Analytic Swap method to the Genetic Algorithm: 

 

  

1. Initiation: 

2.   Input: Two initial solution,   
  and   

 . 

3. Generate one empty solution table for each initial 

solution with layout: {solution, fitness} 

4. For: (i=1; i<Max number of swaps; i++) Do: 
5.   { 

6.   Select random bit/digit not previously selected. 

7. Generate new interim solutions,   
 
 and   

 
, by 

interchanging selected bit/digit between previous interim 

solutions,     
 

 and     
 
. 

8. Evaluate fitness of each new interim solution,  (  
 ) and 

 (  
 ), individually. 

9. Add interim solution,   
 
 and   

 
, and corresponding fitness 

value,  (  
 ) and  (  

 ), to their respective solution table. 
10.   } 

11. Finish: 
12. Return the interim solution with highest fitness value 

from each solution table. 
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Simulated Annealing requires a different adaptation. The generation of a new solution starts with 

one initial solution and the bit-swap operation used is bit inversion. After all bit-swaps have been 

performed, the best interim solution is selected. If the best interim solution is worse than the initial 

solution, the probability function in Simulated Annealing decides if the best interim solution is to be 

selected or not. If the probability function decides that the new solution is not to be selected, the 

Analytic Swap method is re-applied on the initial solution. The random order of bit-swaps will ensure 

that the new solution will be different than the previous generated solution. The following 

implementation is used in this thesis, when applying the Analytic Swap method to Simulate 

Annealing: 

  

1. Initiation: 

2.   Input: One initial solution,   . 

3. Generate empty solution table with layout: 

{solution, fitness} 

4. For: (i=1; i<Max number of swaps; i++) Do: 
5.   { 

6.   Select random bit/digit not previously selected. 

7. Generate new interim solution,   , by inverting selected 

bit/replacing selected digit with random digit in     . 

8.   Evaluate fitness of new interim solution,  (  ). 
9. Add interim solution,   , and corresponding fitness value, 

 (  ), to solution table. 
10.   } 

11. Finish: 
12.   Return the interim solution with highest fitness value. 
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6 Experiments and Results 

The main objective of the experiments is to explore the performance of the two new methods 

presented in this thesis. The experiment setup is created by applying these methods together with 

the Genetic Algorithm and Simulated Annealing. For reference, other experiments without these 

methods have also been set up. The experiments were conducted by optimizing a set of ten well-

known benchmark functions. Of these functions, six are functions with one variable and four are 

functions with two variables. Because the Tangent-based Evaluation method only supports functions 

with one variable, two different sets of experiments have been created. For more details, see 

introduction to chapter 6.1 and 6.2. 

The efficiency of the optimization is measured by the number of iterations required to achieve 

convergence. One iteration is one cycle of the algorithm and is defined different for the Genetic 

Algorithm and Simulated Annealing. In the Genetic Algorithm, one iteration is the same as one 

generation. It includes all the steps from pairing to evaluation and selection. Thus, one iteration 

includes the generation of a set of new solution, known as children. In Simulated Annealing, one 

iteration is defined as one cycle of the inner loop. This always includes the generation of one new 

solution, evaluation and the accepting/discarding of the new solution. It is also important to notice 

that the temperature is not reduced in every iteration. 

All experiments were performed by using Python as programing environment. For the 

implementation, some third-party libraries were used, with NumPy being the most important in 

terms of the mathematical calculations. Python was selected because of previous experience and for 

being well-suited for solving mathematical problem. Our implementation is based on an earlier 

implementation created by Thomas Nordli at the Vestfold University College and was used as a part 

of the research performed by Jensen, Bouhmala and Nordli. [9] The original implementation was a 

single file of Python-code and implemented The Tangent-based Evaluation method together with the 

Simple Genetic Algorithm with random pairing, uniform crossover and only bring the children 

population forward. Our implementation uses a modular design, which makes it easier to add new 

elements, such as new strategies for pairing, crossover, mutation and selection. We have also 

implemented additional strategies for exploring the different combinations, as described in chapter 

2.2. 
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6.1 Functions with one variable 

For functions with one variable, ten different experiment sets have been created, where six are 

based on the Genetic Algorithm and four are based on Simulated Annealing. For the experiments 

with Tangent-based Evaluation, six different h-values where used. These values are: 10-3, 10-5, 10-7, 

10-9, 10-11 and 10-13. Each experiment where perform 100 times for every function. Based on the 

results, the average result, excess and sample-variance were calculated and the minimum and 

maximum values were determined. 

Following experiment setups were performed with the Genetic Algorithm and functions with one 

variable: 

Setup Crossover Strategy Selection Strategy Evaluation 

GA1 Single Point Elitism One-point 

GA2 Single Point Elitism Tangent 

GA3 Uniform Elitism One-point 

GA4 Uniform Elitism Tangent 

GA5 Analytic Swap Elitism One-point 

GA6 Analytic Swap Elitism Tangent 
Table 3 – Experiment set with the Genetic Algorithm for optimizing one-
variable functions. 

Following experiment setups were performed with the Simulated Annealing and functions with one 

variable: 

Setup Solution Generation Evaluation 

SA1 Replace Random  Digit One-point 

SA2 Replace Random  Digit Tangent 

SA3 Analytic Swap One-point 

SA4 Analytic Swap Tangent 
Table 4 – Experiment set with the Simulated Annealing for 
optimizing one-variable functions. 

Due to the large amount of results, only the most important results are presented in this chapter. A 

complete set of results of the experiments with one-variable functions is presented in Appendix C.  
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 Function 1.1 6.1.1

 

 

Figure 12  – Plot of function 1.1 for x   [0,1]. 
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Figure 13 – Experiment 1.1_GA3, Optimizing with Genetic Algorithm, Uniform Crossover, Elitism and One-
point Evaluation. 

 

Figure 14 – Experiment 1.1_GA4, Optimizing with Genetic Algorithm, Uniform Crossover, Elitism and 
Tangent-based Evaluation, H=10

-13
. 

