
Thesis submitted in Partial Fulfillment of the

Requirements for the Master of Science Degree in

Information and Communication Technology

University of Agder, 2012

Faculty of Engineering and Science

Department of Information and Communication Technology

Combining Static Source Code Analysis and Threat Assessment Modeling
For Testing Open Source Software Security

By
Abraham Ghebrehiwet Ghebremedhin

Supervisor
Vladimir A Oleshchuk

Abraham Ghebrehiwet
Page 2 of 121

Summary

Nowadays, large number of open source software are being developed by the open source software
communities and made available to the public domain. Open source software started with the
promises for better quality, higher reliability, more flexibility, lower cost, and an end to predatory
vendor lock-in. Risk free (secure) software is the key requirement for organizations planning to
implement open source software as part of their software stack. In order to understand Open source
software security better, this thesis offers two approaches, which can be used for testing and analyzing
the security of open source software.

This project was performed at Agder University in the Department of Information and
Communication Technology. The goals of the project were to describe the various common source
code vulnerabilities. Validate their presence in open source software using static source code analysis
technique. And finally, develop a threat assessment model to further explore and document potential
threats so that to be able to build a solid security strategy to guard against the threats.

A brief introduction and background theory of open source software security is followed by the two
approaches introduced for testing the security of open source software. These approaches are Static
Source Code Analysis and Threat Assessment Modeling techniques.

The practical part of the experiment consists of two steps. In the first step static source code analysis is
performed on a test case application, using two tools namely, Flawfinder and RATS. This approach
was chosen mainly because it is normally similar with code auditing to the extent of concentrating on
the actual source code, but instead of auditing the code manually, it uses automated tools. The second
step threat assessment modeling (Threat Risk Modeling) was introduced to discover the design and
architectural vulnerabilities on the test case application that would otherwise be impossible to detect
them using static source code analysis. For this purpose, the tool Microsoft Threat Analysis &
Modeling tool v2.1 was used.

A case study was performed on an open source application rdpdesk-3.2 (remote desktop connection
manager). In this case study the application was scanned to check for the presence of source code
related vulnerabilities using the two static source code analysis tools. After the scanning were
performed, a threat risk model was developed for the application that was used in the detection of
design and architectural vulnerabilities. The results of the case study led to a clear conclusion that the
application contains large number of vulnerabilities. Moreover, the results also made clear that the
combined use of both approaches can be used to improve the security of open source software by
verifying the source code as well as design and architectural vulnerabilities.

Abraham Ghebrehiwet
Page 3 of 121

Abstract

Organizations that implement open source software in their system before they verify the software for
security vulnerabilities are more vulnerable to attacks. Therefore, it is important to discover and fix
vulnerabilities in open source software before their implementation. Nowadays different techniques
exist that help in the vulnerability discovery. The goal of this project is to improve the security of open
source software by discovering various source code vulnerabilities using static source code analysis
technique, and design and architectural vulnerabilities by developing a threat risk model. I conducted a
case study on a remote desktop connection manager application using two static analysis tools and one
threat risk modeling tool. In the case study performed, I found that the static analysis tools discovered
large number of different types of vulnerabilities on the application. I also discovered some design and
architectural vulnerabilities using the threat risk modeling tool. The results obtained from the case
study suggest that it is unsafe to deploy open source software in a system without first verifying it for
vulnerabilities.

Abraham Ghebrehiwet
Page 4 of 121

Preface

This thesis is submitted to Agder University as a final work of the Master’s Program in Information
and Communication Technology to fulfill requirements for the Master of Science degree.

This thesis was performed at the Department of Information and Communication Technology
Grimstad, under the supervision of Prof. Vladimir A Oleshchuk.

I would like to thank my supervisor for his valuable help, suggestions, and feedback, which made this
work possible. Besides, I would like to thank my wife for her full support.

Grimstad, May 2012

Abraham Ghebrehiwet

Abraham Ghebrehiwet
Page 5 of 121

Table of Contents

Summary……….2
Abstract……3
Preface………………………………………………………………………………………………..4

1 Introduction

1.1 Problem Statement…………………………………………………………………………………………………8
1.2 Thesis Objective…………………………………………………………………….………………………………9
1.3 Thesis Domain………………………………………………………………………………………………………9
1.4 Importance of Topic……………………………………………………………………………………………..9
1.5 Related Works…………………………………………………………………………………………………….10
1.6 Research Methodology………………………………………………………………...............................11
1.7 Contributions of Thesis……………………………………………………………….............................11
1.8 Thesis Structure…………………………………………………………………………………………………..12

2 Background Theory
 2.1 Brief Introduction to Open Source Software………………………………………….……………….13
 2.2 Security in Open Source Software………………………………………………………….……………..14
 2.2.1 Security through Obscurity………………………………………………………………………15
 2.2.2 Security through View of Various Experts..15
 2.3 Software Security Problems………………………………………………………….............................16
 2.3.1 Buffer Overflow...16
 2.3.2 Integer Overflow……………………………………………………………............................17
 2.3.3 Format String Problems……………………………………………………..........................18
 2.4 Software Security Attacks……………………………………………………………………………………..21
 2.4.1 Buffer Overflow Attacks…………………………………………………………………………..21
 2.4.2 Cross Site Scripting (XSS)…………………………………………………..........................21
 2.4.3 SQL-Injection Attacks……………………………………………………………………………..22
 2.4.4 Denial-of-Service (DoS)……………………………………………………..........................23
 2.5 Why is software security problem growing? ……………………………………………………………23
 2.5.1 Connectivity……………………………………………………………………………………………24
 2.5.2 Extensibility……………………………………………………………………………………………24
 2.5.3 Complexity…………………………………………………………………...............................25
 2.6 Software Security Guidelines…………………………………………………………………………………26
 2.6.1 Secure the Weakest Link…………………………………………………………………………26
 2.6.2 Defense in Depth……………………………………………………………………………………27
 2.6.3 Fail Securely…………………………………………………………………………………………..27

Abraham Ghebrehiwet
Page 6 of 121

 2.6.4 Use the Least Privilege…………………………………………………………………………….28
 2.6.5 Compartmentalize…………………………………………………………………………..………28
 2.6.6 Keep it Simple………………………………………………………………………………………..29

3 Research Methodology
3.1 Static Source Code Analysis Technique………………………………………………………………….30

3.1.1 Pattern Matching………………………………………………………………………………..…..31
3.1.2 Lexical Analysis……………………………………………………………………………………...32
3.1.3 Parsing and AST Analysis…………………………………………………………………..……32
3.1.4 Type Qualifiers……………………………………………………………………………………...33
3.1.5 Data-Flow Analysis………………………………………………………………………………....33
3.1.6 Taint Analysis………………………………………………………………………………………...33

3.2 Threat Risk Modeling Technique…………………………………………………………………………..34
3.2.1 Identify Security Objectives……………………………………………………………………..35
3.2.2 Survey the Application…………………………………………………………………………….36
3.2.3 Decompose the Application…………………………………………………………………….37
3.2.4 Identify Threats………………………………………………………………………………………37
3.2.5 Identify Vulnerabilities…………………………………………………………………………….38
3.2.6 Mitigation Strategies………………………………………………………………………………..38

4 Case Study: Remote Desktop Connection Manager
 4.1 rdpdesk-3.2 (Remote Desktop Connection Manager)….……..…………....………………….....39
 4.2 Static Source Code Analysis: rdpdesk-3.2……………………………………………………………….40
 4.2.1 Analyzing rdpdesk-3.2 using Flawfinder……………………………………………………40
 4.2.2 Analyzing rdpdesk-3.2 using RATS………………………………………......................41
 4.3 Threat Risk Model Development for rdpdesk-3.2…………………………………………………..42

5 Research Results
 5.1 Flawfinder Report Analysis…………………………………………………………...............................52
 5.2 RATS Report Analysis………………………………………………………………...............................57

5.3 Risk Ranking……………………………………………………………………………………………..………..63
5.3.1 OWASP Risk Ranking Methodology……………………………….……………………….63
5.3.2 Risk ranking of the Vulnerabilities Generated Using Threat Risk Modeling

Technique………………………………………………………………………………………………65

6 Discussion

7 Conclusion and Future Work

Abraham Ghebrehiwet
Page 7 of 121

Appendices
Appendix A Glossary & Abbreviations…………………………………………………………………………………….74
Appendix B System setups…………………………………………………………………………………………………….77
Appendix C Static source code analysis tools used for the experiment………………………………………..78
Appendix D rdpdesk-3.2 Threat risk model…………………………………………………………………………….82

References………………………………………………….………………………………………………………………………117

List of Figures

1.1 Thesis structure………12
2.1 High level view of XXS attack……………………………………………………………………………………………..22
2.2 Windows Complexity (measured in Line of code)……………………………………………........................25
2.3 Bell-LaPadula model…….28
2.4 Multilateral (compartmentalize)………………………………………………………………................................28
3.1 Threat risk modeling steps…………………………………………………………………………………………………..35
4.1 Flawfinder snapshot………41
4.2 RATS snapshot……….42
4.3 Microsoft Threat Analysis & Modeling snapshot……………………………………………………………………43
4.4 rdpdesk-3.2 usage configuration………………………………………………………………................................44
4.5 User roles…….45
4.6 Data……………………………………………………………………………………………...45
4.7 Application use cases…….46
4.8 RDP graphical data flow between the client and the server……………………………………………………..47
4.9 RDP mouse or keyboard data flow between the client and the server………………………..................48
4.10 Application Threats…….50
5.1 Flawfinder report……………………………………………………………………………….....................................54
5.2 RATS report……..58

List of Tables

5.1 Flawfinder report analysis……………………………………………………………………………………………………53
5.2 Impacts and solutions of the vulnerabilities detected using Flawfinder..57
5.3 RATS report analysis…….58
5.4 Impact and solutions of the vulnerabilities detected using RATS……………………………....................62
5.5 Likelihood and Impact severities………………………………………………………………………………………….64
5.6 Overall risk severity……….64
5.7 Severities, Impacts and solutions of the vulnerabilities detected threat risk modeling…………………70

Abraham Ghebrehiwet
Page 8 of 121

Chapter 1

Introduction

The security of a system that makes use of open source software mainly depends on the software used
as well as the security practices followed. Nowadays, large numbers of open source software are being
developed by the open source software communities and made available to the public domain. Open
source software started with the promises for better quality, higher reliability, more flexibility, lower
cost, and an end to predatory vendor lock-in [5]. Even though the mentioned promises are very
attractive, the issue of security must be considered seriously. This is due to the fact that open source
software also offers equal opportunity for attackers to detect and misuse software vulnerabilities, affect
the code by adding insecure code and distributing tainted version of the software.

Open source software security is a measure that assures open source software system is free from
danger or risk of attacks. Risk free software is the key requirement for organizations planning to
implement open source software as part of their software stack, particularly if the software will play a
major role.

Nowadays securing organizations’ perimeter has largely been successful. As a result hackers and other
malicious individuals have turned their attention in to attacking organizations applications. This issue
forced organizations to focus highly on securing the application layer. However, by using embedded
code or exploiting flaws in software, hackers gain control of company computers and get access to
confidential information and customer records. Therefore, proper source code review must be
performed to evaluate potential vulnerabilities of the code.

1.1 Problem Statement

Various software security professionals [7, 8] claim that transparency makes systems more secure. This

is true in a sense that by allowing the source code to be open everyone can access the code, therefore,
bugs and vulnerabilities are found more quickly and thus are fixed more quickly, closing up security
holes faster and this increases software security. Anyone who is interested in improving the software is
also free to create a better, more secure version of the software.
Trusting the above mentioned arguments of open source software advocates however, organizations
might be tempted to deploy open source software before they evaluate the software for security. And
this may pose several security challenges to the organizations unless the code is treated for security

Abraham Ghebrehiwet
Page 9 of 121

vulnerabilities before it can be used. Therefore there is a demand for reviewing the software for security
vulnerabilities, reveal and fix them before the software is used.

1.2 Thesis Objective

Software security is an understanding of software-induced security dangers and how to deal with them.
The presence of vulnerabilities on software makes it so easy for attackers to target software, which can
then exploit to violate the security. According to CERT most successful attacks result from targeting
and exploiting known, software vulnerabilities and insecure software configurations, many of which are
introduced during design and coding [1].
Therefore the main objectives of this thesis are as follows:

1. Describe the various common source code security vulnerabilities.

2. Validate their presence in open source software using static source code analysis technique.

3. Develop threat assessment model to further explore and document potential threats so that to
be able to build a solid security strategy to guard against the threats.

1.3 Thesis Domain

The investigation for the test case has been carried out on rdpdesk-3.2 (remote desktop connection
manager) an open source software written in C/C++ language. Certain assumptions and facts are taken
from the test case software; the same approaches themselves however can be applied to any kind of
open source software.

1.4 Importance of Topic

These days businesses and other organizations store huge amounts of sensitive and critical data on
their computer systems and this makes systems security vital. Also, they have moved their transactions
online and they rely more on applications that are part of a network. If such businesses or
organizations implement open source in to their software stack, attackers might compromise sensitive
and critical information by exploiting some of the security vulnerabilities in the software.
Therefore in order to highly benefit from open source software, the source code must be properly
reviewed to uncover any vulnerability, reveal and fix them before the software is deployed. In this way,
businesses and other users of open source software can keep their sensitive and critical information
secure and thereby reducing the impact of losses and damages.

Abraham Ghebrehiwet
Page 10 of 121

1.5 Related Works

.
There have been several significant efforts on open source code security. Azzam Mourad et al. [82]
defined the concept of software security hardening, which allow developers and maintainers to deploy
and harden security features and remedy present vulnerabilities and threats into existing open source
software. They also propose a classification of the different levels at which the hardening can be
applied and a methodology for hardening of high level security into applications based on a well-
defined security ontology. In addition to this contribution, they elaborate the methods for hardening
security vulnerabilities found in C according to the classification they propose. Anne Immonen et al.
[83] contributed a method which provides clear guidelines to assist integrators to perform an evaluation
in their own software development environment. Their method assists in the technical trustworthiness
evaluation, containing tools for reliability analysis and testing of open source components (OSC).
Prasanth Anbalagan et al. [84] presented an analysis and classification of 43,710 vulnerabilities from
the Open Source National Vulnerability Database and vulnerabilities for two specific products -
Bugzilla and FEDORA. With the focus on the disclosure and exploits of security problems with
respect to calendar time and in-service time, they investigated a unifying approach to understand
security as a component of reliability. Guido Schryen et al. [85] presented the first comprehensive
empirical investigation of published vulnerabilities and patches of 17 widely deployed open source and
closed source software packages, including operating systems, database systems, web browsers, email
clients, and office systems. Their results suggested that it is not the particular software development
style that determines the severity of vulnerabilities and vendors’ patching behavior, but rather the
specific application type and the policy of the particular development community, respectively. Carlos
Ballester Lafuente [44] developed a software security guideline that can be used for evaluating methods
and measuring security in open source projects with a high security implication such as healthcare
applications for example, where the privacy and security are crucial factors. After applying the
guideline, he found several vulnerabilities, like session hijacking or capturing login information on real
time.

Ashish Aggarwal et al. [86] described a methodology which integrates static and dynamic analysis
approaches in a complimentary manner. The methodology they used adopts the strengths of the two
and eliminates their weaknesses. They dealt with buffer overflow vulnerability with pointer aliasing.
Nathaniel Ayewah et al. [54] they proposed the need to develop procedures and best practices that
make use of static-analysis tools more effective than alternative uses of developer time, such as
spending additional time performing manual code review or writing test cases. Through user surveys
they concluded that findbugs answered their needs. Lucas Torri et al. [87] in their paper have surveyed
ten different free/open source tools that perform static software analysis and evaluated their use in
embedded software. Furthermore, they discussed possible directions to improve the use of static
analysis tools in the embedded domain. Peng Li et al. [88] their paper focused on software
vulnerability static analysis techniques and tools. First they discussed the commonly-used static analysis

Abraham Ghebrehiwet
Page 11 of 121

techniques and tools, and compared these tools in a technical perspective, and then they analyzed the
characteristics of the tools through the experiment, finally, combining dynamic analysis, they proposed
an efficient software vulnerability detection method. George Chatzieleftheriou et al. and Magnus Ågren
respectively [89, 90] they compared four open source and two commercial static analysis tools in terms
of their effectiveness and efficiency of their detection capability. For their experiments they used C
code. They used the obtained results for identifying the appropriate tool, in terms of cost-effectiveness.
Alexander Ivanov [17] examined a sample set of vulnerabilities and developed a vulnerability
classification based on common source code patterns.

1.6 Research Methodology

Analyzing open source software for the existence of various vulnerabilities is a curtail process that need
to be done before deploying the software in your system. Code auditing, dynamic source code analysis,
penetration test, static source code analysis, threat risk modeling and so forth are some of the
techniques used for such analysis. In this thesis, static source code analysis and threat risk modeling
techniques are used to reveal the different source code, design and architectural security flaws that exist
in open source code software. The static source code analysis technique is mainly used for the
identification of vulnerabilities on a test case application source code, while the threat risk modeling
technique is used in the identification of the design and architectural vulnerabilities of the test case
application.

The practical experiments were done on the test case application (rdpdesk-3.2) using two static source
code analysis tools (Flawfinder and RATS) and one threat risk modeling tool (Microsoft Threat
Analysis & Modeling tool v2.1).

1.7 Contribution of Thesis

The key contribution of this paper is to develop open source software security best practices by
combining static source code analysis and threat assessment modeling techniques. The result obtained
from this combination will play significant role in the process of exploring and identifying source code,
design and architectural potential threats and vulnerabilities to open source software. Finally, based on
the identified threats and vulnerabilities, it will be easy to build a solid security strategy to guard against
the identified threats to the software.

Abraham Ghebrehiwet
Page 12 of 121

1.8 Thesis Structure

Chapter 2 reviews some background theory that helps understand the remaining chapters. Chapter 3
describes the two research methodologies used for this project, static source code analysis and threat
assessment modeling techniques. In Chapter 4, an experiment is performed on a test case application
using the methodologies mentioned in chapter 3. Chapter 5 presents a detailed description and
analysis of the research results. Chapter 6 provides a discussion based on the results found. Finally
chapter 7 presents conclusions of the research and recommendations for future research. Figure 1.1
shows the thesis structure.

Figure 1.1 Thesis structure

Abraham Ghebrehiwet
Page 13 of 121

Chapter 2

Background Theory

In this chapter I will present some background theory required for understanding the remaining
chapters.
In sections 2.1 and 2.2, I provide a short description of open source software and their security issues.
In the security issues of open source software I give an overview of security through obscurity and
security through peer review.

In sections 2.3 through 2.6, I provide a short overview of software security problems followed by some
common software attacks. And finally I summarize why software security is growing and provide some
software security guidelines that need to be followed to have a more secure software.

