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Abstract 

Although state-of-the-art models like linear regression and neural networks have been 

widely used for electricity consumption forecasting, the demand for improved prediction 

accuracy is still very high. A small improvement in prediction accuracy has a significant 

economic value for the energy industry. Gaussian processes (GPs) are becoming a more and 

more popular tool in machine learning, and in this thesis we will investigate how the GPs can be 

used for electricity consumption forecasting. 

 Its non-parametric nature make GPs a natural approach to addressing complex 

stochastic problems that are difficult to solve using the earlier parametric models. The drawback 

of the GP prediction model is that it requires computation which grows as      , where n is the 

number of training points. To deal with such problems we used a novel approach known as the k-

nearest neighbor (kNN) similarity search, which explores the training set and selects k elements 

of the dataset that are closest to a given query point. By using the output of the kNN search as a 

training set for GPs, the computational cost will be reduced from       to     , where    . 

The experimental sets in this thesis are based on a real life dataset obtained from Eidsiva 

Energy, and our goal is to forecast electricity consumption a day ahead (for the next 24 hours). 

In addition to the GPs, the neural networks (NNs) and local linear regression (LLR) models are 

also implemented and tested using test inputs over the same period of time as the GPs. Empirical 

analyses of the results show that the GPs outperform both the NNs and the LLR models. 

Keywords: Gaussian Processes (GPs), k-Nearest Neighbors (kNN) similarity search, Neural 

Networks (NNs), Local Linear Regression (LLR), Short-Term Forecasting of Electricity 

Consumption (STFEC) 
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General Regulation for Notations  

The notation of variables in this thesis are based on the following regulations: 

 Matrices are capitalized (e.g. X), and vectors are not capitalized but bold 

faced (e.g. x) 

 A superscript asterisk, such as X*, indicates reference to a test set quantity 

 In most cases X denotes the inputs or independent variables ( also called 

features, e.g. feature selection refers to each input dimension) 

 y denotes the output, which is also called dependent variable or response. 

 Experiments in this thesis involves a data set in form: 

                               of n inputoutput pairs. Where the 

input is in an     matrix form. 

 All references (including reference to other section of the thesis, scientific 

papers, books, figures, tables, equations etc.) are marked in green. 

 Some literatures use the term 'predictor' as an input variable, but in this thesis 

predictor refers to the model that predicts electricity consumption (EC), i.e., 

GPs, NNs or LLR. 
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1   Introduction 

On a broad view, the problem of forecasting electricity consumption can be 

categorized under machine learning, which is the study of computer algorithms that 

improve automatically through experience. In order to predict how a trend will continue, 

the prediction model should be able to generalize the knowledge in historical data to 

unseen future. That is, to predict electricity consumption (EC), the algorithm needs to 

learn the underlying function that maps the input variables such as temperature, hour of 

day, etc. to an output variable. To achieve this, we implement three regression 

techniques, namely: Gaussian processes (GPs), neural networks (NNs), and local linear 

regression (LLR) models. 

1.1   BACKGROUND 

At any point in time, electricity demand must be met by generating exactly the 

same amount of power. Generally load is viewed as uncontrolled variable, and the 

generation must constantly adjust to reliably meet the demand. [41][42]  

 

 

Fig. 1.1 [40]: Electricity supply/demand balance and system frequency 
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Fig. 1.1 shows that unbalanced supply-demand causes fluctuation in system 

frequency, and this may result in unwanted load shedding and power system instability (if 

the generating units fail to respond fast). System frequency is controlled through 

adjustment of the guide vane position (see Fig. 1.2) using speed governor feedback. For 

instance, if the demand is greater than generation the system frequency will fall below the 

frequency set. Based on the difference between the two frequencies, the governor will 

adjust the guide vane position in such a way that more water will flow into the turbine 

and thus the power generation will increase to serve the new demand. 

 

 

 

 

                                                                                                         

                                                                                                          

 

  

Fig. 1.2: Block diagram of governor control for hydropower plant 

Since power generators couldn't operate beyond their design rate value, adjusting 

generated power to meet the demand is possible only if we have kept enough reserve. On 

the other hand, maintaining reserve involves running the generator bellow its full 
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capacity or running additional generators. The task of the system operator is to operate 

power system in a safe, secure, and economic manner.  To perform those demanding 

tasks the system operator should be able to schedule in advance and dispatch in real time. 

Unit commitment schedule ensures that there are sufficient generation resources 

committed to meet forecasted system demand at minimum production cost. [41] 

If the forecasted electricity consumption is inaccurate, the system operator (SO) 

may overestimate or underestimate the demand. If the SO overestimate the demand, he 

may schedule larger reserve than the system requires which is uneconomical. On the 

other hand, underestimation of the demand means less reserve schedule and thus insecure 

operation.  Therefore, a secure1 and economic operation of electric power system requires 

a precise estimate of future electricity consumption. Besides, accurate forecasts of 

electricity consumption are required to reduce spinning reserve, schedule maintenance 

and optimize energy trading mechanisms [5][7]. Therefore, an accurate forecasting of 

future electricity consumption helps energy companies to provide reliable and 

uninterrupted electricity at a competitive price. 

Thesis statement: The purpose of this thesis is to study how Gaussian processes 

(GPs) can be used for Short-term Forecasting of Electricity Consumption (STFEC). The 

seasonal, daily and hourly variations in electricity consumption (EC) and respective 

weather information are stored in a large dataset, and the GPs use the dataset to learn 

trends of EC. The main problem with GPs is that the computational requirement scales 

as      , where n is the number of training data points. To cope with this problem, we 

propose a novel approach known as the k nearest neighbor (kNN) similarity search. A 

                                                 
1 Security refers to power system's ability to withstand disturbances.  
2 The function f is distributed as a Gaussian Process with mean function      and covariance 
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kNN similarity search is used to select subsets of the training candidates that are closest 

to the test points. Features that form the input dimension will be selected by analyzing the 

influence of each input variable on EC and testing the contribution of each feature to the 

overall prediction accuracy. Finally, the GP models will be compared with the state-of-

the-art regression models, namely: the neural networks and local linear regression 

models. 

Learning Methods: Training is a vital process in machine learning. There are 

two forms of training namely: supervised and unsupervised trainings. In supervised 

learning the training inputs and the anticipated/ideal outputs are provided. On the 

contrary, in unsupervised training only the training inputs are available and the ideal 

outputs are absent. A supervised training data consists of a set of training examples, 

where each example is a pair comprising a training input X and an anticipated output y. A 

supervised learning algorithm analyzes the training data and produces an inferred 

function, which is known as a regression function (for quantitative output), or a classifier 

(for qualitative output). [3][23] Our work focuses on the regression functions that 

generalize knowledge from the training data to unseen situation at the test points.  

Parametric and nonparametric regression: Based on the assumption made 

regarding the underlying function, regression models can be categorized into two: 

parametric and nonparametric. In parametric regression, we assume an explicit model 

regarding the relationship between the inputs and the response. Linear regression is a 

classic example of parametric models, which uses the least squares approach to estimate 

the parameters. In a nonparametric regression model, the predictor does not take a 
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predetermined form but is constructed according to information derived from the data. 

[15][16] A Gaussian process is an example of nonparametric regression 

1.2   PROBLEM STATEMENT 

As mentioned at the beginning of this chapter, the problem in this thesis is 

categorized under machine learning in which we want to implement algorithms that learn 

from experience. Knowing that the experience is represented in form of training input-

output pairs        , the problem can specifically be stated as follows:                           

Given a dataset comprising hourly observations of electricity consumption (EC) y at 

training input X, what will the EC y* be at a new query X* ? The aim is to develop a 

regression model that learns the relationship between the input variables and EC during 

the training process, and generalize the knowledge to unseen situations when predicting.  

However, modeling electricity consumption is a challenging task as it depends on 

many variables: temperature, hours of day, days of week, holidays, seasons of year, 

population, economy, and many others. Moreover, distribution of electric grid over a 

large geographical area leaves the grid exposed to many unpredictable incidents. For 

example, thousands of people may interact with the grid, in unpredictable ways and from 

different locations. Fortunately, most of the random incidents are very small and some of 

those incidents, which represents majority of electricity consumption, follow some trend 

that depends on time, weather conditions, and occasions like public holidays. 

Representing those trends over a specific function is still a problem since no definite 

function can efficiently model the stochastically varying incidents in electric grid. That is 

to say that the path followed by EC trends is non deterministic, and thus the problem is 
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more convenient for nonparametric regression approach such as the Gaussian processes 

(GPs).  

1.3   LITERATURE REVIEW 

The use of Gaussian Processes (GP) in electric load forecasting is quite a new 

concept. However, Gaussian Process prediction has recently become more and more 

popular in different areas. Different studies, including these presented in this section, 

show that GP based prediction outperforms traditional methods like linear regression and 

neural networks. In order to summarize different approaches to the problem, selected 

related works are briefly presented below. 

An interesting work by Atallah et al. 2008 [19], used GP for predicting and 

correcting missing data and outliers in body sensor networks, which was used for home-

monitoring of chronically ill patients. The GP prediction framework was trained on 

recorded datasets to study the relationship between activities of daily living (such as 

walking, sleeping etc.) and physiological parameters. Based on the training set and other 

sensor inputs, GP was used to infer channel output. The difference between inferred 

output and received data was used to predict the missing data. A data is considered noisy 

when the deviation from the predicted value is greater than the standard deviation of the 

signal and the errors can be corrected by replacing the noisy part of the signal by the 

predicted value. 

The work by Brahim-Belhouri et al. 2001 [18], focused on comparing GPs with 

Radial Basis Function (RBF) neural networks. They experimented on dataset generated 

by Mackey-Glass equation and found out that GP based Bayesian learning is more 

accurate than the RBF neural networks. 
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In another paper, by Leith et al. 2004 [21], GP was used on Irish load data, and 

comparison with other popular forecasting methods like Basic Structural Models(BMSs) 

and Seasonal Auto-Regressive Integrated(SARI) show that GP is more accurate than the 

other two. 

Mahalanobis kernel GP was used by Mori et al. 2009 [22] for forecasting 

temperature in Tokyo, from June to September 2002. The analysis based on 366 training 

data point and 122 test data points shows an average prediction error of 2.56%. It was 

indicated in this paper that the proposed GP method is better than other methods that 

were used earlier, including MLP (Back propagation), RBFN with SVC and SVR with 

Mahalanobis kernel. 