 

 

Figure 15– Experiment 1.1_GA5, Optimizing with Genetic Algorithm, Analytic Swap, Elitism and One-point 
Evaluation. 
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Figure 16 – Experiment 1.1_GA6, Optimizing with Genetic Algorithm, Analytic Swap, Elitism and Tangent-
based Evaluation, H=10

-13
. 

 

Figure 17 – Experiment 1.1_SA1, Optimizing with Simulated Annealing and One-point evaluation. 

 

Figure 18 – Experiment 1.1_SA2, Optimizing with Simulated Annealing and Tangent-based Evaluation. 
H=10

-13
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Figure 19 – Experiment 1.1_SA3, Optimizing with Simulated Annealing, Analytic Swap and One-point 
evaluation. 

 

Figure 20 – Experiment 1.1_SA4, Optimizing with Simulated Annealing, Analytic Swap and Tangent-based 
Evaluation. H=10

-13
. 

 

 Setup h Maximum Minimum Average Variance Excess 

1.1_GA1 GA1 – 2,71799138 2,59694631 2,70089926 0,00043407 0, 17382568 

1.1_GA2 GA2 10-13 2,72004641 2,62234678 2,699018786 0,00047665 0, 19263042 

1.1_GA3 GA3 – 2,718281269 2,717804741 2,718197598  1,01109E-08 8,423E-5 

1.1_GA4 GA4 10-13 2,72004641 2,72004641 2,72004641 2,86859E-29 -0,001764581 

1.1_GA5 GA5 – 2,718281828 2,718194845 2,718280697 7,76222E-11 1,135E-6 

1.1_GA6 GA6 10-13 2,72004641 2,72004641 2,72004641 2,86859E-29 -0,001764582 

1.1_SA1 SA1 – 2,718281824 2,718277567 2,718281167 6,91991E-13 6,615E-7 

1.1_SA2 SA2 10-13 2,72004641 2,72004641 2,72004641  2,86859E-29 -0,001764581 

1.1_SA3 SA3 – 2,718281827 2,71827087 2,718280584 2,71713E-12 1,245E-6 

1.1_SA4 SA4 10-13 2,72004641 2,72004641 2,72004641 2,86859E-29 -0,001764581 
Table 5 – Results of optimizing Function 1.1. 
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  Function 1.2 6.1.2

 

 

 

Figure 21 – Plot of function 1.2 for x   [0,1]. 
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Figure 22 – Experiment 1.2_GA3, Optimizing with Genetic Algorithm, Uniform Crossover, Elitism and One-
point Evaluation. 

 

 

Figure 23 – Experiment 1.1_GA4, Optimizing with Genetic Algorithm, Uniform Crossover, Elitism and 
Tangent-based Evaluation, H=10

-5
. 

 

Figure 24– Experiment 1.2_GA5, Optimizing with Genetic Algorithm, Analytic Swap, Elitism and One-point 
Evaluation. 
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Figure 25 – Experiment 1.2_GA6, Optimizing with Genetic Algorithm, Analytic Swap, Elitism and Tangent-
based Evaluation, H=10

-5
. 

 

Figure 26 – Experiment 1.2_SA1, Optimizing with Simulated Annealing and One-point evaluation. 

 

Figure 27 – Experiment 1.2_SA2, Optimizing with Simulated Annealing and Tangent-based Evaluation. 
H=10
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Figure 28 – Experiment 1.2_SA3, Optimizing with Simulated Annealing, Analytic Swap and One-point 
evaluation. 

 

Figure 29 – Experiment 1.2_SA4, Optimizing with Simulated Annealing, Analytic Swap and Tangent-based 
Evaluation. H=10

-5
. 

 

 Setup h Maximum Minimum Average Variance Excess 

1.2_GA1 GA1 – 1 0,99749277 0,99986237 9,70299E-08 0,00013763 

1.2_GA2 GA2 10-13 1,00000086 0,998368055 0,99988152 8,46176E-08 0,00011848 

1.2_GA3 GA3 – 1 1 1 – – 

1.2_GA4 GA4 10-5 1 1 1 – – 

1.2_GA5 GA5 – 1 1 1 – – 

1.2_GA6 GA6 10-5 1 1 1 – – 

1.2_SA1 SA1 – 1 0,99999996 0,999999996 – 4E-8 

1.2_SA2 SA2 10-5 1 0,999999972 1 2,99238E-17 – 

1.2_SA3 SA3 – 1 0,99999988 0,99999999 2,93548E-16 1E-7 

1.2_SA4 SA4 10-5 1 0,99999994 0,99999999 1,86744E-16 1E-8 
Table 6 – Results of optimizing Function 1.2. 
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 Function 1.3 6.1.3

 

 

 

Figure 30 – Plot of function 1.3 for x   [0,1]. 
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Figure 31 – Experiment 1.3_GA3, Optimizing with Genetic Algorithm, Uniform Crossover, Elitism and One-
point Evaluation. 

 

Figure 32 – Experiment 1.3_GA4, Optimizing with Genetic Algorithm, Uniform Crossover, Elitism and 
Tangent-based Evaluation, H=10

-5
. 

 

Figure 33 – Experiment 1.3_GA5, Optimizing with Genetic Algorithm, Analytic Swap, Elitism and One-point 
Evaluation. 
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Figure 34 – Experiment 1.3_GA6, Optimizing with Genetic Algorithm, Analytic Swap, Elitism and Tangent-
based Evaluation, H=10

-13
. 

 

Figure 35 – Experiment 1.3_SA1, Optimizing with Simulated Annealing and One-point evaluation. 

 

Figure 36 – Experiment 1.3_SA2, Optimizing with Simulated Annealing and Tangent-based Evaluation. 
H=10
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Figure 37 – Experiment 1.3_SA3, Optimizing with Simulated Annealing, Analytic Swap and One-point 
evaluation. 

 

Figure 38 – Experiment 1.3_SA4, Optimizing with Simulated Annealing, Analytic Swap and Tangent-based 
Evaluation. H=10

-5
.
 