2.1 Brief Introduction to Open Source Software

Software which is developed with the intention for which its source code is made available for use,
study, re-use, modification, enhancement, and re-distribution by the users of that software is classified
as open source software [2]. The development of the software relies on public collaboration and it is
made available free. The philosophy on which Open Source is based is very similar to that of Free
Software Foundation [3].

The licensing of the software permits users to use the software in a way they like. The software can be
customized to meet specific needs of a user. Furthermore, a user can design a commercial solution
from the software. This derived solution must be distributed to others with the source code. It is also
required that the rights associated with the derived version should be extended to any recipient of the
software.

One unique characteristics of open source software is that restrictions are not placed on the use,
modification and distribution of programs. The distribution terms must comply with the following
criteria [4]. The most important issue to consider in connection with open source is licensing. The
software has to be licensed as open source. There are different types of licenses [5] one can choose
from. The condition is that the license must be approved by Open Source Initiative (OSI) [5].

Generally, the licensing can be categorized into two; namely the GNU GPL and the GNU LGPL. The
major difference between the two is that the LGPL places more restrictions on the usage and
redistribution of open source software [6].

Abraham Ghebrehiwet
Page 14 of 121

2.2 Security in Open Source Software

Security is an important aspect and integral part of the phases [91] of any software development. Either
in open source or closed source software, trustworthiness solely depends on certain aspects [9] of the
software design and development.
Open source software security is the measure of assurance or guarantee that open source software
system is free from vulnerabilities that can be exploited. The quality and reliability of open source
software can be assessed by reviewing the software’s source code after it is made available to the public
domain. This reviewing of the source code by several experts from anywhere around the world allow
bugs to be discovered and fixed early.

Open source advocates are of the view that when the source code of a piece of software is in the public
domain it would be given the same peer review as it is done to theories published in a scientific
journals. In other words, they believe that other programmers will review the code for security
vulnerabilities, reveal and fix them. By doing so, the number of new vulnerabilities that is introduced
and discovered in the software will decrease with time. This theory can be considered nice in the ideal
world of open source. The reality is that, there are a variety of factors that affect security of open source
software [10]. It is true that the source code is made available to the public. But the questions one will
like to ask is whether anyone is reading the code, what level of competence is needed to reveal security
vulnerabilities, etc.

However, open source could benefits from reviewing the source code if the people reviewing it are
really reviewing the source code with the intention of discovering vulnerabilities for the good of society.
In that case the number of new vulnerabilities introduced and discovered in the software will decrease
over time [10].

The reality is that, most of the users do not read the source code. They only run and test the software
and once it is working they are satisfied (partly because of time constraints, etc.). The assumption is
that someone else will do the auditing of the code and so it tends out that only the bad guys have real
motivation to analyze it. Another issue is that developers do not have knowledge and qualification to
analyze code for security vulnerabilities.

The fact is that open source has made it easier for the bad guys to find vulnerabilities in software. Both
good guys and bad guys have equal advantages when it comes to open source software [10].

It is true that the more people review a piece of code, the less likely it is that the code will have a
security flaw, a person who is an expert in reviewing code will be more effective than a group of people
who are beginners.

Another point of interest that makes the whole issue complex is that it is easy to hide vulnerabilities in
software that is complex, little understood and there is no (or little) documentation covering the source
code.

Abraham Ghebrehiwet
Page 15 of 121

2.2.1 Security through Obscurity

Open source advocates and that of closed source have different views when it comes to security.
Whiles closed source software supporters believe that keeping the source code secret makes their
products more secure, open source software supporters hold on to a contrary view [10].
Open source advocates argue that keeping the source code secret implies to “security through
obscurity” [92]. This concept is generally criticized as ineffective in the IT community. Their point of
view is that, keeping quiet about once possession just makes it less likely that thieves will target you.
However it will not be sensible to leave your doors open at night just because you think that you do not
make noise about your properties. In the same way, not making the source code open might deter
some hackers; however the large number of successful attacks against Windows and other proprietary
software is ample evidence that keeping the source code closed does not provide better level of
security.

The interesting point to note in this case is that closed source software does not have any advantage
[92] when it comes to using source code to find vulnerabilities. This is because a talented attacker can
use tools such as disassembler/decompiler1 to generate the assembly language of the product. From the
above discussions one can realized that having the source code of programs hidden does not protect
the program very much. Closed source supporters believe that a vulnerability that exists in software but
is not discovered cannot be exploited, thus making the system secure. However, this situation can be
likening to a time bomb2 [8].

2.2.2 Security through View of Various Experts

There have been a lot of discussions in connection with open source software security. Various security
professionals have contributed to this crucial topic. Transparency, they say makes systems more
secure. The idea is that by allowing people to see the source code, find bugs and then make peer-
reviewed changes in the code, the security of the software will be improved.
According to Bruce Schneier, a computer security and cryptography expert, it is important that security
engineers have access to the code of open source software. He said, “Demand open source code for
anything related to security” [11]. However, not all the security professionals are in agreement with him
[7].

1 Disassembler is a computer program that translates machine language into assembly language.

2 Time bomb refers to a computer program that has been written so that it will stop functioning after a predetermined date
or time is reached.

Abraham Ghebrehiwet
Page 16 of 121

One of the experts who have a contrary view to that of open source software supporters is John Viega.
He is co-author of Secure Programming Cookbook for C and C++. He is of view that the whole idea is
only a type of “cultural elitism” that is coming from the open source community.

According to him, members of open source community belief that they are better at writing code than
anyone else. Another expert named Fred Schneider of the Department of Computer Science at
Cornell University in New York has this to say: “There is no reason to believe that the many eyes
inspecting [open] source code would be successful in identifying bugs that allow system security to be
compromised.” [7]

2.3 Software Security Problems

Software security is a central aspect of the computer security. Software based security complication
such as buffer overflow, integer overflow and the like continues to exist with us for decades. Too often
attackers look for software vulnerabilities to hack into computer systems. Furthermore, with software
ever increasing complexity and extensibility, internet-enabled software applications are easily targeted
to attack [12, 13].
Software security is an understanding of the impact of software-induced security risks and the act of
tackling these risks. Good software security practices [14] involves taking into consideration of security
in the early stages of the software development lifecycle. This includes understanding of common
security problems, identifying and analyzing risks and designing for security.

There are many kinds of software vulnerabilities [15] some examples are, Lack of input validation on
user input, Fail-open error handling, buffer overflow and so forth. Description of each problem is out
of the scope of this thesis. However, in the following subsections I provide some common software
vulnerabilities description.

2.3.1 Buffer Overflow

Buffer overflow takes place as a result of programming error that happens when a program attempts to
put data in a memory slot beyond the bound or outside of the memory allocated for the data. The
main consequences of writing data outside of the memory allocated includes program crash, data
corruption and malicious code execution.
Despite the fact that developers know what buffer overflow vulnerability is, buffer overflow attacks
tends to be still common in newly-developed programs [16]. Partly the problem is caused due to the
fact that there exist a wide variety of buffer overflow [17] and partly due to erroneous techniques used
to prevent them.

Abraham Ghebrehiwet
Page 17 of 121

In a classic buffer overflow [17] exploit, an attacker inputs data to a program with an undersized stack
buffer. The result is that data on the stack is overwritten, including the return address of the function.
The data from the attacker sets the return address so that when the function returns, control is
transferred to malicious code of the attacker's data.

In C and C++ languages, many functions that manipulate memory do not perform bounds checking.
As a result they can easily overwrite the allocated size of the buffers in which they operate. When used
incorrectly, even bounded functions can cause vulnerabilities for example strncpy().

There exists many real-life examples of buffer overflows, among them are popular “industrial”
applications, such as e-mail servers (Sendmail) [18] and web servers (Microsoft IIS Server) [19].

Here is a piece of code that clarifies buffer overflow:

void test(char *s) {

char buf[1024];

strcpy(buf, s);

}

int main(int argc, char **argv) {

test(argv[1]);

}

This code is vulnerable to buffer overflow. This is true because the code has a local buffer and the
unsafe function [20] strcpy() that writes to memory with no bound checking. In this example argv[1]
can be of any length, more than 1024 characters and it can be copied into the variable buf. As it is seen
it seems simple to find a code vulnerable to buffer overflow. Using some automated tools will facilitate
the searching for the vulnerability otherwise it can be searched by focusing on the string based
functions like strcpy(), strcat() or gets() and then see if these functions operate on local buffer. If
searching succeed in finding these functions there is high possibility of redirecting execution control to
flow to anywhere you want. Another method would be trial and error that is by feeding a large input
data to the space allocated during execution.

Poor input validation is the main reason for Buffer overflow vulnerabilities. An attacker exploits this
vulnerability to run his code in the victim and control the victim’s machine. So care must be taken to
validate inputs to shut the doors that enable attackers to do their job. Here are some of the techniques
used to prevent buffer overflow: Non-executable stack, Static Analysis, Dynamic runtime protection
and using safer versions of functions.

Abraham Ghebrehiwet
Page 18 of 121

2.3.2 Integer Overflow

An integer overflow is another programming error that is commonly seen in programs. This condition
happens when a not properly sanity checked integer is used in the determination of an offset or size
for memory allocation, copying, concatenation, or similarly. If the integer in question is incremented
beyond the maximum bound, it may fold to become a very small, or negative number, and thereby
providing wrong value.
I will illustrate this problem by taking a simple example. Let’s consider an unsigned

char of 8-bit integer types.

Unsigned char a = 237;

Unsigned char b = 60;

Unsigned char c = a+b;

When executed the code gives the following result

 (a) 11101101 +

 (b) 00111100

 (c) 100101001

The sum of the two variables a and b gives a 9-bit integer result. However, since c is an 8-bit variable,
the left most bit is cut off from the result variable c and the result is 237 + 60 = 41 instead of 297.

Some of the main consequences of integer overflow include; Availability, Integrity and Access control.
For details see [21].

The main problem with Integer overflow is the difficulty of detection when it happened. So an
application gets real difficult to tell if a result calculated is correct or not. This can becomes very
serious if the calculation has to do something with the size of a buffer or array index. Generally
speaking Integer overflow is not directly exploited. And this is because it can not directly overwrite the
memory, but sometimes this can open the door for another bug3 “buffer overflow” which can be
exploited by an attacker directly. Integer overflow can be prevented by using SafeInt library. For details
on how to use SafeInt for the purpose of integer overflow prevention see [22].

2.3.3 Format String Problem

Format string problem is another programming error that allows an attacker to control a function’s
format string. This problem occurs due to; data entries from untrusted sources to an application or

3 Bug is a fault or defect in a computer program, system, or machine.

Abraham Ghebrehiwet
Page 19 of 121

data passing as arguments to the function’s format string. Format string problem was identified as
software vulnerability in the year 1999. This problem mainly occurs in the C/C++ language [23]. The
exploits of this problem ranges from crashing a program, reading and writing from/to the stack and
executing intentional codes as well. The main consequences of these exploits are confidentiality4
(information disclosure) and access control5 (execution of arbitrary code).
To understand this problem let us see a couple of examples [24]. In the first example, an attacker will
be able to read data from the stack and in the second, he will write data to the stack.

Example 1: Reading data from stack

/* read_stack.exe */

#include <stdio.h>

int main(int argc, char* argv[])

{

if(argc > 1)

printf(argv[1]);

return 0;

}

Here the intention is to display the content that is entered by the user at the command prompt. Let’s
see a run of the code with the input “Hello World”.

C:\read_stack.exe “Hello World”

The output is a string ‘Hello World’. That is what we expected from the execution of the above line.

What if we try to run this one?

C:\test.exe “%X %X”

The output should be a string like this ‘%X %X’. However, this time we get ‘12ffc0 4011e5’ printed
into the screen instead of ‘%X %X’. So what is wrong? In fact the program did what was asked to do.
The %X specifier is meant to read the stack four bytes at a time. So the first string of the output
0x12ffc0 is the address of the stack location while the second output string 4011e5 is the return address
of the main() function. From this example it can be easy to understand that if a confidential data is
stored in the stack then it is easy for an attacker to read it.

Example 2: Writing to the stack.

/* write_stack.exe*/

#include <stdio.h>

int main(int argc, char **argv)

4 Confidentiality: Discretion in keeping secret information.
5 Access control: refers to security features that control who can access resources in a system.

Abraham Ghebrehiwet
Page 20 of 121

{

char buf[100];

int x;

if(argc != 2)

exit(1);

x = 1;

snprintf(buf, sizeof buf, argv[1]);

buf[sizeof buf - 1] = 0;

printf("buffer (%d): %s\n", strlen(buf), buf);

printf("x is %d/%#x (@ %p)\n", x, x, &x);

return 0;

}

This code formats any value passed to it from the command line prompt into fixed length buffer. After
formatting, the buffer is printed into the screen. So let’s give it a try.

C:\write_stack.exe “Hello World”

The output of the code is as follows:

buffer (11): Hello World

x is 1/0x1 (@0x804745c)

The program formatted the string into fixed-length buffer and prints the length of the buffer and the
content in it “Hello World”. Moreover the value of x is displayed both in decimal and hexadecimal in
the second line. 0x804745c is the memory address where x is stored in the memory.

Now let’s do the bad stuff and act like an attacker. We will see how to write anything into the memory.
For this purpose, we modify the code a bit by adding the following line just before the return point.

printf(“123456%n”, &0x804745c);

Now let’s run the code one more time with this input:

C:\write_stack.exe "Hello World”

The output will be something like this:

buffer (11): Hello World

x is 1/0x1 (@0x804745c)

The result is the same as before, but this time additional thing has happened. Since we knew the
memory address of x, the piece of the printf code we added overwrote the value of x from its initial
value 1 to 123456. Imagine what more attacks one can do. It is possible to overwrite an arbitrary

Abraham Ghebrehiwet
Page 21 of 121

memory location and corrupt some useful data stored. Even it is possible to overwrite the return
addresses and function pointers to point to some chosen address.

To prevent format string problem, First User input passed directly to a formatting function must be
avoided. And secondly the format strings used by an application should only be read from trusted
sources. This ensures that attackers cannot control the path to the strings.

2.4 Software Security Attacks

Computers are main targets of external attacks aiming at taking control over software behavior. In
general, such attacks make their way to programs through a communication channel as data. Once the
attacks arrive into the program memory, they activate existing vulnerabilities. Finally, these attacks
overturn program execution and gain control by exploiting the program flaws [25].
The overall effects of these attacks are the reasons for the challenges in computer security. As a result,
many mechanisms [27] have been proposed for defending against these attacks. Such mechanisms
include static code analysis, dynamic code analysis and the likes.

Gray McGraw classified attacks into four basic categories [26]; configuration attacks, attacks on
implementation defects in systems (aka bugs), attacks on design and architecture defects in systems
(aka flaws), and attacks on confusion surrounding trust. For details on these categories see [26].

2.4.1 Buffer Overflow Attacks

Buffer overflows are the most-loved exploit that hackers look for. This is mainly due to the fact that an
attacker takes control of a program expecting user inputs by exploiting some of the program flaws.
Generally, there exist two types of buffer overflow attacks. These are stack6-based attacks and heap7-
based attacks. This classification is according to Brien M. Posey [28]. For details on heap-based buffer
overflow and stack-based buffer overflow see [29, 30].
Heap-based attacks are attacks that overflow the memory (space) reserved for a program, however, due
to the difficulty involved in performing such an attack, this type of attacks happen rarely. On the other
hand, stack-based buffer overflow attacks are the most common ones.

6 A stack in computing architectures is a region of memory where data is added or removed in a last-in-first-out manner.
7 A heap is a general term used for any memory that is allocated dynamically and randomly; i.e. out of order.

Abraham Ghebrehiwet
Page 22 of 121

2.4.2 Cross Site Scripting (XSS) Attacks

Cross-Site Scripting attacks are attacking techniques which are most common in the application layer
[32]. In these attacks, malicious scripts are injected into trusted web sites. For these types of attacks to
occur, an attacker uses a web application to send malicious script to a different an end user, usually in
the form of a browser side script. When a web application uses an input from a user for the output it
generates without validating it, this condition opens a door for allowing flaws that lead to XXS attacks.
According to Acunetix web application security, in general, cross-site scripting attack is defined as “A
hacking technique that leverages vulnerabilities in the code of a web application to allow an attacker to
send malicious content from an end-user and collect some type of data from the victim.” 8

Putting it differently, when an attacker sends a malicious script to a non suspicious user, the user
executes the script. As a result, the malicious script can access any cookies, session tokens, or other
sensitive information (including credit card numbers, social security numbers and even medical
records) maintained by the browser and used with that site. These malicious scripts are even capable of
rewriting the content of the HTML page.

In general, there are two categories of XXS attacks [31]. These are stored XXS attacks and reflected
XXS attacks. For details on stored and reflected XXS attacks go through [31].

 Infect with script

 Visit

 Inject script

 Do something bad

Figure 2.1 High level view of XXS attack

2.4.3 SQL-Injection Attacks

SQL Injection attacks are other types of attacks that are most common in application layer. These
types of attacks exploit the improper coding of web applications vulnerabilities thereby allowing

8 “Cross-site scripting attacks” Acunetix web application security.

Victim Hacker Your homepage WWW

Abraham Ghebrehiwet
Page 23 of 121

hackers to inject SQL commands into say a login form to allow them to gain access to the data held
within a database. Once an SQL injection exploit is successful, an attacker can read sensitive data from
the database, modify database by (Insert/Update/Delete) data, even he/she can execute administration
operations on the database [33, 34].
Website features which are susceptible to SQL Injection attacks include; login pages, support and
product request forms, feedback forms, search pages, shopping carts and the likes. This is mainly due
to the fact that the fields available for user input in these features allow SQL commands to query the
database directly.

Generally speaking, main consequences of SQL-injection attacks are; Confidentiality, Authentication9,
Authorization10 and Integrity11 problems. Prevention mechanism for these types of attacks includes;
input validation, binding variables, securing functions and Error messages [35].

2.4.4 Denial-of-Service (DoS) Attacks

A denial-of-service (DoS) attack is an attack in which an attacker attempts to make a computer or
network resource inaccessible and prevent users from accessing information or services. For example,
using this attack mechanism, an attacker can prevent you from checking e-mail, websites, online
accounts (banking, etc.), or other services that run or depend on the affected computer.
The most common and obvious type of DoS attack occurs when an attacker "floods" a network with
external communications requests. When you type a URL for a particular website into your browser
for example ‘www.yahoo.com’, you are requesting the site's computer server to view the page. The
server can only process a certain number of requests at once, so if an attacker is able to overload the
server with huge number of requests, it can't process your request. This is what "denial of service" is.
The server rejects/denies your request because it is flooded with huge requests from the attacker.

