
Multilevel Techniques and
Learning Automata for the
Maximum Satisfiability
(MAXSAT) Problem

By
Øystein Brådland Mats G. L. Oseland

Supervisor
Associate Professor Noureddine Bouhmala, UiA/HiVe

This Master’s Thesis is carried out as a part of the education at the University of
Agder and is therefore approved as a part of this education. However, this does not
imply that the University answers for the methods that are used or the conclusions

that are drawn.

University of Agder, 2012
Faculty of Engineering and Science

Department of Information and Communication Technology

Abstract

The Maximum Satisfiability (MAXSAT) Problem is a propositional logic and an optimiza-
tion based problem that has great importance in the theoretical and practical domain. In
the recent years MAXSAT has risen great interest in the industry. Example problems from
the industry that can be encoded as MAXSAT problems are circuit design and debugging,
hardware verification, bioinformatics and scheduling. These kind of problems often tend
to be large and increase exponentially with the problem size, and therefore algorithms for
solving such problems incorporate different techniques and methods to solve the problems
in a smart and efficient manner.

In this thesis we introduce a range of algorithms that extend the well-known Stochastic
Local Search (SLS) algorithm called WalkSAT. WalkSAT is extended with the multilevel
paradigm and Learning Automata. The multilevel paradigm is a technique that splits large
and difficult problems into smaller problems. These problems are expectedly less complex
and therefore easier to solve. Learning Automata are a branch of machine learning that
can be seen as a decision-making entity that is employed in an unknown environment.
Through feedback from the environment the Learning Automata try to learn the optimal
actions.

The core of this thesis is the observations and findings of how these dissimilar techniques af-
fect the performance and behaviour of WalkSAT when solving industrial MAXSAT problem
instances. Through extensive experiments our results confirm that combining multilevel
techniques and Learning Automata with WalkSAT, separately and together, give promis-
ing results. We compare these composite algorithms with WalkSAT on selected industrial
MAXSAT problems throughout the thesis, and show that all these composite algorithms
perform better than WalkSAT.

Acknowledgements

This master’s thesis is the final project in the master’s program in Information and Com-
munication Technology (ICT) at the University of Agder. The thesis has been under the
supervision of Associate Professor Noureddine Bouhmala.

We would like to thank Bouhmala for the valuable guidance and advices throughout the
work. This thesis would not have been possible without the help of Bouhmala through his
knowledge and insight in his field of research.

A paper entitled Combining WalkSAT with Learning Automata for MAXSAT is under
writing and will be submitted to a journal.