 Setup h Maximum Minimum Average Variance Excess 

1.3_GA1 GA1 – 47,4925022 23,0082964 45,0965458 18,375547 4,4984542 

1.3_GA2 GA2 10-11 47,492521 22,4448016 45,732363 11,9377222 3,862637 

1.3_GA3 GA3 – 47,4925237 47,4166783 47,4754847 0,00065416 2,1195153 

1.3_GA4 GA4 10-5 47,4925131 47,4168554 47,4776476 0,00052161 2,1173524 

1.3_GA5 GA5 – 47,4925237 46,600904 47,4040929 0,02263649 2,1909071 

1.3_GA6 GA6 10-13 47,5064432 47,4282169 47,4282169 0,01976401 2,1667831 

1.3_SA1 SA1 – 47,4925237 44,2286558 47,3894619 0,20726851 2,2055381 

1.3_SA2 SA2 10-5 47,4925131 47,4190441 47,4599743 0,00130498  2,1350257 

1.3_SA3 SA3 – 47,4925237 44,1485092 47,4186748 0,1104435 2,1763252 

1.3_SA4 SA4 10-13 47,5064432 47,4265072 47,4634249 0,00135318 2,1315751 
Table 7 – Results of optimizing Function 1.3. 
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6.2 Functions with two variables 

For functions with two variables, five different experiment sets have been created, where three are 

based on the Genetic Algorithm and two are based on Simulated Annealing. Each experiment where 

perform 100 times for every function. Based on the results, the average solution, excess and sample-

variance were calculated and the minimum and maximum values were determined. 

Following experiment setups were performed with the Genetic Algorithm and functions with two 

variables: 

Setup Crossover Strategy Selection Strategy Evaluation 

GA1 Single Point Elitism One-point 

GA2 Uniform Elitism One-point 

GA3 Analytic Swap Elitism One-point 
Table 8 – Experiment set with the Genetic Algorithm for optimizing two-
variable functions. 

Following experiment setups were performed with Simulated Annealing and functions with two 

variables: 

Setup Solution Generation Evaluation 

SA1 Replace Random  Digit One-point 

SA2 Analytic Swap One-point 
Table 9 - Experiment set with the Simulated 
Annealing for optimizing two-variable functions. 
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 Function 2.1 6.2.1

 

 

 

Figure 39 – Plot of function 2.1 for x   [0,1] and y   [0,1]. 
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Figure 40 – Experiment 2.1_GA2, Optimizing with Genetic Algorithm, Uniform Crossover, Elitism and One-
point Evaluation. 

 

Figure 41 – Experiment 2.1_GA3, Optimizing with Genetic Algorithm, Analytic Swap, Elitism and One-point 
Evaluation. 

 

Figure 42 – Experiment 2.1_SA1, Optimizing with Simulated Annealing and One-point evaluation. 
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Figure 43 – Experiment 2.1_SA2, Optimizing with Simulated Annealing, Analytic Swap and One-point 
evaluation. 

 Setup Maximum Minimum Average Variance Excess 

2.1GA1 GA1 1,99432772 1,58187959 1,88544878 0,00662649 0,11455122 

2.1GA2 GA2 1,99979533 1,97048235 1,99124449 4,1053E-05 0,00875551 

2.1GA3 GA3 2,00000000 1,99859847 1,99998347 1,9784E-08 1,653E-5 

2.1SA1 SA1 1,99999678 1,99972327 1,99995906 1,85591E-09 4,094E-5 

2.1SA2 SA2 1,99999892 1,99967220 1,99994566 4,423E-09 5,454E-5 
Table 10 – Results of optimizing Function 2.1. 
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 Function 2.2 6.2.2

 

 

 

Figure 44 – Plot of function 2.2 for x   [0,1] and y   [0,1]. 
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Figure 45 – Experiment 2.2_GA2, Optimizing with Genetic Algorithm, Uniform Crossover, Elitism and One-
point Evaluation. 

 

Figure 46 – Experiment 2.2_GA3, Optimizing with Genetic Algorithm, Analytic Swap, Elitism and One-point 
Evaluation. 
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Figure 47 – Experiment 2.2_SA1, Optimizing with Simulated Annealing and One-point evaluation. 

 

Figure 48 – Experiment 2.2_SA2, Optimizing with Simulated Annealing, Analytic Swap and One-point 
evaluation. 

 Setup Maximum Minimum Average Variance Excess 

2.2GA1 GA1 2,99361365 2,39503481 2,85645164 0,0138519 0,14354836 

2.2GA2 GA2 2,99870218 2,95113875 2,98678531 9,5841E-05 0,1321469 

2.2GA3 GA3 3 2,998001 2,99997008 4,2061E-08 2,992E-5 

2.2SA1 SA1 2,99999957 2,99957144 2,99993612 4,807E-09 6,388E-5 

2.2SA2 SA2 2,99999085 1,97074912 2,82764683 0,06086346 0,17235317 
Table 11  – Results of optimizing Function 2.2. 
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 Function 2.3 6.2.3

 

 

 

Figure 49 – Plot of function 2.3 for x   [0,1] and y   [0,1]. 
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Figure 50 – Experiment 2.3_GA2, Optimizing with Genetic Algorithm, Uniform Crossover, Elitism and One-
point Evaluation. 

 

Figure 51 – Experiment 2.3_GA3, Optimizing with Genetic Algorithm, Analytic Swap, Elitism and One-point 
Evaluation. 

 

Figure 52 – Experiment 2.3_SA1, Optimizing with Simulated Annealing and One-point evaluation. 
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Figure 53– Experiment 2.3_SA2, Optimizing with Simulated Annealing, Analytic Swap and One-point 
evaluation. 

 Setup Maximum Minimum Average Variance Excess 

2.3GA1 GA1 100,761458 68,2123372 94,8639171 24,2914233 6,1360829 

2.3GA2 GA2 100,998567 100,687837 100,964754 0,00191909 0,035246 

2.3GA3 GA3 101 100,999879 100,999997 2,7744E-10 3,0E-6 

2.3SA1 SA1 100,999884 99,9899641 100,815655 0,14911073 0,184345 

2.3SA2 SA2 100,727279 69,1863689 92,5463029 28,4804767 8,4536971 
Table 12 – Results of optimizing Function 2.3. 
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 Function 2.4 6.2.4

 

 

 

Figure 54 – Plot of function 2.4 for x   [0,1] and y   [0,1]. 
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Figure 55 – Experiment 2.4_GA2, Optimizing with Genetic Algorithm, Uniform Crossover, Elitism and One-
point Evaluation. 

