UNIVERSITY OF AGDER

Groupwise Evacuation With Genetic Algorithms

Leonard Loland and Bjernar Hansen

Supervisors
Morten Goodwin and Ole-Christoffer Granmo

This Master’s Thesis is carried out as a part of the education at the
University of Agder and is therefore approved as a part of this
education. However, this does not imply that the University answers
for the methods that are used or the conclusions that are drawn.

University of Agder
Faculty of Engineering and Science
Department of ICT, 2013

Abstract

In a crisis situation on board a ship, it can be of the utmost importance to have the
passengers safely evacuate to the lifeboats in an efficient manner. Existing methods
such as marked escape routes, maps and so on are not optimal as pre-planned
escape routes may become heavily congested by passengers. The closest lifeboat
is not always feasible as lifeboat capacity can be exceeded. Considering that some
evacuees are strongly affiliated and would like to evacuate together as a group, it
all becomes a very difficult problem to solve. Sub-problems have been modelled,
but no existing model combines all of these aspects into account.

We proceed by modelling the area to be evacuated as a time-expanded graph,
assuming that future development in hazard severity is known in the form of a
survivability percentage for each node. Then we apply a multi-objective genetic
algorithm with five different fitness functions that use heuristics to maximize
overall survivability and reduce the total egress time if possible. A method has been
developed to pick the best evacuation plan out of the pool of potential solutions
returned by the genetic algorithm. The solution is compared with Dijkstra’s
algorithm and randomly generated paths.

Experiments are conducted using these algorithms for both predefined and ran-
domly generated graphs using different parameters. In the tested random graph,
the genetic algorithm gives on average 24% better survivability and 3 times better
grouping Random algorithms. A fixed network with a known solution was solved
100%.

This genetic algorithm can be used to generate better routing plans that utilizes
multiple evacuation routes and lifeboats while taking into account groups, resulting
in smoother evacuations which can save more lives.

Contents

1 Introduction

1.1 Background 1
1.2 Literature Review 3
1.2.1 Evacuation Networks 3
1.2.2 Group Behavior in Crisis Situations 4
1.2.3 Ant Colony Optimization 4

1.2.4 Evacuation Planning With Multiobjective Genetic Algo-
rithms 5
1.2.5 Shelter allocation using genetic algorithms 6
1.3 Problem Statement 6
1.4 Assumptions and Limitations 7
1.5 Contribution 8
1.6 Outline 9
2 Theory 10
2.1 BEvacuationRouting L. 10
22 GraphTheory 11
2.2.1 Time-Expansion 11
222 NetworkFlow 12
2.3 Genetic Algorithms oL 12
2.3.1 Fitness Function 13
2.3.2 Chromosomes 13
233 CrosSOVET v v v v v it e 14
234 Selection o 14
235 Mutation 14
2.4 Multi-Objective Optimization 15
24.1 Traditional GAforMOO 15
242 NSGA-IT 16
2.5 Dijkstra’s Algorithm L Lo 19

CONTENTS

3 Solution 20
3.1 System Architecture Lo 20
3.1.1 NetworkModel 21

3.1.2 Random Path Generator 22

3.1.3 Genetic Algorithm 22

3.2 Encoding of Chromosomes 23

3.3 Genetic Operation L. 24
331 Crossover 24

332 RepairFunction. 25

333 Mutation 27

34 EvacuationCriteria 27
341 EgressTime. 27

342 Congestion 28

343 Route Complexity 28

344 Reliability oo 28

345 Endpoint Capacity 28

3.4.6 Sidebar / sub-problem: Bin-Packing Evacuees Into Lifeboats 29

3.5 FitnessFunctions 29
3.5.1 Survivability oL 29

3.5.2 Total Distance 30

3.5.3 Endpoint Capacity 30

3.54 Congestion Heuristics 31

355 Grouping 31

3.6 SuperSelector. e 33

4 Discussion 35
4.1 Evacuation Networks 35
4.1.1 TestNetwork 35

412 BoatNetwork 40

413 RandomNetwork 41

4.1.4 Effects of Limited Lifeboat Capacity on Heuristics Results 45

4.1.5 Effects of Congestion heuristic 47

5 Conclusion 50
5.1 FutureWork 51
Acknowledgments 52

i1

List of Figures

2.1
2.2

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

A simple graph representation. 11
Paretofronts L 17
The overall system architecture with data flow. 20
A chromosome containing an evacuation routing plan. 23
An example crossover operation. 25
A sample Test Network 8 by 8. 36
Survivability in Grid Test Network with 20 evacuees. 37
Grouping in Grid Test Network with 20 evacuees. 38
Survivability and grouping in Grid Test Network with 100 evacuees. 39
Grouping in Grid Test Network with 100 evacuees. 40
The Boatnetwork. 41
Survivability in Boat Network 20 evacuees. 42
Grouping in Boat Network 20 evacuees. 43
Survivability in Random Network 20 evacuees. 44
Grouping in Random Network 20 evacuees. 45
A lack of lifeboat capacity. 46
Congestion. 48
Survivability. 49

11

Chapter 1

Introduction

In an ongoing crisis situation, on ships and elsewhere, many challenges have
to be faced during evacuation. In the case of fire, as it spreads over time it
produces an ever-increasing amount of lethal heat and smoke, rendering rooms and
corridors hazardous or unusable for evacuation. Emergency response teams can
be late and may not have the capacity to assist everyone efficiently, and people
are initially left to themselves. The closest emergency exits may become heavily
congested as masses of people converge on them, while the nearest lifeboats
quickly reach their maximum capacity, forcing other evacuees to make detours to
search for alternatives. Escape routes can be rendered too dangerous or unusable,
and alternate, perhaps non-obvious, routes have to be used. On top of it all, the
information required to make the best course of action, such as the locations of
people and hazards, may not be available during the crisis. All this may lead to
valuable time and resources being wasted.

While traditional static signs are meant to guide evacuees safely towards exits,
they have shortcomings. They do not change if the evacuation routes they indicate
become blocked or hazardous. In addition, if too many evacuees decide to take the
same indicated nearest escape routes, it can lead to congestion along the route as
well as overcrowded lifeboats at the end of the individual routes.

1.1 Background

To mitigate the problems that arise during crisis evacuation, research is being
conducted on how personal electronic devices—such as smartphones—equipped
with sensors can be applied for management of such situations [1, 12]. Their

CHAPTER 1. INTRODUCTION

built-in sensors and communication technologies can both gather information and
share it among devices [9], and the aggregate of this information can contribute to
clarify the current situation.

By leveraging this kind of real-time information, an automatic evacuation planning
system can help resolve some of the challenges faced during a crisis situation,
namely how to avoid casualties, congestion, and confusion. It can automatically
determine escape routes for everyone present, taking care to lead evacuees away
from hazardous situations. It can avoid congestion by taking into account all
passengers and their respective escape routes, and it can make sure that evacuees
are lead to lifeboats where there are enough room for them.

Earlier work on evacuation planning mainly focuses on off-line solutions. One of
the main lines of research focus on mathematical modelling and solutions based on
finding maximal flow in networks. A common way of solving the maximal flow
problem is linear programming, which was proposed in [4]. Research in this field
was reviewed in the survey [6]. Other solutions base themselves off of Dijkstra’s
algorithm for finding the shortest paths in graphs, as done in [10]. The main
drawback of much of the research, including the work in [6, 10], is the fact that it
is often considered adequate to focus only on minimizing time expended during
evacuation. This neglects the fact that some alternative routes may actually be
safer even though they increase the egress time. Minimizing egress time may give
satisfactory solutions in many situations where evacuation can be performed before
the imminent danger becomes a threat, such as when a hurricane is forecasted to hit
shore. In other cases, such as fires, where the danger is much more immediate, it
can be important to be able to decide to take the longer route if it has a probability
of being safer.

The evacuation research tends to either take the macroscopic approach or the
microscopic approach. In [10] the macroscopic approach is considered. Here, the
authors look at evacuation during major natural disasters like hurricanes. This sort
of evacuation takes place along highways and roads, and focuses on relocating the
population closest to the predicted point of impact first. The mode of transportation
in this case is by motorized vehicles, and individual persons are considered only as
statistical figures of population density and a basis for network flows.

The other approach, which includes the work presented in this thesis, is the micro-
scopic one, where individuals are considered. An example of this is in [5], where
evacuation takes place inside constructions such as ships or buildings and the type
of hazard is somewhat immediate such as a fire.

Whereas the resolution of the macroscopic approach is coarse enough that most
small-scale behavioral effects can be neglected, in the microscopic approach such

CHAPTER 1. INTRODUCTION

considerations can provide more accuracy to the model. One such effect is group
affiliation: the theory that most people are connected and emotionally attached to
certain familiar persons. Taking this into account in the model design, something
which is seldom done, should lend credibility to the proposed solution.

1.2 Literature Review

1.2.1 Evacuation Networks

According to [14], the evacuation process has 5 stages. The initial stage happens
when an alert is raised. Second, the persons present must react to the alert, and
third, a decision must be made to evacuate. The actual evacuation happens in the
fourth stage, after which the fifth and final stage is to try to verify that everyone
has made it to safety.

For purposes of modelling evacuation networks, [14] suggests the use of 3 steps
of representation, analysis, and synthesis. In the first step, representation, the area
of interest must be formally modeled as a graph where the nodes represent rooms
or more generally areas people can occupy and the edges model the connections
between them. There are 3 different types of nodes. First, there are the source
nodes, nodes in which people are present at the time of evacuation. Second, the sink
nodes are the safe nodes, destinations to which evacuees must go to successfully
evacuate. Third are all the other nodes, that is, nodes that are neither sinks nor
sources but represent the intermediate nodes which evacuees can enter and exit
while evacuating. Nodes and edges are further specified through variables such as
length, the number of occupants, and capacity.