Grimstad, June 1, 2012

Øystein Brådland Mats Grunde Løvdahl Oseland

i

Contents

1 Introduction 1

1.1 Importance of topic and motivation . 1

1.2 Thesis definition . 2

1.3 Research questions . 2

1.4 Research approach . 3

1.5 Contribution to knowledge . 3

1.6 Limitations and key assumptions . 3

1.7 Thesis outline . 4

2 The Maximum Satisfiability Problem 5

2.1 Review of propositional logic . 5

2.2 Conjunctive normal form . 6

2.2.1 Transformation of propositional logic formulas to CNF 7

2.3 The Propositional Satisfiability Problem . 8

2.4 The Maximum Satisfiability Problem . 8

3 Solvers for MAXSAT 9

3.1 Algorithms for SAT and MAXSAT . 9

3.1.1 Stochastic local search algorithms 10

3.1.2 Systematic search algorithms . 11

3.2 Solvers combined with Learning Automata 11

3.3 Solvers combined with multilevel techniques 11

3.4 Other prominent MAXSAT solvers . 12

4 Experimental Design 13

4.1 Problem suite . 13

4.2 Experiment setup . 13

4.3 Implementation and machine specifications 13

ii

CONTENTS

5 WalkSAT 14

5.1 The WalkSAT family . 14

5.2 WalkSAT/SKC . 15

5.3 WalkSAT implementation . 16

5.4 Experiment - WalkSAT noise evaluation . 17

5.4.1 Results . 17

6 Combining WalkSAT with Multilevel Techniques 20

6.1 Introduction to multilevel techniques . 20

6.2 Multilevel techniques in a MAXSAT context 21

6.3 Multilevel WalkSAT . 23

6.3.1 Dynamic noise . 24

6.3.2 Variables and cluster flipping . 25

6.4 Experiment - benchmarking of multilevel WalkSAT 26

6.4.1 Results . 27

7 Combining WalkSAT with Learning Automata 32

7.1 Learning Automata and reinforcement learning 32

7.2 Learning Automata in a MAXSAT context 33

7.3 Learning Automata WalkSAT . 35

7.4 Experiment - Learning Automata state evaluation 37

7.4.1 Results . 38

7.5 Experiment - benchmarking of
Learning Automata WalkSAT . 41

7.5.1 Results . 41

8 Combining WalkSAT with Multilevel Techniques and
Learning Automata 44

8.1 Multilevel Learning Automata WalkSAT . 44

8.2 Experiment - benchmarking of
multilevel Learning Automata WalkSAT . 45

8.2.1 Results . 45

9 Discussion 49

9.1 Multilevel WalkSAT . 49

9.1.1 Wasting computational resources . 49

9.1.2 Number of levels . 50

iii

CONTENTS

9.1.3 Single versus cluster . 51

9.1.4 Static versus dynamic noise . 51

9.2 Learning Automata WalkSAT . 51

9.3 Multilevel Learning Automata WalkSAT . 51

9.4 Summary . 52

10 Conclusion of the Research 53

10.1 Conclusion . 53

10.2 Further work . 54

Bibliography 55

A Benchmarking Results 58

A.1 WalkSAT combined with multilevel techniques 59

A.2 WalkSAT combined with Learning Automata 62

A.3 WalkSAT combined with multilevel techniques
and Learning Automata . 64

iv

List of Figures

1.1 The parts of the research approach. 3

5.1 Problem instance fpu8-problem.dimacs_24.filtered.cnf, |variables| =160 232,
|clauses| = 548 848. Vertical axis gives the number of unsatisfied clauses,
horizontal axis represents the noise p. 17

5.2 Problem instance wb1.dimacs.filtered.cnf, |variables| = 49 525, |clauses| =
140 091. Vertical axis gives the number of unsatisfied clauses, horizontal
axis represents the noise p. 18

5.3 Problem instance 38584-bug-onevec-gate-0.dimacs.seq.filtered.cnf, |variables|
= 314 272, |clauses| = 819 830. Vertical axis gives the number of unsatisfied
clauses, horizontal axis represents the noise p. 18

6.1 Clustering single objects. Single objects can be seen as one object when
clustered. 20

6.2 Clustering and reduction of variables. |Variables| = 20, |variables per clus-
ter| = 2, |levels| = 3 (not counting level 0). X denotes a variable, and c
denotes a cluster. 21

6.3 Dynamic noise procedure: 11 different noise values. Starts at 0%, ends at
100%, increments by 10%. The arrows specifies the possible transitions. . . 24

6.4 Log plot: Problem instance divider-problem.dimacs_3.filtered.cnf, |variables|
= 216 900, |clauses| = 711 249. Vertical axis gives the number of unsatisfied
clauses, horizontal axis gives the time in seconds. 27

6.5 Log plot: Problem instance dividers_multivec1.dimacs.filtered.cnf, |vari-
ables| = 106 128, |clauses| = 397 650. Vertical axis gives the number of
unsatisfied clauses, horizontal axis gives the time in seconds. 27

6.6 Log plot: Problem instance i2c_master1.dimacs.filtered.cnf, |variables| =
82 429, |clauses| = 285 987. Vertical axis gives the number of unsatisfied
clauses, horizontal axis gives the time in seconds. 28

6.7 Log plot: Problem instance rsdecoder1_blackbox_CSEEblock-problem.dimacs_32.
filtered.cnf, |variables| =277 950, |clauses| = 806 460. Vertical axis gives the
number of unsatisfied clauses, horizontal axis gives the time in seconds. . . 28

v

LIST OF FIGURES

6.8 Log plot: Problem dividers_multivec1.dimacs.filtered.cnf, |variables| = 106
128, |clauses| = 397 650. Vertical axis gives the number of unsatisfied
clauses, horizontal axis gives the time in seconds. The vertical bars indi-
cate level transitions. 29

6.9 Log plot: Problem instance spi2.dimacs.filtered.cnf, |variables| = 124 260,
|clauses| = 515 813. Vertical axis gives the number of unsatisfied clauses,
horizontal axis gives the time in seconds. 29

7.1 Interaction between an agent and its environment. 32

7.2 Learning automaton states, actions, rewards and penalties, and their effects. 33

7.3 Left: Learning automaton state mirroring mechanism. Right: Learning Au-
tomata WalkSAT with one state per action. 36

7.4 Problem instance divider-problem.dimacs_3.filtered.cnf. |variables| = 216
900, |clauses| = 711 249. Vertical axis gives the number of unsatisfied
clauses, horizontal axis gives the number of states per Learning automa-
ton. 38

7.5 Problem instance fpu8-problem.dimacs_24.filtered.cnf. |variables| = 160
232, |clauses| = 548 848. Vertical axis gives the number of unsatisfied
clauses, horizontal axis gives the number of states per Learning automa-
ton. 38

7.6 Problem instance SM_RX_TOP.dimacs.filtered.cnf. |variables| = 235 456,
|clauses| =934 091. Vertical axis gives the number of unsatisfied clauses,
horizontal axis gives the number of states per Learning automaton. 39