 

Figure 56 – Experiment 2.4_GA3, Optimizing with Genetic Algorithm, Analytic Swap, Elitism and One-point 
Evaluation. 

 

Figure 57 – Experiment 2.4_SA1, Optimizing with Simulated Annealing and One-point evaluation. 
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Figure 58 – Experiment 2.4_SA2, Optimizing with Simulated Annealing, Analytic Swap and One-point 
evaluation. 

 Setup Maximum Minimum Average Variance Excess 

2.4GA1 GA1 40,5025439 39,1135102 40,2416442 0,07548008 0,2583558 

2.4GA2 GA2 40,5025431 40,4976201 40,5023065 2,6998E-07 -0,0023065 

2.4GA3 GA3 40,5023399 40,3809523 40,4868265 0,0006447 0,0131735 

2.4SA1 SA1 40,502541 40,49848 40,5009668 1,1673E-06 -0,0009668 

2.4SA2 SA2 40,5025457 40,4843549 40,5007987 5,1816E-06 -0,0007987 
Table 13 – Results of optimizing Function 2.4. 
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7 Discussion 

In this thesis two new methods for improving stochastic optimization of continuous functions have 

been explored. The first method is the Tangent-based Evaluation method. It was first presented in [9] 

where it was applied on the Simple Genetic Algorithm. In this thesis, this implementation has been 

improved by introducing elitism. Also, Tangent-based Evaluation has for the first time been applied 

together with Simulate Annealing.  

The second method is the Analytic Swap method. This is a new method for generating new solutions 

to be used by a stochastic algorithm. This method has been applied to both the Genetic Algorithm 

and Simulated Annealing, and opposed to Tangent-based Evaluation; it can be used when optimizing 

functions with any number of variables. 

These two methods affect the optimization process differently. The difference is in general that the 

Tangent-based Evaluation method increases the accuracy of the optimization, whereas the Analytic 

Swap method causes faster convergence. Thus, the further discussion of these methods is done 

separately. 

7.1 Tangent-based Evaluation 

This method was presented in [9]. It was proven by applying Tangent-based Evaluation, the accuracy 

of stochastic optimization was improved, compared to traditional one-point evaluation. It also stated 

that this requires a correct tuning of the parameter h. However, it also showed that the accuracy 

decreased after a certain amount of iterations. In this thesis, the results and conclusion in [9] are 

confirmed. Also, the decrease in accuracy is eliminated by applying elitism to the Genetic Algorithm. 

In addition to the experiments with Tangent-based Evaluation and the Genetic Algorithm, Tangent-

based Evaluation has also been applied to Simulated Annealing. The results showed the same 

improvements in accuracy. They also showed that most suitable value for parameter h is the same 

for a function, regardless of which stochastic search algorithm being used. The usage of Tangent-

based Evaluation also showed one major challenge. It is that before it can be used, one has to 

determine the anti-derivative of the function one is to optimize. Especially when optimizing 

advanced functions, this proved to be a major obstacle. 

7.2 Analytic Swap 

The obtained results show that by applying this method to both The Genetic Algorithm and 

Simulated Annealing, fewer iterations are required to achieve convergence, when compared to other 

methods for solution generation/crossover. We believe the main reason is the performance interim 

evaluations between each swap when a new solution is generated. This reduces the probability of 

selecting a poor solution. However, during the experiments it was also discovered that the Analytic 

Swap method is very time consuming. Whereas experiments without this method could be perform 

in one day, the experiments with Analytic Swap took almost a whole week. This can be remedied by 

either reducing the total number of iterations before ending the search or by defining a stop-

criterion not based on the total number of iteration. For example, one possible stop-criterion is to 

end the search when a pre-defined number of iterations have been performed without any 
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improvements. It can also be researched into its own independent search technique, as proposed in 

chapter 8.1. 

7.3 Efficiency 

In this thesis, the efficiency of the optimizations has been measured by the number of iterations 

required to achieve convergence. However, this method may not always be accurate enough. This is 

because the amount of calculation required for each iteration depends on the complexity of the 

algorithm. Thus, this makes it not fully accurate to compare the efficiency of different experiments, 

when they use different algorithms. For example, Simulated Annealing only generates and evaluates 

one solution for each iteration, but the Genetic Algorithm generates and evaluates hundred 

solutions. Another method for calculating efficiency is to measure time used on each run. However, it 

was not possible to perform accurate measure of time used by each experiment. This was due to 

time constraints, which required multiple experiments to be performed simultaneously on the same 

computer to achieve maximum utilization of the computer’s capacity and it was not possible to 

ensure an even distribution of capacity. 

In the implementation used the experiments, there are in general two areas where there may be 

potential for increasing the efficiency. Firstly, it may be possible to optimize the code and the 

computer environment. For example optimization of methods and implementation of more efficient 

libraries may be implemented. Secondly, it may be possible to increase efficiency by using another 

programing language than Python. It is generally, interpreted programing languages, like Python, are 

regarded as less efficient than compiled languages as for example C\C++. For applications where a 

high level of efficiency is required, it may be beneficial to port the code into a compiled language. 

  



Havsø & Karlsen Metaheuristics Applied to the Optimization of Continuous Functions 

59 
 

8 Conclusion 

In this thesis, main objective has been to solve continuous optimization problems by applying two 

newly developed techniques on the Genetic Algorithm and Simulated Annealing. The goal when 

solving a continuous optimization problem is to find the global minimum or global maximum of a 

continuous function.  The first new method applied in this thesis a Tangent-based Evaluation, which 

purpose is increase the probability of detecting abnormalities on a curve compared to the traditional 

one-point evaluation method. The second method is the Analytic Swap method for generation of 

new solutions. Solution generation is a crucial part of any stochastic algorithm. The objective for this 

method is to ensure higher quality of the generated solutions, thus ensuring faster convergence of 

the optimization and reducing the number of iterations required. 

In the beginning of this thesis, three hypotheses were presented. The first is: It is possible to improve 

the algorithm used in [9] by applying various strategies for crossover and by introducing elitism-

based selection. This hypothesis is confirmed. By introducing elitism-based selection, the decline 

observed in [9] is avoided. In addition, the introduction of Analytic Swap did reduce the number of 

iterations required before convergence is achieved. 