(US-CERT) defined some symptoms of denial-of-service attacks to include [36]:

 Unusual slow network performance

 Unavailability of a particular website

 Inability to access of a website

 Dramatic increase in the number of spam e-mails received

An attacker can perform an attack on your email account by using spam e-mail messages. When you
create an e-mail account, you are assigned a specific storage on the e-mail server of the account
provider, this limits the amount of data you can have in your account at any given time. An attacker can

9 Authentication is the process of determining whether someone or something is, in fact, who or what it is declared to be.
10 Authorization is the process of giving someone permission to do or have something.
11 Integrity is a concept of consistency of actions, values, methods, measures, principles, expectations, and outcomes.

Abraham Ghebrehiwet
Page 24 of 121

consume your quota by sending many, or large, e-mail messages to the account, preventing you from
receiving legitimate e-mail messages.

2.5 Why is Software Security Problem Growing?

Nowadays, as businesses and societies have increased their dependencies on computing devices for
their daily usage, software are getting developed almost in huge numbers. As there is no such an issue
as perfect software however, most of the computing systems are susceptible to software security
problems. From the above statements we can see the number of software (packages) developed have
direct influence to the growth of software security problems. But is this the only reason why software
security problem is growing? In the following subsection we will see three trends that have large
influence on the growth of the problem [12, 37].

2.5.1 Connectivity

Thanks to the internet today it is easy to connect computers and establish communication among
them. Due to the ease of connectivity and communication that is because access through a network
does not require human intervention, the number of attacks and ease of these attacks has also
increased. This issue places software at greater danger. Lots of businesses, government sectors and
mass people have increased their dependencies on networked communication to interact with each
other. Sadly, as these systems are connected to the Internet, they become more susceptible to software-
based attacks from various distant sources. No need for an attacker to physically assess the system in
order to exploit vulnerable software.
The omnipresence of networking means that there are more software systems to attack, more attacks,
and greater risks from poor software security practices than in the past. This will even become worse
over time. Because poor coding and design problems will still continue to exist, the Internet is
everywhere so the attackers are now roaring at your doorstep [37].

2.5.2 Extensibility

A second trend that affects software security problem growth is system extensibility. Software
extensibility is a system design principle in which the system is designed to include plug-in architectures
and mechanisms for expanding/enhancing the system with future capabilities and new functionalities
(features) without having to make greater changes to the system infrastructure. For example, Today's
operating systems support extensibility through dynamically loadable device drivers and modules.

Abraham Ghebrehiwet
Page 25 of 121

Today's applications, such as word processors, e-mail clients, spreadsheets, and Web browsers,
support extensibility through scripting, controls, components, and applets.
From an economic point of view, extensible systems are attractive because they provide flexible
interfaces that can be adapted through new components. In today's businesses, it is essential that
software be distributed as rapidly as possible in order to gain market share. However at the same time
the businesses also require that applications provide new features with each release/patch. With an
extensible architecture, these demands are easily satisfied by releasing the base application code early,
and then releasing later feature extensions as needed.

 Unfortunately, despite of the mentioned attractiveness of extensible systems, it is hard to prevent
software vulnerabilities from been released as unwanted extensions [37].

2.5.3 Complexity

A third trend that influences software security growth is the growth in the size and complexity of
software systems. For example a computer running Windows vista and associated applications consists
of at least 50 million lines of code12 [38], and end-user applications are becoming increasingly large and
even more complex. When systems become this large and complex, it is unthinkable to avoid bugs.
The figure below shows the growth in complexity of Windows (as measured in lines of code) over the
years. The point of the graph is to show the growth rate of the lines of code over time.

Figure 2.2 Windows Complexity (measured in Line of code)

12 Line of code is a popular definition of program size.

Abraham Ghebrehiwet
Page 26 of 121

According to [39], it is estimated that in 1000 lines of code there exist an average of 5 bugs. This shows
us how the number of bugs increased over the years with the increasing size and complexity of
software. Besides the lines of code, other factors like, whether the code is tightly integrated, the overlay
of patches and other post-deployment fixes, and critical architectural issues have significantly affected
complexity [38].

The tendency for software systems to grow very large quickly is just evident in open source systems
compared to Windows. As a result, the problem is that more code results in more defects and, in turn,
more security risks.

2.6 Software Security Guidelines

From day to day, attacks are becoming more sneaky and sophisticated. As a result, they are creating a
complicated and dynamic risk environment for IT-based operations. Due to these issues, users’
concern about the software integrity, security and reliability have greatly increased.
To deal with these users’ concerns and adhere to customer requirements, vendors and product
providers must take substantial efforts focusing at reducing products’ vulnerabilities, enhancing attack
resistance and protecting integrity. The efforts used to guarantee the security of the above mentioned
concerns are often denoted as “software assurance.” Software assurance is particularly an essential
factor for public safety and economies, critical information of organizations and national security. In
other words these users require a high degree of software security confidence. This confidence is only

achieved by using best practices for developing secure software [9, 14, and 41]. According to Todd
Landry OWASP, SANS institute, MITRE, PCI Security Standards Council and SEI are the top five
leading organizations when talking about software security guidelines. A concise overview of the top
five leading organizations is found at [40].

In the following subsections I provide some guidelines used to ensure software security.

2.6.1 Secure the Weakest Link

Viega and McGraw [42] described secure the weakest link by saying “Security practitioners often point
out that security is a chain; and just as a chain is only as strong as the weakest link, a software security
system is only as secure as its weakest component. Bad guys will attack the weakest parts of your system
because they are the parts most likely to be easily broken. (Often, the weakest part of your system will
be administrators, users or tech support people who fall prey to social engineering.)”(p, 93-96).
Attackers have more tendencies to launch an attack by penetrating through weak sides in a software
system than investing their time and effort to penetrate into a heavily strengthened system. For

Abraham Ghebrehiwet
Page 27 of 121

example, some carefully designed cryptographic algorithms requires a great deal of time (usually years)
to break. Attackers are not stupid, so probably they will not spent years trying to attack encrypted
information communicated in a network. Instead, they prefer to target the termination points, could it
be server/client or the likes, as the spot may be easier to attack.

The weakest spot of a system can be software or sometimes it can be surrounding infrastructures
(components) that interact with the software. Therefore it should be a common practice for software
venders to be sure as whether the weakest links (parts) of their products are secure enough before they
release their products to end users. Doing so plays a great deal in closing some doorsteps to attackers
[43, 44].

2.6.2 Defense in Depth

In an application, layering security defenses into multiple layers play an important role in reducing the
chance of a successful attack. Defense in depth is an organized use of layered security defense used to
protect the integrity of the information. In other words Defense in Depth is a principle which helps in
maintaining a secure infrastructure by adopting a layered approach, i.e. defending against various
threats at various levels. The scheme uses the principle from military defense that it is more difficult
for an enemy to defeat a multi-layered military defense system than to penetrate a single barrier [9, 45].
The probability of an attack to succeed is minimized by building a well-structured Defense in depth.
Building such a strategy also helps system administrators and security personnel to identify people who
attempt to compromise their system. For example, if an attacker penetrates and gains access to a
system, the system administrators will have enough time to deploy new countermeasures to prevent
adverse impact from occurring if the system security is built based on the defense in depth strategy.

The Defense in Depth strategy should include all the possible countermeasures that need to be taken.
Some of the components include Antivirus software, firewalls, anti-spyware programs, hierarchical
passwords, intrusion detection, biometric verification and the likes. In addition to the above listed
components, physical protection of business sites along with comprehensive and ongoing personnel
training enhances the security of critical data against compromise, theft or destruction. All in all the
main idea of Defense in Depth is to ensure the existence of a well-designed robust defense strategy in
shelf. A detailed discussion of the topic is found at [46].

2.6.3 Fail Securely

Software or system crashes can happen any time by any means. For example attackers try to make it
crash in order to expose several potential vulnerabilities in it during startup. So security professionals

Abraham Ghebrehiwet
Page 28 of 121

and developers should design the system architecture in such a way that ensures failing securely when a
component in a system fails. This concept is called “Fail Secure”.
The main idea here is, when a system fails, it should fail securely not giving any footprints which an
attacker can start with. Normally this involves things like: secure defaults, restoration to a secure state,
always checking return values for failure, existence of a default case that does the right thing and the
likes. Assess all stuffs that could happen during system failure and be sure that it does not threaten the
system [42, 47, and 48].

2.6.4 Use the Least Privilege

The principle of list privilege which sometimes called principle of minimal privilege is giving users or
components the least access privilege required to accomplish its gob. In other word this is to say when
a subject requires accessing a resource, only the lowest access rights should be assigned to it. And the
access right shouldn’t stay long duration it should be in effect for a short period. A user with access
right beyond the necessary right may change information in unwanted ways. Therefore, carefully
delegated access rights play major role in limiting attackers from compromising a system.
For example, let's say you were to go on summer vacation, and ask one of your neighbors just to collect
mail for you. No matter how close you are with your neighbor or how much you trust them you don’t
put yourself at risk by giving them the key to your house. Only the key to your mail box will be
enough. So this way you your mails will be collected without your house been set to risk [49].

2.6.5 Compartmentalize

Compartmentalization (multilateral) is the restricting of information flow across security levels. The
idea is that if details of a system is kept or known to few people only, the risk probability of
compromising that system is decreased. In information security, the concept of compartmentalization
originated in the managing of classified information in military, intelligence agencies and the likes.
The principle of compartmentalization are used to impose the need to know principle, that is a person
is only allowed access to the information if it is a must to know to do his task. If the person does not
need to know the information in order to perform his task, then compartments can be enforced to
limit the information that person can access [39, 51].

In compartmentalized system information-control boundaries need to be vertical as shown in figure 2.3
rather than horizontal as it is used in the Bell-LaPadula (multilevel) model [50] figure 2.4.

Abraham Ghebrehiwet
Page 29 of 121

TOP SECRET

SECRET A B C D

CONFIDENTIAL

UNCLASSIFIED Shared Data

Figure 2.3 Bell-LaPadula model Figure 2.4 Multilateral (compartmentalize)

2.6.6 Keep it Simple

Generally speaking, complex systems tend to introduce more bugs. For instance if we consider a very
simple Web browser and start adding more and more features to it the more we add new features, the
more complicated it gets, and the harder it is to make it secure. Naturally, complex systems (systems
that involve software) introduce multiple risks. One such risk is that due to the extensibility or patching
of new features or fixes, malicious functionality can be easily added to the system. Sadly, complexity of
the system lets malicious components to remain invisible to non-suspicious users until it is too late.
Another risk is that complexity in a system makes it hard to understand, analyze and secure it.
According to Gray McGraw et al., it is difficult to achieve security even when the system is simple and
complexity makes security even more difficult. Security risks can remain uncovered in complex system
until the areas have been exploited [52].

Abraham Ghebrehiwet
Page 30 of 121

Chapter 3

Research Methodology

In this project two research approaches are used. The first method is static source code analysis
technique and the second one is threat assessment modeling technique. The choice for the first
technique is mainly because static source code analysis are normally similar with code auditing to the
extent of concentrating on the actual source code, but instead of auditing the code manually, it uses
automated tools. In this method, the auditing is mainly based on the use of gained knowledge and
known issues more effectively and focuses the attention on areas of the code more likely to be
vulnerable.
However, despite of the above advantage, the tools used in static source code analysis method might
sometimes generate imprecise analysis report, that is either they generate some false negatives13 or
some false positives14. This means that the tools can hide existing vulnerabilities or sometimes they
suggest non existing vulnerabilities on the code. Moreover, static analysis tools also have some
limitations, especially in identifying design and architectural vulnerabilities. Therefore in order to have
higher confidence on the security of an application, I introduced the second method, threat assessment
modeling, to further explore and identify all possible potential threats including those that were not
discovered using the static source code analysis tools. The developed threat model together with the
result of the static analysis can then be used to build a solid security strategy to guard against the
outlined threats to an application.

3.1 Static Source Code Analysis Technique

Software quality with respect to security is crucial. Different techniques are used to improve the quality
of software. Static source code analysis is one of such techniques. It is the process of analyzing a
program without executing it. Static analysis techniques are used primarily in the areas of software
metrics, quality assurance, program understanding and refactoring [17]. Several static code analysis
tools are developed in the recent years. With the help of these tools one can easily evaluate a program.
Static source code analysis tools are used in the security arena for vulnerability detection. These tools
operate by checking specific vulnerable code patterns in a program or it checks if a program control
flow reaches some state of vulnerability. And up on finding either one of the two program flaws the

13 False negative refers to a result that tells you a condition is not present, when in reality, is there.
14 False positive refers to a result that tells you a condition is present, when in reality, is not there.

Abraham Ghebrehiwet
Page 31 of 121

tools report for bugs. Alexander Ivanov mentioned in his paper [17] “Most tools rely on a static rule set
of predetermined code patterns that they should detect and report.” This means that due to their
nature, not all vulnerabilities can be detected by static analysis tools. So if a bug is not reported after an
analysis by a tool it doesn’t mean the code is free of bug. The recommended procedure is to use
various tools and detect as much bugs as possible. Several approaches are used to static analysis some
of the most popular approaches are pattern matching, lexical analysis, parsing and AST analysis. For
details on the approaches see [17]. Listed below are both the advantages and limitations of static source
code analysis.
Static source code analysis advantages:

 It can find weaknesses in the code at the exact location.

 It can be conducted by trained software assurance developers who fully understand the code.

 It allows a quicker turn around for fixes.

 It is relatively fast if automated tools are used.

 Automated tools can scan the entire code base.

 Automated tools can provide mitigation recommendations, reducing the research time.

 It permits weaknesses to be found earlier in the development life cycle, reducing the cost to fix
[53].

Static source code analysis limitations:

 It is time consuming if conducted manually.

 Automated tools do not support all programming languages.

 Automated tools produce false positives and false negatives.

 There are not enough trained personnel to thoroughly conduct static code analysis.

 Automated tools can provide a false sense of security that everything is being addressed.

 Automated tools are only as good as the rules they are using to scan with.

 It does not find vulnerabilities introduced in the runtime environment.

For further reading on static source code analysis it is recommend reading [54].

3.1.1 Pattern Matching

Pattern matching is the process of examining some sequences for the presence of the same patterns.
Pattern matching is the simplest technique used in static analysis. A common way to do code auditing is
to use the grep utility to see the existence of the pattern ‘strcpy’. Often the function strcpy() is misused
and existence of this function is a good indication for a potential vulnerability. However, this doesn’t
mean that all calls to strcpy() is dangerous. Some calls could be safe. In this case, proper treatment

Abraham Ghebrehiwet
Page 32 of 121

should be carried to the unsafe calls only. Pattern matching technique has some problems. These
include:

 Not capable to detect complicated vulnerabilities

 May generate very large false positive results

 Lack of proper C parser

 Incapable of telling comments from real code

3.1.2 Lexical Analysis

Lexical analysis is another technique used in static source code analysis and it is the process of reading
the characters of the source code from left to right discarding whitespaces and grouping them into
tokens. Compared to pattern matching, lexical analysis provides slight improvement. In lexical analysis,
the tokens developed by grouping the source code are matched against a database of known
vulnerability patterns. This technique is used by tools like Flawfinder, RATS and ITS4 [55]. I will
present Flawfinder and RATS in sections 4.2.1 and 4.2.2 respectively. Lexical analysis improves the
result of pattern matching further by handling irregular whitespace and code formatting. However, the
number of false positives is still very high.

3.1.3 Parsing and AST Analysis

To further improve the performance of static source code analysis, the next step to do is parsing the
source code and building an Abstract Syntax Tree (AST). Normally this task is performed by the
compiler and provides a possibility for code reusability. In order for a static source code analysis tool
to parse and analyze various programs correctly, the tool’s parser must be compatible at least with one
of the significant compilers.
The abstract syntax tree (AST) captures only the important nodes in a tree form, while neglecting
unnecessary syntactic details. The main distinguishing factor of ASTs from concrete syntax trees is they
omit tree nodes that represent punctuation marks such as semi-colons to terminate statements or
commas to separate function arguments. The abstract syntax tree (AST) allows analyzing the syntax
and the program semantics. One of the drawbacks of lexical analysis tools is the inability to distinguish
the difference of a variable and a vulnerable function that have the same name, but this is not a
problem in AST. This tool can accurately distinguish the difference. AST reveal vulnerabilities hidden
from lexical analysis tools by expanding complicated expressions. The pattern matching approach
discussed in section 3.1.1 can be largely improved by using matching AST trees instead of sequences
of tokens or character [17, 56].

Abraham Ghebrehiwet
Page 33 of 121

3.1.4 Type Qualifiers

Type qualifiers are qualifiers that are used to qualify types of an identifier. They give an identifier one
of two properties. The const type qualifier defines an immutable (non-modifiable) object while volatile
type qualifier declares a mutable (modifiable) object.
Languages like Java, C/C++ and the likes have few number of type qualifiers [17]. Jeffrey Foster [57]
developed a framework for type qualifiers that are used by some advanced vulnerability detection tools.
Foster, in his work, proposed a general purpose system for adding light weight user-defined type
qualifiers to improve the software. According to Foster this is done by annotating the source code and
detecting type inconsistencies by type qualifier inference. Type qualifier systems possess several
advantages [59].

Tools like cqual [58] require only a few type qualifier notations in order to be added to a program and
the type qualifier inference is efficient even if the programs are large. The main disadvantage of this
approach is that it is not applicable to large numbers of vulnerabilities that can be expressed in terms of
type inconsistencies.

3.1.5 Data-flow Analysis

The analysis discussed so far are good at analyzing simple vulnerabilities like format string problem.
However, vulnerabilities like buffer overflow, integer overflow and so forth, require some more
complicated analysis. As seen in sections 2.3.1 and 2.3.2 respectively, such vulnerabilities arise when
variables are assigned values larger than the buffer. Detecting such problems in a program without
executing the program is quite hard. Data-flow analysis (technique for gathering information about the
possible set of values calculated at various points) is another technique which is used for solving
problems of these kinds. It solves the problem by determining the parts of the program to which a
variable with a particular assigned value might propagate.

3.1.6 Taint Analysis

Taint analysis is a technique which tracks incoming data from untrusted source and marking them
‘taint’. Normally data originating from outside should be treated as untrusted, and therefore marked
‘tainted'. When these data are used in operations an eye is kept on, and taint flags are broadcasted to
the result of such operations. When data marked as tainted is used in an operation, for example as
target address in a jump, an alarm is raised and essential action is taken. An attempt made to use
tainted data from outside sources without performing relevant action is an indication of vulnerability.

Abraham Ghebrehiwet
Page 34 of 121

Results obtained from taint analysis can be very accurate; however this has an effect to the performance
due to the fact that a lot of emulation is involved [17, 60, 61, 62].

3.2 Threat Risk Modeling Technique

Threat risk modeling is a technique used to develop a model by iteratively assessing the vulnerabilities
in an application to find those that are most dangerous and thereby creating a prioritized set of
countermeasures to measure and contain the risks. The model developed using this technique
provides desirable recommendations that greatly maximize and insure the protection of confidentiality,
integrity and availability without affecting the overall functionality of the application. Normally threat
risk modeling is developed as a collaborative process between the various organizational levels. A
model developed without the interaction of the organizational levels can result into an inefficient
security measure and the cost can be high too [64, 65, 68, 69].