7.7 Log plot: Problem instance divider-problem.dimacs_3.filtered.cnf |variables|
= 216 900, |clauses| = 711 249. Vertical axis gives the number of unsatisfied
clauses, horizontal axis gives the time in seconds. 41

7.8 Log plot: Problem instance dividers6_hack.dimacs.filtered.cnf |variables| =
35 376, |clauses| = 132 699. Vertical axis gives the number of unsatisfied
clauses, horizontal axis gives the time in seconds. 42

7.9 Log plot: Problem instance spi2.dimacs.filtered.cnf |variables| = 124 260,
|clauses| = 515 813. Vertical axis gives the number of unsatisfied clauses,
horizontal axis gives the time in seconds. 42

8.1 Log plot: Problem instance divider-problem.dimacs_3.filtered.cnf |variables|
= 216 900, |clauses| = 711 249. Vertical axis gives the number of unsatisfied
clauses, horizontal axis gives the time in seconds. 45

8.2 Log plot: Problem instance fpu8-problem.dimacs_24.filtered.cnf |variables|
= 160 232, |clauses| = 548 848. Vertical axis gives the number of unsatisfied
clauses, horizontal axis gives the time in seconds. 46

8.3 Log plot: Problem instance dividers_multivec1.dimacs.filtered.cnf |variables|
=106 128, |clauses| = 397 650. Vertical axis gives the number of unsatisfied
clauses, horizontal axis gives the time in seconds. 46

vi

LIST OF FIGURES

8.4 Log plot: Problem instance i2c_master1.dimacs.filtered.cnf |variables| =
82 429, |clauses| = 285 987. Vertical axis gives the number of unsatisfied
clauses, horizontal axis gives the time in seconds. 47

9.1 Log plot: Problem dividers_multivec1.dimacs.filtered.cnf, |variables| = 106
128, |clauses| = 397 650. Vertical axis gives the number of unsatisfied
clauses, horizontal axis gives the time in seconds. The vertical bars indi-
cate level transitions. 50

vii

List of Tables

2.1 Truth tables for logical operations. 6

2.2 Truth table for formula g. 6

5.1 Problem instances used in the experiments, 9 in total. Listed with number
of variables and clauses. 17

5.2 Industrial problem instances with the optimal noise for WalkSAT. 19

6.1 Multilevel WalkSAT variants and their differences. 23

6.2 Problem instances used in the experiment, 20 in total. Listed with number
of variables and clauses. 26

6.3 Results from the experiment. Multilevel WalkSAT variants and WalkSAT. . 31

7.1 Learning Automata WalkSAT variants and their differences. 36

7.2 Problem instances used in the experiments, 8 in total. Listed with number
of variables and clauses. 37

7.3 Results from the experiment. Problem instances given with optimal number
of states for both Learning Automata WalkSAT variants. 39

7.4 Results from experiment. Learning Automata WalkSAT variants and Walk-
SAT. 43

8.1 Multilevel Learning Automata WalkSAT building blocks. 44

8.2 Results from experiment. Multilevel WalkSAT, Learning Automata Walk-
SAT, multilevel Learning Automata WalkSAT and WalkSAT. 48

9.1 Multilevel consecutive reduction example. Contains levels, %PVA (percent-
age of possible variable assignments) and total amount of variables in a
hypothetical MAXSAT problem with 100 variables at level 0. Note that we
have 2 variables per cluster. 50

A.1 Results from benchmarking. Multilevel WalkSAT variants and WalkSAT. . 59

A.2 Results from benchmarking. Multilevel WalkSAT variants and WalkSAT. . 60

A.3 Results from benchmarking. Multilevel WalkSAT variants and WalkSAT. . 61

viii

LIST OF TABLES

A.4 Results from benchmarking. Learning Automata WalkSAT variants and
WalkSAT. 62

A.5 Results from benchmarking. Learning Automata WalkSAT variants and
WalkSAT. 63

A.6 Results from benchmarking. Multilevel WalkSAT, Learning AutomataWalk-
SAT, multilevel Learning Automata WalkSAT and WalkSAT. 64

A.7 Results from benchmarking. Multilevel WalkSAT, Learning AutomataWalk-
SAT, multilevel Learning Automata WalkSAT and WalkSAT. 65

A.8 Results from benchmarking. Multilevel WalkSAT, Learning AutomataWalk-
SAT, multilevel Learning Automata WalkSAT and WalkSAT. 66

ix

List of Algorithms

1 SAT-SLS . 10

2 WalkSAT architecture . 14

3 WalkSAT . 15

4 The multilevel paradigm . 22

5 Multilevel WalkSAT . 23

6 Learning Automata WalkSAT . 35

x

List of Definitions

1 Thesis definition . 2
2 Satisfiability . 7
3 The SAT problem . 8
4 The unweighted MAXSAT problem . 8
5 Break-count . 15
6 Cluster flip . 24
7 Multilevel-multiplier . 24
8 Multilevel-break-count . 25

xi

Chapter 1

Introduction

In this chapter we briefly put forward the Maximum Satisfiability Problem (MAXSAT).
We introduce the problem area, its importance, and our motivation behind this research
in section 1.1. The thesis definition is given in section 1.2, research questions based on
the definition are formed in section 1.3. The steps of conducting our research are given
in section 1.4. We highlight our contribution to knowledge in section 1.5 followed by
limitations and key assumptions in section 1.6. The chapter ends with an outline of the
thesis in section 1.7.