A paper by Chakhchoukh et al 2009 [23] wasn't used GP for prediction, but the 

general approach in re-modeling the dataset to deal with problems caused by outliers and 

weekend load is useful. They analyzed the electric consumption in France using data 

provided by RTE. The focus of this work was on increasing the robustness of ARIMA 

model which was already used by RTE. Identification of outliers and public holidays in 

the data was the significant methods used to increase robustness of prediction. 

One more paper I would like to present before concluding this section is a non-

Gaussian approach by Osman et al., 2009 [25]. They used neural network for short-term 

load forecasting on a dataset obtained from Egyptian Unified System. The dataset was 

analyzed in order to find out the most correlated weather data. From the analysis, they 

learned that temperature, humidity, and historical load are the most informative data for 

prediction in Egyptian power grid. In this work the outliers and weekend data were 

discarded from the training set to optimize the accuracy of prediction.  
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1.4   RESEARCH QUESTIONS 

 How can we apply Gaussian Processes for short-term forecasting of 

electricity Consumption (STFEC)? 

The core research element is to study methods of handling the challenges stated in 

the problem statement and apply the GPs for STFEC. However, this question is 

too general and many sub-questions will arise as we try to answer it. Thus, the 

main research question is divided into subordinated research questions that are 

empirically analyzable and more precise in specifying what we want to measure, 

what we want to optimize, and which methods and scenarios we want to compare. 

 

Subordinated Research Questions 

 Is it possible to overcome the limited data handling capabilities of GPs, and 

let the GPs learn the most relevant information stored in a large dataset?  

As stated earlier, datasets represent experiences in the learning process; therefore 

we need to process large time series data in order to acquire the knowledge 

needed for prediction. However, processing a large dataset is computationally 

expensive, and particularly in GP regression, it scales      , where n represents 

the size of data. In fact, time series data are naturally sparse and only 'small' 

subsets of the data holds relevant information we need for prediction. If we need 

only a portion of data for prediction, processing the whole data only adds 

computational burden. On the way to solution, we need to answer the following 

questions: 

o Can we measure relevance or similarity of points in our data in relation to 

a given test point? 
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o If so, can we select the most similar/relevant points based on this 

measurement? 

o If yes, can we tradeoff between computational burden and prediction 

accuracy to decide the number of closest data points we should include in 

our selection? 

o Then, can we use the selected points as training set for the GP, and thus 

reduce the computational requirement? 

The first three questions will be answered in Section 2.2.2, where we discuss 

about kNN similarity search and the role the kNN search in solving computational 

problem of GP is explained in Section 5.4. 

 How is the performance of GPs compared to the state-of-the-art models like 

neural networks (NNs) and local linear regression (LLR) models? 

First we want to implement the models, and then measure the performance of 

each. The performance is measured using the following methods: 

o By computing the Mean Absolute Percentage Error (MAPE) and the 

correlation coefficient between the predicted and the actual values 

o By plotting the predicted and actual values 

o Error frequency distribution plot to evaluate the validity of each model.  

Evaluation and comparison of the regression models is presented in Section 6.2. 

 How can we select the best feature vectors that optimize the performance of 

the predictors (GPs, NNs, and LLRs)? 

The independent variables that form the input dimension play a vital role in 

determining the prediction accuracy. Thus an implementation of any regression 
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model should involve design of feature vectors (FV) in such a way that the input 

variables that are strongly related to the output are included in the FVs. Here, we 

need to answer one question. Can we measure how strong an input variable is 

related to an output? The answer is yes, at least we can visually analyze. Section 

2.1, exploratory data analysis (EDA) provides an insight to the approach. 

Furthermore, we will test the influence of each feature by considering one feature 

at a time and observing its contribution to the performance of a regression model.   

 How the predictors (GPs, NNs and LLRs) perform under scenarios like 

different seasons of a year, different days of a week and different hours of a 

day? 

This question arises because of the fact that there is high variation in EC with 

changes in seasons of a year, days of a week, and hours of a day. For example, EC 

trend in summer is very different from EC trend in winter; similarly EC during 

work days is different from EC in weekends or holidays. This is a form of 

validation test in which we want to analyze the following: 

i. whether all the information about those variations are included in the 

feature vectors, and 

ii. whether the implemented regression models can effectively generalize the 

information to unseen situations at test points  

1.5   SOLUTION OVERVIEW 

We approached the problem first by studying the relationships between the 

independent variables and the dependent variable (electricity consumption in this case). 

Correlation coefficients between different variables in the data were analyzed to see if 
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there is any linear relationship between the variables. In addition to the correlation 

coefficients, scatter plots where used to visualize if there is some relationship between the 

candidate features and EC or no relationship at all. This analysis was used as a step stone 

in selecting the feature inputs and it will be referred as the first round feature selection. 

Once the input variables are identified from the first round feature selection, three 

regression models (namely: GPs, NNs and LLR) have been implemented in order to 

predict electricity consumption. The input variables that are selected in the first round 

cannot be optimal since there might exist some correlation between the independent 

variables themselves. Inclusion of correlated inputs in the feature vector may reduce 

prediction accuracy and adds unnecessary computational complexity. Thus, we need a 

second round feature selection. This was done through further experiments by 

considering one feature at a time and then observing their effect by analyzing the 

performance of the predictor.    

1.6   CONTRIBUTIONS 

The main contribution of this work is answering the research questions. For 

example, solving the issue that arises with large dataset is not specific to STFEC; it can 

be applied to similar problems that involve GP regression. Moreover, it is a novel 

approach that is implemented outside the GP model (i.e., no change to the full GP 

regression model). Therefore, it can be used irrespective of the type of covariance 

function or likelihood function we chose for the GP.  The kNN search can also be used 

with other regression models, for example implementation with the LR model shows 

better performance compared with respective LR model without kNN search.   
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From the industrial point of view this work has significant contributions as it 

investigates various prediction models and experimentally selects feature vectors and 

models that give better prediction accuracy. As discussed in previous sections a small 

improvement in prediction accuracy has a significant economic value in the energy 

industry. Moreover, this work can be extended to similar problems in other areas such as 

in the finance sector, weather forecasting etc.  

1.7. THESIS OUTLINE 

The thesis report is organized in 8 chapters. Chapter 2 introduces data pre-

processing. Section 2.1 covers exploratory data analysis (EDA), correlation coefficients 

(CC), and feature selection. Section 2.2 is concerned with data structure in which we will 

discuss the KD tree and the k nearest neighbor (kNN) similarity search. 

Chapter 3 briefly presents the linear regression model. Section 3.1 introduces the 

linear regression model. Section 3.2 presents how the regression parameters are 

computed by using the list square method. Finally, in Section 3.3 we will discuss how the 

local linear regression model was implemented for STFEC. 

Chapter 4 introduces the neural networks (NNs). Section 4.1 presents the 

mathematical model of NNs. Section 4.2 introduces the commonly used activation 

functions. Section 4.3 presents the architecture of NNs with some guiding 'rules' to follow 

when deciding the number of hidden layers and number of neurons in each layer. In 

Section 4.4 we will discuss training of the NNs by presenting two popular training 

algorithms namely: the backpropagation and resilient propagation (RPROP). Section 4.5 

briefly discusses the implementation of NNs for STFEC. 
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Chapter 5 introduces the Gaussian processes. Section 5.1 discusses GP regression. 

Section 5.2 presents the role and types of covariance functions. Section 5.3 discusses how 

the GP learns the hyperparameters. Section 5.4 discusses the challenge of working with 

big dataset in GP. Finally, Section 5.5 presents the implementation of GPs for STFEC. 

Chapter 6 presents experimental results with a brief description. Chapter 7 

summarize and discusses the results. Chapter 8 finalizes the report with conclusion and 

further work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Short-term Forecasting of Electricity Consumption Using Gaussian Processes 

 

 

14 

 

2. Data Pre-Processing 

The first step in designing a regression model is studying the dependence between 

different variables in the data. The aim is to explore the data in order to reveal patterns 

and features that will help us understand, analyze and model the data. Exploratory data 

analysis (EDA) visualizes the underlying patterns in the data. It will tell us whether there 

is linear relationship, nonlinear relationship, or no relationship at all between variables in 

the data. While EDA can be seen as a visualization model, there exists a numerical 

equivalent called correlation coefficients. But correlation coefficients (CC) tell us only 

whether there exists a linear relationship; it cannot always distinguish between nonlinear 

relationship and no relationship. The EDA and CC are used for feature selection. 

The kNN similarity search explores the data and chooses k elements of the data 

that are closest to a given query point. The naive neighbor search implementation 

involves the brute-force computation of distances between all pairs of points in the 

dataset. A KD tree is a tree based data structure that is intended to improve the efficiency 

of the brute-force approach. [39] 

 2.1   DATA ANALYSIS 

2.1.1   Exploratory Data Analysis  

Exploratory data analysis (EDA) is a collection of techniques for revealing 

information about the data and methods for visualizing them to see what they can tell us 

about the underlying process that generated it [15]. EDA explores data without 

assumptions about relationships between variables, error distribution, etc. in order to 

discover what they can explain about the phenomena we are studying. In this section we 

will investigate the relationship between electricity consumption (EC) and other variables 
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such as temperature, cloud cover, wind speed, hours of day, days of week and seasons of 

year. Moreover, the relationship between current electricity consumption (EC) and 

historical EC such as previous hour power, previous day power, previous week power 

etc. will be investigated. 

A simple scatter plot can reveal the relationship between two variables. For 

example a scatter plot of electricity consumption versus temperature shows how 

electricity consumption may vary with temperature. If points in the scatter plot are 

clustered around a straight-line it shows linear relationship between the variables; if 

points are clustered around a curve, it means that the variables are nonlinearly related; 

points scattered randomly on the x-y plane without clustering around any path shows the 

variables are not related. Thus, plotting a scatter diagram is an important step in selecting 

the feature vectors and to select an appropriate regression model that maps one variable 

to the other. 

 

Fig. 2.12.4: Scatter plots for EC against independent variables 
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In the scatter diagram of Fig. 2.1, the points seem to cluster around a straight line, 

and this shows that the relationship between temperature and EC is approximately linear 

with negative slope. In Fig. 2.2 and Fig. 2.3, the absence of tight cluster about a line or a 

curve reveals that the relationship between EC and cloud cover or wind speed is not that 

strong. In Fig. 2.4 the points seem to cluster around a curve and this shows that there is 

nonlinear relationship between electricity consumption and days of year. 

 

 

Fig. 2.52.8: Scatter plot of EC against previous ECs. 