Threat risk modeling is used to assist management in allocating time and money that should be spent
in order to contain the risks [63]. Threat risk analysis is divided into two types, the quantitative and the
qualitative. The first analysis is a mathematical approach and the second is a high/medium/low
approach. In this thesis I use the qualitative approach.

The central areas in threat risk modeling are:

 Identify Security Objectives

 Survey the Application

 Decompose Application

 Identify Threats

 Identify Vulnerabilities

Figure 3.1 shows the steps involved in performing threat risk modeling.

Abraham Ghebrehiwet
Page 35 of 121

Figure 3.1 Threat risk modeling steps

3.2.1 Identify Security Objectives

When deploying open source application into your system, it is best to define security objectives and
requirements early before you integrate the application in the system. These Security objectives are
goals and constraints that have influence to the confidentiality, integrity, and availability of your data
and other applications of the system. Defining security objectives helps to determine where to center
your efforts and to understand the potential attackers on the application as well. Identifying security
objectives is done iteratively by examining the application’s requirements and usage premises.
In threat risk modeling, Identification of security objectives is the first step that one must do in order to
protect the security of an application. Once the security objectives are defined, they can be used as the
basis for the subsequent steps. However, this doesn’t mean that these objectives should remain static;
they can change with time and with new situations that may arise in the process. Any changes in the
security objectives have an influence to other security activities. As a result, you should review your
threat risk model now and then with every change happening to the objectives.

Abraham Ghebrehiwet
Page 36 of 121

To alleviate this process, the following security objectives categories can be used as a starting point:

 Identity: check whether the application protect user identity.

 Financial: Assess the financial loss the organization can face in remediation.

 Reputation: Measure/estimate the loss of reputation that can happen when the application is
abused.

 Privacy and Regulatory: The extent of protection of user data?

 Availability Guarantees: what is the availability requirement of the application per a Service
Level Agreement (SLA) or similar guarantee?

Such a list is an exhaustive, but it provides some knowledge about the decisions that leads into selecting
and building security controls [12, 65].

3.2.2 Survey the Application

After the security objectives have been identified, the next step is to have an overview of the
application. Surveying the application is done by analyzing the application design in order to identify
the components, data flows, and trust boundaries of the system. In other words this step helps in the
identification of the application's key functionality, characteristics, and clients which in turn will help in
identifying relevant threats that will be used in the steps that follow [65].
Following are some points used to create an application overview:

Draw end-to-end deployment scenario: sketch a diagram that depicts the components, structures,
subsystems, deployment characteristics, authentication, authorization, and communication mechanisms
of the application.

Identify roles: identifying the roles helps to determine both things that are supposed to happen and
things that are not supposed to happen. For example, identify who can read data, who can update data,
who can delete data?

Identify key usage scenarios: Identify the important features of the application. Avoid listing every use
case. Instead, list the main ones.

Identify technologies: list the technologies and key features of the software. Some examples include
operating system, development language and so forth. Identifying technologies helps in focusing on
technology-specific threats.

Identify application security mechanisms: Identify any key points of the following; authentication,
authorization, input-validation, cryptography and the likes.

Abraham Ghebrehiwet
Page 37 of 121

3.2.3 Decompose the Application

In this step, break down the application to identify trust boundaries, data flows, entry points, and exit
points with a security impact that need to be evaluated. Generally speaking, it is easier to reveal threats
and discover vulnerabilities when the modules of the application become more known.
Identify trust boundaries: identifying an applications trust boundary helps focusing the analysis on
specified areas of interest. Trust boundaries are those points where access control levels change in
order to access resources or an entry points in applications where data passing those point are not fully
trusted.

Identify data flows: trace data flows through the application starting from entry to exit. This makes clear
how the application interacts with the external system and also clarifies how internal components
interact.

Identify entry points: attackers use the entry point of the application to hack into the system. This point
is intended for clients. Identify where these entry points are and the type of data they take.

Identify exit points: these are points where the application sends data to the client or to external
systems.

3.2.4 Identify Threats

In this stage, identify the threats and attacks that might compromise the security objectives of the
application. These threats are the bad consequences that could happen to the application. Generally it
is difficult to identify unknown threats therefore concentrate on known threats. To perform this
process, one can use the following basic approaches [65].
Start with common threats and attacks: start by preparing a list of common threats and attacks and then
apply the threat list in your application. There is a possibility that some threats are simply eliminated
because they are not applied in your application.

Use of question-driven approach: this helps in identifying relevant threats and attacks. For this
approach a STRIDE model [66] can be used to ask questions that are related to the application.

Examine the application level by level, layer by layer and feature by feature when identifying threats.
And while performing threat identification, concentrate on areas where security mistakes are most
frequently made. Note that, threats identified during this stage do not necessarily indicate
vulnerabilities.

Abraham Ghebrehiwet
Page 38 of 121

3.2.5 Identify Vulnerabilities

In this step, review the application security clearly looking for vulnerabilities. Follow the same process
as done while identifying threats in the previous step. However, this time sample questions presented
must be designed in a way to help identify vulnerabilities instead of threats. A good approach in
identifying vulnerabilities is to examine the application layer by layer looking at every vulnerability
categories in each layer.
The following are some of the vulnerability categories that might help in the process of identifying
vulnerabilities [67]:

 Identify authentication vulnerabilities

 Identify authorization vulnerabilities

 Identify input and data validation vulnerabilities

 Identify configuration management vulnerabilities

 Identify sensitive data vulnerabilities

 Identify session management vulnerabilities

 Identify cryptography vulnerabilities

 Identify parameter manipulation vulnerabilities

 Identify exception management vulnerabilities

 Identify auditing and logging vulnerabilities

Note that, vulnerabilities are present in an application when threats exist in the application and are not
mitigated [70]. We will shortly see mitigation strategy in section 3.2.6.

3.2.6 Mitigation Strategies

Now that we have identified the threats and vulnerabilities to the application and set the risks and their
priorities, the next stage is then to develop a well ordered and cost effective mitigation strategy. As Gary
McGraw stated, “Any suggested mitigation activities must take into account cost, time to implement,
likelihood of success, completeness, and impact over the entire corpus of risks”[12]. This is apparent
that a nice and expensive mitigation strategy might not take the attention of the management’s eyes.
Moreover, implementation time is also another factor that needs to be considered. Most of all the
impact of the strategy over the entire parts of the risks should be considered. That is the strategy must
be applicable to all the risks of the application not only to some parts. From the point of view of a
business context, the limiting factor for a mitigation strategy should be the level the organization can
afford, integrate and understand. The strategy must also be able to demonstrate proper mitigation of
the risks. Typical measurement system to consider in this strategy is cost [71].

Abraham Ghebrehiwet
Page 39 of 121

Chapter 4

Case Study

Now that the methods or approaches for testing Open source software security have been defined, they
need to be tested on real application. rdpdesk-3.2, Remote Desktop Connection Manager was chosen
as a test case application, because it has a version distributed as Open Source software and among all
the open source software explored, this application contains compiled files which are appropriate for
the experiments. In addition, the application is developed in C/C++ language and tools like Flawfinder
and RATS are capable of scanning software developed in C/C++.

4.1 rdpdesk-3.2 (Remote Desktop Connection Manager)

Remote Desktop Connection Manager is intended to coordinate RDP (Remote Desktop Protocol),
VNC (Virtual Network Computing) and Citrix ICA (Independent Computing Architecture)
connections to Computers which are a part of private or corporate, local or remote, virtual or real
networks. It provides secure access over the Internet to remote networks via traffic redirection tools
and corresponding client libraries. The application allows easy working with remote desktops and
servers. It is distributed both as an OpenSource Edition (OSE) GPL v2 license and commercial
proprietary licenses as the Professional Edition (Pro) [75]. The OpenSource Edition version of the
application support both Windows 2000/XP/2003/Vista/7 and Linux while the Professional Edition
supports Windows 2000/XP/2003/Vista/7 only. As stated earlier the OpenSource Edition is selected as
a test case application for this task.

The application provides the following features:

 Manual connection/access configuration
 Simple user authentication
 Certificate-based authentication
 Login-password OS based authentication
 Automatic connection configuration based on downloading configuration files
 RDP-based connection
 ICA-based connection
 VNC-based connection
 Microsoft Internet Security and Acceleration server (MS ISA Server) Support
 Proxy / firewall traversal
 Secure settings storage

Abraham Ghebrehiwet
Page 40 of 121

In section 4.2, the application will be treated with two static analysis tools namely, Flawfinder and
RATS (Look Appendix B for a detailed explanation of the tools). The aim of this analysis is for
identifying vulnerabilities in the test case application source code. Then finally in section 4.3, a threat
risk model will be developed for the application. The threat risk model is used to further explore the
design and architectural flaws in the application.

4.2 Static Source Code Analysis: rdpdesk-3.2

As discussed in section 3.1 static source code analysis is the process of analyzing a program without
executing it. Therefore in this section I will take a test case application, rdpdesk-3.2, and then perform
static source code analysis using two scanning tools. First we will see how to perform the analysis using
Flawfinder and next we will repeat the process using RATS.

4.2.1 Analyzing rdpdesk-3.2 Using Flawfinder

In this analysis the application, rdpdesk-3.2, is scanned using Flawfinder tool. To perform the
scanning, Flawfinder must be installed in the system. Note that, Flawfinder is Linux based tool so make
sure to install Linux [72] in the system if it is not there. The easiest way to perform the scanning is to
save the test case application in the same folder/location with the tool’s executable file.
After putting the test case folder in the same location with the tool’s executable file, the next step is to
run the tool’s executable file and pass the test case folder, in our case rdpdesk-3.2, as an argument.
Here is how you execute it:

/home/flawfinder/flawfinder-1.27$./flawfinder rdpdesk-3.2

If everything went correct the tool starts scanning the test case application and a list of the analysis
report is displayed in the screen. Figure 4.1 shows a snapshot of a sample run of the test case
application using the tool Flawfinder.

Abraham Ghebrehiwet
Page 41 of 121

Figure 4.1 Flawfinder snapshot

4.2.2 Analyzing rdpdesk-3.2 Using RATS

Here, the process in section 4.1.1 is repeated but this time with a second tool RATS. To perform the
scanning, RATS must be installed in the system. Note again, RATS is Linux based tool so make sure
to install Linux in the system if it is not there. In order to install RATS in the system, first Expat XML
parser [73] must be installed in the system otherwise RATS installation will not succeed. To analyze
the test case application using RATS, I installed Expat-2.0.1. The easiest way to perform the scanning
is to save the test case application in the same folder/location with the tool’s executable file.
After putting the test case folder in the same location with the tool’s executable file, the next step is to
run the tool’s executable file and pass the test case folder, in our case rdpdesk-3.2, as an argument.
Here is how you execute it:

/home/rats/rats-2.3$./rats rdpdesk-3.2

If everything went correct the tool starts scanning the test case application and a list of the analysis
report is displayed in the screen. Figure 4.2 shows a snapshot of a sample run of the test case
application using the tool RATS.

Abraham Ghebrehiwet
Page 42 of 121

Figure 4.2 RATS snapshot

4.3 Threat Risk Model Development for rdpdesk-3.2

As mentioned in section 3.2, Threat risk modeling is a technique used to develop a model by
iteratively assessing the vulnerabilities in an application to find those that are most dangerous and
thereby creating a prioritized set of countermeasures to measure and contain the risks. In section 3.2
we have seen the steps required for developing a threat risk model. In this section we will apply these
steps to our test case application in order to further secure our software. For this task I selected
Microsoft Threat Analysis & Modeling v2.1 [74]. Figure 8 shows a snapshot of Microsoft Threat
Analysis & Modeling tool. The main reasons for using this tool are, primarily, it is charge free and
secondly, the tool allows anyone to produce a feature-rich threat model [74]. Along with automatically
identifying threats, the tool can produce valuable security artifacts such as:

 Data access control matrix

 Component access control matrix

 Subject-object matrix

 Data Flow

 Call Flow

 Trust Flow

 Attack Surface

Abraham Ghebrehiwet
Page 43 of 121

 Focused reports

Figure 4.3 Microsoft Threat Analysis & Modeling snapshot

As proposed earlier, the main task of this section is to develop threat risk model for the test case
application. The model is developed by iteratively assessing the threats and vulnerabilities in the
application and finally finding those that are most dangerous to the application. The developed model
helps to create a prioritized set of countermeasures to measure and contain the risks. Developing
threat model using Microsoft Threat Analysis & Modeling tool is a three-phase process. First phase is
defining application context. Second phase is modeling threats on top of the application context. And
the third phase is measuring the risk associated with each threat. We start our task with the initial stage,
identifying security objectives.

4.3.1 Identify Security Objectives

The first step in the development of threat risk model is identifying security objectives. Here we create
a list of security objectives that provides an understanding about the decisions that leads into selecting
and building security controls of our test case application rdpdesk-3.2.
In this task, the following configuration is used. We have a central server where several applications are
installed there. rdpdesk-3.2 is installed on clients’ machines and it allows them to establish connection
with the central server via a network (internet). For example, instead of deploying databases or
accounting software or new patches on all clients’ machines, the applications can simply be installed on
the server and clients can log on and use them via the network. This simplifies upgrading,

Abraham Ghebrehiwet
Page 44 of 121

troubleshooting, and software management constraints. Figure 8 shows one such usage configuration of
rdpdesk-3.2.

The main security objectives of the application include:

 Protection of user accounts and passwords

 Protection of all data transmission between clients and server

 Prevention of unauthorized users from connecting to the system

 Prevention of authorized users from changing privilege levels

 Ensure application availability

Figure 4.4 rdpdesk-3.2 usage configuration

4.3.2 Survey the Application

The application is a remote desktop connection manager which enables clients to connect to a central
server. The server has several applications installed in it. The application enables the clients do
everything on the server from their own computer provided that they have logged on and have
appropriate privileges.

Application Roles

The test case application has the following user roles.

 Administrator

 Client

Abraham Ghebrehiwet
Page 45 of 121

Figure 4.5 user roles

Figure 4.6 Data

Application Key Scenarios

 The key scenarios of the test case application are listed below.

 Clients log on to connect to the server

 Authenticated clients browse through the server

 Authenticated clients download file from the server

 Authenticated clients can install software to the server if they have sufficient privilege

 Administrator logs on to the server/clients’ machine

 Administrator creates user account

 Administrator deletes user account

 Administrator deletes file from client machine

Abraham Ghebrehiwet
Page 46 of 121

 Administrator modify file in the clients’ machine

 Administrator installs software in the server

Figure 4.7 Application use cases

Application technologies

The application uses and supports the following technologies and features:

 Programming language C/C++

 Operating system: windows7

 Database server: Microsoft SQL server 2008

 Data encryption: RSA Security RC4 cipher

 Connections: Citrix ICA, Microsoft Windows terminal services (RDP), VNC.

Application security mechanisms

The most important known application security mechanisms of the test case software are:

 Clients can be authenticated using simple user authentication.

 Clients can be authenticated on the basis of certificate-based authentication.

 Administration can be done remotely.

 Clients can be authenticated based on windows based authentication.

 Roles are used to authorize access privileges.

 Application supports Microsoft Internet Security and Acceleration server (MS ISA server).

Abraham Ghebrehiwet
Page 47 of 121

 Client application supports firewalls and proxies for Internet connection.

 Application uses RSA Security RC4 cipher to encrypt the data.

4.3.3 Application Decomposition

At this stage, the test case application is broken down to identify trust boundaries, data flows, entry
points, and exit points with a security impact that need to be evaluated.

Trust boundaries

Listed below are the identified trust boundaries.

 The boundary line firewall

 The database server trusts calls from the application

 The data access part trusts the application to pass valid data

Data flows

The applications’ data flows under RDP connection setting are:

1. A client submits group name, server name, user name, password, and domain name through
the rdpdesk-3.2 connection setting window. The connection information is handled by the user
database module. This module forwards the data to the access component, which verifies the
credentials with the database to determine their validity.

2. A client generates an input message (keyboard or mouse), the information is captured by the
RDP client and it is encoded as RDP data. The data is then sent to the server. When the
Server device driver receives the input data, it decodes it. And finally the actual mouse and
keyboard input is sent to the Win32 kernel in the user's session address space, where it is
processed as normal input. Figure 4.8 shows RDP graphical data flow between the client and
the server.

Abraham Ghebrehiwet
Page 48 of 121

Figure 4.8 RDP graphical data flow between the client and the server

3. A client session uses a special RDP display driver responsible for receiving display commands
from the GDI and passing the information to the kernel-mode Terminal Server device driver.
This driver encodes the input as RDP data and sends it to the transport layer to be sent to the
client. When the client receives the data, the RDP data is decoded and the display updated
accordingly. Figure 10 shows RDP mouse or keyboard data flow between the client and the
server.

Figure 4.9 RDP mouse or keyboard data flow between the client and the server

Abraham Ghebrehiwet
Page 49 of 121

4. An administrator logs on and accesses the accounts administration database. The account
administration component checks the user role. If the user is authorized, the account
administration component interacts with the data access component to view and modify user
account.

Entry Points

These points are the main entrance points intended for clients to enter into the application. At this
point I identify where these entry points are in the application and the type of data they take.

The following are some of the identified entry points.

 Port to be used for RDP session connection request is port 3389.

 Port to be used for ICA session connection request is port 1494.

 The connection setting windows which is available for the clients to create RDP connection.

 The connection setting windows which is available for the clients to create ICA connection.

 All other ports are restricted by the firewall unless use custom port option is selected by the
clients.

Exit points

These points are where the application sends back data to the clients or external systems. For the test
case application, I identify where these exit points are.

The following are some of the exit points identified in the application:

 The connection setting page, where the application notifies the client about the connection
status (connected or not connected).

 The remote system panel that shows the remote connected server.

4.3.4 Identify Threats

Now that the application is decomposed, the next process in the threat risk modeling development is
to identify the threats and attacks that might compromise the security objectives of the application.
Since it is difficult to identify unknown threats, I concentrate on known threats. Listed below are some
of the common know threats to the application.

 Information that is not intended to be public is disclosed

 A dictionary attack is used to guess a password by trying all of the password in a list or a
dictionary

 A Brute force used to guess a password

 A Denial of Service is used to interrupt normal operation

Abraham Ghebrehiwet
Page 50 of 121

 Man in the Middle (MiM) attack is used. That is an attacker impersonate a server and the
clients try to create connection with the attacker unknowingly. As a result the attacker gets the
client credentials and then he is able to use these credentials to connect to the real server.

 An attacker obtains the encryption keys used to encrypt sensitive data by acting as MiM.

 Cross-site scripting XSS occurs by injecting script codes.

 SQL injection occurs, an attacker exploits an input validation vulnerability to execute
commands in the database and thereby access or modify data.

 An attacker or a client gets unauthorized access to server resources.