The second modelling step is the analysis. Multiple criteria are available for
analysing the network representation and the safety of an evacuation plan, of
which two are emphasized: Minimum total distance travelled and minimum total
evacuation time. The criteria are objectives which shall be either maximized or
minimized to increase evacuation performance.

Overall safety is divided into three main categories:

* Minimize egress time
* Minimize routing complexity
* Maximize path reliability

Minimize total evacuation time is included under the egress time category, along
with congestion minimization. The other main criterion highlighted, minimize

CHAPTER 1. INTRODUCTION

total distance travelled, belongs in the routing complexity category, where the
minimization of the longest path, the number of turns, and the number of staircase
or ramp traversals is also included. The last category, maximize path reliability,
include minimizing the failure of safe areas to accept evacuees, and minimizing
edge failures.

The last step of modelling evacuation networks is the creation of an effective evac-
uation solution. Based on the results of the analysis, evacuation can be improved
in three ways. The first is to redesign the network topology itself, increasing
evacuation performance by making good design decisions. The second way is to
modify the parameters of the existing network, for instance by increasing capacity
of nodes or edges. The third way to improve evacuation performance is to modify
the evacuation plans, i.e. the paths used by the persons during evacuation.

1.2.2 Group Behavior in Crisis Situations

Groupwise evacuation is grounded in recent social theory. According to the “social
attachment” model of human behavior during crisis situations [11], in threatening
situations people tend to seek affiliation with familiar persons or attachment figures.
This behavior delays the evacuation process; in fact, it has been shown to cause the
loss of human lives because people linger together with their group or search for
attachment figures instead of promptly evacuating. Evacuation planning without
taking into account the strong force of group affiliation would be nigh on pointless,
as it is unlikely that evacuees would follow a plan that required group members to
g0 separate ways.

Furthermore, the social attachment model goes against earlier mass panic theories,
which claim that chaotic human behavior is the norm when disaster strikes [3]. In
contrast those earlier theories, the social attachment model describes evacuation
as orderly in most cases. This certainly indicates a higher probability of evacuees
displaying an ability to follow the dynamically planned routes than if they were
panicking and behaving irrationally.

1.2.3 Ant Colony Optimization

Interesting work has been done in the field concerning stochastic methods for
planning safe escape routes. In [5] it is reported that the application of stochas-
tic optimization, here in the shape of the swarm intelligence technique named
ant colony optimization (ACO), is a feasible approach to automated evacuation
planning, by successfully generating near-optimal escape routes.

4

CHAPTER 1. INTRODUCTION

[5] is part of a larger project dealing with employing mobile sensing and com-
munication technologies for the betterment of performance in emergencies. The
research project aims to create an evacuation planning system, consisting of three
parts:

Information collection: Locate people and hazards,
Evacuation route planning: Find optimal paths for safe evacuation, and
Communicate plans: To evacuees and rescue emergency response teams.

ACO lends itself readily to solving the problem of evacuation planning, because it
was originally developed for pathfinding in graphs. The area under consideration
for evacuation can be modelled as a graph, where evacuees are to move from some
source nodes to sink nodes. The graph can then be processed using ACO as follows.
Ants are placed in the nodes occupied by people. They then perform weighted
random walks through the graph. When an ant reaches a sink, it deposits a set
amount of pheromones along its traversed path. The weighing for the random
walk is influenced by the pheromone deposits, where more pheromones increase
the probability of selecting a given node. Furthermore, an evaporation rate can
be added so that pheromone deposits decay over time, ensuring freshness of the
path.

In this paper, survivability, path length and congestion are optimized by the algo-
rithm. Path length optimization is basically the goal for the standard ACO; after
having located a destination, the ants converge towards the shortest path because
they are attracted toward the strongest pheromone trail. To add optimization to-
wards survivability, the pheromone depositing is modified to deposit more on safe
nodes and less on hazardous ones. Congestion is taken into account in two ways.
First, edges without leftover capacity are not considered when an ant selects where
to go. Second, pheromone depositing is influenced by the amount of congestion,
decreasing the amount deposited as the used capacity get closer to max.

In summary ACO performs well in the tested scenarios, suggesting that this and
other stochastic optimization methods may be good choices for solving the evacua-
tion planning problem.

1.2.4 Evacuation Planning With Multiobjective Genetic Algo-
rithms

Genetic algorithms have been used within the field of evacuation previously.

In [13], the evacuation planning process is described as a three-part process which
is performed as a preparatory measure for the case where actual evacuation is

CHAPTER 1. INTRODUCTION

needed: Selecting safe areas, finding optimal paths from buildings to safe areas,
and selecting the best safe area for each building is included in planning. The
first step, selecting safe areas, was done manually. Next, the optimal paths from
buildings to safe areas were determined according to safety and traffic. The last
step, selecting the best evacuation routes for each building, is then solved with a
genetic algorithm.

Two fitness functions were used in the genetic algorithm: distance between build-
ing and safe area, and the capacity of safe areas. The multi-objective genetic
algorithm NSGA-II was chosen based on its predecessor’s promising performance
characteristics as documented in [15]. However, some deficiencies of NSGA were
noted, particularly:

e The algorithm’s complexity at O(mN?),
¢ the lack of elitism, and
* the fact that a parameter value had to be provided.

These issues were addressed in NSGA-II, by trading an increase in memory com-
plexity for better computational complexity, adding an elitism mechanism and
getting rid of the extraneous parameter.

1.2.5 Shelter allocation using genetic algorithms

Kongsomsaksakul et al. [8] also consider pre-disaster evacuation planning. In their
model, the problem is formulated as a Stackelberg game, where the leader is the
evacuation planning authority designating shelter locations. The follower is the
collection of evacuees, who according to the given shelter locations determine
which shelter to move to and by which path.

The GA is employed by the planning authority to place shelters. Given a potential
solution from the leader, the evacuees decisions are calculated. The result is fed
into the GA’s fitness function, which is a weighted sum of constraints on egress
time, congestion, and shelter capacity.

1.3 Problem Statement

Fast, efficient and safe evacuation is important during crisis situations. Whereas
current approaches to evacuation planning include pre-planned routes, a bene-
fit could be had from providing real-time evacuation planning. Pre-evacuation
planning is limited in that it cannot take into account the particularities of crisis

CHAPTER 1. INTRODUCTION

situations as they happen; consequently, evacuation operation can be inefficient
and unnecessarily dangerous.

Furthermore, it is of interest to take more of human behavior into account than has
been done in related work. Specifically, group affiliation is an important aspect of
human life, and it affects the evacuation process.

To advance research in a direction which has not seen too much activity, in general
stochastic optimization and specifically genetic algorithms should be used for the
evacuation planning process.

The crisis situation can be either static or dynamic. In the static case the hazards
location and severities do not change, whereas the dynamic case introduces some
temporal variations in location and severity.

An evacuation plan’s success is measured by how large a percentage of the evacuees
are saved. The factor which directly influence this is the amount of time spent
in hazardous areas. Consequently it is desirable to minimize this factor, which
can be done in multiple ways. Minimization of egress time reduces overall time
spent, which implies that it may also decrease the time spent in hazardous areas.
Alternatively, explicit routing around these areas avoids the danger altogether.
Egress time can be reduced by routing through the shortest available path or by
minimizing congestion. Ensuring that evacuees arrive at a lifeboat with room to
spare is crucial to achieve a successful and safe evacuation.

1.4 Assumptions and Limitations

We assume that all necessary information about the evacuation scenario is known.
This includes the physical layout of the area, where lifeboats are located, where
people are located and to whom they are affiliated, hazard severities for each room,
and capacities for each room and passages between rooms.

We also assume that once a path has been assigned to a person or group, people
will follow that path. This assumption may not be realistic. However, one can
imagine that if the assigned paths are considered reasonable by the groups they
have been assigned to, it is more likely that they will stick to the path. What, then,
makes a path reasonable? Some parameters are obvious. If the route leads the
evacuating group toward perceived danger, such as smoke or alarming sounds,
they are likely to turn around. Similarly, if the path loops around and leads the
evacuees to cross their own path, they will quickly lose faith. Another issue may
arise if two or more groups cross paths or otherwise make contact and they are

CHAPTER 1. INTRODUCTION

not moving in the same general direction. It is hard to say what would happen
in this situation, but it seems likely that the groups could influence each others’
behavior. Nevertheless, if appropriate instructions are given beforehand, and if
the automatic planning system is thoroughly verified and trust-inspiring, evacuees
should be more likely to stick to their routes.

1.5 Contribution

The evacuation planning problem can be seen as an optimization problem, where
the target is to find the optimal evacuation routes in a given scenario. As a
novel approach toward solving the problem, we employ genetic algorithms as the
optimization mechanism.

By improving the process of evacuation through providing escape routes adapted
to current situations and conditions, it is our hope that we can contribute to a more
efficient and safer evacuation process.

Our research plows new ground by applying genetic algorithms to generate optimal
paths for use in an evacuation scenario. While research exists which apply genetic
algorithms within the field of evacuation planning, most if not all use them for
other tasks than path generation. Furthermore, we add complexity to the prob-
lem by considering some behavioral issues with groups as a fundamental social
structure.

In this thesis, we present an adaption of genetic algorithms which handle pathfind-
ing in graphs. Specifically, the chromosome design and the genetic operators
are adapted towards the nature of the path-finding problem. Of important note
is that the genetic algorithms are multi-objective in nature, as multiple criteria
are important in the design of evacuation routes. Finally, we present a compari-
son of performance between algorithms in several different simulated evacuation
scenarios.