 As can be seen from Fig. 2.5-2.28, the present consumption is linearly related to 

previous electricity consumptions and the relationship is stronger with recent 



 

 

 

Short-term Forecasting of Electricity Consumption Using Gaussian Processes 

 

 

17 

 

consumptions than with the older ones. However, the strong correlation doesn't 

necessarily mean we should include all the previous consumptions. This is because those 

previous hour, previous two hours, previous day, previous week, etc. consumptions are 

strongly correlated with each other and only some of them will provide additional 

information required for prediction.  

2.1.2   Correlation Coefficients 

In Section 2.1 we have seen that if a scatter plot of a variable y against variable x 

tightly clusters about a straight line, then x and y are linearly related. A numerical 

measure of linear relationship between variables is referred to as sample correlation 

coefficient. The sample correlation coefficient for n pairs of observations 

                          is given by: 

 

                  
                
   

            
               

    

 
   

        
                                       

                                           

Where:                                 
 

 
   
 
                 

 

 
   
 
    (2.2) 

                              
            

      
            

         (2.3) 

                                                                   
               (2.4) 

The correlation coefficient   can vary between -1 and 1. The value       shows 

a perfect linear relationship between X and Y, which is equivalent to a tight clustering of 

data points around a straight line. An absence of linear relationship is represented 

by    . The proportion of variability in the y values that can be explained by a linear 
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relation is precisely represented by   , which is derived by analyzing the residual of 

linear regression model in Section 3.2. Thus, the sample correlation coefficient   can 

explain whether the linear regression model is an appropriate choice to model the 

relationship or not. But it may fail to distinguish nonlinear relationship from no 

relationship. 

Autocorrelations: Autocorrelation is used to investigate the possibility of 

dependence among successive observations. The term autocorrelation (or serial 

correlation) refers to a correlation between observations that are adjacent in time order or 

any other order of data collection [9]. For example the correlation between consecutive 

members of time series data            is known as lag 1 correlation or first-order 

autocorrelation and is given by: 

 

                         
                  
   

          
   

                                                                        

Table 2.1 summarizes the correlation coefficients for 15 input variables. It can be 

seen from the table that, the temperature and historical EC have strong linear relation to 

present EC, which is in agreement with our observations in the scatter plots. 

Table 2.1: Correlation coefficients of candidate features and EC 
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2.1.3   Feature Selection 

Feature subset selection is the process of identifying and removing irrelevant and 

redundant features from a training data set. In general, relevance or redundancy of 

features is defined as follows [36]: 

o Relevant features are those features which have an influence on the output and 

not correlated with any other features. 

o Irrelevant features are those features which have little influence on the output. 

o Redundant features are those which are correlated with at least one of the other 

features, and thus provide no additional information. 

The influences of 15 features, shown in table 2.1, have been analyzed using EDA 

and CC. Based on this analysis we selected the first round feature vector     consisting 

of: 

                                                         

                                          

                                           

There are some redundant features that are correlated with other features in    . 

Particularly, historical ECs are strongly correlated with one another and only some of 

them provide additional information that is needed for prediction. Moreover, features like 

days of week, cloud cover etc., have been excluded from    , because their influences 

on EC were not clear from EDA or CC analysis. Thus, we need second round feature 

selection    , in which each feature is tested using the respective predictors and features 

that optimize the performance of each predictor (see table 7.1) are selected.   

Second round features     for GPs and LLR comprises 7 elements:  
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 Similarly, 8 features have been selected for NNs: 

                                                                  

                                                 

2.2   DATA STRUCTURE 

2.2.1   KD tree 

A KD tree (KD is a shorthand for k-dimensional) is a space-partitioning data 

structure for organizing points in a k-dimensional space. KD tree is a hierarchical 

decomposition of space along different dimensions and it can be used for answering k 

nearest neighbor queries in logarithmic time and linear space [30][32].  

 

 

Fig.2.9 Decomposition of KD tree on x-y plane. 

The construction of KD tree using Fig. 2.9 is as follows. Let the first partition be 

across the x-axis, shown by green line in the figure. The median of all data points will be 
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point (5, 1) and it is considered to be the root node of the tree, as shown in Fig. 2.10. The 

second partition is the horizontal line (black) to the left side of the first partition and this 

line passes through point (3, 4). This point will be considered as the left side branch from 

the root node on the KD tree diagram. Similarly the plane to the right side of the green 

line is divided by the black horizontal line which passes through point (8, 5). Thus, point 

(8, 5) will be considered as the right side branch from the root node. If we continue 

splitting the plane through the x- and y-axes alternatively and consider the median of the 

points as the next node, we can build the KD tree similar to Fig. 2.10.  

 

 

 

 

 

 

 

 

 

 

 

 

When splitting the plane and constructing the tree the choice of the hyperplane 

direction is explained in [30] as follows: "if for a particular split the x-axis is chosen, all 

the points in the sub-tree with a smaller x value than the node will appear in the left sub-

(5,1) 

(4,1) 

(2,2) 

(6,3) 

(8,4) 

(3,4) 

(1,8) 

(3,7) 

(6,8) 

(7,6) 

(8,5) 

(4,9) (1,3) 
(9,2) (9,7) 

Fig.2.10: KD tree formation from 2d-plane decomposition 
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tree and all the points with larger x value will be in the right sub-tree." The same holds if 

y-axis is chosen, points with a smaller y value than the node will appear in the left sub-

tree, while points with larger y value will be in the right sub-tree.  

2.2.2   k-Nearest Neighbors (kNN) Similarity Search 

The k nearest neighbors (kNN) similarity search is a method of finding the k 

elements of a data set S which are closest to a given query point Q. Similarity or 

closeness measures the strength of a relationship between two objects, while 

dissimilarity, on the other hand, measures the difference between two objects. In the kNN 

algorithm dissimilarity is measured by one of the following distance metrics: Euclidian, 

Manhattan, Chebyshev, or Mahlanobis.  

 

 

Fig.2.11: A kNN search in which 17 nearest points to the query point Q are selected and 

subscribed in a circle. 

In this thesis we used Euclidian distance which is given by the following formula: 
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Where,                                                      and d represents the 

dimension of query vector. The inputs to the kNN algorithm are: a set of n data set S, a 

set of m query points Q and the number of nearest neighbors we are searching k. If Q is a 

vector of dimension d, then the output of the kNN search will be a k×d matrix. 

 

Algorithm 2.1: kNN similarity Search using brute-force search  

Input: query Q, Data set (Search set) S, The number of objects we want to retrieve k. 

1. Compute the distances between the query item Q and all the reference points in 

the training set S. 

2. Sort them based on the distance to Q in non-decreasing order. 

3. Return k points with smallest distance to Q. 

 

The naive implementation of kNN similarity search involves the brute-force 

computation of distances between all pairs of points in the dataset. For N samples in D 

dimensions, this approach scales as        [39]. In this thesis we used a more efficient 

approach based on KD tree, in which the computational cost of kNN search can be 

reduced to               or better.  
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3. Linear Regression 

Linear regression (LR) models provide simple and interpretable description of 

how input variables are related to the output. This relationship is given as a linear 

function whose domain is the input variables and range is the output. LRs have been 

widely used for prediction in different areas, among others: temperature forecasting, 

financial market forecasting and electricity consumption forecasting etc.  

In this thesis we used local linear regression (LLR) model, in which we applied 

the classical linear regression model on chosen closest data points to the test point. The 

LLR model can be seen as LR model plus kNN similarity search. Since the kNN 

similarity search is already discussed in the previous Chapter, this Chapter will focus on 

LR model. Finally, Section 3.3 discusses how the classical LR model was used with kNN 

similarity search to implement the LLR model.   

3.1 LINEAR REGRESSION MODEL 

Regression analysis is a body of statistical methods dealing with the formulation 

of mathematical models that depict relationships among variables, and the use of those 

modeled relationships for the purpose of prediction and other statistical inferences [9]. A 

linear regression model assumes that the regression function      is linear in the input x.  

 

Fig.3.1: A simple linear regression model which maps EC at time t-1 to EC at time t. 
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The underlying function in Fig. 3.1 (red line) is given as                  , 

and its parameters are computed from the data. Once we know the function we can 

compute (i.e., predict)    for any value of     . This only show how linear regression 

works in its simplest form, but most real life applications involve more than one input 

variables and computation of the parameters is a bit more complex. 

 Assume we are given a d-dimensional input X and we want to predict a real-

valued output y. The linear regression model that relates the inputs to outputs is defined 

as: 

                            

 

 

                                                                 

 

Where      are unknown parameters also called regression coefficients, and d is the input 

dimension. The independent variables    may represent [8]: 

 Quantitative inputs; 

 Transformations of quantitative inputs, such as log, 
 

 
, etc.; 

 Basis expansions such as   
 ,   

  etc. and; 

 Interaction between variables, for example      . 

In this thesis the independent variables comprises: quantitative inputs, such as 

temperature, cloud cover, wind speed, hour of day, etc. and autoregressive inputs like 

previous hour EC and previous week EC.   

We represent the deviation of the response    from the underlying function by 

error   , and     is related to the independent variable    by the following equation: 
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Substituting in (3.1) we get:                                                                          (3.3) 

Where the data set is given as:                  
   and the          represent 

independent and normally distributed additive error components with mean of zero and 

unknown variance   . The parameters    and    are also unknown and should be 

computed from the training data using the least square method. For convenience, we 

write Equation (3.2) in a vector form as: 

                                                                                                                                   

Where, 

 

  

 

 
 

  
  
  
 
   

 
 
   

 

 
 

         
   
  
 

   

 
  
 
 

 
  
 
 

    
  
  
  

     

 
 
   

 

 
 

  
 
  
  
 

 
 
   

 

 
 

  
  
  
 
   

 
 

 

3.2   THE LEAST SQUARE METHOD (LSM) 

Before discussing the use of LSM in linear regression let's start by stating a more 

broad definition of LSM. 

Definition: The method of least square is a standard approach to the approximate 

solutions of over-determined systems, i.e., sets of equations in which there are more 

equations than unknowns.  'List squares' mean that the overall solution minimizes the 

sum of the squares of the errors made in the result of every single equation. [34] 

Training the linear regression model involves estimation of the parameters    and  

   in (3.2). In a simple linear regression model the estimation of those parameters can be 

viewed as fitting the best straight line on the scatter plot like in Fig. 3.1. The least square 
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method is a method of estimating regression parameters that minimizes the residual sum 

of squares (also called overall discrepancy), which is given by [9]: 

 

                                                                               

Where, the predicted response involves the unknown parameters      , and the parameter 

values thus determined are called the least square estimates. 