The second hypothesis is: It is possible to combine the tangent based method with Simulated 

Annealing. This hypothesis is also confirmed. By applying the Tangent-based Evaluation method to 

Simulated Annealing, more accurate solutions are obtained, but there is no general improvement to 

the efficiency. 

The third hypothesis is: It is possible to improve the Genetic Algorithm and Simulated Annealing by 

introducing a new sequential-swap based method for crossover/generation of new solutions. At first 

glance, it may appear that this hypothesis is confirmed. The number of iterations required to obtain 

convergence is significantly lower when this method is used, compared to other methods for 

generating solutions/performing crossover.  However, by using this method, each iteration consumes 

considerably more time, compared to when other methods are used. Thus, this hypothesis may not 

be considered to be confirmed.  

The final conclusions to this thesis are that the combination of Tangent-based Evaluation and the 

Genetic Algorithm may be improved by introducing elitism; the accuracy of Simulated Annealing is 

improved by applying Tangent-based Evaluation instead of traditional one-point evaluation and that 

the current version of Analytic Swap method is too computational intensive. Based on this, some 

possible subjects for further research are discussed in the following chapter. 
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8.1 Further Research and Work 

Based on the experiences and results we have achieved during this thesis, we would like to propose 

the following subjects for future research: 

 Expansion of the Tanget-based Evaluation Method to be able to handle continuous functions 
with multiple variables. The experiments with the Tangent-based Evaluation and functions 
with one variable have showed interesting results. We think that a symmetric multipoint 
evaluation method with similar propertied as the Tangent-based Evaluation method, may be 
beneficial for evaluation of functions with multiple variables. 

 Creating an adaptive version of the Tangent-based Evaluation method. The experiments in 
this thesis has showed that the ideal h-parameter different for each continuous function. 
Previous research has showed success in creating adaptive versions of algorithms which 
previous required parameters to be tuned correctly. Thus, we believe that it is possible to 
create an adaptive version of the Tangent-based Evaluation method as well. 

 Develop the Analytic Swap method into a separate optimization method. The experiments 
showed that this method is very inefficient when it is combined with the Genetic Algorithm 
or Simulated Annealing. The main source for inefficiency was that within each iteration, a 
high number of new solutions was generated and evaluated. Since this is two main 
component of a search method, we would recommend that the Analytic Swap Method is 
developed into its own search method. Another possible approach may be to simplify 
method to make it less computational intensive. 

By this, we conclude out master thesis. We hope that our research may inspire other to carry this 

effort forwards.   
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Appendix A – Functions with One Variable 
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Appendix B – Functions with Two Variables 
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Appendix C – Plots of functions with one variable 

Function 1.1: 
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Function 1.3: 
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Function 1.5: 

 

Function 1.6: 
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Appendix D – Results for Functions with One Variable 

Function 1.1: 

 Setup h Maximum Minimum Average Variance 

1.1_GA1 GA1 – 2,71799138 2,59694631 2,70089926 0,00043407 

1.1_GA2 GA2 10-3 2,71800693 2,56958862 2,69369835 0,00091469 

1.1_GA2 GA2 10-5 2,71772868 2,60796382 2,69491215 0,00060202 

1.1_GA2 GA2 10-7 2,71827548 2,60366527 2,69830477 0,00043711 

1.1_GA2 GA2 10-9 2,7182776 2,61245736 2,69601573 0,00043407 

1.1_GA2 GA2 10-11 2,71811462 2,62361244 2,69533418 0,00047023 

1.1_GA2 GA2 10-13 2,72004641 2,62234678 2,699018786 0,00047665 

1.1_GA3 GA3 – 2,71828183 2,71819484 2,7182807  1,01109E-08 

1.1_GA4 GA4 10-3 2,71828228 2,71825619 2,71828179 1,40332E-08 

1.1_GA4 GA4 10-5 2,71828183 2,71808857 2,71827982 1,05287E-08 

1.1_GA4 GA4 10-7 2,71828183 2,71825437 2,71828096 1,19145E-08 

1.1_GA4 GA4 10-9 2,71828204 2,71798251 2,7182785 8,27804E-09 

1.1_GA4 GA4 10-11 2,71829226 2,71804801 2,71828937 1,59613E-08 

1.1_GA4 GA4 10-13 2,72004641 2,72004641 2,72004641 2,86859E-29 

1.1_GA5 GA5 – 2,718281828 2,718194845 2,718280697 7,76222E-11 

1.1_GA6 GA6 10-3 2,718282282 2,718256186 2,718281787 9,47765E-12 

1.1_GA6 GA6 10-5 2,718281829 2,718088565 2,718279816 3,73658E-10 

1.1_GA6 GA6 10-7 2,718281829 2,718254373 2,718280961 1,67673E-11 

1.1_GA6 GA6 10-9 2,718282044 2,717982506 2,718278505 8,97824E-10 

1.1_GA6 GA6 10-11 2,718292258 2,718048009 2,718289371 6,04146E-10 

1.1_GA6 GA6 10-13 2,72004641 2,72004641 2,72004641 2,86859E-29 

1.1_SA1 SA1 – 2,71828182 2,71827757 2,71828117 6,91991E-13 

1.1_SA2 SA2 10-3 2,71828228 2,71827339 2,71828144 1,77082E-12 

1.1_SA2 SA2 10-5 2,71828183 2,71827305 2,718281 1,83252E-12 

1.1_SA2 SA2 10-7 2,71828182 2,71827853 2,71828123 5,76652E-13 

1.1_SA2 SA2 10-9 2,71828182 2,71827605 2,71828121 7,56844E-13 

1.1_SA2 SA2 10-11 2,71829226 2,71827005 2,71829159  1,44923E-11 

1.1_SA2 SA2 10-13 2,72004641 2,72004641 2,72004641 2,86859E-29 

1.1_SA3 SA3 – 2,71828183  2,71827087 2,71828058 2,71713E-12 

1.1_SA4 SA4 10-3 2,71828228 2,71827792 2,71828146 1,05605E-12 

1.1_SA4 SA4 10-5 2,71828183 2,71827613 2,71828079  1,42145E-12 

1.1_SA4 SA4 10-7 2,71828182 2,71827446 2,71828094 1,44208E-12 

1.1_SA4 SA4 10-9 2,71828182 2,71827738 2,71828082 1,20665E-12 

1.1_SA4 SA4 10-11 2,71829226 2,71827005 2,71829181 9,76116E-12 

1.1_SA4 SA4 10-13 2,72004641 2,72004641 2,72004641 2,86859E-29 
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Function 1.2: 