The structures that are to be evacuated are modelled as graphs with uni-directional
edges. Edges and nodes have certain capacities, which determine how many people
can be present before congestion kicks in. Nodes can have various degrees of
hazard severity which, depending on the complexity of the simulation, may change
as time passes.

CHAPTER 1. INTRODUCTION

1.6 Outline

In Chapter 2 we describe related work that has been done in the fields of evacuation
planning and genetic algorithms. In Chapter 3 we describe the specifics of the
genetic algorithms used. Following that is a discussion and comparison of the
results in Chapter 4, and lastly the paper concludes with Chapter 5 where suggested
future work is included.

Chapter 2

Theory

2.1 [Evacuation Routing

Several terms used throughout this thesis describe concepts related to evacuation.
The following definitions are some of the most important words.

Designated safe areas which evacuees are trying to reach have several names which
mean approximately the same. They may be called fire exits (or simply exits),
endpoints, shelters, safe rooms, safe nodes, or even lifeboat. The most important
distinguishing feature is whether the safe area has limited capacity (in the case
of lifeboats or other spatially limited locations) or if it is of virtually unlimited
capacity (such as an exit leading to an unbounded area outside of a building).

The terms egress time is the time it takes from the start of evacuation until all
evacuees have relocated to the safe areas.

Evacuation network describes a graph model of the building being evacuated.
Rooms are nodes, connected by edges to their neighboring rooms.

Congestion is the issue where more people are passing through an area than the
area can take, leading to blocking, crowding, slowdowns and potentially
dangerous situations.

Endpoint capacity describes the limited capacity some safe nodes have, such as
lifeboats.

Capacity relates to the amount of people a room can hold before congestion starts
occurring.

10

CHAPTER 2. THEORY

2.2 Graph Theory

From discrete mathematics, a graph G is a representation of objects that are related
with each other. Interrelated objects are represented using a set of nodes /N and a
set of edges I/, where pairs of nodes are related using one or more edges.

In a directed graph, edges have direction. A directed edge (m,n) is a one-way
relation from node m to node n where m,n € N and (m,n) € E. Itis an
independent edge from the reversed edge (n, m) which may or may not exist in
E.

Edges can be assigned values. The length value of an edge could represent the
metric distance from the center of one node to the center of another node.

An example graph is given in Figure 2.1. The graph is drawn with circles and
arrows, representing nodes and edges, respectively. The nodes are labeled 1, 2, 3
and 4, while the edges have been left unlabeled to avoid cluttering the figure.

(2) gﬂ‘a

Figure 2.1: A simple graph representation.

2.2.1 Time-Expansion

Time-expansion is a common technique to make static models dynamic. For
instance, if a graph represents some data at some specific time step, it can be
remodelled to represent data that varies over multiple time steps. The original nodes
are copied once more for each additional time step. Edges that previously connected
nodes within the same time step now connect nodes across time steps.

It is also possible to connect nodes across multiple time steps. If it takes two time
steps to move from any node m to any other node n in the original static network,
then there is an edge from node m(¢) to node n(t + 2) for each time step ¢ in the
expanded network. This allows traversal from n to m at any time step ¢.

11

CHAPTER 2. THEORY

After a time-expansion, holdover edges are used to connect a node to the next time
copy of itself (¢ 4+ 1). In an evacuation, moving from node z(t) to z(t + 1) is a
equivalent of waiting in x one time step.

2.2.2 Network Flow

In graph theory, a graph is called a network when edges are associated with flow
values. Flow is the rate of which a quantity moves from one node to another. These
nodes are called source and sink, respectively.

Maximum flow is the amount of flow that be put through from a single source to
a single sink using multiple paths and without to exceeding any single capacity.
Maximum flow is equivalent to maximum throughput. Consider a network con-
nected from x to y to z. If capacity c¢((x, y)) = 1 and capacity ¢((y, z)) = 2, then
the maximum throughput is 1 and not the maximum flow of an individual edge
which is 2.

Maximum flow between multiple sources S and multiple sinks 7" can be modelled
using a workaround [4]. First, two additional nodes are added to the original
network called super source sy and super sink ¢,. Then, directed edges connect the
super source to each source and each sink to the super sink so that

* Vs [(80,8) € ENA(s,s0) ¢ E], and
° VteT [(t,to) c EN (to, t) ¢ E]

These super edges have infinite capacity so that the maximum flow is only con-
stricted by the capacities in the original network.

Congestion during evacuation has been modelled using the concept of flow [6]. In
this case, a flow value f is the number of evacuees that moves from one node to
another per time unit. This flow is bounded by a capacity ¢ so that f € [0, c|.

2.3 Genetic Algorithms

Genetic algorithms (GAs) use the model of natural evolution as an optimization
framework, incorporating survival-of-the-fittest, mating and reproduction.

The algorithm starts by creating a population of random solutions which also are
called chromosomes. These chromosomes are evaluated using a fitness or objective
function which measures the performance of a solution. Solutions with higher
performance have a better chance of being selected for breeding, where potential

12

CHAPTER 2. THEORY

solutions are combined according to predefined rules of crossover. Following this,
each solution has a probability of going through a random mutation process, and
finally the population of old solutions is replaced by the newly generated ones, and
the process is repeated until a stopping condition is met.

This process is presented in Algorithm 1, and it is further detailed in the following
subsections.

Algorithm 1 Genetic Algorithm

1: function GENETIC ALGORITHM

2 P < randomly generated population
3 repeat

4: EVALUATEFITNESS(P)

5: Q+— o
6

7

8

9

while || < |P| do
a,b < SELECTION(P)
¢,d < CROSSOVER(a, b)
: Q+ QU{c,d}
10: end while
11: MUTATE(Q)
12: P+ Q
13: until desired end condition is met
14: end function

2.3.1 Fitness Function

The fitness function represents the task for which optimization is desired. By
evaluating this function, a measure of the performance of a solution is acquired.
Fitness functions can often be severely expensive, dependent on the problem at
hand. This is one of the main drawbacks of GAs, although the rapid increase in
computational power experienced throughout the last decades has somewhat miti-
gated this. On the other hand, it is possible to use less complex approximations of
the real objective function to avoid the computational cost, at the cost of decreased
accuracy.

2.3.2 Chromosomes

The chromosome is the most central concept in GA. Encoded as data points (alle-
les) in the chromosomes are the parameters which the fitness function evaluates.

13

CHAPTER 2. THEORY

Chromosome encoding can be whatever is convenient and fits the problem domain:
a binary string, list of integers, enumeration of possible fitness function parame-
ters, and so on. The implementation of crossover is dependent on chromosome
encoding.

2.3.3 Crossover

Crossover is genetic recombination, between two or, in some cases, more chromo-
somes. The simplest forms of crossover between two chromosomes c1 and ¢2 is
the one-point crossover and the uniform crossover.

In one-point crossover, a random position p is selected. Then two new chromo-
somes are formed: the first consisting of the part of c1 from its start up till p and the
part of ¢2 from p till its end. The second child chromosome is generated likewise
with c1 and c2 swapped.

For uniform crossover, each allele in the children has a 0.5 probability of coming
from either parent. Each allele not included in the first child will be included in the
second child and vice versa.

2.3.4 Selection

Several different selection mechanisms exists. After the fitness function has been
used to rank all the solutions in the population, this is used to choose chromosomes
to be fused for crossover.

Tournament selection is easy to implement and often used. In this selection method,
two or more solutions are randomly picked from the pool. Then their fitness is
compared, and the one with the best fitness is the winner of the tournament and is
the chosen one.

Fitness proportionate selection, which is also know as roulette wheel selection,
is a method where solutions are given a selection probability directly propor-
tional to their fitness, so that the most fit solution has the highest chance of being
selected.

2.3.5 Mutation

Mutation introduces some random variation into the gene pool. With a small
probability, each allele can be swapped for a new, randomly generated value.

14

CHAPTER 2. THEORY

Mutation can somewhat counteract the problem of genetic drift and fixation by
randomly inserting alleles in the population.

Genetic drift occurs when offspring is randomly generated. The frequency of
the occurrence of a particular allele will fluctuate from generation to generation,
but it is dependent on the allele’s occurrence in the previous generation: a high
frequency in the parent generation leads to a high probability of a high frequency
in the offspring. Due to this effect it is likely that after a number of generations
one particular allele will be very dominant in the population, or even that other
variations are lost and only one allele occurs in the population. This is called
genetic fixation.

2.4 Multi-Objective Optimization

In many optimization problems, including the problem of safe evacuation as defined
earlier, there is more than one objective. And the fact that these objectives often
conflict further complicates the matter. This motivates the search for techniques,
called multi-objective optimization (MOO), which facilitates the search for optimal
solutions while taking into account all the defined objectives.

Extensive research has been conducted on using GAs for MOQ; for an introduction,
see [7]. The main differences in these approaches compared to standard GAs are
modified fitness functions, and techniques that promote and preserve diversity in
the GA’s population. Of particular note are the methods that go under the Pareto
ranking umbrella.

In the Pareto ranking class of methods the idea of Pareto optimality is used to rank
potential solutions. Pareto ranking is used to avoid having to decide whether one
objective is more important than another. Solutions that receive the same Pareto
rank are equal in fitness. Other methods are then used to select between solutions
with the same rank.

2.4.1 Traditional GA for MOO

Traditional GA can be used, even when there are multiple objective functions. This
is accomplished by combining the values obtained from the objective functions.
Several combination methods can be used.

The simple summing approach combines the fitness values by summing them. It is
given by 2 =) ;. z;, where [is the set of indices for the different fitness functions

15

CHAPTER 2. THEORY

and z; is the normalized fitness value obtained from fitness function ¢. As further
explained in [7], a weight vector can be applied to the fitness values to emphasize
some more than others.