Given a set of the training input-output pairs, {        ,        , …        }, 

we can estimate the parameters β using a least square method. We want to compute a 

value of β that minimizes the residual sum of squares, which is given as: 

 

                           
 

 

   

              

 

   

 

 

   

 

                                       

If the data of input dimension d, and length N is arranged as follows: 

 

           

 
 

          
          

 
 

 
   

      
       

               

  
  
 
  

          

 
 

 
   
   
 
    
 

 

,           (3.7) 

Then the residual sum of the square can be written as: 

 

                                                                                                            

The value of β that minimizes the residual square of sum is computed by setting 

the derivative of equation (3.8) to zero and the resulting coefficient vector    is given as: 
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Prediction: The goal of regression analysis is to estimate the response 

corresponding to a specified value of the input variable.  

 

                                                                                 

After computing the least square estimate of the parameter using (3.9), the prediction at 

an unseen input matrix    can be computed as: 

 

                                                                            

For example, suppose we only have a single input variable x, and we want to predict the 

electricity consumption y for a specified input variable   . The expected response at a 

value    of the independent variable x is given as follows: 

 

                                                                                                                        

An unbiased estimator of (3.12) will be:        , where: 

    is the least square estimate of   and is given by:            , 

    is the least square estimate of   and is given by:    
               

        
  

   

  
   

A validation test for LR model: The validity of the linear regression model 

evaluated by examining how much of the variation in the values of the response variable 

can be explained by the linear model. After computing the least square estimates    and   , 

we can view any observed    as consisting of the following two components [9]: 

 
  

                 
         

               
 

            
                 

                    

If the residuals (the last component in (3.13)) are all zero which is an ideal situation of 

perfect fit, we can say that all the observations are explained by the linear model. By 

representing the overall deviation from linearity as the squared sum of the residuals: 
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Here,   
            is the total variability of y and SSE stands for sum of squares due 

to error. By computing for   
  from (3.14), we obtain the following [9]: 

 

  
 

          
     

         
    

 

     
 

          
            
               

 

   
        

           
     

                     

 

If the linear regression model provides a god fit for the data, the last term in the 

above equation (the SSE) will be close to zero. An index that measure how well the linear 

model fits the data is given as a ratio of the SS explained by linear relation and the total 

SS in y as follows: 

                          
     

 

  
 

 
   
 

  
   

 
                                       

Here we can see that r is equivalent to the sample correlation coefficient discussed in 

section 2.2 and    close to 1 means the linear regression is a valid model for the given 

problem. 

3.3   IMPLEMENTATION 

The feature vector (FV) for LLR comprises 7 variables and it is similar to the FV 

used for GPs. 

                                                          

                                                                                    

The kNN similarity search was applied to the 7 dimensional candidate training 

sets to select k closest points to a query point (i.e., the test inputs from LLR's 

perspective). After experimenting for different k values, we picked      as an optimal 



 

 

 

Short-term Forecasting of Electricity Consumption Using Gaussian Processes 

 

 

30 

 

k value. Thus the training input to the LLR model is a 75 7 matrix form. Algorithm 3.1 

illustrates how the proposed model works. 

 

Algorithm 3.1: Local Linear regression (LR) model for 24 hour prediction 

1. Input data for selected features and EC, the value of k 

2. do 

a. specify the test point and the candidate training set 

b. select k closest points to the test point from candidate training sets using 

kNN search 

c. use the output from 4 as training set for LR 

d. compute the regression parameters using LSM 

e. predict EC at t + counter (i.e., compute                     ) 

f.                                                 (we use the 

predicted value as previous hour value on the next iteration) 

g. increase counter by 1 

3. while (counter<=24) 

4. Output: return predicted electricity consumption for the next 24 hours 

 

 

Because of its strong influence on 'current' EC, we considered the previous hour 

EC as one of the features. However the requirement from the company (Eidsiva Energy) 

demands prediction over 24 hours ahead and we don't know what the previous hour EC 

was, for the rest of the prediction period except for the first hour of the prediction period. 

Thus, we designed an iterative model in which we predict the next hour EC, and append 

it to the previous hour EC column for the next prediction. In addition to picking the 

previous hour EC, this recursive implementation allows us to apply local regression to 

data points closest to a single prediction point.  
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4 Neural Networks 

A Neural network (NN) is an information processing structure that is inspired by 

the way human brain processes information. An NN consists of simple processing units 

called neurons, which communicate by sending signals to each other over a large number 

of weighted connections. Neural networks develop information processing capabilities by 

learning from examples. The learning process comprises adapting the network in a way 

that it will produce the correct output for the set of examples. The resulting network then 

generalizes the knowledge to unseen situation when presented with cases not found in the 

set of examples. [29][13] 

4.1   MATHEMATICAL MODEL OF NEURAL NETWORK 

A simple neuron model: The fundamental building block for neural networks is 

a neuron – a programming construct that mimic the properties of biological neurons. A 

single neuron model, shown in Fig. 4.1, consists of three distinct functional operations: 

 The weight function – input multiplied by weight 

 The net input function – sum of weight function and the bias, and 

 The activation function  – computes output from net input 

                                                                      

                                                                              

                         

                                                         

                    Fig. 4.1: A simple neuron model 
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Where, I is input, w represents weight, b represent bias, n is net input, O is output and f 

represents an activation function. The weights are numbers that change as neural network 

learns. A mathematical model of multiple inputs NN is given as follows: 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2 [29]: Mathematical model of a neural network  

   , in the above Figure, represents the weighted sum of inputs given by: 

 

                                      

 

   

                                                                  

The output of the neuron    is computed from the    and threshold    through the 

activation function block. Thus, the net input to activation function will be: 
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Assuming the TANH activation function is used, the activation value (output) of unit k is 

given by: 

                                     
        

        
                                                           

4.2   ACTIVATION FUNCTIONS 

An activation function controls the amplitude of the output. They are used to scale 

data output from a layer. We will discuss three commonly used activation functions 

namely: hyperbolic tangent function, sigmoid function and linear function.  

The Sigmoid Activation Function: A sigmoid activation function takes input of 

any value and scales the output into the range 0 to 1. Sigmoid function returns only 

positive values, and it is represented by the following formula:   

 

                                           
      

                                                                         

Hyperbolic Tangent Activation Function: As mentioned previously, the 

sigmoid activation function does not return values less than zero. The hyperbolic tangent 

activation function takes input of any value and scales the output into the range -1 to 1. 

This activation function is useful particularly when keeping the sign of input data is 

important. The TANH function is given as: 

 

                                    
     

     
                                                              

Linear Activation Function: A less commonly used activation function is linear 

function, and is defined as follows: 
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However, the practical application of linear activation function is limited, since it simply 

passes the input without modifying. 

 

 

Fig.4.3: Activation functions (a) Sigmoid, (b) Hyperbolic tangent (c) linear 

4.3   NEURAL NETWORK ARCHITECTURE 

While studying a single neuron could be useful to understand the basic concept, 

most of the real life applications require a number of interconnected neurons. A neural 

network consists of three types of units: 

 The input units – receive data from outside of the NN. 

 The hidden units – both the input and output data from those units remain within 

the NN. 

 The output units – sends data from the NN to the outside world. 

Feedforward neural network: In feedforward neural networks, neurons are only 

connected forward as shown in Fig 4.4. Each layer of the neural network contains 

connections to the next layer but there are no connections back. Thus the data flow from 
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input to output unit is strictly in the forward direction. An alternative topology to 

feedforward NN is the recurrent NN, which contains feedback connections. Contrary to 

the feedforward networks, the dynamic properties of the network are important in 

recurrent NNs. [3][29][13] 

 

  

 

                                                                                               

 

 

 

 

Fig.4.4: Feedforward Neural Network with one hidden layer   

Layers, synapses, and weight matrix: Neural networks are made up of layers; a 

layer in turn is a collection of similar neurons. Layers are connected with one another 

through synapses and hold an array of threshold values −one threshold value for each of 

the neurons in the layer. The synapses contain the weight matrix, which allows the 

connections between each of the source layer neurons to have its connections weighted to 

the target neuron layer. The NN learns by adjusting the weights and the threshold. [37]  

The weight matrix W between two layers is given by: 

 

                           

          

   

 
   

   

 
   

 
 
 

   

 
   

                                                 (4.8) 
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Where, k is number of elements in source layer and s is the number of neurons in the 

target layer. The row indices on the elements of matrix W indicate the destination neuron 

of the weight, and the column indices indicate the input source for the weight. [6] 

Designing NN Architecture for a particular application: The performance of a 

neural network is highly influenced by the number of hidden layers and number of 

neurons in each hidden layer. Though the hidden layers do not directly interact with 

external environment, they have a tremendous influence on the final output. Therefore, 

both the number of hidden layers and the number of neurons in each of these hidden 

layers should be carefully considered. Unfortunately, there exists no strict rule to follow 

and therefore we need to experiment by considering different options and observing the 

performance of each option. The following are some of tips that we can use as a starting 

point when deciding the number of hidden layers and number of hidden neurons [3]: 

 NN with one or two layers work for most practical problems 

 The number of hidden neurons should be between the size of the input layer and 

the size of the output layer 

 The number of hidden neurons should be     the size of the input layer plus the 

size of the output layer 

 The number of hidden neurons should be less than twice the size of the input 

layer. 

4.4   TRAINING NEURAL NETWORKS 

After the network has been configured, as in Section 4.3, the network parameters 

(i.e., weights and threshold) need to be adjusted, in such a way that the network 

performance will be optimized. This process is referred to as training the network. There 
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are two forms of training that can be employed in NNs, supervised and unsupervised 

trainings. In unsupervised training the NN is provided with training sets, but not with 

anticipated outputs. On the other hand, supervised training involves providing the NN 

with both training sets and the anticipated outputs. In this thesis both the training inputs X 

and the anticipated outputs y are provided and thus we will focus on supervised training. 