1.1 Importance of topic and motivation

Research on solving MAXSAT has great importance. It is mainly important because there
are many theoretical and practical problems that can be encoded as MAXSAT problems.
Circuit design and debugging, scheduling of how an observation satellite captures photos of
Earth, and protein structure alignment (bioinformatics) are all applications and problems
from the industry that can be translated to MAXSAT [1–3].

MAXSAT is the optimization variant of the propositional satisfiability problem known
as SAT. Due to the MAXSAT problem’s structure, the complexity grows exponentially
depending on the problem size, hence the time it would take to test all the different
solutions could easily be too long. In order to solve a MAXSAT problem efficiently, it is
not sufficient to have a fast implementation, but also to be able to move around in the
search space in an intelligent manner using various methods and techniques. By doing so, a
large number of solutions will be visited and evaluated, thereby increasing the probability
for reaching the best possible solution. Hence, the solver will perform more efficiently.

Another important factor for researching on MAXSAT solvers is that if there is a MAXSAT
problem, it can be solved by any MAXSAT solver1. However, some solvers might work
better on specific problem types, and worse on others. It is therefore important to have
this in mind when developing a MAXSAT solver.

Stochastic Local Search (SLS) algorithms are known to perform well on SAT problems
[4–6]. Therefore, it is interesting to see if it is possible to enhance the performance of SLS
algorithms by applying various techniques for solving MAXSAT. Extending an existing
SLS algorithm is the integral part of our research, with the goal being that it will be able
to solve MAXSAT problems in a more efficient manner. Our research will focus on an

1Any MAXSAT problem can essentially be solved by any MAXSAT solver, assuming the problem
format is supported.

1

CHAPTER 1. INTRODUCTION

algorithm called WalkSAT that will be combined with Learning Automata and multilevel
techniques. We then explore the effects of extending WalkSAT with the aforementioned
methods. Especially, we want to compare the performance of WalkSAT to our proposed
extensions of WalkSAT on industrial MAXSAT problem instances.

1.2 Thesis definition

Our thesis definition is given below.

Definition 1 Thesis definition: The MAXSAT problem is known to be NP-hard and
is an optimization variant of the SAT problem. The performance of many optimization
techniques deteriorates very rapidly mostly due to two reasons. First, the complexity
of the problem usually increases with its size, and second, the solution space of the
problem increases exponentially with the problem size. Therefore it is beneficial for
MAXSAT solvers to move around in the solution space in a smart and efficient man-
ner to reach the optimal or the best possible solution. In the paper A Multilevel Memetic
Algorithm for Large SAT-Encoded Problems, Bouhmala proposes a multilevel approach
for solving bounded model checking problems. In Using Learning Automata to Enhance
Local-Search Based SAT Solvers with Learning Capability by Granmo and Bouhmala,
they introduce a novel approach of using machine learning in a SAT context. Results
from the multilevel and machine learning methods proved to be promising. The purpose
of this master thesis is to see whether combining state of the art stochastic local search
methods with multilevel-techniques and Learning Automata for solving MAXSAT re-
sults in better performance.

1.3 Research questions

Based on the thesis definition we establish four research questions. These questions will
function as our main objectives. They are important subjects of the study that we will
answer by the end of this work.

1. Learning Automata and multilevel techniques combined with other SAT
solvers have recently been used to solve SAT. What will be the outcome
when WalkSAT is extended with the aforementioned techniques for solving
MAXSAT? Previous successful research shows that Learning Automata paired with
GSATRW and RW [7], and multilevel techniques paired with a memetic algorithm [8]
for solving SAT problems gave great improvement. However, it is not hereby given
that the results will be the same for MAXSAT problems. Further, SLS solvers that
perform well in SAT does not necessarily perform equally well in MAXSAT [1].
It might be the case that the structure and semantics of WalkSAT will increase or
decrease the significance of Learning Automata and multilevel techniques.

2. Assuming we experiment with different combinations of WalkSAT with mul-
tilevel techniques, and WalkSAT with Learning Automata. What is the op-
timal combination in both aspects? WalkSAT’s structure opens for a degree of
freedom for extension. How the combination is done may play an important role. We
will therefore experiment with different combinations.