A second way to combine fitness values is by calculating the Euclidian norm of the

fitness vector. That is, z = \/m

The last method we use is a prioritized fitness ranking approach where the ranking
is determined by the nature of the heuristics employed as objective functions. The
objective functions are ranked, where the most specific or important ones receive
the highest rankings.

2.4.2 NSGA-II

Originally presented in [2] as an improvement of its predecessor NSGA, the NSGA-
IT (Non-dominated sorting genetic algorithm version 2) algorithm employs the
ideas of Pareto optimality and crowding distance for maintaining diversity in the
population. This technique is a modification of the standard GA.

NSGA-II uses Pareto optimality to sort the population and arrange it into Pareto
fronts. Within each front, no solution is strictly better than any other solution.
Solutions within a front are assigned the rank of that front; e.g. solutions in front 0
get the rank O (which is the best rank), front 1 gets rank 1 and so on. An example
is shown in Figure 2.2. For purposes of illustration, in this figure only two fitness
functions were applied.

Crowding distance is a measure of how close a particular solution is to other
solutions in the fitness space. Smaller distances indicate that the solution is located
in a crowded region, meaning that there are multiple solutions with comparatively
similar fitness. In Figure 2.2, the crowding distance in two dimensions for one
solution is shown, marked as cd; and cds. The total crowding distance is the sum
of distances over the fitness space.

For reference, the crowding distance algorithm given in [2] is reproduced in
Algorithm 2.

To calculate the crowding distance, for each fitness function the population is
sorted according to its value. Then, for each solution, the distance between the two
solutions closest to it is added to the crowding distance.

The binary tournament selection mechanism included in NSGA-II does not use
fitness directly. Instead, it takes both rank and crowding distance into account. If
a solution has a better rank, that solution is selected. Otherwise, if the ranks are

16

CHAPTER 2. THEORY

0.35 |
Front) ——
Front 1
03 L Front2 ---+-- _|
=
0 0.25 —
=
2
= 02 -
8
B
N 0.15 —
=
£
g 0.1 |
Z -
0.05 e LA
0 \ \ \ ‘ \
0 0.05 0.1 0.15 0.2 0.25

Normalized survivability heuristic

Figure 2.2: Pareto fronts

Algorithm 2 Crowding distance calculation
function CROWDINGDISTANCEASSIGNMENT(P)
I+ |Z]
for each i do

1:

2

3

4: I[i]distance
5: end for
6

7

8

9

=0

for each objective m do
SORT(/,m)

I[O]distance = I[l]dismnce =00
: fori=2 to (I—1)do
10: I[i]distance = I[i]dismnce + (I[Z + 1] -m— I[Z -]-] 'm)/(frl;lax - fglnn)
11: end for
12: end for

13: end function

17

CHAPTER 2. THEORY

equal, but the crowding distances are different, then the solution with the largest
crowding distance is selected. Ties are broken arbitrarily.

Algorithm 3 can be described as follows. First, the current and previous populations
are combined and ranked according to Pareto fronts (lines 3—4). Then, starting from
the first front, the fronts are added to a new population until the next front cannot
be added as a whole without exceeding the stipulated population size. Crowding
distance is calculated for every front that is added (lines 6-10). To complete
the new population, individuals are selected from the next front in descending
crowding distance order (lines 11-12). Finally, on line 13 the next population is
generated as usual through selection, crossover, and mutation.

Algorithm 3 NSGA-II

1: function NSGA-II

2: R+ P, UQ;

3 F = FASTNONDOMINATEDSORT(;)
4: .Pt+1 —

5: 11
6
7
8
9

while P, ., + |F)| <= N do
CROWDINGDISTANCE(F))
P+ PUR

: 14—1+1
10: end while
11 SORT(F})
12: Pip1 <= Py UFR[L: (N — |Pyal)]
13: Qi+1 < NEXTGENERATION(FP,1)
14: t+—t+1
15: end function

Elitism is implemented through the combining of the current and previous popula-
tions, and selecting the most fit individuals from this composite population. Due to
this elitism mechanism the process during the very first generation is different from
the rest, seeing as there is no previous population to combine with. Instead, the
population is used as-is, and the regular process of selection, crossover, and muta-
tion is applied as usual. Having generated this new population, the two populations
required for the continuation of the algorithm are now available.

18

CHAPTER 2. THEORY

2.5 Dijkstra’s Algorithm

Dijkstra’s algorithm is a well known algorithm within computer science. It is
used to find the minimum cost or distance from one node to another in a graph.
The algorithm is described in a way that can be used later for the solution in
Chapter 3.

Let graph G = (N, E, s,t) be a set of nodes N interconnected by a set of bidi-
rectional edges E. Without loss of generality, assume that GG is not a multigraph,
1.e. that it has no parallel edges. Each node n € NV is associated with a given cost
c(n). Similarly, each edge e € FE is associated with a given cost ¢(e). Further,
define the length of a path P C E between two nodes as the sum of costs of
all nodes and edges included in P. The path with the minimum length from the
starting node s € N to the target node ¢ € N is resolved by Dijkstra’s algorithm as
follows.

The distance from s to all nodes except s are initially set to infinity, so that

VnGN,d(n):{O n=e

oo otherwise.

Additionally, we define the previous node of n as All nodes in NV are then added to
a priority queue where the distance determines ordering in ascending order. Thus,
the starting node s is placed first in the queue.

While the queue is not empty, the first node m is polled from the queue. If m is the
target node ¢, the target has been reached and the loop is ended Else if d(m) = oo,
it means that the target cannot be reached.

Otherwise, for each neighbor node n of m, if d(m) + c(e) + ¢(n) < d(n), then
d(n) < d(m) + c(e) + ¢(n) and p(n) < m. Then, the next iteration of the loop
commences.

The final step of the algorithm is to construct the actual path P. To accomplish
this, start by setting the current node n to t. Then, while p(n) # s, prepend the
edge between p(n) and n to P and set the current node to p(n). Finally, prepend
the edge between s and n. Now the path is complete, and can be returned.

By modifying the previous set to store edges rather than nodes, this procedure can
be extended to multigraphs as well.

19

Chapter 3

Solution

3.1 System Architecture

Output Data Evaluate Solution Genetic Algorithm
Survivability { Super Selector I< Population of Solutions
v i

E Ti
gress "Ime I Simulation | T l
.......... Y
; ; A A

Calculation Time i NSGAdI i
1 1

— SRR o [:

. » Dijkstra Alg.
Input Data Fitness Selector
- Function 1
> Random Algorithm ‘
Network Fitness
: — :.............................E FunCtiOn2 CrossoVer
Survivability : Initial Population : ‘
Flow Capacity | Chromosome 1 | : :
: ‘> Fitness] Mutation
Node Capacity y Function n
| Chromosome n | : \
Lifeboats
) A
Groups | —---2 Random Path Generator '-——________ '

Figure 3.1: The overall system architecture with data flow.

This section will briefly describe the major components found in the overall system

20

CHAPTER 3. SOLUTION

architecture, Figure 3.1. Related minor components are included in the major
descriptions.

3.1.1 Network Model

As part of the input data, we model an evacuation using a time-expanded network.
Nodes and edges have properties that provides evacuation semantics.

A noden

* can be either a room (source), lifeboat (sink), super source or super sink,

* holds zero, one or more evacuees without exceeding its capacity ¢ (n), and

* has a survivability o (n) so that o (n) € [0, 1] indicating the probability of
survival for one timestep.

Evacuees are randomly divided into groups that will, upon evacuation, be gathered
and moved towards the same lifeboat. The assigned evacuation route should
increase the overall survivability also taking into account future survivability and
congestion developments.

This dynamic feature has been modelled using a time-expanded network, we can
model hazards that changes over time, and therefore also take into account future
developments. Each node can have a different survivability each time step. If used
systematically, it can be used to simulate hazard severity change and spread over
time.

It is important to note that such dynamic input data be set according to the gran-
ularity of the time-expansion, i.e. the size of each time step. For instance, it is
more likely to survive one second than one hour when one is potentially exposed
to hazards.

An edge e

* has a length [(e) which is the length from the center of a node to the center
of another node,

* has a capacity ¢ (e) which is the maximum number of evacuees per timestep
that can move simultaneously along it,

* has a flow value f (e) which is the actual number of evacuees per timestep
using it so that f (e) € [0, c(e)], and

* has a separate directed edge in the reverse direction with equal properties.

The latter property of an edge is a bidirectional property that is used for lifeboats
and super edges. It allows to model evacuees to move one way only by excluding

21

CHAPTER 3. SOLUTION

one of the two edges. For lifeboats, it has been used for the assumption that once
an evacuee enters a lifeboat, one does not desire to leave. For super edges, it has
been used according to theory 2.2.2.

Edge capacity c(e) as suggested in [6] has been extended by node congestion ¢(n).
While the former reduces the flow of which a quantity moves from one node to
another, the latter limits the number of people that can fit inside a room. We use
the term lifeboat capacity to specifically refer to a lifeboat’s node capacity.

3.1.2 Random Path Generator

The random path generator is a utility that generates a random path from a source
node to a target node. First, an empty set of current nodes is initialized, and
the location node of an evacuee is added to the set. In addition, an empty map
from nodes to previous edges is created. Then, while there still are nodes in the
set, a random node is selected and removed. Every neighbor of this node is now
examined. If a previous edge already exists in the map, the neighbor is skipped;
otherwise, the edge between the node and its neighbor is registered as the previous
edge for the neighbor. Now, if the neighbor node is the super sink, the traversal is
complete and the loop is ended. Otherwise, the iteration continues.

A valid generated path is the sequence of the randomly selected edges that starts at
the location of the associated person or group and ends at the super sink.