 Supervised training: In supervised training, the neural network adjusts the 

values in the weight matrix based on the differences between the expected output and the 

actual output. The exact process of learning in NNs is determined by the learning 

algorithm used. Some of the commonly used supervised learning algorithms are: 

backpropagation, simulated annealing and genetic algorithm. Error calculation is also an 

important part of training NNs and all training algorithms are aimed at reducing the rate 

of error. In determining the error rate, two error values need to be computed:  

 the error for each element of the training set as it is processed, and 

 the average of the errors for all of the elements of the training set across each 

sample 

 

 

 

 

 

 

 

Fig.4.5: Supervised training of neural network  
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Computation of the values of the weight matrix involves many steps in the 

training process. It begins by creating a random weight matrix. An output error is then 

calculated for each element of the training set, and is used as a steppingstone in the 

calculation of the total error for the entire training set. The error function represents the 

performance of the network and is used by supervised learning algorithms for iterative 

optimization. [3] 

The Backpropagation Algorithm: One of the most popular supervised learning 

algorithms for feedforward NNs is the backpropagation. The backpropagation algorithm 

uses a gradient-descent technique to minimize the error function. The values used to 

adjust the weight matrix are obtained by calculating the partial derivative of the error 

function with respect to each weight    . This gives a gradient vector representing the 

steepest increasing direction in the weight space. [13][38]  

Error function is used to calculate the error between the ideal and actual output of 

a neural network. Assuming that we have N training input points and a single output unit, 

the error for each training point p is given by: 

 

                                                      
                                                       

Where, ‘actual’ represents the actual output and ‘ideal’ is for ideal/anticipated output. 

Thus, the total error is given as: 

 

                                      
 

 
                 

 

 

   

                                              

The actual weight update values at iteration t are computed using the following 

equation: 
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Where,     is the weight between source neuron i and destination neuron j; and   is a 

value between 0 and 1, which represents learning rate (or the step size). The   represents 

the momentum term that determines how much influence the previous iterations' learning 

will have on the current iteration's update. Momentum is used to prevent a training 

algorithm from getting trapped in a local minimum. 

  

Algorithm 4.1: The backpropagation training algorithm 

1. Input: training data, the learning rate  , and momentum parameter   

2. Create a random weight matrix 

3. Input the training data 

4. set the step size and momentum 

5. Do 

a. Compute the output for each layer and units in a forward 

direction 

b. Calculate errors between the ideal and actual output at the output 

neuron 

c. Compute the weight update values for each of the preceding 

layers by back propagating the error  

d. Adjust the weights based on c 

e. Increase epoch counter by 1 

6. While (epoch < max_Epoch) && (Error > min_Error) 



 

 

 

Short-term Forecasting of Electricity Consumption Using Gaussian Processes 

 

 

40 

 

The Resilient Propagation (RPROP) algorithm: This is the learning algorithm 

we used in this thesis. The RPROP is a local adaptive learning scheme, which performs 

batch learning in feed-forward neural networks. The basic principle of RPROP is to 

eliminate the harmful influence of the size of the partial derivative on the weight step. 

The RPROP algorithm considers only the sign of the derivative to indicate the direction 

of the weight update and the size of the weight update is solely determined by an 

individual update value         for each weight     . The evolution of the update value 

       is determined by a second learning rule, which is based on the observed behavior 

of the partial derivative during two successive weight-steps given by: [13] 

 

             

 
 
 

 
                          

  

    

    
  

    

       

                         
  

    

    
  

    

       

                                                                      

                         

Where 0 <    < 1 <    

As can be seen from (4.12), the change in sign of the partial derivative of weight 

    shows that the last update was too big and the algorithm has jumped over a local 

minimum, thus the update value      is decreased by the factor    . On the other hand, if 

the derivative retains its sign, then it shows that the update value is slightly increased to 

accelerate convergence in shallow regions. [13] The rule for the weight update itself is 

given as follows: 
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Equations (4.13 & 4.14) model rule for updating the weight, which can be interpreted as:  

 If the derivative is positive, this shows increase in error value, the weight decrease 

by its update value. 

 If the derivative is negative, the weight increases by the update value. 

 Otherwise the weight will be left unchanged. 

4.5   IMPLEMENTATION 

To implement neural networks for STFEC, we used a C# library known as Encog. 

The usage of Encog framework is explained in [37] & [38]. Multi layered feed forward 

NN was implemented with the following parameters: 

 8 inputs neurons,  

 4 hidden layers with 7 neurons in each, and  

 1 output neuron  
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Fig.4.6: A feedforward neural network for electricity consumption prediction 
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In this implementation, the error function is computed using root mean square 

errors, and the resilient propagation (RPROP) algorithm is used to train the network. As 

shown in Fig. 4.8, the feature vectors are quite different from the one used in LLR and 

GPs. This is because training NNs is quit complex compared to LLR and GPs. To use the 

predicted EC as previous hour EC in training, the training process should be updated for 

every predicted EC value. The initial weight matrices are random (see Algorithm 4.1) and 

the number of iterations that minimize the average prediction error is unknown (it 

changes every time we train the network). A more practical way of using Feedforward 

RPROP NN is by performing a series of training and validation tests and save the 

network with best performance. NNs are strong at learning patterns; therefore a well 

tested and optimized NN can be used for long period of time. 
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5 Gaussian Processes 

As mentioned in previous two sections, regression is a process of estimating the 

underlying function      that maps a set of inputs x to target y. In linear regression 

model we assumed this function to be linear and the least square method is used to 

compute the parameters from training data. The underlying function may also be assumed 

to be quadratic, cubic or even non-polynomial. The problem of such models is explained 

in Rasmussen [1] stating that "if a model based on a certain class of functions is used and 

the target function is not well modeled by this class, then the prediction will be poor."  

Gaussian processes, on the other hand, are a family of stochastic processes that 

deal with more than one possible reality of how a process might evolve. Rather than 

assuming a particular deterministic function (path), GPs consider probability of other 

paths that a process may follow. GPs learn the most probable path from the data − a 

desirable flexibility that reduces errors caused by wrong assumption of the underlying 

function. 

5.1   GAUSSIAN PROCESS REGRESSION 

The definition of GPs is given in Rasmussen [1][4] as: A Gaussian process is a 

collection of random variables, any finite number of which have consistent joint 

Gaussian distributions. A GP is fully specified by its mean function      and the 

covariance function          : 
 

                                                           2                                                    

                                                 
2 The function f is distributed as a Gaussian Process with mean function      and covariance 

function        . 
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Where the mean function      and the covariance function         are given 

respectively as: 

                                                                                                                

                                                                                
 

If we let the mean function to be zero, Bayesian linear regression model will be: 

 

                                                                                        

By substituting equation (5.4) into (5.3) we obtain: 

 

                                                
              

                                                                                                         

This shows that      and       are jointly Gaussian with zero mean and covariance 

         
    

Assuming noise free observations, i.e., known {               }, the joint 

distribution of the training outputs, f, and the test outputs f* according to the prior is 

given as: 

             
 
  
       

             
               

                                           

 

To prediction we need to compute the posterior distribution over functions after 

observing the data. In this case we only consider those joint prior distributions that agree 

with the observed data points. That means, the posterior distribution will be the 

probability of function values f* at test input X* given the training input X, the test input 

X* and observation f (here the observation y is represented as f because of the noise free 

assumption). Thus, the posterior distribution can be written as: 
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However, in most realistic modeling the function f itself is not known in advance. 

Instead, we only know the noisy version y which is given as: 

 

                                                                                                                 

Under noisy observation, the mathematical modeling for prior and posterior 

distribution is similar to the one given under noise free observation, except that we 

substitute the y (noisy version) for f and,          
   for       . Where 

  
 variance of additive independent identically distributed Gaussian noise    Thus, the 

predictive distribution is given as: 

 

                                                                                 

Where the mean and covariance functions are given by: 

 

                                          
                                           

                                    
                           

From the above equation, we can notice the following concepts [1]: 

 The predictive covariance function      is independent of the observation y, 

while the predictive mean       is a linear combination of observations y. 

 The predictive covariance       is given as the difference between two terms:  

i. the prior covariance of test input          minus  

ii. a positive term                  
             

This shows that when the test input X* is far away from the training input X, the 

positive term becomes almost zero and the predictive covariance becomes almost 
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the same as the prior covariance. This means, when the training input is far away 

from the test input its contribution to prediction becomes almost negligible. This 

concept is vital to understand how the proposed kNN similarity search selects the 

most relevant training inputs for a given GP test cases.  

 

To make predictions we find a posterior density over the latent variables and then 

integrate over that posterior density. The marginal likelihood is equal to the integral over 

the product of the likelihood function and the prior density. For Gaussian likelihood, the 

product of two Gaussians will be Gaussian and the integral can be solved analytically. 

Thus, the Gaussian likelihood is given by [12]: 

 

                                                                                         

                                                                                                                  

                                      
 

    
 
        

 
 

     
 

 
                            

 

Where K is an n×n covariance matrix, θ is hyperparameters and σ represents the noise 

variance. By computing the logarithm of (5.15), we get the log marginal likelihood: 

 

                
 

 
      

 

 
           

 

 
                        

5.2   COVARIANCE FUNCTIONS 

A covariance function comprises our assumptions regarding the underlying 

function that we wish to learn, and it is an important ingredient in GP predictor. As was 

stated in Chapter 1, the goal of supervised learning is to infer the input−output mapping 

from an empirical data. Under such circumstances, the notion of similarity between data 
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points is crucial and the covariance functions in GP define the closeness/similarity 

between data points [1]. 

Several alternative covariance functions have been used in GPs. The most widely 

used (also implemented in this thesis) is the squared exponential (SE) covariance function 

which is given as: 

 

                                           
      

   
                                              

Where   &    are hyper parameters. The   controls the smoothness of the curve while   

represents the characteristic length scale. The SE covariance function is stationary 

(invariant to transition, i.e.,                ) and infinitely differentiable.  

A non-stationary covariance function that can be useful to deal with problems 

known to be periodic is the periodic covariance function. Mathematically given as: 

 

                                  
      

    

  

  
                                              

Some of other covariance functions are listed as follows: 

 Seasonal trend (quasi-periodic smooth): expressed in Rasmussen [1] as it was 

used for     prediction to model seasonal trends when the period is quite long 

(e.g. period = one year). 

 Matern class covariance function is recommended as an alternative to the SE 

kernel because such strong smoothness as in SE is unrealistic for modeling of 

many physical processes. Mathematically defined as: 
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Where, v and l are positive parameters and    is a modified Bessel function. 

 Short- and medium-term anomaly (rational quadratic) 

Some problems are best modeled by combination of covariance functions instead 

of one particular covariance function. As stated in [27], constructing new covariance 

from old ones could improve prediction accuracy. There are several ways to do so, for 

example sum, product, and convolution of covariance functions can be used. 