Figure 4.10 Application Threats

4.3.5 Identify Vulnerabilities

This step is the final step in the development of threat risk modeling. It is the stage where the
application’s vulnerabilities are identified. A good approach in identifying vulnerabilities is to examine
the application looking at every vulnerability categories at each layer. The same procedure as the threat
identification is used here except that now the target is identifying vulnerabilities rather than threats.
Therefore the following vulnerabilities are some of the identified vulnerabilities.

 Users’ account password storage.

 Deficiency of password complexity enforcement.

 Missing or weak input validation at the server.

 Lack of password retries.

 Improper encoding of output leading to potential cross-site scripting issues.

 Disclosing exception details to clients.

 Weak encryption keys used to encrypt sensitive data.

Abraham Ghebrehiwet
Page 51 of 121

Note that a comprehensive threat risk model report for the application (generated using the tool
Microsoft Threat Analysis & Modeling v2.1) is found in Appendix C.

Abraham Ghebrehiwet
Page 52 of 121

Chapter 5

Research Result

Generally speaking, detecting vulnerabilities in an application is a vital process, but just as vital is being
able to estimate the associated risk of the detected vulnerabilities to the organization. Estimating the
impact of the risk is not an easy process unless the threats are ranked according to their risk ratings.
Therefore once the vulnerabilities in the application are identified using any tools available, the next
task is to rank them based on the value of their risk rating. With the use of the chosen static analysis
tools, this is not a problem as the tools are capable of ranking the identified vulnerabilities in the
application. However, the vulnerabilities identified using the threat risk model should be ranked by the
analyst in order to help in the decisions of prioritizing risk mitigation.

This chapter starts with an explanation of the vulnerabilities generated using the static analysis tools.
Finally, the vulnerabilities obtained from the threat risk modeling technique are further classified into
several ranks (high, medium and the likes) based upon their risk ratings. As mentioned earlier, these
ranks will be useful in identifying the risks that need to be prioritized during mitigation time.
Remember that not all vulnerabilities are worth of mitigating. That is some vulnerabilities are difficult
to be exploited by attackers. Therefore investing extra money to mitigate these flaws is of nothing
importance.

In this task, for estimating the severity (risk rank) of the risks on the organization, the OWASP risk
rating methodology is used. The ease of customization to the needs of the organizations is the primary
reason for the choice of the aforementioned ranking method. A brief description of OWASP Risk
Rating Methodology will be given later on this same chapter.

5.1 Flawfinder Report Analysis

The first static analysis experiment was carried out using flawfinder. The tool is designed for Unix and
Linux platform However, with the proper installation of Cygwin it can be used in windows platform
too. In my experiment I used Ubuntu 11.10. The experiment was done on test case application
rdpdesk-3.2. The application contains 933 files and 314986 Source Lines Of Codes (SLOC).

The experiment generated 12,003 lines of report. By analyzing the report, it was found that the tool
detected 3167 vulnerabilities on the application. All these vulnerabilities fall into five levels, 5 being the
most dangerous and 1 the least dangerous. After carefully studying the report, 26 out of the 3167
vulnerabilities were found to be of level 5, 591 vulnerabilities of level 4, 86 vulnerabilities of level 3,

Abraham Ghebrehiwet
Page 53 of 121

1700 vulnerabilities of level 2 and 764 vulnerabilities of level 1. As far as the type of vulnerabilities
concerned, the tool detected 10 types of vulnerabilities.

As shown in Table 5.1, 2781(87.81%) of the detected vulnerabilities are of the type buffer overflow.
These flaws happen when functions that do not perform bound checking are used. Therefore, it is
advisable to use functions that limit length, or ensure that the size of array is larger than the maximum
possible length.

From the table it is clear that race condition [78] should be giving high focus as it contains 22 (84.6%)
out of the 26 critical vulnerabilities. And vulnerabilities of this type can occur when read and write
commands of a large amount of data are received relatively at the same time. As a result, the machine
tries to overwrite some or all of the old data while that old data is still being read. The main
consequences of this are system crash, illegal operation, reading and writing errors, and so forth.
Serialization of memory or storage access can prevent such problem. That is if read and write are
received at the same time, the read command is by default executed and completed first and then
execution continues on the write command.

In the application 1 port vulnerability is detected. It is of level 1 severity. Vulnerabilities of such types
are not problem by themselves, however they open door to buffer overflow. This vulnerability
happened due to incorrect implementation of the snprintf function. Proper checking should be done
during installation to avoid the problem.

SN Vulnerability type Number of
vulnerabilities

detected

Severity of detected vulnerabilities

5 4 3 2 1

1 Buffer overflow 2781 4 461 29 1534 753
2 Format String overflow 95 0 95 0 0 0
3 Integer overflow 64 0 0 0 64 0
4 Race condition 38 22 14 1 1 0
5 Random number 25 0 0 25 0 0
6 Access 7 0 0 0 0 7
7 Port 1 0 0 0 0 1
8 Obsolete 3 0 0 0 0 3
9 Shell 18 0 16 2 0 0
10 Misc 135 0 5 29 101 0

Table 5.1 Flawfinder report analysis

Abraham Ghebrehiwet
Page 54 of 121

 Figure 5.1 Flawfinder report

In the following paragraphs we will take a look on a snippet of the error causing codes for each of the
vulnerability types identified in the test case application. And the proposed solution to these errors
follows it. Table 5.2 shows description of the impact of the vulnerabilities detected using Flawfinder
and their solution.

Buffer overflow: 87.8% of the total vulnerabilities of the application are of the type buffer overflow.
This error is initiated when a function attempts to copy into the memory without performing bounds
check. Vulnerabilities of such type can overwrite the memory or read sensitive data from the memory
if exploited by an attacker. As an example we will see a snippet code of such vulnerability that was
found in the test case application.

1 hostname = (char *) xalloc (
2 strlen (ciptr->transptr->TransName) + strlen (addr) + 2);
3 strcpy (hostname, ciptr->transptr->TransName);
4 strcat (hostname, "/");
5 if (addr)
6 strcat (hostname, addr);
7 return (hostname);
In line 2 the function call strlen is banned string length function. This function should be replaced with
either String*Length or strnlen_s. this error is most problematic for critical applications, such as those
accepting anonymous Internet connections. These problems can result to system crash.

Abraham Ghebrehiwet
Page 55 of 121

In line 3 the function strcpy results in buffer overflow vulnerability this is because the functions copies
the content of ciptr->transptr->TransName to hostname without performing bound check. This
vulnerability can overwrite the memory. And if it is exploited by an attacker it gives the attacker a
chance to run malicious code. Possible solution is to avoid using the function strcpy instead replace it
with String*Copy or String*CopyEx or strcpy_s. These are the safe versions of strcpy.

In lines 4 and 6 we have a function call strcat. This is a string concatenating function and it can cause
buffer overflow if it is misused. Therefore, using String*Cat or String*CatEx or strcat_s is the safe way.

Format string overflow: this type of vulnerability comprises ~3% of the total vulnerabilities on the
application. These vulnerabilities are not dangerous by themselves however they can be the reason for
buffer overflow. Format string overflow is caused from use of unchecked user input as a format string
parameter. Problem of this type can cause crashing of a program or execution of harmful code. Let’s
see at a vulnerable code snippet from our application.

else

 len = sprintf(buf, format, a1, a2, a3, a4, a5, a6, a7, a8,

 a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20);

endif

The function call sprintf is a banned version. This function accepts formatting string parameters from a
user without check it. At the worst case, an attacker may use the %s and %x format tokens to read data
from the stack or possibly other locations in memory. One way to solve this problem is to use the
safest versions of this function call, String*Printf or String*PrintfEx sprintf_s.

Integer overflow: these vulnerabilities accounts for ~2% of the total vulnerabilities in the application.
The main problem with this type of vulnerability is that it is difficult to detect. These vulnerabilities are
not exploited directly, however any result obtained from them which has something to do with the
memory can cause buffer overflow. Here follows a snippet of the vulnerable code from the test case
application.

1 if(++i < argc)

2 defaultPointerControl.num = atoi(argv[i]);

3 else

4 UseMsg();

In line 2, atoi is a function that converts string to integer, unless checked, the resulting number can
exceed the expected range. If source untrusted, check both minimum and maximum, even if the input
had no minus sign (large numbers can roll over into negative number; consider saving to an unsigned
value if that is intended).

Abraham Ghebrehiwet
Page 56 of 121

Race condition: this accounts for ~1.2% of the total vulnerabilities in the application. Details are
provided earlier some paragraphs above. A snippet code of this type looks like this;

if ((fp = fopen(fname,"w")) == NULL) return 1;

chmod(fname, S_IRUSR|S_IWUSR);

S_IRUSR read permission bit for the owner of the file. On many systems this bit is 0400 and
S_IWUSR writes permission bit for the owner of the file usually this bit is 0200. [79]. if an attacker can
move those files, a race condition results. Therefore, it is preferable to use fchmod() instead.

Random number: these vulnerabilities account for 0.7%. These vulnerabilities arise when a less
secure random number is generated using a random value generating function. This code is taken
from the test case application.

char random;

for (int i = 0; i < 256; i ++)

 {

 random = (char)(rand() % 256);

 random ^= (lt*(i+1) % 128);

 base_key.Append(random);

 }

The function rand() is not sufficiently random for security-related functions such as key and nonce
creation. The proposed solution is to use a more secure technique for acquiring random values.

Access, Port, Obsolete: these types of vulnerabilities were identified to be of low numbers and low
level of severity. Combined together they accounted for 0.34% of the total vulnerabilities in the
application.

Shell: 0.56% of the total vulnerabilities on the application are of the type shell vulnerably. These
vulnerabilities could allow execution of remote codes. If an attacker successfully exploited this
vulnerability, he could gain the same user rights as the local user. The possible solution of this is to try
using a library call that implements the same functionality if available. Here is a snippet of the
vulnerable code from the tested application.

fp = popen (aout, "r");

if (fp == NULL)

abort ();

Abraham Ghebrehiwet
Page 57 of 121

Vulnerability Type Impact on Organization Possible solutions

Buffer overflow - overwrite memory

- read sensitive data from
the memory

- system crash

Use of safe functions. That is
avoid the use of banned
functions.

Format string overflow - overwrite memory

- read sensitive data from
the memory

- system crash

Use of safe functions. That is
avoid the use of banned
functions.

Integer overflow

Same as buffer overflow

- Use unsigned integer
instead of signed.

- Use SafeInt technique

Race condition - system crash

- illegal operation

- reading and writing
errors

Serialization of memory or
storage access.

Random number Cryptographic key break Use a more secure random
number.

Shell Gain access rights Use of library call which
implements same functionality.

Table 5.2 Impacts and solutions of the vulnerabilities detected using Flawfinder

5.2 RATS Report Analysis

The next experiment was carried out using another static analysis tool called RATS. This is because it
is always better to use several tools in order to detect as much vulnerability as possible. RATS is
designed for Unix, Linux and windows platforms. The experiment was done on test case application
rdpdesk-3.2. The application contains 933 files and the total lines analyzed are 320036 lines.
The tool detected 1282 vulnerabilities on the application. 782 that is ~61% of the total vulnerabilities
are of the type buffer overflow and 336 (26.21%) are of the type format string overflow. The rest of the
vulnerabilities added together account for ~12%. 87.13% of the vulnerabilities are of high severity
while 12.87% are of medium severity. The vulnerabilities detected fall into 10 vulnerability types.

Abraham Ghebrehiwet
Page 58 of 121

As shown in table 5.3 RATS detected some vulnerabilities such as Exception throw, DNS-forgery,
Time Of Check Time Of Use (TOCTOU) and Trojan horse insertion that were not detected using
Flawfinder. However, the tool didn’t detect any integer overflow vulnerabilities on the test case
application.

S/N Vulnerability type Number of
vulnerabilities

detected

Severity of detected
vulnerabilities

High Medium Low

1 Buffer overflow 782 709 73 0
2 Format String overflow 336 336 0 0
3 Integer overflow 0 0 0 0
4 Input validation 34 34 0 0
5 Exception throw 6 6 0 0
6 Race condition 40 0 40 0
7 Random Number 35 0 35 0
8 DNS-forgery 15 15 0 0
9 Trojan horse insertion 11 11 0 0
10 Time Of Check Time Of Use

TOCTOU
23 0 23 0

Table 5.3 RATS report analysis

Figure 5.2 RATS report

Abraham Ghebrehiwet
Page 59 of 121

Following are some explanation of the detected vulnerabilities on the application with a snippet of the
vulnerable codes. Table 5.4 shows description of the impact of the vulnerabilities detected using RATS
and their solution.

Buffer overflow:

 FILE *fp; }
 int i, ch; strcpy(passwdFile, argv[1]);
 char passwd[16]; read_from_stdin = 0;
 make_directory = 0;
 check_strictly = 0;
 }

 Code snippet A, Code snippet B,

In A the variable passwd is initialized to an array of 16 characters. This is vulnerable to buffer overflow.
If unsafe functions are used to copy data to this variable, then there is high probability of buffer
overflow. For example an attacker might send more than 16 characters to the passwd variable and
overwrite the memory. In B the idea is to copy the second argument that passed from the command
line to the variable passwdFile. However, due to the use of the unsafe function strcpy, buffer overflow
can result if the value passed from the command line exceeded the length of the variable passwdFile.
Successfully exploitation of such vulnerabilities might result in system crash, sensitive data reading from
memory, writing to memory, and execution of malicious code. The main solutions to this type of
vulnerability are use of safe functions as well as extra care should be taken to ensure that character
arrays that are allocated on the stack are used safely.

Format String overflow:

if (m_pDSMPlugin->IsEnabled())

 {

 char szMess[255];

 memset(szMess, 0, 255);

 sprintf(szMess, "--- Ultr@VNC Viewer + %s-v%s",

 m_pDSMPlugin->GetPluginName(),

 m_pDSMPlugin->GetPluginVersion()

);

Abraham Ghebrehiwet
Page 60 of 121

 strcat(m_desktopName, szMess);

In this piece of code we see the unsafe function call strcat in the last line. The idea here is to
concatenate two values m_desktopName and szMess. However, if argument2 copy more data than can
be handled, it might open door for buffer overflow. Therefore the solution is to use a safer version
strcat_s.

Input validation:

fp = popen (aout, "r");

 if (fp == NULL)

abort ();

Solution Argument 1 to this function call should be checked to ensure that it does not come from an
untrusted source without first verifying that it contains nothing dangerous.

DNS forgery:

gethostname(hname, 1024);

 host = gethostbyname(hname);

 if (host == NULL)

 hnameptr = hname;

 else

 hnameptr = host->h_name;

The gethostbyname function in the above piece of code returns information (ip) about the host named
hname. If the lookup fails, it returns a null pointer. This function call is vulnerable because the DNS
result obtained can’t be trusted. This is because DNS results can easily be forged by an attacker (or
arbitrarily set to large values, etc), and should not be trusted. If an attacker can send DNS responses to
a vulnerable system, he can easily cause a denial of service, crashing the application that made calls to a
vulnerable resolver library. It is hard to execute arbitrary code using this vulnerability. However,
information disclosure is possible if a vulnerable system returns the contents of memory adjacent to a
DNS response. In another way if exploited, this vulnerability could also be used to gain root access to
the system. One solution is to use maximum buffer size.

Trojan horse insertion:

 m_hZipDll = LoadLibrary(szDllFn);
 if (m_hZipDll == NULL)
 {

Abraham Ghebrehiwet
Page 61 of 121

 CHAR szWinDir[MAX_PATH] = "";
 ::GetWindowsDirectory(szWinDir, sizeof(szWinDir));
 if (::strlen(szWinDir))
 {
 char cLastChr = szWinDir[::strlen(szWinDir) - 1];
 if (cLastChr != '\\' && cLastChr != '/')
 ::strcat(szWinDir, "\\");
 ::strcat(szWinDir, ZIP_DLL_NAME);
 m_hZipDll = LoadLibrary(szWinDir);
 }
 }
The function LoadLibrary in the above piece of code loads the module named szDllFn into the
address space of the calling process. However, if m_hZipDll is null that is szDllFn does not exist, the
function loads szWinDir. The function LoadLibray() searches all places for a library, if no path is
specified this might allow a Trojan to be inserted somewhere. The solution to this problem is to specify
the full path of the library.

Time Of Check Time Of Use TOCTOU:
TOCTOU is another type of vulnerability that is caused by changes in a system between the checking
of a condition and the use of the results of that check. As seen from the race condition vulnerability
earlier, TOCTOU is a kind of race condition. The following code is a snippet of a vulnerable code
that was taken from the test case application.
 struct stat buf;
 static time_t lastmod = 0;
 int ret = stat(SecurityPolicyFile , &buf);
 if ((ret == 0) && (buf.st_mtime > lastmod))
 {
 ErrorF("reloading property rules\n");
 SecurityFreePropertyAccessList();
 SecurityLoadPropertyAccessList();
 lastmod = buf.st_mtime;
 }
The stat() function obtain information about the file SecurityPolicyFile and write it to the area pointed
to by the buf argument. If successfully completed, 0 is returned. Otherwise, -1 is returned.
The stat() call is a check call. If it is followed by a use call, it can be lead to TOCTOU vulnerability.
One solution to this problem is to flag the call to the stat() if the first argument (dir name) is used later
in use-category [80]. Another solution is to use safer functions such as, lstat(), fstat() and open().

Abraham Ghebrehiwet
Page 62 of 121

Vulnerability Type Impact on Organization Possible solutions

Buffer overflow - overwrite memory

- read sensitive data from
the memory

- system crash

Use of safe functions. That is
avoid use of banned functions.

Format string overflow - overwrite memory

- read sensitive data from
the memory

- system crash

Use of safe functions. That is
avoid use of banned functions.

Input validation - Malicious code
execution

- System crash

Check function call properly
to insure that it does not come
from an untrusted source.

DNS-forgery - Denial-of-Service

- Information disclosure

- Gain root access

Use of maximum buffer size

Trojan horse insertion - Steal information

- System crash

- Denial-of-Service

- File modification

- Keystroke logging and
etc.

specify the full path of the
library

Time Of Check Time Of Use
TOCTOU

Same as race condition - flag the call to the stat()
if the first argument
(dir name) is used later
in use-category

- Use safer functions
such as, lstat(), fstat()
and open().

Table 5.4 Impacts and solutions of the vulnerabilities detected using RATS

Abraham Ghebrehiwet
Page 63 of 121

5.3 Risk ranking

In sections 5.1 and 5.2 we have seen the different types of vulnerabilities and their severity level which
were detected on the test case application using the static analysis tools. The primary advantage of
organizing vulnerabilities based on their severity level is that it helps us in making decisions on which
class of vulnerabilities to focus during the mitigation process.

Up to this point, we have uncovered the vulnerabilities and their severities on the application’s source
code using the static analysis tools. Based on the analysis report from the tools, the impact of the
detected vulnerabilities and their possible solutions were described.