Due to the semantics of time-expansion, the target node is not guaranteed to be
visited. This happens if the time it takes from moving from source to destination
exceeds beyond the time step of the destination node. If source at time t=2 and
destination at time t=3, but it takes 2 or more time steps to reach destination node
at t=3.

3.1.3 Genetic Algorithm

The random path generator is used to create an initial population of solutions that
will be further improved by iterations.

Solutions within a population are encoded as chromosomes (3.2).

Our GA implementation uses NSGA-II as described in 2.4.2. Like other GAs,
NSGA-II depends on implementation specific components. These components are
used every iteration as follows:

22

CHAPTER 3. SOLUTION

* selector selects solutions pairwise until a subset of solutions have been
selected,

* crossover combines the pairs of solutions in effort to take the best from both
solutions,

* mutation randomly modifies each solution with a certain probability to
explore other solutions, and

* five different fitness functions, one for each objective, to distinguish between
good and bad solutions.

Iteration stops after some termination criterion is met. In our implementation,
iteration stops after completing a fixed number of iterations.

After termination, the best solution must be selected from the population. The
population contains solutions that are optimized for one or more of the five different
objectives. Some objectives are related and some are more important than others.
This problem is handled by our super selector (3.6).

3.2 Encoding of Chromosomes

m— Groups ———=

(A,B) | (A,C) | (C,E) | (B,B)]| (AC)| (C,E)

(B,E) | (C,C) | (B,F) | (B,E) [(C,B) | (E,F)

(E,F) [(C,D) | (F,T) | (E,F) | (E,F) | (F,T)

Paths

(F,T) | (D,E) (F,T) | (F,T)

(B,F)

(F,T)

v

Figure 3.2: A chromosome containing an evacuation routing plan.

A chromosome contains path assignments for each group as shown in Figure 3.2.
In this figure, the network includes nodes A-F, sink F' and super sink 7. The
elements of each path, e.g. (A, B), are edges. Each column is a path assignment
to either a person or a group which is initially located in the first node in the path.
Edges are used in the path to support cases where multiple edges connect two
nodes, such as if two oblong, parallel rooms are connected with two or more doors.

23

CHAPTER 3. SOLUTION

However, this issue can be solved differently, which would have reenabled the
use of nodes instead of edges. Instead of translating directly from room to node
and from door to edge, one could add additional nodes and edges in such a way
as to avoid the multiple edges. For the example of two parallel rooms with two
connecting doors, this could involve adding two nodes (instead of one) for each
room, and connecting them in a rectangular pattern.

Defining paths as a sequence of arcs instead of nodes removes the need to query
the network for the arc between each pair of nodes, at least in our implementa-
tion.

Paths should obey the following constraints at all times:

* The source of the first arc in the path should be equal to the node where the
associated group currently is.
* The path should end at the super sink and not an arbitrary sink.

3.3 Genetic Operation

The GA starts by selecting a pair of parent chromosomes are selected using bi-
nary tournament selection as used in [2] and then performing a crossover using
these.

3.3.1 Crossover

A multi-point crossover operator for recombining a pair of two-dimensional chro-
mosomes has been immplemented, by using one-point crossover once for each
group represented in the chromosome. The crossover point in each parent is ran-
domly selected among potential, valid crossover points. For a crossover point at
node n to be considered valid, an edge with a target node n must exist within the
corresponding path in both parent chromosomes. However, the common node does
not need to be traversed at the same time. An example is given in Figure 3.3.

If the crossover operation creates an invalid child, one of the parent is passed as
child instead. Because different lengthed children are created, the path may extend
beyond the time-expansion. By ensuring that the initial population is valid and
only passing valid solutions as children, this problem will not occur.

It is important to note that this crossover operator can take two identical parents
and still produce distinct children. Usually, a chromosome which is recombined

24

CHAPTER 3. SOLUTION

t=0 t=1 t=2 =3 t=4 t=5 t=6 t=0 t=1 =2 t=2 =3 t=4
P | (A0) | (Cc,0)] (C,C)|(C,D) i (D,E) i (B,F) i (F,T) E ci: oo |wo |k i (B,F) i (F,T) E
RN [| D JERPES [D —

e N A e S e A e e N e

Py: [(A,B) | (B,C) | (C,E) : (BE,F) : (F,T) E Ca: [(A,B) [(B,C) | (C,D) : (D,E) : (B,F) I (F,T) E
RS D RN [N | P

Figure 3.3: An example crossover operation.

with itself will produce children that are perfect copies of itself, and hence with no
possible improvement. However, due to the way chromosomes are encoded and
crossover is implemented, in this case a parent mating with itself has the possibility
of producing offspring which are different and may be better than its parent. This
effect arises because edges, which are reusable at different time steps, can occur
several times in the same chromosome, which can lead to a single chromosome
having multiple time-shifted crossover points with itself. Nevertheless, offspring
that are identical to their single parent will still occur if the exact same crossover
point is used for both of the parents.

Reuse of edges allows for two things. Firstly, it allows waiting in a node by
following the holdover edge two or more times in sequence. Secondly, it also
occurs when paths are circular. Regardless, such solution paths will be evaluated
by fitness functions and handled accordingly.

3.3.2 Repair Function

In a time-expanded network, crossover breaks the sequential timing of the path.
Consider again Figure 3.3 above. If a common node C for parents P; and P; is
traversed at ¢ = 3 and ¢t = 2 respectively, the child paths are broken because the
node C' from which (C, E),_, emanates is not the same one occurring in (C, E),_,.
The correct edges are traversed, but not at the correct time.

To fix the timing of a path, the repair function defined in listing 4 can be applied
after a crossover.

where

* P is an ordered set of edges defining a path,
» P, is the k-th element in P,
* TIME(e) returns the time step of the source node of an edge e,

25

CHAPTER 3. SOLUTION

Algorithm 4 Repair Path Timing

1: function REPAIRTIME(P)

2 if |P| =0 then

3 return

4: end if

5: Py < ZERO(Py)

6 repaired <— false

7 while — repaired do

8 repaired <— true

9 for i=1to |P|—1do

10: a < TIME(P;_1) + LENGTH(P;_1)
11: b < TIME(P;)

12: if a < b A PREV(P;) # null then
13: P; < PREV(P;)

14: repaired < false

15: else

16: if a > b A NEXT(P;) # null then
17: P; + NEXT(P;)

18: repaired < false

19: end if

20: end if

21: end for

22: end while

23: end function

26

CHAPTER 3. SOLUTION

* LENGTH(e) returns the length of an edge e assuming 1 length unit corre-
sponds to 1 time unit,

* ZERO(e) returns the first time instance of an edge e,

* PREV(e) returns the previous time instance of an edge e or null if the previous
edge is beyond the network time-expansion, and

* NEXT(e) returns the next time instance of an edge e or null if the next edge
is beyond the network time-expansion.

a represents the time step of an edge e + the time it takes to traverse e. a should
then be equal to b, the time step of the next edge in the path. If not, replace e by
PREV(e) or NEXT(e) to make this true.

3.3.3 Mutation

The one-dimensional mutation mutates each path of each chromosome in the popu-
lation by a predefined probability. The mutation uses the random path generator
to generate a new path that starts from the same origin and ends at the super
sink.

3.4 Evacuation Criteria

In this section we tie the evacuation criteria described in Section 1.2.1 to the ones
used in the optimization techniques detailed in the next section.

3.4.1 Egress Time

The distance an evacuee has to travel has an impact on the probability of survival in
the way that increased distance means more time spent in a potentially hazardous
environment. However, it will usually be beneficial to make a detour if it means
avoiding hazardous rooms. Moreover, spending more time during evacuation may
also influence the level of congestion.

A suitable measure for egress time is the total time spent on evacuation, meaning
the sum of time spent for each evacuee. To minimize this value one can start by
minimizing congestion occurrences. Congestion can be a big source of wasted
time when the paths used for evacuation have relatively low capacity compared to
the flow of people passing through.

27

CHAPTER 3. SOLUTION

3.4.2 Congestion

Congestion may occur when the available exits are limited, or when a large number
of evacuees pass through a space too small to accommodate them. This causes
crowding and thereby delays, which in turn cause people to wait longer in possibly
unsafe rooms. It is therefore desirable to keep congestion to a minimum or if
possible avoid it completely.

3.4.3 Route Complexity

Route complexity can be approximated by the total distance travelled. Even though
complexity also includes the number of path segments, direction changes and so
on, the total distance travelled is a complexity measure because shorter paths will
have less features, hence being less complex. Total distance travelled is the sum of
distance travelled for each evacuee.

3.4.4 Reliability

The reliability of a path indicates the likelihood of the path to lead evacuees to
safety. It can be approximated by hazard severity or survivability. Hazard severity
represents the probability of survival for an evacuee in the room. It is 1 if there is
certainly no hazard, O if there definitely is one, or a number in between when the
knowledge is uncertain.

Survivability is the inverse of hazard severity. It is a probabilistic estimate of the
likelihood of survival in a certain room.

3.4.5 Endpoint Capacity

While endpoints in buildings have unlimited capacity in the sense that once a
person has passed through the exit it can be used again, this is not generally the
case. In some situations, e.g. on a ship at sea, the lifeboats have limited capacity.
Failure to appropriately assign evacuees to endpoints will cause unnecessary delays
if the evacuees must go searching for different endpoints.

In situations where the safe areas have limited capacity, reliability is influenced by
whether evacuees are able to enter their designated safe area.

28

CHAPTER 3. SOLUTION

3.4.6 Sidebar / sub-problem: Bin-Packing Evacuees Into
Lifeboats

The issue of distributing groups of evacuees into limited-capacity lifeboats can be
seen as an instance of the bin-packing problem. In this case, the size of each group
1s considered its volume, and the number of bins — the lifeboats — are limited.