3. If WalkSAT extended with Learning Automata and multilevel techniques
separately yields good results, what will be the result of WalkSAT combined

2

CHAPTER 1. INTRODUCTION

with both techniques? The two techniques differs from each other, and it might
be the case that one of the two will boost the other to achieve an overall higher
performance when combined.

4. Is there an optimal configuration of Learning Automata when coupled
with WalkSAT? A Learning automaton is a kind of a finite state machine that can be
configured in several ways. The number of internal states can affect the performance.

1.4 Research approach

In order to achieve the goals of this thesis the research is divided into four parts. Figure
1.1 illustrates the research approach and the four parts. First, we implement the original
version of WalkSAT, second, we combine multilevel techniques with WalkSAT. In the third
part we combine Learning Automata and WalkSAT. Finally, we combine both multilevel
techniques and Learning Automata with WalkSAT at the same time.

WalkSAT

WalkSAT

WalkSAT

Learning Automata

1

2

3

4

WalkSAT

Multilevel techniques

Multilevel techniques

Learning Automata

Figure 1.1: The parts of the research approach.

In all parts we perform experiments and compare our proposed algorithms with each other
and with WalkSAT. Findings from part 2 and 3 will be used as a basis for part 4.

1.5 Contribution to knowledge

The main contribution of our research will be the combination of the well-known stochastic
local search algorithm WalkSAT with multilevel techniques and Learning Automata. It will
provide valuable information on how multilevel techniques and Learning Automata affect
the performance of WalkSAT. Additionally, this research will function as a foundation and
reference point for possible future work.

1.6 Limitations and key assumptions

All the implemented algorithms presented in this thesis are not to be seen as complete
algorithms that can serve as final products. They are rather unoptimized prototypes of
what can be, and at this stage they only satisfy our needs required to complete and
pursue the goals of this thesis. Hence the results displayed in tables and graphs might
not correspond to optimized versions. Due to this, the results are not to be compared

3

CHAPTER 1. INTRODUCTION

with competing solvers from MAXSAT competitions and evaluations where computational
speed plays an important role.

1.7 Thesis outline

The remainder of the paper is organized as follows: Chapter 2 holds the problem area of
this research, namely the MAXSAT problem. In chapter 3 we present methods for solving
MAXSAT, and we also introduce prior research with emphasis on Learning Automata and
multilevel techniques for SAT. Notes on experimental design are put forward in chapter 4.
In chapter 5 the WalkSAT algorithm is set forth and examined in-depth. Chapter 6 contains
WalkSAT combined with multilevel techniques, and in chapter 7 WalkSAT is combined with
Learning Automata. We present WalkSAT combined with both multilevel techniques and
Learning Automata in chapter 8. Then, in chapter 9 we discuss results and observations
found from all experiments we have performed in chapter 6, 7 and 8. Finally, we conclude
our research and introduce possible further work in chapter 10.

4

Chapter 2

The Maximum Satisfiability
Problem

In this chapter we present the Maximum Satisfiability (MAXSAT) Problem. The chapter
comprises preliminary background information that helps the reader get acquainted with
MAXSAT.

We start by introducing propositional logic in section 2.1, which is the core structure
of a MAXSAT problem. In section 2.2 we show how propositional logic formulas can be
transformed into a form called CNF, which is used as input for many SAT and MAXSAT
solvers. We then turn the attention to MAXSAT. Due to the close relationship between
SAT and MAXSAT, we first introduce SAT in section 2.3, and then we introduce MAXSAT
in section 2.4. These sections also point out applications and definitions.

2.1 Review of propositional logic

Propositional logic is a system where the interest lies within propositions and their inter-
relationships. A proposition is a statement that can be assigned two values, either TRUE
or FALSE, also equivalent to 1 and 0, hereafter known as truth values. The logical op-
erations, also known as connectives, include ∨ (OR and logical disjunction), ∧ (AND and
logical conjunction), ¬ (NOT and logical negation),→ (implication), and↔ (equivalence).
These can be applied on two propositions, but ¬ can only be applied on one proposition.
When applied, the outcome is another proposition.

A formula with propositions can be evaluated as TRUE or FALSE. Examples of proposi-
tions from real life are x1 = It is −5 degrees Celsius outside today in Grimstad, and x2 = I
will wear my scarf and mittens today. These propositions are primitive propositions which
can be combined to a compound proposition by using logical conjunction: It is −5 degrees
Celsius outside today in Grimstad, AND I will wear my scarf and mittens today. With
symbols this can be expressed as (x1 ∧ x2).

A truth table is used to show the semantics for a logical operation. Table 2.1 gives the
truth tables for the mentioned logical operations.