In section 4.2, we have identified the Application design and architectural threats and vulnerabilities
using the threat risk modeling approach. Therefore it is important to estimate the associated risk of the
detected vulnerabilities to the organization in order to be able to differentiate those of high risk and
those that have no impact or of little impact to the organization. As mentioned earlier, for estimating
the severity (risk rank) of the risks on the organization I choose the OWASP Risk Rating
Methodology. But first, as I promised earlier in the beginning of this chapter, I am going to provide a
brief description of the OWASP Risk Rating Methodology.

5.3.1 OWASP Risk Ranking Methodology

The OWASP risk rating methodology is based on the standard risk model formula given by:
 Risk = likelihood × impact
To determine the risk ranking, the OWASP risk rating approach undergoes a six step process. These
steps are as follows:

Step 1: Identifying a Risk
Step 2: Factors for Estimating Likelihood
Step 3: Factors for Estimating Impact
Step 4: Determining Severity of the Risk
Step 5: Deciding What to Fix
Step 6: Customizing Your Risk Rating Model

However, in this task we will use only the first five steps.

Step 1: Identifying a Risk

This step involves collection of information about the threat agents involved, the attacks used by the
threat agents, the vulnerabilities involved, and the impact of a successful exploit.

Abraham Ghebrehiwet
Page 64 of 121

Step 2: Factors for Estimating Likelihood

This is an approximate measure of how likely a particular vulnerability can be discovered and
exploited by an attacker. Threat agent and vulnerability are some of the factors that can help in
determining the estimation of likelihood.

Note that each factor has a set of options which have a likelihood rating from 0 to 9 associated with
them. [81]

Step 3: Factors for Estimating Impact

Basically, there exist two kinds of impacts. One is "technical impact" on the application, the data used,
and its functionality. The second is the "business impact".

Note again each factor has a set of options which have an impact rating from 0 to 9 associated with
them.

Step 4: Determining Severity of the Risk

This step deals with calculating the severity of a risk based on the likelihood estimate and the impact
estimate from step 2 and 3. The major thing to do here is to figure out whether the likelihood and
impact are LOW, MEDIUM, or HIGH based on table 5.5.

Likelihood and Impact Levels

0 to <3 LOW

3 to <6 MEDIUM

6 to 9 HIGH

 Table 5.5 Likelihood and Impact severities

Overall risk severity

Impact

HIGH Medium High Critical
MEDIUM Low Medium High
LOW Note Low Medium
 LOW MEDIUM HIGH

 Likelihood

 Table 5.6 Overall risk severity

Abraham Ghebrehiwet
Page 65 of 121

Step 5: Deciding What to Fix
As now the risks to the application are classified, a prioritized list of what to fix is at hand. The most
severe risks are fixed first. When performing the fixes, take into consideration cost as well as
reputation damage.

5.3.2 Risk ranking of the Vulnerabilities Generated Using Threat

Risk Modeling Technique

In section 4.2, several application design and architectural vulnerabilities were detected using threat
risk modeling technique. Now the task is to determine the ranks of these vulnerabilities. The detected
vulnerabilities are listed below:

 Users’ account password storage.

 Deficiency of password complexity enforcement.

 Missing or weak input validation at the server.

 Lack of password retries limit.

 Improper encoding of output leading to potential cross-site scripting issues.

 Disclosing exception details to clients.

 Weak encryption keys used to encrypt sensitive data.

Let’s start determining the ranks of the above vulnerabilities. We start with users’ account password
storage.

Users’ account password storage

Threat agent factors Vulnerability factors

Skill level Motive Opportunity Size Ease of
discovery

Ease of
exploit

Awareness Intrusion
detection

9 4 4 2 9 5 6 3

4.75 5.75

Overall likelihood = 5.25 (MEDIUM)

Abraham Ghebrehiwet
Page 66 of 121

Technical impact Business impact

Loss of
confidentiality

Loss of
integrity

Loss of
availability

Loss of
accountability

 Financial
damage

Reputation
damage

Non-
compliance

Privacy
violation

9 9 1 7 3 1 5 5

Overall technical impact = 6.5 (HIGH) Overall business impact = 3.5 (MEDIUM)

From the above calculation the overall likelihood is (MEDIUM), the overall technical impact is
(HIGH) and the overall business impact is (MEDIUM). Therefore based on table 6, from a technical
prospective, it appears that the overall severity is HIGH and from a business prospective, the overall
severity is MEDIUM.

Deficiency of password complexity enforcement

Threat agent factors Vulnerability factors

Skill level Motive Opportunity Size Ease of
discovery

Ease of
exploit

Awareness Intrusion
detection

9 4 7 9 9 5 6 3

7.25 5.75

Overall likelihood = 6.5 HIGH)

Technical impact Business impact

Loss of
confidentiality

Loss of
integrity

Loss of
availability

Loss of
accountability

 Financial
damage

Reputation
damage

Non-
compliance

Privacy
violation

9 9 9 7 3 1 5 5

Overall technical impact = 8.5 (HIGH) Overall business impact = 3.5 (MEDIUM)

The overall likelihood is (HIGH), the overall technical impact is (HIGH) and the overall business
impact is (MEDIUM). Therefore based on table 6, from a technical prospective, it appears that the
overall severity is CRITICAL and from a business prospective, the overall severity is MEDIUM.

Abraham Ghebrehiwet
Page 67 of 121

Missing or weak input validation at the server

Threat agent factors Vulnerability factors

Skill level Motive Opportunity Size Ease of
discovery

Ease of
exploit

Awareness Intrusion detection

6 4 7 2 9 3 6 9

4.75 6.75

Overall likelihood = 5.75 (MEDIUM)

Technical impact Business impact

11

Loss of
integrity

Loss of
availability

Loss of
accountability

 Financial
damage

Reputation
damage

Non-
compliance

Privacy
violation

7 7 9 7 3 1 5 5

Overall technical impact = 7.5 (HIGH) Overall business impact = 3.5 (MEDIUM)

The overall likelihood is (MEDIUM), the overall technical impact is (HIGH) and the overall business
impact is (MEDIUM). Therefore using table 6, from a technical prospective, it appears that the overall
severity is HIGH and from a business prospective, the overall severity is MEDIUM.

Lack of password retries limit

Threat agent factors Vulnerability factors

Skill level Motive Opportunity Size Ease of
discovery

Ease of
exploit

Awareness Intrusion
detection

1 1 7 9 3 5 6 3

4.5 4.25

Overall likelihood = 4.375 (MEDIUM)

Technical impact Business impact

Loss of
confidentiality

Loss of
integrity

Loss of
availability

Loss of
accountability

 Financial
damage

Reputation
damage

Non-
compliance

Privacy
violation

9 9 9 7 3 1 5 5

Overall technical impact = 8.5 (HIGH) Overall business impact = 3.5 (MEDIUM)

Abraham Ghebrehiwet
Page 68 of 121

The overall likelihood is (MEDIUM), the overall technical impact is (HIGH) and the overall business
impact is (MEDIUM). Therefore using table 6, from a technical prospective, it appears that the overall
severity is HIGH and from a business prospective, the overall severity is MEDIUM.

Improper encoding of output

Threat agent factors Vulnerability factors

Skill level Motive Opportunity Size Ease of
discovery

Ease of
exploit

Awareness Intrusion detection

9 4 7 2 9 3 6 3

5.5 5.25

Overall likelihood = 5.375 (MEDIUM)

Technical impact Business impact

Loss of
confidentiality

Loss of
integrity

Loss of
availability

Loss of
accountability

 Financial
damage

Reputation
damage

Non-
compliance

Privacy
violation

7 7 1 7 3 1 5 5

Overall technical impact = 5.5 (MEDIUM) Overall business impact = 3.5 (MEDIUM)

The overall likelihood is (MEDIUM), the overall technical impact is (MEDIUM) and the overall
business impact is (MEDIUM). Therefore using table 6, from a technical prospective, it appears that
the overall severity is MEDIUM and from a business prospective, the overall severity is MEDIUM.

Disclosing exception details to clients

Threat agent factors Vulnerability factors

Skill level Motive Opportunity Size Ease of
discovery

Ease of
exploit

Awareness Intrusion
detection

9 4 7 2 7 3 6 3

5.5 4.75

Overall likelihood = 5.125 (MEDIUM)

Abraham Ghebrehiwet
Page 69 of 121

Technical impact Business impact

Loss of
confidentiality

Loss of
integrity

Loss of
availability

Loss of
accountability

 Financial
damage

Reputation
damage

Non-
compliance

Privacy
violation

9 9 9 7 3 1 5 5

Overall technical impact = 8.5 (HIGH) Overall business impact = 3.5 (MEDIUM)

The overall likelihood is (MEDIUM), the overall technical impact is (HIGH) and the overall business
impact is (MEDIUM). Therefore using table 6, from a technical prospective, it appears that the overall
severity is HIGH and from a business prospective, the overall severity is MEDIUM.

Weak encryption keys

Threat agent factors Vulnerability factors

Skill level Motive Opportunity Size Ease of
discovery

Ease of
exploit

Awareness Intrusion
detection

9 4 7 2 9 3 6 3

5.5 5.25

Overall likelihood = 5.375 (MEDIUM)

Technical impact Business impact

Loss of
confidentiality

Loss of
integrity

Loss of
availability

Loss of
accountability

 Financial
damage

Reputation
damage

Non-
compliance

Privacy
violation

7 7 1 7 3 1 5 5

Overall technical impact = 5.5 (MEDIUM) Overall business impact = 3.5 (MEDIUM)

The overall likelihood is (MEDIUM), the overall technical impact is (MEDIUM) and the overall
business impact is (MEDIUM). Therefore using table 6, from a technical prospective, it appears that
the overall severity is MEDIUM and from a business prospective, the overall severity is MEDIUM.

Now that we have found the severity of each of the identified vulnerabilities, it is easy to make a
decision on what to fix first. The identified severities play major role in the making of decisions during
mitigation process. Table 5.7 summarizes the identified vulnerabilities, their corresponding severities,
their impact on the organization and possible solutions.

Abraham Ghebrehiwet
Page 70 of 121

Vulnerability type

Severity

Impact on the
organization

Possible
solutions Technical

(prospective)
Business

(prospective)
Account storage HIGH MEDIUM If location or storage of

passwords is not secure,
password file can be
compromised.

Store password
file in a secured
location/storage
.

Deficiency of
password
complexity

CRITICAL MEDIUM Easy passwords can
easily be guessed

Use complex
passwords

Weak input
validation

HIGH MEDIUM If exploited, it can
result in format string
overflow attacks

Make sure
inputs are
properly
validated

Lack of password
retries limit

HIGH MEDIUM Guessing of account
passwords

Limit password
retry max. to
three trial

Improper encoding
of output

MEDIUM MEDIUM Read/Write of sensitive
information

Insure that
proper output
encoding is
done

Disclosing exception
details

HIGH MEDIUM If exploited, it can
result in buffer overflow
attack

Make sure the
exception
details doesn’t
provide detailed
information

Weak encryption
keys

MEDIUM MEDIUM Information disclosure Use of strong
(secure) keys

Table 5.7 Severities, Impacts and solutions of the vulnerabilities detected threat risk modeling

Abraham Ghebrehiwet
Page 71 of 121

Chapter 6

Discussion

As stated in section 1.1, it is claimed that, transparency makes systems more secure. That is
vulnerabilities are found and fixed more quickly if the source code of an application is open to
everyone, closing up security holes faster and this can increases software security. Anyone who is
interested in improving the software is also free to create a better, more secure version of the software.
Trusting the above arguments of open source software advocates however, organizations might be
tempted to deploy open source software before they evaluate the software for the presence of
vulnerabilities. This may pose several security challenges to the organizations unless the software is
evaluated for security vulnerabilities.
In sections 5.1 and 5.2, the results obtained using static source code analysis tools showed that the test
case application, rdpdesk-3.2, contains large number of source code vulnerabilities. The results
showed that flawfinder and RATS detected 3167 and 1282 vulnerabilities respectively. Of the total
vulnerabilities detected using flawfinder, 87.81% were of the type buffer overflow, ~3% of the type
format string overflow, and 2.02% of the type integer overflow. Race condition, random number and
etc were the remaining ~8%. From the 1282 vulnerabilities detected with RATS, 61% were buffer
overflow, 26.2% format string overflow, and 0% integer overflow. Race condition, random number,
DNS forgery and etc. accounted for the rest ~13%. It is clear that if any of these vulnerabilities are
exploited by an attacker, they can cause a serious damage (such as exposure of sensitive data, execution
of malicious code etc.) to the organization using the application. As seen above, the static source code
analysis tools detected large amount of vulnerabilities both in number and type wises. However, due to
the limit in the number of rule sets defined, the tools still have some limitations on the types of
vulnerabilities they can detect. For instance, RATS detected DNS-forgery, Trojan horse insertion and
Time Of Check Time Of Use (TOCTOU) types of vulnerabilities on the test case application where
flawfinder was not able to address them. On the other hand, flawfinder detected integer overflow,
some shell and port related vulnerabilities that were not covered by RATS. More importantly, the
tools are only capable of addressing flaws on the source codes. This happens because they are mainly
designed for code reviewing. Despite of the individual limitation of the static source code analysis tools
in analyzing all types of vulnerabilities however, I believe the combined results obtained from the these
tools play an important role at improving the security of an application by evaluating the source code
vulnerabilities. An important issue, especially to build a solid security strategy requires identification of
all possible threats and vulnerabilities on an application. These include design and architectural
vulnerabilities as well.

From the threat risk model developed in section 5.3, several design and architectural vulnerabilities
were discovered in the application. Even though the method was exhaustive, the threat risk model

Abraham Ghebrehiwet
Page 72 of 121

developed played a great role in the identification of design and architectural flaws that could not be
addressed by the static source code analysis tools. For instance, lack of password retry limits and
disclosing of exception details are some among the rest of the vulnerabilities that were addressed using
the threat risk model developed. Note that, if some of the identified threats or vulnerabilities are found
to be mitigated during the design or implementation stage, they can be easily omitted from the list of
identified vulnerabilities. In this way, the threat risk model can be used to focus on the most dangerous
vulnerabilities in a more efficient way.

Static source code analysis plays a major role in the detection of source code vulnerabilities of an
application with short time as well as low costs (including some free of charge). The use of Threat risk
modeling, on the other hand, is an interesting approach that can be used to explore and identify design
and architectural vulnerabilities of an application. The combined use of both approaches can be used
to improve the security of open source application by verifying the source code as well as design and
architectural vulnerabilities.

Abraham Ghebrehiwet
Page 73 of 121

Chapter 7

Conclusion and Future Work

The two approaches – static analysis and threat risk modeling play significant role in the detection of
software security vulnerabilities. The combined result of both approaches can improve the security of
an open source application by detecting source code vulnerabilities as well as design and architectural
vulnerabilities. Static analysis is used in the detection of source code based vulnerabilities whereas
threat risk modeling is used for addressing the design and architectural flaws in an application by
iteratively assessing the application. In this project, I have tried to use both approaches on a test case
open source application, rdpdesk-3.2, to improve its security level.

The result obtained from the use of the two static analysis tools, flawfinder and RATS, showed that the
tools detected varied types of vulnerabilities on the application. This happens because the tools are
programmed to detect different rule sets. On the other hand, using Microsoft Threat Analysis &
Modeling v2.1.2 several design and architectural flaws were detected on the test case application. This
approach was used to address the structural vulnerabilities that would otherwise have been impossible
to detect them using the static analysis approach.

Therefore, organizations that deploy open source software on their software stack can benefit greatly
by adopting the security best practices used in this project.

Static analysis tools are not precise that is they generate some false positives and false negatives. Further
work could be done on the identification of these false positives and false negatives and omit them
from the results in order to have precise static analysis results and focus on mitigating existing
vulnerabilities instead of wasting resources on non-existent vulnerabilities.

Abraham Ghebrehiwet
Page 74 of 121

Appendices

Appendix A Glossary and Abbreviations

Glossary

Analysis - this process as a method of studying the nature of something or of determining its essential
features and their relations.

Argument - an element to which an operation, function, predicate, etc, applies, esp the independent
variable of a function.

Attack - any attempt to destroy, expose, alter, disable, steal or gain unauthorized access to or make
unauthorized use of an asset.

Buffer overflow - What happens when you try to store more data in a buffer than it can handle.

Bug - an error or fault, as in a machine or system, esp in a computer or computer program.

Closed source - intellectual property, esp computer source code, that is not made available to

Compiler - a computer program that translates a program written in a high-level language into another
language, usually machine language. Compare interpreter.

Data - a single piece of information, as a fact, statistic, or code; an item of data.

Error - a deviation from accuracy or correctness; a mistake.

Execute - to carry out; complete; perform; do: to execute an order.

Expert - a person who has special skill or knowledge in some particular field.

Exploit - to take advantage of (a person, situation, etc), esp unethically or unjustly for one's own ends.

Firewall - an integrated collection of security measures designed to prevent unauthorized electronic
access to a networked computer system.

Flaw - a defect impairing legal soundness or validity.

Insider - a person with access to exclusive information.

IT - the development, implementation, and maintenance of computer hardware and software systems
to organize and communicate information electronically.

License - permission to do or not to do something.

Malicious - motivated by wrongful, vicious, or mischievous purposes.

Memory - a part of a computer in which information is stored for immediate use by the central
processing unit.

Open source - pertaining to or denoting software whose source code is available freely.

Abraham Ghebrehiwet
Page 75 of 121

Operating system – a collection of software that directs a computer's operations, controlling and
scheduling the execution of other programs, and managing storage, input/output, and communication
resources.

Operator - A symbol used as a function, with infix syntax if it has two arguments (e.g. "+") or prefix
syntax if it has only one (e.g. Boolean NOT). Many languages use operators for built-in functions such
as arithmetic and logic.

Parameter - a variable that must be given a specific value during the execution of a program or of a
procedure within a program.

Peer review - evaluation of a person's work or performance by a group of people.

Programming - the act or process of writing a computer program.

Public domain - able to be discussed and examined freely by the general public.

Secret - kept from the knowledge of any but the initiated or privileged: a secret password.

Security - something that secures or makes safe; protection; defense.

Software - the programs used to direct the operation of a computer, as well as

Source Code - program instructions that must be translated by a compiler, interpreter, or assembler
into object code before execution.

Stack - an area in a computer memory for temporary storage.

Technical - belonging or pertaining to an art, science, or the like: technical skill.

Threat - an indication or warning of probable trouble.

Time bomb - A subspecies of logic bomb that is triggered by reaching some preset time, either once or
periodically.

Tool - anything used as a means of performing an operation or achieving a result.

Upgrade - a new version, improved model.

Vulnerability - open to moral attack, criticism, temptation, etc.: an argument vulnerable to refutation.

Worm - a program that duplicates itself many times in a network and prevents its destruction.

It often carries a logic bomb or virus.