5.3   LEARNING HYPERPARAMETERS 

As discussed in Section 5.2, a GP prediction model relies on the covariance 

function. However, we do not know a priori the most appropriate hyperparameters and 

noise variance [12]. One way of learning the appropriate hyperparameters is to think the 

marginal likelihood in (5.13) as the likelihood of the hyperparameters   and noise 

variance   , and then to find the values of    and    that maximize the likelihood. Once we 

found the maximum likelihood hyperparameters     and maximum likelihood noise 

variance    
 , we can substitute    and    

  in place of   and    respectively in 

Equation (5.10). 

In this thesis we used an approach known as maximum a posteriori (MAP), which 

is close to the maximum likelihood, but in MAP we incorporate our prior belief about the 

hyperparameters and noise variance in the learning process. This can be done by finding 

the posterior density over the hyperparameters and noise variance as follows [12]: 
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As can be seen in (5.20), the posterior density is proportional to the likelihood 

function times the prior density. Instead of maximizing the likelihood function (as in 

maximum likelihood approach), we find the hyperparameters and noise variance that 

maximize the posterior density. The values found in this way are referred to as maximum 

a posterior (MAP), and prediction is given by substituting      for   and     
  for    in 

equation (5.10). 

Another alternative approach is the Markov Chain Monte Carlo (MCMC), which 

is used to simulate the posterior distribution by numerically generating a set of samples. 

This method is not implemented in this thesis and we will not discuss it here, but 

interested readers can refer Boyle [12] & Vanhatalo et al [2] for more detailed 

information about the MCMC.   

5.4   WORKING WITH LARGE DATASETS 

The challenges with using naïve implementation of GP models are the fast 

increasing computational and memory requirements. The evaluation of the inverse and 

determinant of the covariance matrix in marginal likelihood, Equation (5.15), and its 

gradient scales as       in time, where n is the number of training samples. This limits 

the applicability of GPs to moderate size data sets [2][1]. 

In recent years, dozens of research papers have come out suggesting different 

ways of handling larger data in GP models. Given the importance of including sufficient 

data during the training process and the powerfulness of GPs for regression, this is not a 

surprise. Làzaro-Gredilla 2010 [5] is one of the recent works which proposed an 

algorithm called Sparse Spectrum Gaussian Process (SSGP). The main idea of SSGP is to 
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'sparsify' the spectral representation of the GP, resulting in reduced computational cost: 

from       to       , where m is the number of spectral points. 

In this thesis, we used a novel approach, in which kNN similarity search 

algorithm (explained in Section 2.3) was implemented to select 'k' training sets, among n 

training candidates, that are closest to a given query point. This reduces the 

computational requirement from       to      , where k is a constant in the kNN 

similarity search algorithm representing the number of closest points we want to retrieve.  

5.5   IMPLEMENTATION 

For the implementation of GPs we used the kernel functions provided by GPStuff 

toolbox (detail about GPStuff can be found in [2]). Particularly we used the squared 

exponential covariance function and Gaussian likelihood. Optimum hyperparameters are 

computed using maximum a posteriori (MAP). 

The features that determine the input dimension are selected by using methods 

discussed in Section 2.1.3. We selected 7 variables that give optimum performance: 

                                               

                                                       

To predict 24 hours ahead as required by Eidsiva energy, but at the same time to 

include the previous hour EC as one of the features, we used recursive prediction that is 

similar to the one discussed in Section 3.3. The kNN similarity search was applied to the 

7 dimensional candidate training sets, to select k closest points to a given query point (test 

inputs from GP's perspective). After experimenting for different k values, we picked 

      as an optimal k value. Thus the training input to the GPs is a 700 7 matrix 

form. Algorithm 5.1 illustrates how the proposed model works. 



 

 

 

Short-term Forecasting of Electricity Consumption Using Gaussian Processes 

 

 

51 

 

Algorithm 5.1: Gaussian processes (GPs) with kNN similarity search: 24 hour ahead 

prediction 

1. Input data for selected features and EC, the k value, prior hyperparameters, 

type of the kernel function 

2. do 

a. specify the test inputs and the candidate training set 

b. Apply the kNN search algorithm to select k closest points to the test 

points 

c. use the output from 4 as training set for GP 

d. compute prior distribution on hyperparameters 

e. compute the posterior density over hyperparameters and noise variance 

f. find the hyperparameters and noise variance to maximize the posterior 

density 

g. use the maximum a posteriori (MAP) values from f in predictive 

distribution 

h. predict EC at t + counter (i.e., compute                     ) 

i.                                                 (we use the 

predicted value as previous hour value on the next iteration) 

j. increase counter by 1 

3. while (counter<=24) 

4. Output: return predicted electricity consumption for the next 24 hours 
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6 Experimental Results 

In this chapter we will present results of our experiments with brief explanations 

of figures and parameters in the figure. The discussion and conclusion are kept for the 

next Chapters.    

6.1   EXPERIMENTAL SETUP 

Dataset: We used an hourly empirical data from 01.01.2008 to 13.02.2011, which 

is provided by Eidsiva Energy. The experiments are conducted by dividing the dataset 

into training set and test set. All the experimental results represent observations of tests 

from 01.01.2010 to 13.02.2011, except for the experiment in Section 7.1 which is result 

of tests on dataset from 24.01.2011 to 13.02.2011.  

         Table 6.1: Parameter settings 

 Chosen value Studied range 

k in the kNN similarity search 700 for GP, 75 for LR 1  2000 

Number of hidden layers in NN 4 1   6 

Number of neurons in each layer 7 4  20 

 

Performance evaluation: The performances of the predictors are evaluated by 

using the following empirical measures:  
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The correlation coefficient between the actual EC and the predicted EC is given by: 

    
                                                            

                             
                                          

   

 

   

           

6.2   EVALUATION OF THE PREDICTORS 

In this Section we will present plots of the experimental results of the three 

predictors: NNs, GPs, and LLR. The plots for each predictor are one to one, and we can 

compare the methods visually by observing the deviation of predicted values from actual 

values in each corresponding plots. By comparing the plots under Section 6.2.2 with the 

corresponding plots under Sections 6.2.1 & 6.2.3, we can seek answer to one of the 

research questions that states: How the performance of GPs is compared with the 

state-of-the-art models like NNs and LLR models?  

6.2.1 Neural Networks 

 

 

Fig.6.1 Neural network plot over 9814 test points.  
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Fig. 6.1 (a) shows plot of actual and predicted EC. Fig. 6.1 (b) shows the discrepancy 

between the actual values and predicted values. The performance of the NN can be 

evaluated by observing how close the predicted values (red curve) are to the actual values 

(blue curve). The discrepancy is measured by absolute percentage error, from which we 

can see the distribution of the errors over the whole test period. We can also see how the 

electricity consumption (EC) is distributed throughout the year. The prediction starts 

from January and we can see that the lowest consumption occurs at about the midpoint of 

the curve which represents summer time electricity consumption. In addition to the 

seasonal variation, we can also observe some local variations which may represent daily 

EC trend but not very clear in this figure. The rest of the plots will let us closely observe 

the trends over a shorter period like 24 hours of day, 7 days of week, or days of year, etc. 

 

 

Fig.6.2 Neural network plot over 24 hours of day 

The mean predicted and actual values at hour k are given by: 
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Fig. 6.2 (a) shows plot of predicted and actual EC vs. 24 hours of day. Fig. 6.2 (b) shows 

the discrepancy of predicted EC from actual EC. Here, we can see the EC variations 

throughout 24 hours of day. For instance, minimum consumption at around 5AM and 

peak at about 11AM. By observing the variations of the absolute percentage error and the 

closeness of the reed curve to the blue curve, we can seek answer to one of the research 

questions: how the NN respond to changes in hours of a day.  

  

 

Fig.6.3 Neural network plot over 400 days  

The average predicted and actual values at day d are given by: 

         
 

  
    

  

   

                        

Fig. 6.3 (a) shows plot of predicted and actual EC. Fig. 6.3 (b) shows the deviation of 

predicted EC from actual EC. By observing the error plot and the closeness of the red 

curve to the blue curve throughout days of year, we can answer one of the research 

questions: how the NNs respond to variations in days of a year? 
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Fig.6.4: Neural network plot over 7 days of a week 

The average predicted and actual values at day of week k are given by: 

         
 

 
    

 

   

                       

                                          

                                                        
 

 Fig. 6.4 (a) shows plot of predicted and actual EC. Fig. 6.4 (b) shows the discrepancy of 

predicted EC from actual EC. Here, we can see the variation of EC in relation to days of 

week. For instance, the maximum EC is observed on Wednesday (day 3 in the figure) and 

minimum on Sunday (day 7). By observing the error plot variation from Monday to 

Sunday, we can answer one of the research questions: how the NN perform under 

different days of week? 

  

Fig. 6.5(a) shows plot of predicted and actual EC. Fig. 6.5(b) shows the discrepancy of 

predicted EC from actual EC.  Here, we can see the distribution of errors from the first 

week in January 2010 to the second week in February 2011.  
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Fig.6.5: Neural network plot over 57 weeks  

The average predicted and actual values at week k are given by: 

         
 

 
    

 

   

                                  

6.2.2 Gaussian Processes 

The plots in this section are one-to-one with the plots in Section 6.2.1 & 6.2.3, 

and we can compare the models by observing the corresponding plots in other sections. 

 

 

Fig.6.6: Gaussian process plots over 9624 test points.  
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Fig. 6.6 (a) shows plot of predicted and actual EC. Fig. 6.6 (b) shows the deviation of 

predicted EC from actual EC. Here also we can see seasonal variation of electricity 

consumption, and the distribution of error throughout the test period. These plots can be 

compared with plots in Fig. 6.1 & 6.11, to evaluate the performance of GPs against NNs 

and LLR models. 

 

Fig.6.7: Gaussian process plots over 24 hours of day. 

 Fig. 6.7 (a) shows plot of predicted and actual EC. Fig. 6.7 (b) shows the magnitude of 

deviation of predicted EC from actual EC. We can also observe the distribution of this 

deviation with respect to 24 hours of day. These plots can be compared with plots in Fig. 

6.2 & Fig. 6.12, to evaluate the performance of GPs against NNs and LLR models based 

on the magnitude and distributions of errors over 24 hours of day.  

 

Fig. 6.8 (a) shows plot of predicted and actual EC. Fig. 6.8 (b) shows the magnitude of 

deviation of predicted EC from actual EC. Here, we can see the variation in electricity 

consumption throughout days of year. These plots can be compared with plots in Fig. 6.3 

& Fig.6.13, to evaluate the performance of GPs against NNs and LLR models based on 

the magnitude and distribution of errors over seasons of year. 
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Fig.6.8: Gaussian process plots over 400days.  