5

CHAPTER 2. THE MAXIMUM SATISFIABILITY PROBLEM

X Y X ∨ Y X ∧ Y ¬X X ↔ Y X → Y

0 0 0 0 1 1 1
1 0 1 0 0 0 0
0 1 1 0 1 0 1
1 1 1 1 0 1 1

Table 2.1: Truth tables for logical operations.

An example of a propositional logic formula g with propositions, or variables, x1, x2, x3,
and x4 is given below.

g = (¬x1 ∨ (¬x2 → x3))↔ x4 (2.1)

The truth table for this formula is given in table 2.2. Each entry in the table shows the
truth values x1, x2, x3, and x4 take to evaluate g as TRUE/1 or FALSE/0. This can be
observed in the rightmost column.

x1 x2 x3 x4 g

1 1 1 1 1
1 1 1 0 0
1 1 0 1 1
1 1 0 0 0
1 0 1 1 1
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 1 1 1
0 1 1 0 0
0 1 0 1 1
0 1 0 0 0
0 0 1 1 1
0 0 1 0 0
0 0 0 1 1
0 0 0 0 0

Table 2.2: Truth table for formula g.

2.2 Conjunctive normal form

A possible encoding form for propositional logic formulas is the Conjunctive Normal Form
(CNF). This form is widely used for describing SAT and MAXSAT problems. A CNF
formula consists of a conjunction of clauses,

∧
i Ci. Each clause Ci is a disjunction of

literals,
∨

j xi,j , where a literal is a propositional variable x (TRUE or FALSE) or its
negation ¬x [9]. A CNF formula can be expressed as in equation 2.2 and 2.3, where m is
the number of clauses and x is a literal in a given clause. Equation 2.4 shows an instance
of a CNF formula with four variables x1, x2, x3, x4 and four clauses.

6

CHAPTER 2. THE MAXIMUM SATISFIABILITY PROBLEM

f =
m∧

i=1
Ci (2.2)

Ci =
ki∨

j=1
xi,j (2.3)

f = (x1 ∨ x4) ∧ (¬x2 ∨ x4) ∧ (¬x3 ∨ x4) ∧ (¬x4 ∨ ¬x1 ∨ x2 ∨ x3) (2.4)

A formula expressed in CNF is satisfied if all its clauses are satisfied, i.e. all clauses evaluate
to TRUE. For a clause to be satisfied at least one of the literals must evaluate to TRUE,
because of the disjunctions of literals. In formula 2.4 there are four variables x1, x2, x3 and
x4, which means there are 24 = 16 possible variable assignments of truth values. On the
other hand, if the formula has 500 variables then there are 3.27339061×10150 assignments.
In a SAT/MAXSAT context these possible variable assignments are referred to as the
search space. One of the assignments of equation 2.4, where x1 = TRUE, x2 = FALSE,
x3 = TRUE, x4 = TRUE, makes f evaluate to TRUE. Hence, this assignment is called
a solution. This can also be seen from the truth table for the formula g (table above),
table 2.2 and equation 2.1. Since g can be transformed into CNF yielding f , the table is
also valid for f . The table reports that there exists eight solutions, eight rows where the
rightmost column holds the value 1 (the rows that are colored gray). Based on this we
define satisfiability in respect to propositional logic as following:

Definition 2 Satisfiability: Given a propositional formula f . If an assignment of truth
values to the variables in f evaluates f to TRUE, the assignment satisfies f . Further,
f is claimed to be satisfiable if and only if there exists at least one assignment that
satisfies f [6].

According to definition 2 we can claim that formula f is satisfiable since there is at least one
assignment of truth values that satisfies the formula, thus makes the formula satisfiable.

2.2.1 Transformation of propositional logic formulas to CNF

The main idea behind transforming a propositional logic formula to CNF is by using
logic transformation rules, where the goal is to create clauses with literals by only using
the logical connectives ∧, ∨ and ¬. The listing below shows how the propositional logic
formula g given in equation 2.1 can be transformed into CNF by using De Morgan’s law,
double negative law and the distributive law. We also need to decompose the connective
double implication ↔ : (x1 ↔ x2) ⇔ (x1 → x2) ∧ (x2 → x1), and the logical connective
implication → : (x1 → x2) ⇔ (¬x1 ∨ x2) [10].