This problem becomes harder as the total number of passengers approaches the
total lifeboat capacity, or as group sizes increase, because the number of possible
solutions decrease. However, in realistic situations there will be much more room
in the lifeboats than there are passengers present.

In any case, this issue can be taken care of by the genetic algorithm, thus requiring
no special consideration.

3.5 Fitness Functions

All fitness functions use heuristics that are motivated by the evacuation criteria as
given in Section 2.1. The survivability heuristic is a sum of the probabilities that
there is a hazard in all nodes along all the given paths. Total distance measures
the total length of the evacuation paths. The endpoint capacity heuristic tells of
how many evacuees there were no room for in their assigned safe nodes, while the
congestion heuristics counts all evacuees that cause nodes or edges to exceed their
capacity.

All the heuristics are created in such a way that the lower values they return, the
better a solution is assumed to be. This allows for straightforward application of
the heuristics as fitness functions in a minimization scenario.

The heuristics are described in more detail in the following subsections and in
algorithm listings 5 through 9.

3.5.1 Saurvivability

Algorithm 5 Survivability Heuristic
1: function SURVIVABILITYHEURISTIC(C)

2: return > | > [1 — SURVIVABILITY(n)] - ENTITYSIZE(P)
PeC |neP

3: end function

29

CHAPTER 3. SOLUTION

The survivability heuristic in Algorithm 5 is a measure of how safe the evacuation
plan is. To find the survivability heuristic for one path, the inverse survivabilities
for all nodes in the path are summed, and multiplied with the number of evacuees
assigned to this path. The survivability heuristic for the whole solution is then
simply the sum of the corresponding values for each path.

An alternative algorithm for calculating survivability was also tested. That version
calculates the survivability for each path by multiplying the survivabilities of each
node included in the path, in essence calculating the survival probability. Though
this solution may seem more intuitive, it cannot be used when the value is to be
used as a fitness measure, because it cannot provide a fine enough distinction
between paths of different quality. For instance, a path with only one lethal node
(survivability at 0), and a different path where more than one lethal node is included,
would both get a survivability value of 0 using this alternative algorithm. Even
though the survival probability for the first path is the same as the second, in the
case of the first path it is actually a better path and should have a fitness value
which is better than the other path.

3.5.2 Total Distance

Algorithm 6 Total Distance Heuristic

1: function TOTALDISTANCEHEURISTIC(C')

2: return > Y LENGTH(e)
. PeC eeP
3: end function

The total distance heuristic in Algorithm 6 is a measure of the total distance
the evacuees have to travel according to the evacuation plan. It is calculated by
summing the length of all edges which are included in the solution C.

3.5.3 Endpoint Capacity

The endpoint capacity heuristic in Algorithm 7 is a measure of whether there is
room for all evacuees in lifeboats, and if not, how many of them there are not room
for.

The algorithm for calculating this heuristic starts by initializing the total o to zero.
It then goes through all safe nodes in the network. On line 4, GG is assigned the
set of all groups that are assigned to node n. The next line calculates the total
size s of those groups, i.e. the number of individuals assigned to node n. Line 6

30

CHAPTER 3. SOLUTION

Algorithm 7 Endpoint Capacity Heuristic

1: function ENDPOINTCAPACITYHEURISTIC(C)
2 0+ 0

3: for every safe node n do

4

5

G < GROUPSASSIGNEDTONODE(C, n)

s < > GROUPSIZE(g)
geG

6: d < s — CAPACITY(n)
7: if d > 0 then

8 o+—o+d

9 end if

10: end for

11: return o

12: end function

then calculates the difference d between s and the known capacity of n. If more
individuals have n as their destination, d is added to the total o.

3.5.4 Congestion Heuristics

Congestion heuristics in Algorithm 8 and Algorithm 9 is a measure of how much
congestion there is.

Similar to the endpoint capacity heuristic, the congestion heuristics start by initial-
izing the total to zero. Then, for every node n, they analyze the nodes or edges for
every time step.

At line 7, the node congestion heuristic gets all the groups visiting node n at
time step ¢. Then the calculation proceeds by finding s, the total number of
individuals in the groups G. The difference d between s and the capacity of n is
then calculated, and if there are more evacuees than there is room for in n d is
added to the total o. This process is repeated for every time step ¢ and for every
node in the network.

The edge congestion heuristic is similar, analyzing edges instead of nodes.

3.5.5 Grouping

Grouping is a fitness function that measures how much a groups stays together.
This is done by counting the number of edges that is overlapped within each group.

31

CHAPTER 3. SOLUTION

Algorithm 8 Node congestion heuristic

1: function NODECONGESTIONHEURISTIC(C', N)
2 CALCULATEGROUPTIMINGS(C)

3 T < the last time step

4 0+ 0

5: forn € N do

6 for ¢ to 7' do

7 G < GROUPSVISITINGNODE(C, n, t)
8 s < Y. GROUPSIZE(g)

geG

9: d < s — CAPACITY(n)
10: if d > 0O then
11: o< o+d
12: end if
13: end for
14: end for
15: return o

16: end function

Algorithm 9 Edge Congestion Heuristic

1: function EDGECONGESTIONHEURISTIC(C')
2 0+ 0

3 for every edge e do

4: for every time ¢ do

5: GG <~ GROUPSTRAVERSINGEDGE(C), ¢, t)
6 s < Y. GROUPSIZE(g)

geG

7: d <+ s — CAPACITY (e)

8: if d > 0 then

9: o« o+d
10: end if
11: end for
12: end for
13: return o

14: end function

32

CHAPTER 3. SOLUTION

An overlap occurs when atleast two persons use the same edge at the same time
step. The returned fitness value will never be 0 (optimum) if people are spread
around.

3.6 Super Selector

Unlike traditional GA, NSGA-II does not yield a single solution which can be
considered the best one. This is an intended effect of using Pareto ranking. Instead,
the solutions present in the first Pareto front (i.e. front 0) are the set of the best
solutions which the algorithm could find. Because the solutions with the same rank
are mutually non-dominant NSGA-II makes no assumptions as to which, if any, of
the objective functions are more important.

Therefore, a single solution must be extracted from the set of solutions yielded
by NSGA-II. This can be done manually, which is suitable in a decision-support
system. However, automating the process is often preferable, which can be accom-
plished by adding a final processing step for the set of solutions NSGA-II yields.
This can be realized by using a selection mechanism which is able to rank the
solutions, for instance by combining the fitness values in some way. Here we use a
prioritized fitness ranking approach.

Prioritizing works as follows. Starting with the highest ranking fitness measure,
all solutions’ value for it is compared. If one solution has a strictly lower value
than all others, then that solution is selected. Otherwise, the set of solutions with
the lowest value are compared again, this time on the next-highest ranking fitness
measure. This continues until a solution has been found. If all objective functions
have been processed in this way and more than one solution are still candidates,
the tie is broken arbitrarily.

The objective functions we use are ranked in the following order:

Endpoint capacity
Survivability
Passage congestion
Room congestion
Length

Nk L=

The ordering has been determined through informal reasoning. First, we definitely
want every evacuee to be assigned to a lifeboat which has room for him or her. This
is the highest ranked objective, seeing as failing to accomplish this is considered
a hard failure (certain fatality). Second, we want to minimize the time spent in

33

CHAPTER 3. SOLUTION

dangerous spaces. This is measured by survivability, but that value is tied to
probability and is therefore not as clear cut. Next comes congestion, which can
influence actual survivability and cause evacuees to fail at following their assigned
routes. Path length is selected for last, because while it is desirable to have the
shortest paths possible, this should never be at the expense of any of the other
objectives.

34

Chapter 4

Discussion

4.1 Evacuation Networks

In this section, we provide three different networks we test using NSGA-II, Dijkstra
and Random algorithms and we provide the results for those networks. One network
has a single known solution and the others represent primarily represent open space
and confined spaces. The networks are tested using the same parameters as much
as possible, though individual networks have special features.

4.1.1 Test Network

To validate the output of the genetic algorithm, we use a fixed network with a
known solution. As shown in Figure 4.1, Test Network is a grid of nodes where
there is a single optimal solution. Nodes at the bottom row contains one group
of evacuees each that are supposed to move to the horizontal middle and then
upwards until the lifeboat in the end, which in effect forms an upside down T
evacuation plan. Survivability on this T is 100%. Rooms outside the T path have
less survivability. The middle one or two lifeboats , for odd or even sized grids
respectively, should hold exactly the number of evacuees in the grid. Node capacity
is set to allow exactly one group in a room at any single time step. Edge capacity
is set to allow exactly one group to move from one node to another at any single
time step. In effect, there is a single solution to this evacuation scenario which can
be used to measure the performance of the genetic algorithm.

35

CHAPTER 4. DISCUSSION

90% 90% 90% 100% 100% 90% 90% 90%
4 4 1 t 4 4 4 1
90% |— 90% |— 90% |— 100% [— 100% |— 90% |— 90% [— 90%
| | [| [| | |
Lifeboat
90% — 90% |+ 90% |— 100% [— 100% |— 90% |— 90% |— 90%
| [| [[| [| .
Occupied room
90% [— 90% |— 90% |— 100% [— 100% |— 90% |— 90% [— 90%
| [[[[| [[
Unsafe room
90% [— 90% |— 90% [|—{ 100% [— 100% [— 90% |— 90% |— 90%
[[| [[[[[
Safe room
90% — 90% | 90% |— 100% [— 100% |— 90% |— 90% |— 90%
| [[[[[[[
X% X% survivability
90% [— 90% |— 90% [— 100% |— 100% |— 90% |— 90% [— 90%
[[[[[[[[
100% — 100% [— 100% |—| 100% |— 100% |—| 100% [— 100% — 100%

Figure 4.1: A sample Test Network 8 by 8.