 

Fig.6.9: Gaussian process plots over 7 days of week. 

 Fig. 6.9 (a) shows plot of predicted and actual electricity consumption. Fig. 6.9 (b) 

shows the deviation of predicted EC from actual EC. Here we can see the variation in 

electricity consumption and distribution of errors over days of week (i.e., from Monday 

to Sunday). These plots can be compared with plots in Fig. 6.4 & Fig.6.14, to evaluate the 

performance of GPs against NNs and LLR models based on the magnitude and 

distribution of errors over days of week. 
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Fig.6.10: Gaussian process plots over 57 weeks 

 Fig. 6.10 (a) shows plot of predicted and actual EC. Fig. 6.10 (b) shows the Absolute 

percentage error. These plots can be compared with plots in Fig. 6.5 & Fig.6.15, to 

evaluate the performance of GPs against NNs and LLR models based on the magnitude 

and distribution of errors over weeks of year. 

6.2.3   Local Linear Regression Model 

This Section presents plots that help us to evaluate the performance of LLR 

model. We can also compare with the corresponding plots in Sections 6.2.1 & 6.2.2. 

 

Fig.6.11: Local linear regression plots over 9624 test points.  
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Fig. 6.11 (a) shows plot of predicted and actual EC. Fig. 6.11 (b) shows the deviation of 

predicted EC from actual EC. These plots visualize the distribution of electricity 

consumption and prediction errors throughout the test period for the LLR model. 

 

Fig.6.12: Local linear regression plots over 24 hours of day.  

Fig. 6.12 (a) shows plot of predicted and actual electricity consumption. Fig. 6.12 (b) 

shows the deviation of predicted EC from actual EC. These plots visualize the 

distribution of electricity consumption and prediction errors over 24 hours of day for the 

local linear regression model. 

 

Fig.6.13: Local linear regression plots over 400 days. 
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 Fig. 6.13 (a) shows plot of predicted and actual EC. Fig. 6.13 (b) shows the deviation of 

predicted EC from actual EC. These plots visualize the distribution of electricity 

consumption and prediction errors days of year for the local linear regression model. 

 

 

Fig.6.14: Local linear regression plots over 7 days of week. 

Fig. 6.14 (a) shows plot of predicted and actual EC. Fig. 6.14 (b) shows the deviation of 

predicted EC from actual EC. These plots visualize the distribution of electricity 

consumption and prediction errors over days of week for the LLR model. 

 

 

Fig.6.15: Local linear regression plots over 57 weeks.  
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Fig. 6.15 (a) shows plot of predicted and actual EC. Fig. 6.15 (b) shows the deviation of 

predicted EC from actual EC. These plots visualize the distribution of electricity 

consumption and prediction errors over 57 consecutive weeks for the local linear 

regression model. 

6.3   EFFECT OF FORECASTED TEMPERATURE 

Electricity consumption is highly influenced by temperature. When we consider 

test input to predict EC 24 hours ahead, we don't know the actual temperature in that 

period and we should take the forecasted temperature as one of the input variables. Thus, 

it is important to analyze additional discrepancy caused by the error of temperature 

predictor. We can analyze this effect for GPs by comparing the plots in this section with 

the corresponding plots in Section 6.2.2. The effect of discrepancies in temperature 

predictor for NNs and LLR are also summarized in Table 7.2.    

  

 

Fig.6.16: Gaussian process plots over 9624 test points, with forecasted temperature.  
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Fig. 6.16 (a) shows plot of predicted and actual EC. Fig. 6.16 (b) shows the deviation of 

predicted EC from actual EC. We can compare these plots with the corresponding plots 

in Fig. 6.6 to evaluate the effect of errors in forecasted temperature on the performance of 

GPs over the whole test period. 

 

 

Fig.6.17: Gaussian process plots over 24 hours, with forecasted temperature.  

Fig. 6.17 (a) shows plot of predicted and actual EC. Fig. 6.17 (b) shows the deviation of 

predicted EC from actual EC. By comparing these plots with the corresponding plots in 

Fig. 6.7, we can evaluate the effect of errors in forecasted temperature on the 

performance of GPs over 24 hours of day. 

 

Fig.6.18: Gaussian process plots over 400 days, with forecasted temperature.  
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Fig. 6.18 (a) shows plot of predicted and actual EC. Fig. 6.18 (b) shows the deviation of 

predicted EC from actual EC. We can compare these plots with the corresponding plots 

in Fig. 6.8 to evaluate the effect of errors in forecasted temperature on the performance of 

GPs over days of year. 

 

 

Fig.6.19: Gaussian process plots over 7 days of week, with forecasted temperature.  

Fig. 6.19 (a) shows plot of predicted and actual EC. Fig. 6.19 (b) shows the deviation of 

predicted EC from actual EC. We can compare these plots with the corresponding plots 

in Fig. 6.9 to evaluate the effect of errors in forecasted temperature on the performance of 

GPs over 7 days of week. 

 

Fig. 6.20 (a) shows plot of predicted and actual EC. Fig. 6.20 (b) shows the deviation of 

predicted EC from actual EC. We can compare these plots with the corresponding plots 

in Fig. 6.10 to evaluate the effect of errors in forecasted temperature on the performance 

of GPs over weeks of year. 
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Fig.6.20: Gaussian process plots over 57 weeks, with forecasted temperature. 

6.4   FEATURE VECTORS FOR NNS 

In order to include the previous hour EC in the feature vector in NNs, as we did in 

GPs and LLR models, we used a two-step prediction: 

 In the first step, we predict using other features (i.e., excluding the previous hour 

EC).  

 We train the network by including the previous hour EC, and used the predicted 

values from step 1, with one hour lag (t-1), as one of the test inputs during 

prediction.  

The performance of this approach can be evaluated against the normal (one-step) 

approach by comparing plots in this section with the corresponding plots in Section 6.2.1. 

Moreover, the mean absolute percentage errors (MAPE) for both approaches are given in 

Table 7.2. 
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Fig.6.21: Neural networks: two-step prediction plot over 9814 test points.  

Fig. 6.21 (a) shows plot of predicted and actual EC. Fig. 6.21 (b) shows the deviation of 

predicted EC from actual EC. We can compare these plots with the corresponding plots 

in Fig. 6.1 to evaluate the performance of 'two-step' NN with the normal (one-step) NN 

over the whole prediction period. 

 

Fig.6.22: Neural networks: two-step prediction plot 24 hours of day. 

Fig. 6.22 (a) shows plot of predicted and actual EC. Fig. 6.22 (b) shows the deviation of 

predicted EC from actual EC. We can compare these plots with the corresponding plots 
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in Fig. 6.2 to evaluate the performance of 'two-step' NN with the normal (one-step) NN 

over 24 hours of day. 

 

Fig.6.23: Neural networks: two-step prediction plot over 400 days. 

Fig. 6.23 (a) shows plot of predicted and actual EC. Fig. 6.23 (b) shows the deviation of 

predicted EC from actual EC. We can compare these plots with the corresponding plots 

in Fig. 6.3 to evaluate the performance of 'two-step' NN with the normal (one-step) NN 

over days of year. 

 

Fig.6.24: Neural networks: two-step prediction plot over 7 days of week.  
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Fig. 6.24 (a) shows plot of predicted and actual EC. Fig. 6.24 (b) shows the deviation of 

predicted EC from actual EC. We can compare these plots with the corresponding plots 

in Fig. 6.4 to evaluate the performance of 'two-step' NN with the normal (one-step) NN 

over the 7 days of week. 

 

Fig.6.25: Neural networks: two-step prediction plot over 57 weeks.  

Fig. 6.25 (a) shows plot of predicted and actual EC. Fig. 6.25 (b) shows the deviation of 

predicted EC from actual EC. We can compare these plots with the corresponding plots 

in Fig. 6.5 to evaluate the performance of 'two-step' NN with the normal (one-step) NN 

over 57 weeks. 
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6.5   PREDICTION ERROR FREQUENCY DISTRIBUTION 

 

 

Fig.6.26 6.28: Prediction error frequency distribution for GPs, NNs and LR.  

Fig. 6.266.28 shows that the mean of the residuals in each predictor is approximately 

zero. It also shows that the most frequent error for the predictors is approximately zero 

(since the histogram bar at 0 is the highest). This shows how good the prediction curve 

for each model fits the test data. 
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7 Summary of Results and Discussion 

In this chapter we will present tabular summary of results and discuss them in 

relation to the research questions.  

 

 How can we select the best feature vectors that optimize the performance of 

the predictors (GPs, NNs and LLR ) 

Our approach to feature selection is discussed in Section 2.1.3; in this section we 

will discuss how the selected features affect the performance of the predictors. 

Table 7.1 summarizes the influence of each element of the feature vectors on the 

performance of the GP3 model. This experiment was done by starting with one of 

the most influential features and adding more features one after the other to see 

their influence on the overall performance. This step-by-step addition of features 

refers only to the input of GP, in the kNN search we used all of the features since 

similarity measure based on few features is inaccurate and it will be difficult to 

distinguish the influence of each feature. Let us define the subsets of the feature 

vectors as follows: 

                                                

                    

                                                                 

                              

As can be seen from Table 7.1, each feature contributes to improving the 

prediction accuracy and to predict values that are more correlated with the actual 

                                                 
3 The same procedure has been followed to select features for NNs and LLR models. Since most of the 

features are common to the three predictors, we didn’t include the procedures for the other two in order to 

avoid repetition. 
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values. For example by using only the information about previous hour electricity 

consumption, the prediction error MAPE is 6.23%, when we add the temperature 

information the MAPE go down to 5.39%, and finally when we use all of the 7 

features the MAPE becomes 1.55%. Similarly, the correlation between the 

predicted value and the actual values increase from 0.69 to 0.98 as we add more 

features. This shows that each selected feature has significant contribution to the 

performance of the predictor.   

         Table 7.14: The influence of each feature on the overall performance of GPs  

                      

MAPE 6.23 5.39 3.60 2.97 2.52 2.14 1.55 

CC5 0.69 0.80 0.92 0.96 0.96 0.97 0.98 

 

 How is the performance of GPs compared with the state-of-the-art models 

(NNs and LLR models) 

Table 7.2 summarizes the prediction error MAPE for GPs, NNs and LLR models. 