 Setup h Maximum Minimum Average Variance 

1.2_GA1 GA1 – 1,0000000 0,99749277 0,99986237 9,70299E-08 

1.2_GA2 GA2 10-3 0,999999667 0,996339265 0,999827495 1,91615E-07 

1.2_GA2 GA2 10-5 0,999999999 0,997782703 0,999814398 1,52368E-07 

1.2_GA2 GA2 10-7 1 0,998132051 0,999876554 9,51364E-08 

1.2_GA2 GA2 10-9 1 0,998540584 0,999872431 6,72487E-08 

1.2_GA2 GA2 10-11 0,999999993 0,99814601 0,999841208 1,19797E-07 

1.2_GA2 GA2 10-13 1,00000086 0,998368055 0,99988152 8,46176E-08 

1.2_GA3 GA3 – 1 1 1 – 

1.2_GA4 GA4 10-3 0,99999967 0,99999967 0,99999967 – 

1.2_GA4 GA4 10-5 1 1 1 – 

1.2_GA4 GA4 10-7 1 1 1 – 

1.2_GA4 GA4 10-9 1 1 1 – 

1.2_GA4 GA4 10-11 1 1 1 – 

1.2_GA4 GA4 10-13 1,000000863 1,00000005 1,000000387 1,62702E-13 

1.2_GA5 GA5 – 1 1 1 – 

1.2_GA6 GA6 10-3 1 1 1 – 

1.2_GA6 GA6 10-5 1 1 1 – 

1.2_GA6 GA6 10-7 1 1 1 – 

1.2_GA6 GA6 10-9 1 1 1 – 

1.2_GA6 GA6 10-11 1 1 1 – 

1.2_GA6 GA6 10-13 1,000000863 1,00000005 1,000000237 1,18287E-13 

1.2_SA1 SA1 – 1 0,99999996 1 6,42761E-17 

1.2_SA2 SA2 10-3 0,99999967 0,99999958 0,99999966 1,41184E-16 

1.2_SA2 SA2 10-5 1 0,99999997 1 2,99238E-17 

1.2_SA2 SA2 10-7 1 0,99999994 1 1,02398E-16 

1.2_SA2 SA2 10-9 1 0,99999992 1 1,09327E-16 

1.2_SA2 SA2 10-11 1 0,99999986 0,99999999 2,46445E-16 

1.2_SA2 SA2 10-13 1,00000086 0,99999978 1,00000015 8,52291E-14 

1.2_SA3 SA3 – 1 0,99999988 0,99999999 2,93548E-16 

1.2_SA4 SA4 10-3 0,999999667 0,999999521 0,999999658 4,61357E-16 

1.2_SA4 SA4 10-5 1 0,999999937 0,999999992 1,86744E-16 

1.2_SA4 SA4 10-7 1 0,999999821 0,999999989 6,37882E-16 

1.2_SA4 SA4 10-9 1 0,999999865 0,999999993 3,73167E-16 

1.2_SA4 SA4 10-11 1 0,999999888 0,999999992 2,88404E-16 

1.2_SA4 SA4 10-13 1,000000863 0,999999779 0,999999779 4,12902E-14 
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Function 1.3: 