List of Abbreviations

AST Abstract Syntax Tree

CERT Computer Emergency Response Team

DNS Domain Name Server

DoS Denial-of-Service

Abraham Ghebrehiwet
Page 76 of 121

GDI Graphics Device Interface

GPL General Public License

HTML Hyper Text Markup Language

ICA Independent Computing Architecture

IT Information Technology

IIS Internet Information Services

LGPL Lesser General Public License

MiM Man in the Middle

MITRE Massachusetts Institute Of Technology Research And Engineering

MS ISA Microsoft Internet Security and Acceleration

OS Operating System

OSC Open Source Components

OSE Open Source Edition

OSI Open Source Initiative

OWASP Open Web Application Security Project

PCI Peripheral Component Interconnect

RATS Rough Auditing Tool for Security

RC4 Ron's Code4 (RSA Variable-Key-Size Encryption Algorithm - Ron Rivest)

RDP Remote Desktop Protocol

RSA Rivest, Shamir, and Adleman

SANS System Administration Networking and Security

SEI Software Engineering Institute

SLA Service Level Agreement

SLOC Source Lines Of Codes

SQL Structured Query Language

STRIDE Spoofing, Tampering, Repudiation, Information Disclosure,

 Denial-of-Service, Elevation of Privilege.

TOCTOU Time Of Check Time Of Use

URL Uniform Resource Locator

VNC Virtual Network Computing

XSS Cross Site Scripting

Abraham Ghebrehiwet
Page 77 of 121

Appendix B System setups

Flawfinder

1. Install Linux/Ubuntu
2. Download flawfinder to your system by opening a terminal window and executing the following

command;
sudo apt-get install flawfinder

3. Unpack the software;
 tar –xvsf flawfinder-*.tar ; where * is the version of the software.
4. After unpacking it change directory to flawfinder-*.
 cd /path/to/flawfinder-*
5. Install the software by issuing the following command
 make install
6. After the software is installed, issue the following command to start the scanning;
 ./flawfinder /path/to/target-folder
If you want save the analysis result in a text file, issue the following command;
./flawfinder /path/to/target-folder >> file-name.txt

RATS

The setup for using RATS however requires installation of expat in your system in order for RATS to
be installed successfully.

1. Download expat-2.0.1.tar from;
 http://sourceforge.net/projects/expat/
2. Unpack the software;
 tar –xvsf expat-2.0.1.tar
3. After unpacking it change directory to expat-2.0.1.
 cd /path/to/ expat-2.0.1
4. Finally install expat by issuing the following command;
 make install
5. Download rats-2.3.tar.gz to your system from;

 https://www.fortify.com/ssa-elements/threat-intelligence/rats.html
6. Unpack the software;
 tar –xvsf rats-2.3.tar.gz
7. After unpacking it change directory to rats-2.3.tar.gz.
 cd /path/to/rats-2.3.tar.gz
8. Install the software by issuing the following command
 make install

Abraham Ghebrehiwet
Page 78 of 121

9. After the software is installed, issue the following command to start the scanning;
 ./rats /path/to/target-folder
If you want save the analysis result in a text file, issue the following command;
./rats /path/to/target-folder >> file-name.txt

Appendix C Static source code analysis tools used for the experiment

1. Flawfinder

Flawfinder is an open source program that scans source code in order to detect possible security
vulnerabilities. The vulnerabilities detected are organized according to risk level.

Flawfinder is a very useful tool that can be used to quickly find and get rid of some vulnerability before
a program is released to the public for use.

The tool functions on Unix as well as Linux systems. One can decide to port it to be used on windows
systems. This analyzing tool needs Python 1.5 or a greater version to run.

Flawfinder was written to boost the use of static source code analyzers to find security vulnerabilities in
programs. The program is made available under General Public License (GPL) version 2, hence it is
open source software as defined by the Open Source Definition.

Flawfinder Functions

The tool contains a built-in database of C/C++ functions with well-known security problems such as
buffer overflow risks, format string problems, race conditions and poor random number acquisition.

Some of the buffer overflow risks in the database are: strcpy(), strcat(), gets(), sprintf(), and that of
format string problems are : printf(), snprintf(), and syslog(). The race conditions problems are:
access(), chown(), chgrp(), chmod(), tmpfile(), tmpnam(), tempnam(), and

mktemp(), whiles random() is a poor random number acquisition problem.

The tool works by using the database and the good aspect is that the database comes with the analysis
tool. The tool takes the source code text and performs matching with the database problems. However
text inside comments and strings are ignored.

Flawfinder is aware of gettext; a common library for international programs. Hence it treats constant
strings passed through gettext as if they were constant strings. This approach helps to lessen the false
hits in international programs.

The list of potential security flaws produced by the tool is called “hits”, and they are organized
according to the risk level; the riskiest are placed at the top of the list. The risk level is not only
determined by the function, but also the value of the parameters of the function.

Abraham Ghebrehiwet
Page 79 of 121

For instance, constant strings are considered less risky than fully variable strings in many situations.
Sometimes, Flawfinder determines that a particular construct is not risk, thus reducing false positives.
The tool gives better information and prioritization other than just running test on the source code. It
has the capability to ignore comments and the insides of strings as well as analyze parameters to
determine the risk levels. However, this does mean that Flawfinder is a perfect tool. It does have the
knowledge of data types of function parameters and does not do data flow analysis.

Actually, not all the problems that can be detected using this tool are security vulnerabilities and it is
also true that not all vulnerabilities can be detected using Flawfinder. Moreover, the tool does not really
understand the semantics of codes. What it does is to carry out simple text pattern matching whiles it
ignores comments and strings. This notwithstanding, Flawfinder as a static analysis tool can be very
useful in locating and removing vulnerabilities in software.

Reviewing of Patches

When there is a need to review only a set of changes that were made to a program instead of the
reviewing the whole program, one can still use Flawfinder to do that. If the changes made are confined
to a section of the code, the review can be done manually, otherwise it is difficult. There is an added
automated support in Flawfinder 1.27 that enables it to review only the changes in the program.

In order to do this, one has to first create a “Unified Diff” [76] file and compare the older version to
the current version. This is followed by running Flawfinder on the newer version and that give it “--
patch (-P)” [76] option that points to the patch file.

This will work since Flawfinder will perform its function. However, it will only detect hits that are in the
patch file. The tool functions by reading the unified diff file in order to detect the files that have been
changed and the lines that have changed in the code. Precisely, it uses

"Index:" or "+++" lines to ascertain the files have been changed. The tool then uses the line numbers in
"@@" regions to find out the chunk line number ranges, and it then uses the initial +, -, and space after
that to determine which lines really have changed.

One of the challenges in this case has to do with statements that span more than one line. The
statement might begin from one line and extend to another line. A change on the second line
introduces vulnerability on the second line. Flawfinder deals with this situation by displaying security
vulnerabilities that are reported one line before or after any line that has changed.

This seems to be acceptable compromise. However, the problem is that Flawfinder will not detect if
the code enforcing security requirement is deleted since it does not have the capability to do that.

Hit Density

Hit density is the number hits per thousand lines of the source code. It is a useful relative indicator of
the likelihood of security vulnerabilities in source codes. This is one of the metrics used by Flawfinder
in reporting vulnerabilities.

Abraham Ghebrehiwet
Page 80 of 121

The security level of two source codes can be determined by comparing their hit density levels. This
can be done by running Flawfinder test on the two source codes to determine the hit densities of the
two. The one with a higher hit density is the one with a worse security record even if none or few of the
cases reported were actually security problems.

High hit density in a program is an indicator that the programmer used very dangerous construct which
are difficult to use in the right way and that most often than not lead to vulnerabilities. The hits might
not necessarily be vulnerabilities but the fact is that programmers who continuously use such constructs
are likely to make mistakes to create conditions for vulnerabilities.

When comparing two source codes, it is necessary to take the sizes into consideration. This is because
a program with a smaller size will have a higher hit density when compared with a much larger size
program. In this case, one cannot conclude that the code with a larger size is more secure. This is in
view of the fact that density is a fraction and size is the denominator.

However, it is easier to assess programs that are smaller; therefore, it is likely that such programs can
be reviewed directly in order to detect vulnerabilities.

2. RATS

The word RATS is an acronym for Rough Auditing Tool for Security. This open source analyzing tool
was developed by Secure Software security engineers. The company was acquired by Fortify Software,
Inc. RATS as a static analysis tool can be used to scan source codes written in C, C++, Perl, PHP and
Python. The results of the scan highlights common security related programming errors such as buffer
overflows and TOCTOU race conditions.

Using RATS to scan source code produces result that list potential trouble spots on which a security
analyst needs to focus. The result also gives a description of the problem and potentially suggested
remedies. It also shows a relative assessment of the potential severity of each of the problem captured
in the result. This helps in analyzing the result of the scan. One of the good features of RATS is that it
performs some basic analysis to rule out conditions that are obviously not problems.

The tool does not have the capability to find every error. It also detects other problems that are not
vulnerabilities. In fact it only performs a rough analysis of source code. Therefore manual inspection
of code is still necessary, but the process is greatly improved with the use of this tool.

RATS static analysis tool is free software, thus it can be copied, distributed, and modified as permitted
by the terms of the GNU Public License. The latest edition that was released is version 2.3.

In order to use RATS, one needs to install expat. It is often installed in /usr/local/lib and
/usr/local/include. However, there is a need to specify --with-expat-lib and --with-expatinclude options
to configure on some systems, so that it can find the installation of the library and header.

Abraham Ghebrehiwet
Page 81 of 121

One can simply run make in the distribution's top-level directory to build the program after the
configuration script has finished successfully. Once this has been done and the tool installed correctly,
it can be used to scan source codes.

RATS is used in the command line mode and it accepts few command line options as described
below. The tool also accepts a list of files to scan on the command line. In case no files to scan have
been specified, it will use “stdin”.

The command options that be used on the command line of this static analysis tool are: rats

[-d] [-h] [i] [l] [-r] [-w] [-x] [file1 file2 ... fileN].

The command options have different functions as explained below:

Rats [-d] command option specifies a vulnerability database to be loaded. There may be multiple -d
options and each of these databases that is specified will be loaded.

Rats [-h] command option will display a brief summary of the usage.

Rats[-i] command option will cause a list of used function calls which accept external input to be
displayed after the vulnerability report has been generated.

Rats [-l] option command specifies the language to be used irrespective of the filename extension. The
valid language names that are currently used are: "c", "perl", "php" and "python".

Rats [-r] command option will cause references to vulnerable function calls that are not being used as
calls themselves to be generated.

Rats [-w] command option will set the warning level. The valid warning levels are 1, 2 or 3.

Level 1 includes only default and high severity. Level 2 means medium severity. Level 2 is the default
warning and level 3 indicates low severity vulnerabilities.

Rats [-x] command option will cause the tool not to load the default vulnerability databases (which are
in the installation data directory, /usr/local/lib by default).

The tool is not difficult to operate. When it is started, it scans each file that is specified on the
command line and then produces a report when it has finished scanning the source code. The types of
vulnerabilities that are reported in the final report depend on the data in the vulnerability database or
databases that are loaded and the warning level that is in use.

The output of the analysis is not difficult to understand. For each of the vulnerabilities that are
captured in the report, a list of files and the line numbers of the code where the vulnerability occurred
is given. To make analysis of the result easy, a brief description of the vulnerabilities and suggested
actions are provided. [77]

Abraham Ghebrehiwet
Page 82 of 121

Appendix D rdpdesk-3.2 Threat risk Model

Business Objectives | Roles | Components | External Dependencies | Data | Application Use Cases |
Confidentiality Threats | Integrity Threats | Availability Threats

Threat Model Information

Name Rdpdesk-3.2 Threat Model
Description This is a threat risk model that was developed for a test case application rdpdesk-3.2

Business Objectives

The business objectives define the objectives behind the implementation of the system. These objectives are supported by
use cases.

Business Objectives

Roles

Roles define the privilege levels users have. They are logical groups of users who use the application, and can perform the
necessary functions defined by the application. These groups are then divided into two sub groups, User Roles and Service
Roles. User Roles contain users who interact with the application. Service Roles contain users under which services are
executed.

User Roles

Name Description Auth. Mechanism # of Identities
Administrator
Client

Service Roles

Name Description Auth. Mechanism # of Identities
C/C++ Role
Windows7 Role
Microsoft SQL server 2008 Role
RSA Security RC4 cipher Role
Microsoft Windows terminal services (RDP) Role
Citrix ICA Role
VNC Role

Components

Components define the high level building blocks of the system. Components are decomposed logically into services and
objects through which the user interacts with the system. Both components and objects can talk to each other in order to
fulfill a user action.

Abraham Ghebrehiwet
Page 83 of 121

Components

Name Roles Type Tech. Type Run As
Microsoft SQL server 2008 Microsoft SQL server 2008 Service Account
RSA Security RC4 cipher RSA Security RC4 cipher Service Account
Microsoft Windows terminal services (RDP) Microsoft Windows terminal services (RDP) Service Account
Citrix ICA Citrix ICA Service Account
VNC VNC Service Account

External Dependencies

External dependency is a type of component which is external to the application and application does not have control over
the behavior or the implementation of the dependency.

External Dependencies

Name Description Dependency Type

Data

Data can be logically broken down into data elements grouped based on the classification. Data is actively stored in one or
more components which can be accessed by the user.

Data

Name Description Data Elements Data Classification Data Stores
User Account

Access Control

Role Access Control Condition
Administrator C R U D
Client U

Logging Response

Access Control

Role Access Control Condition
Administrator C R U D
Client R

Message

Access Control

Role Access Control Condition
Administrator C R U D
Client R

software

Abraham Ghebrehiwet
Page 84 of 121

Access Control

Role Access Control Condition
Administrator C R U D
Client R

Application Use Cases

Use cases are fulfilled by a sequence of calls. Each use case is targeted towards a specific business objective. Each call
captures the user's action on a component. Each use case achieves a net data effect on a data.

Application Use Cases

Name Description Roles Net Data Effect
Administrator Create User Account Administrator C User Account

Calls

Caller Action Component Authorization
Administrator Insert Microsoft SQL server 2008 Delegate Caller

Administrator Read User Account Administrator R User Account

Calls

Caller Action Component Authorization
Administrator Select Microsoft SQL server 2008 Delegate Caller

Administrator, Client Update User Account Administrator U User Account

Abraham Ghebrehiwet
Page 85 of 121

Client

Calls

Caller Action Component Authorization
Administrator Update Microsoft SQL server 2008 Delegate Caller
Client Update Microsoft SQL server 2008 Delegate Caller

Administrator Delete User Account Administrator D User Account

Calls

Caller Action Component Authorization
Administrator Drop/Delete Microsoft SQL server 2008 Delegate Caller

Administrator Create Logging Response Administrator C Logging Response

Calls

Caller Action Component Authorization
Administrator Response Microsoft SQL server 2008 Delegate Caller

Abraham Ghebrehiwet
Page 86 of 121

Administrator, Client Read Logging Response Administrator
Client R Logging Response

Calls

Caller Action Component Authorization
Administrator read Microsoft SQL server 2008 Delegate Caller
Client read Microsoft SQL server 2008 Delegate Caller

Administrator Update Logging Response Administrator U Logging Response

Calls

Caller Action Component Authorization
Administrator Update Microsoft SQL server 2008 Delegate Caller

Abraham Ghebrehiwet
Page 87 of 121

Administrator Delete Logging Response Administrator D Logging Response

Calls

Caller Action Component Authorization
Administrator Delete Microsoft SQL server 2008 Delegate Caller

Administrator Create Message Administrator C Message

Calls

Caller Action Component Authorization
Administrator create Microsoft SQL server 2008 Delegate Caller

Administrator, Client Read Message Administrator
Client R Message

Calls

Caller Action Component Authorization

Abraham Ghebrehiwet
Page 88 of 121

Administrator read Microsoft SQL server 2008 Delegate Caller
Client read Microsoft SQL server 2008 Delegate Caller

Administrator Update Message Administrator U Message

Calls

Caller Action Component Authorization
Administrator update Microsoft SQL server 2008 Delegate Caller

Administrator Delete Message Administrator D Message

Calls

Caller Action Component Authorization
Administrator Delete Microsoft SQL server 2008 Delegate Caller

Abraham Ghebrehiwet
Page 89 of 121

Administrator Create software Administrator C software

Calls

Caller Action Component Authorization
Administrator Install Microsoft SQL server 2008 Delegate Caller

Administrator, Client Read software Administrator
Client R software

Calls

Caller Action Component Authorization
Administrator download Microsoft SQL server 2008 Delegate Caller
Client download Microsoft SQL server 2008 Delegate Caller

Abraham Ghebrehiwet
Page 90 of 121

Administrator Update software Administrator U software

Calls

Caller Action Component Authorization
Administrator Update Microsoft SQL server 2008 Delegate Caller

Administrator Delete software Administrator D software

Calls

Caller Action Component Authorization
Administrator uninstall Microsoft SQL server 2008 Delegate Caller

Abraham Ghebrehiwet
Page 91 of 121

Threats

A threat is defined as an undesired event, a potential occurrence, often best described as an effect that might damage or
compromise an asset or objective. It may or may not be malicious in nature.