The minimum MAPE is 2.03% which represents prediction error of GPs when 

actual (measured) temperature is used as one of its features. The second minimum 

MAPE (2.33%) is also for the GPs when the forecasted temperature is used 

instead of the measured temperature. This shows that the Gaussian processes 

outperform the NNs and the LLR models. The same table shows that the third and 

fourth minimum MAPE are 3.35% and 3.46% both for NNs with measured and 

                                                 
4 The table represents test result of prediction 24 hours ahead over 20 days. 
5 Represents the correlation between actual and predicted electricity consumption (EC) 
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forecasted temperature respectively. Thus, neural networks outperform the local 

linear regression model on predicting electricity consumption. A quite strange 

observation is 5.1% MAPE for two-step prediction using NNs. This is clearly less 

accurate than both the LLR and 'one-step' NNs, then why 'two-step' prediction? 

That is why we didn't consider this model and thus left the previous hour EC out 

of the feature vectors for NNs. 

            Table 7.2: Mean absolute percentage error (MAPE) for GPs, NNs and LR 

 Gaussian 

processes 

Neural Networks Linear Regression 
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MAPE (%) 2.03 2.33 3.35 5.10 3.46 3.56 3.80 

 

The two-step approach: The 'two-step' prediction for the NN is given with an 

intension of including the previous hour EC as one of the features. We want to 

predict EC 24 hours ahead, which means that we don't know the previous hour EC 

except for the first prediction hour (i.e., at t+1). To solve this problem, in GP and 

LLR, we used an iterative approach in which we predict EC at t+1, then we use 

this predicted value as previous hour test input for predicting EC at t+2, and 

continuing the iteration until we predict EC at t+24. However, training in NNs is 
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quit complex and this iterative approach will be inconvenient to the users and it is 

even more impractical to test at about 9600 test points (for all seasons of a year). 

 

In two-step prediction, we use the predicted EC in one-step-prediction as test 

input in place of the unknown previous hour EC. This approach enables us to use 

the same feature vectors for all predictors, but it is inaccurate. Our observation is 

that, the feedback error during the training phase (in the second-step) falls very 

fast since the previous hour EC provides strong information about the predicted 

EC (see table 2.1: correlation coefficients). However when we use the predicted 

values (which is deviated from actual value by MAPE=3.35%, shown in Table 

7.2), the error becomes even higher (MAPE=5.1%, shown in the same table). 

From this observation, we can infer that the network was over trained (over 

fitted), which means that a strongly informative input provided during the training 

phase are replaced by relatively less informative test inputs during prediction. 

Neural networks are strong in recognizing patterns; however this feature comes at 

the cost of over fitting particularly in large neural nets. Thus, instead of training 

the network every time we predict it is more convenient to train the NN with large 

data, validate and save the trained network and use it for prediction when needed. 

For example, in this thesis we trained the NN using data from the first two years 

and predict EC in the third year. As can be seen from Table 7.3, the errors are 

fairly distributed over months of the year.  

 

The effect of error in temperature forecast: It is the measured (actual) 

temperature that is directly related to the electricity consumption, however, we are 
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only provided with the forecasted temperature during the prediction period (24 

hours ahead). Therefore, practical use of the predictors is dependent on their 

performance when used with the predicted temperature. Except for a slight 

increment in errors (MAPE), which is expected because of the errors in 

temperature predictor, the predictions of GP, NNs and LLR, with forecasted 

temperature are close to their actual temperature counterparts. 

 How the predictors perform under scenarios like different seasons of a year, 

different days of a week, and different hours of a day? 

To answer this research question, we will discuss each scenario one after the 

other. 

Performance throughout a year: The overall MAPE is a strong measure of 

prediction accuracy. However, we need more detailed observation on error 

distributions against changing scenarios like different seasons of year. Table 7.3 

together with Figures 6.3, 6.8 & 6.13, shows that the errors are fairly distributed 

throughout the year. This indicates that the predictors learn the relationship 

between seasons of year and electricity consumption, and thus responds well to 

the seasonal variations.  

          Table 7.3: Mean absolute error (MAPE) of each predictor with respect to months of 

year. 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

MAPE_GP 1.43 1.38 2.30 2.30 2.90 2.10 1.84 2.16 2.52 2.54 1.86 1.49 

MAPE_NN 3.07 3.28 3.20 3.71 4.39 3.34 3.56 3.09 2.86 2.89 2.32 2.87 

MAPE_LR 3.87 3.26 4.30 3.90 4.23 3.46 3.07 3.40 3.12 3.56 3.20 3.31 
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Performance throughout the 7 days of week: Days of week also have high 

influence on electricity consumption; particularly EC variation between the 

workdays and the weekends is significant. Thus, it is important to test the 

distribution of errors (MAPE) throughout days of week in order to confirm 

whether we had included enough features that make it possible to learn those 

variations. Table 7.4 together with Figures 6.4, 6.9 & 6.14; show that the errors 

are fairly distributed throughout days of week for all predictors. This means that 

the predictors respond well to EC variations throughout days of week. 

          Table 7.4: Mean absolute error (MAPE) of each predictor with respect to days of 

week. 

 Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

MAPE_GP 1.92 1.94 2.17 1.97 2.39 2.06 1.79 

MAPE_NN 3.98 3.40 2.90 3.05 3.13 3.64 3.17 

MAPE_LR 4.27 3.41 3.45 3.35 3.51 3.48 3.50 

Performance throughout hours of day:  Electricity variations throughout a day 

are also another feature that the predictors need to learn. Table 7.5 together with 

Figures 6.2, 6.7 & 6.12 show that the error (MAPE) is distributed fairly 

throughout 24 hours of day for each predictor.  

         Table 7.5: Mean absolute error (MAPE) of each predictor with respect to 24 hours 

of day. 

Hour 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 

MAPE_GP 0.92 1.14 1.18 1.34 1.54 2.47 3.25 3.09 

MAPE_NN 2.81 3.22 3.47 3.48 3.51 3.51 3.56 3.83 

MAPE_LR 3.34 4.22 4.11 3.55 3.12 4.24 5.41 4.80 

Hour 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 

MAPE_GP 2.68 2.44 2.38 2.26 2.20 2.08 2.07 2.08 

MAPE_NN 4.14 3.90 3.28 3.00 2.99 3.06 3.14 3.14 

MAPE_LR 3.71 3.43 3.54 3.73 3.82 3.66 3.22 2.92 
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Hour 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 

MAPE_GP 2.05 2.00 1.92 1.88 1.91 1.88 1.87 2.16 

MAPE_NN 3.29 3.32 3.41 3.57 3.50 3.31 3.02 2.85 

MAPE_LR 3.05 3.19 3.08 2.86 2.74 2.65 3.02 4.11 

 Is it possible to overcome the limited data handling capabilities of GPs, and 

let the GPs learn the most relevant information stored in a large dataset? 

We used the kNN similarity search to overcome the computational requirement of 

the GPs. The resulting GP model can predict electricity consumption with better 

accuracy when compared with the NNs and LLR models. Thus, the answer to this 

research question is affirmative and the Gaussian process approach improves the 

prediction accuracy over the state-of-the-art models. 
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8   Conclusions 

In this thesis we have investigated how Gaussian processes can be used for short-

term forecasting of electricity consumption. We started by analyzing the data in order to 

identify features that influence electricity consumption. Data analysis techniques like 

EDA and correlation coefficients have been used as steppingstone for selecting relevant 

features and excluding the redundant features.  

To cope with the computational requirement of the GPs which grows fast with the 

size of the dataset, we have implemented the kNN similarity search. The kNN similarity 

search explores the dataset and selects k closest points to a given query point. By using 

the output of the kNN similarity search as a training input for GPs the computational 

requirements of GPs have been reduced from       to      , where    . The kNN 

similarity search is an intuitive approach that could provide more dimensions to similar 

researches on addressing the problem of handling large datasets, particularly in GPs. 

Moreover, its implementation doesn't involve any change to the full GP regression model 

and thus it can be used irrespective of the type of kernel function used with the GP. It is 

also used to improve the classical linear regression model by applying regression on local 

data points closest to the test point i.e., local linear regression.  

We have studied different state-of-the-art prediction models and compared them 

with GPs in order to reinforce our argument for the proposed GP model. The empirical 

analyses of the results from this study show that the GPs outperform both the NNs and 

LLR models. This is an important result since even a small improvement in prediction 

accuracy has significant economic values in the energy industry.  
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The practical applicability of the predictors has been tested by considering 

different scenarios that influence electricity consumption. Each model has been tested 

against variations in seasons of year, days of week and hours of day using real-life dataset 

from Eidsiva Energy. The result shows that the predictors respond well to those 

variations. This indicates that information regarding those scenarios is included in the 

feature vector and the predictors can generalize the information to unseen future.  

Further work: One possible continuation of this work can be investigating other 

similarity measures like dynamic time warping (DTW) for the kNN similarity search. 

The Euclidean distance is a widely used metric in the area; however more intuitive and 

accurate measure of similarity could potentially improve the prediction accuracy of the 

GPs and LLR models. The other possibility is to apply this approach to similar problems 

in other areas such as, weather forecast or financial market forecasting.  

In this work the EC forecast window was limited to a day ahead due to 

unavailability of weather forecast for longer period.  If enough weather data can be 

found, it may be feasible to do both weather forecasting and EC forecasting with 

possibility of extending the prediction period (to a week ahead, for example). 
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Appendix A:  List of Symbols and Notations 

 

GP(s) Gaussian Process(es) 

NN/ANN Neural Networks/Artificial Neural Networks 

KNN K-Nearest Neighbours 

LR  Linear regression 

LLR Local linear regression 

EC Electricity consumption 

STFEC Short-term forecasting of electricity consumption 

Ɗ data set: Ɗ = {(     ) | i = 1, …, n} 

 [ ] expectation  

X (x) training input-matrix (vector) 

X* (x*) test input-matrix (vector) 

y training target (observation) 

y* test target (predicted value) 

f* GP posterior (prediction) 

    GP posterior (predictiv) mean 

MAP Maximum a Posteriori 

MCMC Markov Chain Monte Carlo 

Predictor  Regression model such as GPs, NNs, LR 

RPROP Resilient PROPagation 

RBF Radial Basis Function 

SARI Seasonal Auto-Regressive Integral 
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ARIMA autoregressive integreted moving average 

RTE Electricity company in France 

MLP multi-layered perceptron 

RBFN eadial basis function network 

SVR/SVC Support vector regression/support vector clustering 

FV feature vector 

EDA exploratory data analysis 

CC Correlation coefficient 

KD tree k-dimensional tree 

LSM least square method 

SO system operator 

DTW dynamic time warping 
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