 Setup h Maximum Minimum Average Variance 

1.3_GA1 GA1 – 47,4925022 23,0082964 45,0965458 18,375547 

1.3_GA2 GA2 10-3 47,3864439 22,9327126 44,6493007 23,9308349 

1.3_GA2 GA2 10-5 47,4925125 24,9423348 45,2609386 15,8670925 

1.3_GA2 GA2 10-7 47,4921337 22,6313857 45,1913394 20,5175772 

1.3_GA2 GA2 10-9 47,4925159 28,291709 44,9722638 20,5175772 

1.3_GA2 GA2 10-11 47,492521 22,4448016 45,732363 11,9377222 

1.3_GA2 GA2 10-13 47,5020023 17,9611881 45,2242466 26,98083 

1.3_GA3 GA3 – 47,4925237 47,4166783 47,4754847 0,00065416 

1.3_GA4 GA4 10-3 47,3864591 47,3090105 47,3615172 0,00089281 

1.3_GA4 GA4 10-5 47,4925131 47,4168554 47,4776476 0,00052161 

1.3_GA4 GA4 10-7 47,4925237 47,416245 47,4759563 0,0005879 

1.3_GA4 GA4 10-9 47,492521 47,4145052 47,4710752 0,00080566 

1.3_GA4 GA4 10-11 47,4925654 47,4152939 47,4726189 0,00077442 

1.3_GA4 GA4 10-13 47,5042228 47,4176254 47,4746686 0,00083046 

1.3_GA5 GA5 – 47,4925237 46,600904 47,4040929 0,02263649 

1.3_GA6 GA6 10-3 47,3864592 43,2536125 47,2587939 0,21077976 

1.3_GA6 GA6 10-5 47,4925131 46,610199 47,4271111 0,01333656 

1.3_GA6 GA6 10-7 47,4925237 46,5634367 47,4208171 0,02800796 

1.3_GA6 GA6 10-9 47,4925241 44,5168844 47,3967598 0,11057167 

1.3_GA6 GA6 10-11 47,4926098 45,4771332 47,4022419 0,0651185 

1.3_GA6 GA6 10-13 47,5064432 47,4282169 47,4282169 0,01976401 

1.3_SA1 SA1 – 47,4925237 44,2286558 47,3894619 0,20726851 

1.3_SA2 SA2 10-3 47,3864592 44,0662594 47,1972446 0,46970846 

1.3_SA2 SA2 10-5 47,4925131 47,4190441 47,4599743 0,00130498 

1.3_SA2 SA2 10-7 47,4925237 44,1485577 47,2555599 0,59731443 

1.3_SA2 SA2 10-9 47,4925241 44,148541 47,3879539 0,21766181 

1.3_SA2 SA2 10-11 47,4926098 44,1483738 47,2539778 0,61780908 

1.3_SA2 SA2 10-13 47,5086637 44,1557901 47,2952122 0,50874632 

1.3_SA3 SA3 – 47,4925237 44,1485092 47,4186748 0,1104435 

1.3_SA4 SA4 10-3 47,3864592 47,3129354 47,3445713 0,00133683 

1.3_SA4 SA4 10-5 44,1485332 44,1485332 47,3537421 0,31695153 

1.3_SA4 SA4 10-7 44,2286621 44,2286621 47,4224153 0,10541947 

1.3_SA4 SA4 10-9 47,4925244 44,148514 47,288725 0,51494527 

1.3_SA4 SA4 10-11 47,4926098 44,1485959 47,4192299 0,11053428 

1.3_SA4 SA4 10-13 47,5064432 47,4265072 47,4634249 0,00135318 

 

  



Havsø & Karlsen Metaheuristics Applied to the Optimization of Continuous Functions 

74 
 

Function 1.4: 

 Setup h Maximum Minimum Average Variance 

1.4_GA1 GA1 – 0,99997994 0,93062203 0,98374923 0,00025181 

1.4_GA2 GA2 10-3 0,99993821 0,9028746 0,98418465 0,00033321 

1.4_GA2 GA2 10-5 0,99995374 0,89200495 0,98596544 0,00034352 

1.4_GA2 GA2 10-7 0,9998787 0,91898938 0,98480651 0,00036033 

1.4_GA2 GA2 10-9 0,99991093 0,93876623 0,98633729 0,00015787 

1.4_GA2 GA2 10-11 1,00000008 0,90004948 0,9854754 0,00030992 

1.4_GA2 GA2 10-13 1,00031095 0,87735375 0,98382136 0,00044604 

1.4_GA3 GA3 – 0,999999925 0,99977958 0,999957814 2,72189E-09 

1.4_GA4 GA4 10-3 1,00000033 0,999466367 0,999955816 4,86032E-09 

1.4_GA4 GA4 10-5 0,99999998 0,999758579 0,999964032 2,12677E-09 

1.4_GA4 GA4 10-7 0,999999017 0,999485873 0,999946487 5,61779E-09 

1.4_GA4 GA4 10-9 0,999999888 0,99971062 0,999954236 3,97657E-09 

1.4_GA4 GA4 10-11 1,000000083 0,999716976 0,999951122 3,16265E-09 

1.4_GA4 GA4 10-13 1,000310945 1,000033389 1,000305394 1,52518E-09 

1.4_GA5 GA5 – 1 0,999919881 0,99999864 7,00307E-11 

1.4_GA6 GA6 10-3 1,000000333 0,999860338 0,999998762 1,96985E-10 

1.4_GA6 GA6 10-5 1 0,99998782 0,999999834 1,53775E-12 

1.4_GA6 GA6 10-7 1 0,999986 0,999999608 4,38588E-12 

1.4_GA6 GA6 10-9 1,000000027 0,999980959 0,99999943 7,43237E-12 

1.4_GA6 GA6 10-11 1,000000083 0,999861305 0,999998445 1,9502E-10 

1.4_GA6 GA6 10-13 1,000310945 0,999755834 1,000305394 3,08149E-09 

1.4_SA1 SA1 – 1 0,999995984 0,999999457 5,05552E-13 

1.4_SA2 SA2 10-3 1,000000333 0,999997416 0,99999978 4,98353E-13 

1.4_SA2 SA2 10-5 0,999999999 0,999995449 0,999999504 4,98353E-13 

1.4_SA2 SA2 10-7 0,999999997 0,999995525 0,999999425 6,84231E-13 

1.4_SA2 SA2 10-9 1,000000027 0,999993532 0,999999491 6,75625E-13 

1.4_SA2 SA2 10-11 1,000000083 0,999994532 0,99999983 7,92938E-13 

1.4_SA2 SA2 10-13 1,000310945 1,000310945 1,000310945 – 

1.4_SA3 SA3 – 0,999999988 0,999992287 0,999999077 1,63535E-12 

1.4_SA4 SA4 10-3 1,000000332 0,999991708 0,999999598 6,94721E-13 

1.4_SA4 SA4 10-5 1 0,999996014 0,999999289 6,94721E-13 

1.4_SA4 SA4 10-7 0,999999998 0,99999739 0,999999482 3,44797E-13 

1.4_SA4 SA4 10-9 0,999999972 0,99999628 1,000000083 5,71964E-13 

1.4_SA4 SA4 10-11 1,000000083 0,999991756 0,999999472 2,11346E-12 

1.4_SA4 SA4 10-13 1,000310945 1,000310945 1,000310945 – 
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Function 1.5: 