(¬x1 ∨ (¬x2 → x3))↔ x4

⇔ ((¬x1 ∨ (¬x2 → x3))→ x4) ∧ (x4 → (¬x1 ∨ (¬x2 → x3)))

⇔ (¬(¬x1 ∨ (¬x2 → x3)) ∨ x4) ∧ (¬x4 ∨ (¬x1 ∨ (¬x2 → x3)))

⇔ (¬(¬x1 ∨ (x2 ∨ x3)) ∨ x4) ∧ (¬x4 ∨ (¬x1 ∨ (x2 ∨ x3)))

⇔ ((x1 ∧ ¬(x2 ∨ x3)) ∨ x4) ∧ (¬x4 ∨ (¬x1 ∨ (x2 ∨ x3)))

⇔ ((x1 ∧ (¬x2 ∧ ¬x3)) ∨ x4) ∧ (¬x4 ∨ (¬x1 ∨ (x2 ∨ x3)))

7

CHAPTER 2. THE MAXIMUM SATISFIABILITY PROBLEM

⇔ ((x1 ∧ ¬x2 ∧ ¬x3) ∨ x4) ∧ (¬x4 ∨ ¬x1 ∨ x2 ∨ x3)

⇔ (x1 ∨ x4) ∧ (¬x2 ∨ x4) ∧ (¬x3 ∨ x4) ∧ (¬x4 ∨ ¬x1 ∨ x2 ∨ x3)

The expression in the last line in the listing above is the same as given in equation 2.1,
hence the propositional logic formula has been transformed into CNF. As can be seen
from the final result, negation (¬) now only appears on single literals inside clauses. The
only logic connectives left are ∧ and ∨, and all the occurrences of ↔ and → have been
decomposed.

2.3 The Propositional Satisfiability Problem

The Propositional Satisfiability Problem, also known as the SAT problem, is essential
in mathematical logic and computing theory, but it also has interests in applications
belonging to the practical domain. As can be understood from the name, the structure of
the SAT problem builds on the propositional logic presented in the previous sections.

Real-world problems and applications include Blocks World (planning problem in the AI
domain), graph coloring, circuit design and hardware verification can all be encoded as
SAT problems [1]. The SAT problem is under the NP-complete class of problems [9], and
the goal is to determine whether there exists an assignment of truth values to the variables
in a given CNF formula such that it becomes satisfiable [6]. We define the SAT problem
as following:

Definition 3 The SAT problem: Given a propositional formula f , does there exist an
assignment of truth values to the variables such that f becomes satisfiable?

2.4 The Maximum Satisfiability Problem

The Maximum Satisfiability (MAXSAT) Problem is an optimization variant of the SAT
problem. The complexity of such problems is known to be NP-hard [9]. Applications and
problems from the industry involve bioinformatics [3], scheduling [2] and integrated circuits
such as field-programmable gate array (FPGA) routing [11].

MAXSAT has several variants: the weighted MAXSAT problem, the unweighted MAXSAT
problem, the partial MAXSAT problem and the weighted partial MAXSAT problem [12].
In the weighted variants each clause in a problem has an associated weight, and where
the goal is to maximize the total weight of the satisfied clauses. For unweighted MAXSAT
the goal is to minimize the amount of unsatisfied clauses1 in a given CNF formula [6]. We
define the unweighted MAXSAT problem as following:

Definition 4 The unweighted MAXSAT problem: Given a propositional formula f ,
does there exist an assignment of truth values to the variables that maximizes the
number of satisfied clauses in f?

The difference between SAT and MAXSAT is now evident according to definition 3 and
4: SAT is a decision based problem, while MAXSAT is an optimization based problem.
Our focus lies on unweighted MAXSAT, and therefore for the rest of this thesis the term
MAXSAT refers to unweighted MAXSAT.

1Minimizing the amount of unsatisfied clauses is the same as maximizing the satisfied clauses.

8

Chapter 3

Solvers for MAXSAT

This chapter comprises methods for solving MAXSAT and introduces prior significant
work for solving SAT through the employment of multilevel techniques, and algorithms
with learning capabilities. We also present a selection of MAXSAT solvers.

An introduction to SAT and MAXSAT solvers is given in section 3.1, where the two main
branches of solvers, stochastic local search algorithms and systematic search algorithms,
are discussed in more detail in section 3.1.2 and 3.1.1. Since stochastic local search algo-
rithms is our main focus we provide more information on this subject.

Section 3.2 introduces prior work where various stochastic local search algorithms have
been paired with Learning Automata. A memetic algorithm and an algorithm called GSAT
combined with multilevel techniques are set forth in section 3.3. The chapter ends with
section 3.4 that contains a brief overview of prominent MAXSAT solvers.

3.1 Algorithms for SAT and MAXSAT

SAT and MAXSAT solvers, or algorithms, are used to solve propositional problem in-
stances. Due to the definitions of SAT and MAXSAT the goals for these solvers are dif-
ferent, see definition 3 and 4. The goal for a SAT solver is to achieve satisfiability for a
given problem. However, a MAXSAT solver seeks to maximize the amount of satisfied
clauses. Hence, it might not solve all clauses, but the problem might be satisfied according
to given constraints. The goals are realized by flipping variables in the problem, where
flipping means to negate the truth value of a variable.