Confidentiality Threats

Unauthorized disclosure of <Insert> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Unauthorized disclosure of <Select> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

Abraham Ghebrehiwet
Page 92 of 121

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Unauthorized disclosure of <Update> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Unauthorized disclosure of <Update> using <Microsoft SQL server 2008> by <Client>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

Abraham Ghebrehiwet
Page 93 of 121

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Unauthorized disclosure of <Drop/Delete> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Unauthorized disclosure of <Response> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Unauthorized disclosure of <read> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Abraham Ghebrehiwet
Page 94 of 121

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Unauthorized disclosure of <read> using <Microsoft SQL server 2008> by <Client>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Unauthorized disclosure of <Update> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Abraham Ghebrehiwet
Page 95 of 121

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Unauthorized disclosure of <Delete> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Unauthorized disclosure of <create> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Unauthorized disclosure of <read> using <Microsoft SQL server 2008> by <Administrator>

Abraham Ghebrehiwet
Page 96 of 121

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Unauthorized disclosure of <read> using <Microsoft SQL server 2008> by <Client>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Unauthorized disclosure of <update> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Abraham Ghebrehiwet
Page 97 of 121

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Unauthorized disclosure of <Delete> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Unauthorized disclosure of <Install> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

Abraham Ghebrehiwet
Page 98 of 121

SQL Injection : Use stored procedure with no dynamic SQL

Unauthorized disclosure of <download> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Unauthorized disclosure of <download> using <Microsoft SQL server 2008> by <Client>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Unauthorized disclosure of <Update> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

Abraham Ghebrehiwet
Page 99 of 121

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Unauthorized disclosure of <uninstall> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Integrity Threats

Illegal execution of <Insert> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Abraham Ghebrehiwet
Page 100 of 121

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Illegal execution of <Select> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Illegal execution of <Update> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

Abraham Ghebrehiwet
Page 101 of 121

SQL Injection : Use stored procedure with no dynamic SQL

Illegal execution of <Update> using <Microsoft SQL server 2008> by <Client>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Illegal execution of <Drop/Delete> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Illegal execution of <Response> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

Abraham Ghebrehiwet
Page 102 of 121

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Illegal execution of <read> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Illegal execution of <read> using <Microsoft SQL server 2008> by <Client>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Abraham Ghebrehiwet
Page 103 of 121

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Illegal execution of <Update> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Illegal execution of <Delete> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Illegal execution of <create> using <Microsoft SQL server 2008> by <Administrator>

Abraham Ghebrehiwet
Page 104 of 121

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Illegal execution of <read> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Illegal execution of <read> using <Microsoft SQL server 2008> by <Client>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Abraham Ghebrehiwet
Page 105 of 121

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Illegal execution of <update> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Illegal execution of <Delete> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

Abraham Ghebrehiwet
Page 106 of 121

SQL Injection : Use stored procedure with no dynamic SQL

Illegal execution of <Install> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Illegal execution of <download> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Illegal execution of <download> using <Microsoft SQL server 2008> by <Client>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

Abraham Ghebrehiwet
Page 107 of 121

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Illegal execution of <Update> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Illegal execution of <uninstall> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Abraham Ghebrehiwet
Page 108 of 121

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Availability Threats

Ineffective execution of <Insert> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Ineffective execution of <Select> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

Abraham Ghebrehiwet
Page 109 of 121

SQL Injection : Use stored procedure with no dynamic SQL

Ineffective execution of <Update> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Ineffective execution of <Update> using <Microsoft SQL server 2008> by <Client>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Ineffective execution of <Drop/Delete> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

Abraham Ghebrehiwet
Page 110 of 121

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Ineffective execution of <Response> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Ineffective execution of <read> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Abraham Ghebrehiwet
Page 111 of 121

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Ineffective execution of <read> using <Microsoft SQL server 2008> by <Client>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Ineffective execution of <Update> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Ineffective execution of <Delete> using <Microsoft SQL server 2008> by <Administrator>

Abraham Ghebrehiwet
Page 112 of 121

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Ineffective execution of <create> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Ineffective execution of <read> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Abraham Ghebrehiwet
Page 113 of 121

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Ineffective execution of <read> using <Microsoft SQL server 2008> by <Client>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Ineffective execution of <update> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

Abraham Ghebrehiwet
Page 114 of 121

SQL Injection : Use stored procedure with no dynamic SQL

Ineffective execution of <Delete> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Ineffective execution of <Install> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Ineffective execution of <download> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

Abraham Ghebrehiwet
Page 115 of 121

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Ineffective execution of <download> using <Microsoft SQL server 2008> by <Client>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Ineffective execution of <Update> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Abraham Ghebrehiwet
Page 116 of 121

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Ineffective execution of <uninstall> using <Microsoft SQL server 2008> by <Administrator>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are mapped to filenames

HTTP Replay Attack : Provide a secure end-to-end communication channel between server and client (e.g.,
SSL)

One-Click Attack : Make the request that encapsulates the users action unique for each authenticated user

Repudiation Attack : Implement proper and effective logging

Response Splitting : Perform context-sensitive encoding

Session Hijacking : Use strong random numbers for session IDs

SQL Injection : Use parameterized SQL statement

SQL Injection : Use stored procedure with no dynamic SQL

Abraham Ghebrehiwet
Page 117 of 121

References

[1] Karen Mercedes Goertzel “Introduction to software security” 09-01-2009
 URL: https://buildsecurityin.us-cert.gov/bsi/547-BSI.html
[2] “Defining Open Source Software (OSS)”, accessed 01-02-2012
 URL:
 http://dodcio.defense.gov/sites/oss/Open_Source_Software_%28OSS%29_FAQ.htm#Q:_What_is_open

source_software_.28OSS.29.3F
[3] “What is Open Source? “, Search enterprise Linux.
 URL: http://searchenterpriselinux.techtarget.com/definition/open-source
[4] “An overview of open source software license”
 URL:

http://www.americanbar.org/groups/intellectual_property_law/resources/an_overview_of_open_source_sw
are_licenses.html

[5] “Open source initiative”
 URL: http://www.opensource.org/licenses/alphabetical
 http://www.opensource.org/
[6] Michael Bloch. “The principles of Open Source Software.”
 URL: http://www.tamingthebeast.net/articles5/open-source-software.htm
[7] Chris Bell, “how secure is open source” 27-02-2006
 URL:http://computerworld.co.nz/news.nsf/spec/38856F521C723CC7CC25711F001106A8
[8] David A. Wheeler, “secure programming for Linux and Unix”, v3.010, 3 March 2003
 URL:http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/open-source-security.html
[9] SANS institute InfoSec reading room, “Security Concerns in Using Open Source Software for Enterprise
 Requirements”
 URL:
 http://www.sans.org/reading_room/whitepapers/awareness/security-concerns-open-source-software-

enterprise-requirements_1305
[10] Elias Levy “Is Open Source really more secure than closed?” 17-04-2000
 URL: http://www.securityfocus.com/news/19
[11] Bruce schneier “Open source and security”, 15-09-1999
 URL: http://www.schneier.com/crypto-gram-9909.html#OpenSourceandSecurity
[12] Gary McGraw. “Software security Building security in” 01-2006 Addison-wesley software security series.

Pages 4-6, 42-46
[13] Mile Lennon. “Internet TVs - The Latest Attack Vector: Researchers Hack Internet Enabled TVs,

Discover Multiple Security Vulnerabilities”, 03-01-2011.
 URL:http://www.securityweek.com/researchers-hack-internet-enabled-tvs-discover-multiple-security

vulnerabilities
[14] Safe code. “Software assurance: an overview of current industry best practices.” 02-2008
 URL: http://www.safecode.org/publications/SAFECode_BestPractices0208.pdf
[15] “Open web application security projects” 09-12-2011
 URL: https://www.owasp.org/index.php/Category:Vulnerability
[16] “Buffer overflow.” 21-02-2009

 URL: https://www.owasp.org/index.php/Buffer_Overflow

[17] Alexander Ivanov Sotirvo. “Automatic vulnerability detection using static code analysis”, 2005

Abraham Ghebrehiwet
Page 118 of 121

 URL: http://gcc.vulncheck.org/sotirov05automatic.pdf

[18] “Buffer Overflow in Sendmail” Advisory CA-2003-12, 29-05-2003
 URL: http://www.cert.org/advisories/CA-2003-12.html
[19] Carsten Eiram, “Microsoft IIS FTP Server NLST Buffer Overflow Clarifications” 02-09-2009
 URL: http://secunia.com/blog/62/
[20] Michael Howard “SDL banned function calls”. 06-2011
 URL: http://msdn.microsoft.com/en-us/library/bb288454.aspx
[21] “Integer overflow”, 22-05-2009
 URL: https://www.owasp.org/index.php/Integer_overflow
[22] David LeBlanc. “Integer Handling with the C++ SafeInt Class.” 07-01-2004.
 URL: http://msdn.microsoft.com/en-us/library/ms972705.aspx
[23] “Format string problem”, 23-02-2009
 URL: https://www.owasp.org/index.php/Format_String
[24] Tim Newsham ”Format string attacks”, 09-2000
 URL: http://hackerproof.org/technotes/format/FormatString.pdf
[25] Ulfar Erlingsson. “Low-level Software Security:Attacks and Defenses” 11-2007
 URL: http://research.microsoft.com/pubs/64363/tr-2007-153.pdf
[26] Gary McGraw. “Software [In]Security: Attack Categories and History prediction” 25-08-2009
 URL: http://www.informit.com/articles/article.aspx?p=1393066
[27] Screen OS Reference Guide. “Attack Detection and Defense Mechanisms” Release 6.0.0, Rev. 03
 URL: http://www.juniper.net/techpubs/software/screenos/screenos6.0.0/CE_v4.pdf
[28] Brien M. Posey. “Buffer-overflow attacks: How do they work?” 31-01-2005
 URL: http://searchsecurity.techtarget.com/news/1048483/Buffer-overflow-attacks-How-do-they-work
[29] “Heap overflow”. 21-02-2009
 URL: https://www.owasp.org/index.php/Heap_overflow
[30] “Stack overflow”. 28-02-2009
 URL: https://www.owasp.org/index.php/Stack_overflow
[31] “Cross-site Scripting (XXS)”. 12-08-2011
 URL: https://www.owasp.org/index.php/Cross-site_Scripting_%28XSS%29
[32] “Cross-site Scripting attacks”, Acunetix web application security
 URL: http://www.acunetix.com/websitesecurity/cross-site-scripting.htm
[33] “SQL-injection” 12-06-2011
 URL: https://www.owasp.org/index.php/SQL_Injection
[34] “SQL-injection: what is it? ”, Acunetix web application security
 URL: http://www.acunetix.com/websitesecurity/sql-injection.htm
[35] Stephen Kost. “An Introduction to SQL Injection Attacks for Oracle Developers” 01-2004
 URL:http://www.net-security.org/dl/articles/IntegrigyIntrotoSQLInjectionAttacks.pdf
[36] “Understanding denial-of-service attacks” US-CERT
 URL: http://www.us-cert.gov/cas/tips/ST04-015.html
[37] Gary McGraw, “Software security: The trinity of trouble” 15-02-2006
 URL: https://freedom-to-tinker.com/blog/gem/software-security-trinity-trouble
[38] Steve McConnell, “Diseconomies of Scale and Lines of Code” 17-07-2006
 URL: http://www.codinghorror.com/blog/2006/07/diseconomies-of-scale-and-lines-of-code.html
[39] Mark Stamp, “Information Security Practices and Principles” 2006 JohnWiley & Sons. Pages 180-190,

267-271.
[40] Todd Landry. “The Alphabet Soup of Software Security Guidelines” 15-06-2010
 URL:http://www.klocwork.com/blog/2010/06/the-alphabet-soup-of-software-security-guidelines/
[41] OWASP Foundation “OWASP Secure Coding Practices Quick Reference Guide” Version2.0 2010.

Abraham Ghebrehiwet
Page 119 of 121

 URL:
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide

[42] Viega, John & McGraw, Gary.” Building Secure Software: How to Avoid Security Problems the Right
Way”. Boston, MA: Addison-Wesley, 2002.

[43] Sean Barnum & Michael Gegick. “Securing the weakest link” 19-09-2005
 URL: https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/principles/356-BSI.html
[44] Carlos Ballester Lafuente. “Evaluating Security in Open Source Consumer Applications” 05-2007
 URL: http://ntnu.diva-portal.org/smash/get/diva2:348445/FULLTEXT01
[45] “Defense in Depth” SearchSecurity 05-2007
 URL: http://searchsecurity.techtarget.com/definition/defense-in-depth
[46] Sean Barnum & Michael Gegick. “Defense in depth” 13-09-2005
 URL: https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/principles/347-BSI.html
[47] Eric vanderburg. “Fail secure - the correct way to crash”, JurInnov security spotlight. 05-01-2011
 URL: http://www.jurinnov.com/fail-secure-the-correct-way-to-crash
[48] Sean Barnum & Michael Gegick. “Failing securely” 05-12-2005
 URL: https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/principles/349-BSI.html
[49] Jeff Langford. ”Implementing Least Privilege at your Enterprise” SANS institute InfoSec reading room.

05-07-2003
 URL: http://www.sans.org/reading_room/whitepapers/bestprac/implementing-privilege-enterprise_1188
[50] “Bell-LaPadula” computer security a brief look
 URL: http://sites.google.com/site/cacsolin/bell-lapadula
[51] Ross Anderson. “Security Engineering: A Guide to Building Dependable Distributed Systems”, First

edition chapter 8: multilateral security
 URL: http://www.cl.cam.ac.uk/~rja14/Papers/SE-08.pdf
[52] Gary McGraw and John Viega. “Keep it Simple” Dr.Dobb’s the world of software development. 01-05-

2003
 URL: http://drdobbs.com/article/print?articleId=184414984&siteSectionName=
[53] William Jackson. “Static vs. dynamic code analysis: advantages and Disadvantages.” 09-02-2009.
 URL: http://gcn.com/Articles/2009/02/09/Static-vs-dynamic-code-analysis.aspx?Page=1 Accessed on 12

April 2011
[54] Nathaniel Ayewah et al. “Using Static Analysis to Find Bugs.” IEEE software 2008
 URL: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4602670
[55] Viega, John, J. T. Bloch, Tadayoshi Kohno, and Gary McGraw. 2002. “ITS4: A static vulnerability

scanner for C and C++ code.”
 URL:

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=898880 http://www.acsac.org/2000/papers/78.pdf
[56] Joel Jones. “Abstract Syntax Tree Implementation Idioms”
 URL: http://hillside.net/plop/plop2003/Papers/Jones-ImplementingASTs.pdf
[57] Foster, Jeffrey. “Type qualifiers: Lightweight specifications to improve software quality.” Ph.D. thesis,

University of California, Berkeley 2002.
 URL: http://www.cs.umd.edu/~jfoster/papers/thesis.pdf
[58] Jeff Foster et al. “CQUAL” 30-11-2004
 URL: http://www.cs.umd.edu/~jfoster/cqual/
[59] “Proceedings of the10th USENIX Security Symposium” USENIX Association (13-17)-08-2001
 URL: http://research.microsoft.com/pubs/74359/01-shankar.pdf
[60] James Nesome & Dawn Song “Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature

Generation of Exploits on Commodity Software” 07-2005.
 URL: http://bitblaze.cs.berkeley.edu/papers/taintcheck-full.pdf
[61] Michiel Scholten. “Taint Analysis in Practice” 11-12-2007
 URL: http://aquariusoft.org/files/bachelorproject.pdf
[62] Dumitru CEARA. “Detecting Software Vulnerabilities Static Taint Analysis” 09-2009.

Abraham Ghebrehiwet
Page 120 of 121

 URL: http://tanalysis.googlecode.com/files/DumitruCeara_BSc.pdf
[63] S Vidalis and A Blyth. “Understanding and Developing a Threat

Assessment Model” 10-2002
 URL: http://comp.glam.ac.uk/staff/svidalis/.../threat%20methodology.doc
[64] James bayne. “An Overview of Threat and Risk Assessment.” SANS institute InfoSec reading room.

Version 1.2f, 2002
 URL: http://sans.org/reading_room/.../overview-threat-risk-assessment_76
[65] “Threat Risk Modeling” 09-29-2010
 URL: https://www.owasp.org/index.php/Threat_Risk_Modeling
[66] Shawn Hernan, Scott Lambert, Tomasz Ostwald and Adam Shostack “Uncover Security Design Flaws

Using The STRIDE.” MSDN magazine 11-2006.
 URL: http://msdn.microsoft.com/en-us/magazine/cc163519.aspx
[67] J.D. Meier, Alex Mackman, Blaine Wastell. “Threat Modeling Web Applications” Microsoft

Corporation. 05-2005
 URL: http://msdn.microsoft.com/en-us/library/ff648006.aspx
[68] Danny Dhillon. “Developer-Driven Threat Modeling” Security & Privacy, IEEE (07-08)-2011
 URL: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5765924
[69] Jeffry A et al. “Threat Modeling: Diving into the Deep End.” Software IEEE volume 25 issue 1, 01-2008
 URL: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4420064
[70] Steven F Burns. “Threat Modeling: A Process To Ensure Application Security.” Version 1.4c, SANS

INSTITUTE 05-01-2005
 URL:

 http://www.sans.org/reading_room/whitepapers/securecode/threat-modeling-process-ensure-application-
security_1646

[71] Gary McGraw. “Risk Management Framework (RMF)” Homeland security 21-09-2005
 URL: https://buildsecurityin.us-cert.gov/bsi/articles/best-practices/risk/250-BSI.html
[72] Justin Kerr. “How to: Install Linux free, with no formatting or repartitioning required.” 28-07-2008
 URL:

http://www.maximumpc.com/article/howtos/howto_install_linux_risk_free_with_no_formatting_or_repart
itioning_required

[73] “The Expat XML Parser”
 URL: http://expat.sourceforge.net/
[74] “Microsoft Threat Analysis & Modeling v2.1.2” 29-03-2007
 URL: http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=14719
[75] “Remote Desktop and Server Administration.”, RD connection manager
 URL: http://rdpdesk.com/
[76] David A. Wheeler. ”flawfinder.”
 URL: http://www.dwheeler.com/flawfinder/
[77] “RATS.”
 URL: https://www.fortify.com/ssa-elements/threat-intelligence/rats.html
[78] “Description of race conditions and deadlocks”, Microsoft support, Article ID: 317723 December 6,

2006 - Revision: 2.3
 URL: http://support.microsoft.com/kb/317723
[79] “The Mode Bits for Access Permission”
 URL: http://www.gnu.org/software/libc/manual/html_node/Permission-Bits.html
[80] Sean Barnum, “STAT - Vulnerable to TOCTOU issues” April 17, 2007
 URL: https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/841-BSI.html
[81] “The OWASP Risk Rating Methodology” January 18, 2012
 URL: https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
[82] Azzam Mourad et al. “Security Hardening of Open Source Software”

Abraham Ghebrehiwet
Page 121 of 121

 URL:
http://users.encs.concordia.ca/~debbabi/pdf/Security%20Hardening%20of%20Open%20Source%20Soft
ware.pdf

[83] Immonen et al. “Trustworthiness Evaluation and Testing of Open Source Components”, 11-12 Oct.
2007.

 URL: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4385514
[84] Anbalagan et al. “Towards a Unifying Approach in Understanding Security Problems”, 16-19 Nov. 2009.
 URL: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5362096
[85] Schryen et al. “Increasing Software Security through Open Source or Closed Source Development?

Empirics Suggest that We have Asked the Wrong Question”, 5-8 Jan. 2010.
 URL: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5428450
[86] Aggarwal et al. “Integrating Static and Dynamic Analysis for Detecting Vulnerabilities”, 17-21 Sept. 2006.
 URL: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4020095
[87] Torri et al. “An evaluation of free/open source static analysis tools applied to

 embedded software”, 28-31 March 2010.
 URL: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5550368
[88] Peng et al. “A comparative study on software vulnerability static analysis techniques and tools”, 17-19 Dec.

2010.
 URL: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5689543
[89] Chatzieleftheriou et al. “Test-Driving Static Analysis Tools in Search of C Code Vulnerabilities”, 18-22
 July 2011.
 URL: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6032220
[90] MAGNUS ÅGREN “Static Code Analysis For Embedded Systems”, August 2009.
 URL: http://publications.lib.chalmers.se/records/fulltext/111920.pdf
[91] “Software Development Process”
 URL: http://www.computerhope.com/jargon/s/softdeve.htm
[92] Deb Shinder. “Is open source really more secure?” 06, April 2005 Misc Network Security
 URL: http://www.windowsecurity.com/articles/Open_Source_Secure.html