36

CHAPTER 4. DISCUSSION

Results

Dijkstra, NSGA-II and Random algorithms have been run on this network 50
times each and visualized in Figure 4.2 and 4.3 using a confidence interval of 95%.
Parameters have been set to be a strict as possible to yield a single optimal solution.
The parameters are as follows used are as follows:

* grid width of 6,

* grid height of 6,

* node capacity of 3,

* edge capacity of 3,

* edge length of 1,

* lifeboat capacity of 5,

* fixed non-path survivability 80% to 100%,

* 18 evacuees divided into groups of size of 3, and
* mutation rate of 0.06%.

Survivability

100

90

80

70

60

50

40

30

20

10

0

0O 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Generation

[~ NSGA-Tl — Random — Dijkstra|

Figure 4.2: Survivability in Grid Test Network with 20 evacuees.

37

CHAPTER 4. DISCUSSION

Figure 4.2 shows the survivability of each algorithm. NSGA-II finds the optimal
solution after 9 seconds at generation 56. Dijkstra uses the shortest path which is a
straight line from each group to the lifeboat resulting in survivability of 61% in
less than 1 second. Random averages 49% survivability.

Grouping

100

90

80

70

60

Te

50

40

30

20

10

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Generation

|- NSGA-I — Random — Dijkstra|

Figure 4.3: Grouping in Grid Test Network with 20 evacuees.

Figure 4.3 shows the grouping of each algorithm. NSGA-II finds the optimal
solution after 23 seconds at generation 141. Dijkstra uses the shortest path which
is a straight line from each group to the lifeboat resulting in survivability of 61%
in less than 1 second. Random averages 49% survivability.

In the graphs presented in Figure 4.4, the parameters of Grid Test Network has been
scaled up to accommodate 100 persons in place of 20, while the size of the network
is the same as before. (Note: the graph displayed for the Random algorithm in the
grouping chart is an error; performance is closer to the one found in the previous
grouping chart). The effect this has is to increase the complexity of the task, as
well as increasing the chromosome size required to fully describe the evacuation
plan. As can be seen in the graphs, the increased complexity influences the results
negatively. Survivability performance is still good, but does not reach the optimal
solution within 500 generations. However, the NSGA-II algorithm suffers greatly

38

CHAPTER 4. DISCUSSION

Survivability

80

70

60

%

50

30

20

10

0 50 100 150 200 250 300 350 400 450 500
Generation

—NSGA-II —Random — Dijkstra
GroupingChart

80

70

60

%

50
40
30

20

R

0
0 50 100 150 200 250 300 350 400 450 500
Generation

|~ NSGA-II —Random —Dijkstra

Figure 4.4: Survivability and grouping in Grid Test Network with 100 evacuees.
39

CHAPTER 4. DISCUSSION

with respect to grouping. This can be explained by the fact that in this setup, each
group consists of many more persons and the algorithm needs to evolve the same
path for each group member separately to perform well at this task.

GroupingChart

90
80
70
60

50

30

20

| ———

0 50 100 150 200 250 300 350 400 450 500
Generation

‘— NSGA-II —Random —Dij ksrm|

Figure 4.5: Grouping in Grid Test Network with 100 evacuees.

4.1.2 Boat Network

The boat network is based on the layout of a deck on a real ship, the MS Xpedition
owned by Celebrity Cruises. The network is illustrated in Figure 4.6.

The symbols in the figure represent the different components of the ship deck,
where

* # are empty rooms and hallways,

* R are rooms in which people are present,

* D are rooms where survivability is less than 1,

e S are lifeboats, and

e |, \, - and / are connections between rooms.

40

CHAPTER 4. DISCUSSION

R R R R R #—#-R S S
| Il V2 R |
- —F—F—HF-D-H#—-F-H—F—4#
Lo N |
R R RR D-D—#—#—#—%—#
[|
D-D-D-# S S

Figure 4.6: The Boat network.

Results

Dijkstra, NSGA-II and Random algorithms have been run on this network 50
times each and visualized in Figure 4.7 and 4.8 using a confidence interval of 95%.
Parameters used are as follows:

* grid width of 6,

* grid height of 6,

* node capacity of 10,

* edge capacity of 6,

* edge length of 1,

* random danger survivability 80% to 100%,

* lifeboat capacity of 5,

* 20 evacuees divided into random groups of size of 1-5, and
* mutation rate of 0.06%.

Figure 4.7 shows the survivability of each algorithm. NSGA-II finds the optimal
solution of 100% after 19 seconds at generation 118. Dijkstra results in 94% in
less than 1 second. Random averages 90% survivability.

Figure 4.8 shows the grouping of each algorithm. NSGA-II finds the optimal
solution after 23 seconds at generation 141. Dijkstra uses the shortest path which
is a straight line from each group to the lifeboat resulting in survivability of 61%
in less than 1 second. Random averages 49% survivability.

4.1.3 Random Network

Random Network is also a grid network like Test Network. The differene is that
survivability, location of evacuees are random, location of lifeboats are random,
and node capacities and edge capacities have some slack. Survivability varies over
time.

41

CHAPTER 4. DISCUSSION

100

90

80

70

60

Te

40

30

20

10

Survivability

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Generation

[~ NSGA-Il — Random — Dijkstra|

Figure 4.7: Survivability in Boat Network 20 evacuees.

42

CHAPTER 4. DISCUSSION

Te

10

Grouping

T B e a e T W,

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Generation

[~ NSGA-Il — Random — Dijkstra|

Figure 4.8: Grouping in Boat Network 20 evacuees.

43

CHAPTER 4. DISCUSSION

Results

Dijkstra, NSGA-II and Random algorithms have been run on this network 50
times each and visualized in Figure 4.2 and 4.3 using a confidence interval of 95%.
Parameters used are as follows:

90
85
80
75
70
65
60
55
50
45
40
35
30
25
20
15
10

Te

grid width of 6,

grid height of 6,

node capacity of 10,

edge capacity of 6,

edge length of 1,

random survivability 80% to 100%,

lifeboat capacity of 5,

20 evacuees divided into random groups of size 1-5, and
mutation rate of 0.06%.

Survivability

A ——

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Generation

[~ NSGA-Il — Random — Dijkstra|

Figure 4.9: Survivability in Random Network 20 evacuees.

Figure 4.9 shows the survivability of each algorithm. NSGA-II seems to converge
at 89% survivability using 40 seconds. Dijkstra finds the solution of 90% in less

44

CHAPTER 4. DISCUSSION

than 1 second. Random averages at 76% survivability.

Grouping
6
5
4
<3
2
l s A PRt VA
0

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Generation

|- NSGA-I — Random — Dijkstra|

Figure 4.10: Grouping in Random Network 20 evacuees.

Figure 4.10 shows the grouping of each algorithm. NSGA-II performs much better
than the random solution. Dijkstra seems to do better, but then again it does not
consider congestion.

4.1.4 Effects of Limited Lifeboat Capacity on Heuristics Re-
sults

A lack of capacity in the lifeboats presents issues for the heuristics stack. Evacua-
tion success depends on having all evacuees reaching lifeboats. When this fails,
human lives can be lost (see for instance the case of the infamous ship RMS Titanic,
which was severely lacking in lifeboat capacity). In the prioritized fitness stack,
when the endpoint capacity cannot be optimized further, the algorithm goes on to
select other solutions where the other goals are improved. However, this does not
have the intended effect since, no matter what, evacuees are not able to be rescued
due to the lack of free space on lifeboats.

45

CHAPTER 4. DISCUSSION

100

90

80

70
60
50

40\/~/Vf»/_7

30

Survivability %

20

10

0

0O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Generation

|— no.uia.iki590 demos.multigenetics.nsga2. Demo?2 p=500 gl — no.uia.ikt590. demos.multigenetics.nsga2 Demo2 p=500 raw|

Figure 4.11: A lack of lifeboat capacity.

46

CHAPTER 4. DISCUSSION

Consider Figure 4.11, noting the large discrepancy between the graphs. This plot
is a result from running NSGA-II on a modification of the 6 X6 random network,
where there is room for only about half the passengers on the lifeboats. The topmost
graph is the survivability as calculated along the best path selected by the algorithm
for every generation. This calculation does not take into account anything else than
the survivability of each node. Due to the lack of lifeboats, less than half of the
passengers are saved.

4.1.5 Effects of Congestion heuristic

In Figure 4.12, the algorithms have been applied to the same random 6 x6 net-
work with the same parameters. However, for the first graph NSGA-II was run
without the congestion heuristics, while it was present for the second. The effect
this has can be seen clearly: when not optimizing for congestion, the criterion is
clearly neglected and increases as the genetic algorithm progresses. Congestion
even approaches the value of the Random algorithm. Conversely, when conges-
tion is optimized for, the genetic algorithm continually improves the congestion
performance, albeit slowly.

Dijkstra’s algorithm is of little interest here. It optimizes for survivability, and the
high congestion value can be explained by Dijkstra routing many evacuees through
the same, high-survivability path, without concern for congestion.

The same simulation (including congestion heuristics) is presented with focus
on survivability in Figure 4.13. Even though Dijkstra focuses on optimizing
survivability, after around 70 generations NSGA-II climbs past, and continues to
rise.

Not shown is the impact different fitness function setups have on survivability. In
fact, when congestion is not included, NSGA-II manages to beat Dijkstra in less
generations, and continues to rise a bit faster than the version where congestion
heuristics are included.