 Setup h Maximum Minimum Average Variance 

1.5_GA1 GA1 – 0,999985746 0,957860892 0,992056362 6,05661E-05 

1.5_GA2 GA2 10-3 0,999988982 0,961923026 0,992257382 6,83987E-05 

1.5_GA2 GA2 10-5 0,99991624 0,958724787 0,992486827 5,77233E-05 

1.5_GA2 GA2 10-7 0,999999457 0,901503979 0,991154178 0,000166539 

1.5_GA2 GA2 10-9 0,999997862 0,953125745 0,992091135 9,16537E-05 

1.5_GA2 GA2 10-11 1,000000083 0,969058167 0,992765481 5,4402E-05 

1.5_GA2 GA2 10-13 1,000310945  0,956457136 0,992050886 7,80288E-05 

1.5_GA3 GA3 – 1 0,99999679 0,99999984 1,8091E-13 

1.5_GA4 GA4 10-3 1,00000017 0,99999754 0,99999998 1,51526E-13 

1.5_GA4 GA4 10-5 1 0,99999814 0,99999986 5,91369E-14 

1.5_GA4 GA4 10-7 0,999997229 1,000000001 0,999999817 1,52252E-13 

1.5_GA4 GA4 10-9 1,000000027 0,999996974 0,999999845 1,46485E-13 

1.5_GA4 GA4 10-11 1,000000083 0,999994532 0,999999916 9,05771E-13 

1.5_GA4 GA4 10-13 1,000310945 1,000310945 1,000310945 – 

1.5_GA5 GA5 – 1 0,999999496 0,999999992 2,61929E-15 

1.5_GA6 GA6 10-3 1,00000017 0,99997947 1,000000167 4,31508E-12 

1.5_GA6 GA6 10-5 1 0,9999998 0,999999997 2,61929E-15 

1.5_GA6 GA6 10-7 1,000000001 0,9999993 0,999999991 4,9696E-15 

1.5_GA6 GA6 10-9 1,000000083 0,999999916 1,000000019 5,83626E-16 

1.5_GA6 GA6 10-11 1,000005634 0,999961225 0,999999805 1,6419E-11 

1.5_GA6 GA6 10-13 1,000310945 1,000310945 1,000310945 – 

1.5_SA1 SA1 – 1 0,99999631 0,99999972 2,66574E-13 

1.5_SA2 SA2 10-3 1,00000017 0,99998989 0,99999981 1,1346E-12 

1.5_SA2 SA2 10-5 1 0,99999835 0,99999976 1,16352E-13 

1.5_SA2 SA2 10-7 1 0,99999799 0,99999972 1,51652E-13 

1.5_SA2 SA2 10-9 1,00000003 0,99999775 0,99999972 2,09879E-13 

1.5_SA2 SA2 10-11 1,00000008 0,99998898 0,99999997 1,2326E-12 

1.5_SA2 SA2 10-13 1,00000008 0,99998898 0,99999997 1,2326E-12 

1.5_SA3 SA3 – 1 0,999997513 0,9999996 2,11607E-13 

1.5_SA4 SA4 10-3 1,00000016 0,999998 0,99999981 1,69848E-13 

1.5_SA4 SA4 10-5 0,999999996 0,999997122 0,999999679 2,6669E-13 

1.5_SA4 SA4 10-7 1 0,999997319 0,999999627 2,78645E-13 

1.5_SA4 SA4 10-9 1,000000027 0,999997418 0,99999961 2,78645E-13 

1.5_SA4 SA4 10-11 1,000000083 0,999994532 1,000000027 3,08149E-13 

1.5_SA4 SA4 10-13 1,000310945 1,000310945 1,000310945 – 
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Function 1.6: 

 Setup h Maximum Minimum Average Variance 

1.6_GA1 GA1 – 0,999847129 0,71812194 0,950040437 0,002879437 

1.6_GA2 GA2 10-3 0,999730345 0,566565209 0,961214249 0,00433091 

1.6_GA2 GA2 10-5 0,99996827 0,673952089 0,951011582 0,003556578 

1.6_GA2 GA2 10-7 0,999922135 0,777183442 0,954599505 0,002214533 

1.6_GA2 GA2 10-9 0,999970801 0,77465407 0,953829332 0,002188316 

1.6_GA2 GA2 10-11 0,999950123 0,735805167 0,942218548 0,003635083 

1.6_GA2 GA2 10-13 0,999755834 0,735002337 0,950411707 0,003014992 

1.6_GA3 GA3 – 1 0,999992648 0,999999228 2,22217E-12 

1.6_GA4 GA4 10-3 1 0,999993272 0,999999234 1,84745E-12 

1.6_GA4 GA4 10-5 1 0,99999277 0,999999259 1,78523E-12 

1.6_GA4 GA4 10-7 1 0,999992135 0,999999179 2,39796E-12 

1.6_GA4 GA4 10-9 1,000000006 0,999977136 0,999999031 7,0493E-12 

1.6_GA4 GA4 10-11 1,000000777 0,999993144 0,999999458 1,74598E-12 

1.6_GA4 GA4 10-13 1,000102778 0,999964 1,000048655 9,31839E-10 

1.6_GA5 GA5 – 1 0,997486731 0,999974174 6,314E-08 

1.6_GA6 GA6 10-3 1 0,999947222 0,999998919 4,69314E-11 

1.6_GA6 GA6 10-5 1 0,999974867 0,999999531 8,17994E-12 

1.6_GA6 GA6 10-7 1 0,998738909 0,999987305 1,59017E-08 

1.6_GA6 GA6 10-9 1,000000013 0,9999956 0,999999835 4,26774E-13 

1.6_GA6 GA6 10-11 1,000001471 0,999957062 0,999998771 4,07353E-11 

1.6_GA6 GA6 10-13 1,000102778 0,974914593 0,999796773 6,31784E-06 

1.6_SA1 SA1 – 0,999999998 0,99999355 0,99999944 6,6887E-13 

1.6_SA2 SA2 10-3 1 0,999985595 0,999999107 3,08235E-12 

1.6_SA2 SA2 10-5 0,999999999 0,999985564 0,999999019 3,26805E-12 

1.6_SA2 SA2 10-7 0,999999996 0,999992991 0,999999335 1,29834E-12 

1.6_SA2 SA2 10-9 1,000000006 0,999985664 0,999999062 2,97044E-12 

1.6_SA2 SA2 10-11 1,000000777 0,999993144 0,999999403 1,4783E-12 

1.6_SA2 SA2 10-13 1,000102778 1,000033389 1,000096533 3,98317E-10 

1.6_SA3 SA3 – 0,99999998 0,99999175 0,999998785 2,54679E-12 

1.6_SA4 SA4 10-3 0,999999991 0,999990965 0,999998893 2,19644E-12 

1.6_SA4 SA4 10-5 0,999999991 0,999987231 0,999998731 4,00004E-12 

1.6_SA4 SA4 10-7 0,999999997 0,999991433 0,999999094 1,41886E-12 

1.6_SA4 SA4 10-9 0,999999999 0,999986337 0,999998923 3,78861E-12 

1.6_SA4 SA4 10-11 1,000000777 0,99999245 0,999999042 2,75758E-12 

1.6_SA4 SA4 10-13 1,000102778 1,000033389 1,000091676 6,53649E-10 

 