47

CHAPTER 4. DISCUSSION

ArcCongestion

180

160

140

120

People / Time
8

(=)
o

S

20

0 50 100 150 200 250 300 350 400 450 500
Generation

—NSGA-II —Random — Dijkstra

ArcCongestion

180

160

140

120

People / Time

80 Il - o

A A

0 50 100 150 200 250 300 350 400 450 500
Generation

—NSGA-II —Random — Dijkstra

Figure 4.12: Congestion.
48

CHAPTER 4. DISCUSSION

Survivability

70

60

30

20

" _ e s SRR RS N N T N

0 50 100 150 200 250 300 350
Generation

—NSGA-II —Random —Dijkstra

Figure 4.13: Survivability.

49

500

Chapter 5

Conclusion

Evacuation during crisis situations is an important task. With efficient evacuation
planning and execution, lives may be saved. Equipment such as smartphones
and other sensing devices can provide enhanced assistance to both crisis response
teams and evacuees, by collecting, processing, and presenting data. The data
may be shared via networks, and with access to all this information a system can
automatically calculate the best evacuation routes for the current situation.

The problem of efficient evacuation can be viewed as an optimization problem,
for which many solution techniques have been developed. Among them, genetic
algorithms (GAs). GAs, modeled after natural evolution, is a stochastic method
leveraging randomness to evolve incrementally better solutions over many genera-
tions.

Regular GAs employ a fitness function to determine the performance of candidate
solutions. However, in many problems there are more than one objective to
optimize. Naturally, a plethora of methods have been developed to tackle the issue
of multi-objective optimization (MOQO) problems, and several such methods have
been based upon GAs, forming what is called multi-objective genetic algorithms
(MOGA:?).

NSGA-II, the MOGA we employ, is an adaption of the GA framework which
supports the preservation of diversity among candidate solutions by taking into
account Pareto indifference. Pareto indifference simply means that, among a set of
solutions, no solution dominates (i.e. is strictly better than) the others. This type of
MOGA leaves the decision to select one solution among the Pareto optimal ones to
an external process which is unspecified and unrelated to the algorithm.

The technique we developed to select a solution from the multiple solutions returned

50

CHAPTER 5. CONCLUSION

by NSGA-II is a prioritized objective approach. In this technique the objectives
are prioritized and a solution is selected based on this.

From analysing the results, we can draw the conclusion that genetic algorithms
have the possibility of solving the optimization problem of evacuation planning.
We found that in some simpler scenarios the GA variant named NSGA-II was
able to find an to optimal solution most of the time, which was a better result the
Random algorithm, and partly better than Dijkstra’s algorithm.

Drawbacks include that when more fitness functions are included, such as for
congestion, the efficiency of the algorithm suffers. We saw specifically that surviv-
ability performance went down, both in the number of generations needed and in
the achieved values.

5.1 Future Work

Suggested future work include making more specifically adapted genetic operators,
for instance mutation operators which take into account the grouping aspect.

The inherent complexity of the chromosome is likely a hurdle which needs to be
overcome. Due to the way the chromosome is defined, very specific constraints are
applied to it which limits the effectiveness of the genetic operators, compared to
traditional genetic algorithms. The limitiations are related to the way each part of
the chromosome must be a valid path specification.

51

Acknowledgements

We would like to thank our supervisors Morten Goodwin and Ole-Christoffer
Granmo for their constructive feedback and helpful guidance.

University of Agder, 2013

52

Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

Maged N Kamel Boulos et al. “Crowdsourcing, citizen sensing and sensor
web technologies for public and environmental health surveillance and
crisis management: trends, OGC standards and application examples”. In:
International journal of health geographics 10.1 (2011), p. 67.

Kalyanmoy Deb et al. “A fast and elitist multiobjective genetic algorithm:
NSGA-IT". In: Evolutionary Computation, IEEE Transactions on 6.2 (2002),
pp- 182-197.

Thomas E. Drabek and David A. McEntire. “Emergent phenomena and the
sociology of disaster: lessons, trends and opportunities from the research
literature”. In: Disaster Prevention and Management 12.2 (2003), pp. 97—
112.

Lester R Ford and Delbert R Fulkerson. “Maximal flow through a network™.
In: Canadian Journal of Mathematics 8.3 (1956), pp. 399-404.

Morten Goodwin et al. “Ant colony optimisation for planning safe escape
routes”. In: 26th International Conference on Industiral Engineering and
Other Applications of Applied Intelligent Systems, IEA/AIE 2013. To be
published.

H.W. Hamacher and S.A. Tjandra. Mathematical Modelling of Evacuation
Problems: A State of the Art. Tech. rep. 24. Fraunhofer (ITWM), 2001.

Abdullah Konak, David W. Coit, and Alice E. Smith. “Multi-objective opti-
mization using genetic algorithms: A tutorial”. In: Reliability Engineering &
System Safety 91.9 (2006). Special Issue - Genetic Algorithms and Reliabil-
ity, pp. 992-1007. 1SSN: 0951-8320. DoI: 10.1016/j.ress.2005.11.018. URL:
http://www.sciencedirect.com/science/article/pii/S0951832005002012.

Sirisak Kongsomsaksakul, Chao Yang, and Anthony Chen. “Shelter location-
allocation model for flood evacuation planning”. In: Journal of the Eastern
Asia Society for Transportation Studies 6 (2005), pp. 4237-4252.

53

http://dx.doi.org/10.1016/j.ress.2005.11.018
http://www.sciencedirect.com/science/article/pii/S0951832005002012

BIBLIOGRAPHY

[9]

[10]

[11]

[12]

[13]

[14]

[15]

N.D. Lane et al. “A survey of mobile phone sensing”. In: Communications
Magazine, IEEE 48.9 (2010), pp. 140-150. 1SSN: 0163-6804. pO1: 10.1109/
MCOM.2010.5560598.

Gino J. Lim et al. “A capacitated network flow optimization approach for
short notice evacuation planning”. In: European Journal of Operational
Research 223.1 (2012), pp. 234-245. 1sSN: 0377-2217. po1: 10.1016/j.
ejor.2012.06.004. URL: http://www.sciencedirect.com/science/article/pii/
S0377221712004596.

Anthony R Mawson. “Understanding mass panic and other collective re-
sponses to threat and disaster”. In: Psychiatry: Interpersonal and biological
processes 68.2 (2005), pp. 95-113.

J. Radianti et al. “Crowd Models for Emergency Evacuation: A Review
Targeting Human-Centered Sensing”. In: System Sciences (HICSS), 2013
46th Hawaii International Conference on. 2013, pp. 156-165. DO1: 10.1109/
HICSS.2013.155.

Mohammad Saadatseresht, Ali Mansourian, and Mohammad Taleai. “Evac-
uation planning using multiobjective evolutionary optimization approach”.
In: European Journal of Operational Research 198.1 (2009), pp. 305-314.
ISSN: 0377-2217. pot: 10.1016/j.ejor.2008.07.032. URL: http://www.
sciencedirect.com/science/article/pii/S037722170800670X.

James MacGregor Smith. “Evacuation networks”. In: Encyclopedia of opti-
mization. Ed. by Christodoulos A. Floudas and Panos M. Pardalos. Springer
US, 2009, pp. 940-950. 1SBN: 978-0-387-74759-0. DOI1: 10.1007/978-0-
387-74759-0. URL: http://link.springer.com/referencework/10.1007/978-0-
387-74759-0/page/1.

Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. “Comparison of mul-
tiobjective evolutionary algorithms: Empirical results”. In: Evolutionary
computation 8.2 (2000), pp. 173-195.

54

http://dx.doi.org/10.1109/MCOM.2010.5560598
http://dx.doi.org/10.1109/MCOM.2010.5560598
http://dx.doi.org/10.1016/j.ejor.2012.06.004
http://dx.doi.org/10.1016/j.ejor.2012.06.004
http://www.sciencedirect.com/science/article/pii/S0377221712004596
http://www.sciencedirect.com/science/article/pii/S0377221712004596
http://dx.doi.org/10.1109/HICSS.2013.155
http://dx.doi.org/10.1109/HICSS.2013.155
http://dx.doi.org/10.1016/j.ejor.2008.07.032
http://www.sciencedirect.com/science/article/pii/S037722170800670X
http://www.sciencedirect.com/science/article/pii/S037722170800670X
http://dx.doi.org/10.1007/978-0-387-74759-0
http://dx.doi.org/10.1007/978-0-387-74759-0
http://link.springer.com/referencework/10.1007/978-0-387-74759-0/page/1
http://link.springer.com/referencework/10.1007/978-0-387-74759-0/page/1

	Introduction
	Background
	Literature Review
	Evacuation Networks
	Group Behavior in Crisis Situations
	Ant Colony Optimization
	Evacuation Planning With Multiobjective Genetic Algorithms
	Shelter allocation using genetic algorithms

	Problem Statement
	Assumptions and Limitations
	Contribution
	Outline

	Theory
	Evacuation Routing
	Graph Theory
	Time-Expansion
	Network Flow

	Genetic Algorithms
	Fitness Function
	Chromosomes
	Crossover
	Selection
	Mutation

	Multi-Objective Optimization
	Traditional GA for MOO
	NSGA-II

	Dijkstra's Algorithm

	Solution
	System Architecture
	Network Model
	Random Path Generator
	Genetic Algorithm

	Encoding of Chromosomes
	Genetic Operation
	Crossover
	Repair Function
	Mutation

	Evacuation Criteria
	Egress Time
	Congestion
	Route Complexity
	Reliability
	Endpoint Capacity
	Sidebar / sub-problem: Bin-Packing Evacuees Into Lifeboats

	Fitness Functions
	Survivability
	Total Distance
	Endpoint Capacity
	Congestion Heuristics
	Grouping

	Super Selector

	Discussion
	Evacuation Networks
	Test Network
	Boat Network
	Random Network
	Effects of Limited Lifeboat Capacity on Heuristics Results
	Effects of Congestion heuristic

	Conclusion
	Future Work

	Acknowledgments