As we pointed out in section 2.2, a propositional formula that consists of 500 variables
has 3.27339061 × 10150 different variable assignments. This illustrates the magnitude of
dealing with propositional logic formulas with a high number of variables. It is therefore
clear that solvers need to be designed efficiently to obtain good coverage of the search
space and find optimal solutions within reasonable time.

Solvers are generally divided into two branches: Stochastic local search algorithms, and
systematic search algorithms. The two types of solvers are discussed in more detail in the
next sections.

9

CHAPTER 3. SOLVERS FOR MAXSAT

3.1.1 Stochastic local search algorithms

Solvers that are based on Stochastic Local Search (SLS) are often said to be incomplete.
An incomplete solver does not guarantee that it will provide a satisfying assignment, or
claim that the problem instance is unsatisfiable. Most of the solvers are concerned with
reporting satisfying assignments, if there exists one. Incomplete algorithms often run until
a constraint has been met, e.g. a time limit, max amount of flips or other such properties.

Systematic search algorithms used to dominate the field of solving large SAT problem
instances. However, in the 1990’s stochastic local search algorithms proved its strength
for solving large and hard SAT problems [13]. Two of the most important solvers among
incomplete solvers that paved the way for SLS algorithms for SAT were GSAT [5] and
WalkSAT [4]. GSAT was one of the first SLS SAT solvers presented in 1992 and WalkSAT
was introduced in 1994 which originated from GSAT with slight modifications.

The strength and approach for SLS algorithms are the usage of local information. With
this approach SLS algorithms are able to find good solutions without exploring the entire
search space. They start by examining the search space at some position and then move
to a position nearby. From the latter position the decision about the next move is decided
by the information from the local neighborhood, where the neighborhood can be seen as
a variable assignment. The search is stochastic in the sense that the decisions and moves
can be based on stochastic properties. On the other hand, one of the weaknesses of SLS
algorithm is that they can get stuck in a state known as local minima1. There are several
suggested ways to deal with this issue. Restart2 and non-improving steps are common
mechanisms used in many algorithms [14].

In most cases SLS algorithms have an associated objective function. The objective function
is often denoted as the number of unsatisfied clauses under a given assignment. Conse-
quently, SLS algorithms try to minimize this function [14]. In general, each variable x in
a given problem has a score associated with it, in respect to an assignment. There are
different scoring functions of measuring this score, depending on the algorithm (e.g. GSAT,
WalkSAT or other SLS algorithms).

Algorithm 1 SAT-SLS
1: {Input: CNF formula G}
2: {Output: Satisfied assignment for G, or ’no solution exists’}
3: for i← 0 to MAX_TRIES do
4: T ← random_assignment()
5: for j ← 0 to MAX_FLIPS do
6: if T is satisfied then
7: return T
8: else
9: /* heuristics */

10: variable← select_variable()
11: end if
12: flip(variable)
13: end for
14: end for

1A local minimum is a point in the search space where the local neighborhood does not have a point
that is better (i.e. lower number of unsatisfied clauses).

2A restart may mean a restart of the entire algorithm, or a completely new random assignment.

10

CHAPTER 3. SOLVERS FOR MAXSAT

In algorithm 1 above (reproduced from [15]) a generic outline of SLS algorithms for SAT is
given. In the initialization phase all the variables in a given formula are randomly assigned a
truth value. Then the algorithm selects a variable and flips its. This is done in an iterative
process and can also be seen as a trial and error approach. The heuristics of variable
selection is what changes from one SLS algorithm to another. The selection is often done
according to the scoring function, and has significant impact on the overall performance [6].
Further, according to algorithm 1 the SLS algorithm will repeat selecting variables and
doing flips until MAX_FLIPS is reached. If no solution is found, the algorithm restarts
with a new random assignment. The algorithm stops executing when it has reached a
predefined number of allowed restarts denoted as MAX_TRIES.

The algorithm presented in the outline is for solving SAT problems, but it is also valid for
MAXSAT with minor modifications. Generally, all SLS algorithms can be modified and
adapted to solve unweighted MAXSAT problems. However, this does not imply that SLS
solvers performing well in SAT yield the same performance in MAXSAT [6].

3.1.2 Systematic search algorithms

Solvers that are classified as systematic search algorithms are known as complete solvers.
In comparison to incomplete solvers complete solvers are guaranteed to find a satisfying
assignment if one exists, or prove unsatisfiability. Hence, systematic search algorithms
search the entire solution space (all possible variable assignments) of the given problem.
Because of this complete solvers may be more computationally expensive, and have often
difficulties solving large problems.

Many of the complete solvers are based on DPLL [16] that was introduced in 1962, which
is also based on the DP [17] algorithm from 1960. DPLL builds a binary tree by assigning
truth values to variables, and uses backtracking and branching as its main components.
Successful algorithms based on DPLL/DP are GRASP [18], SATO [19], TABLEAU [20] and SATZ
[21].

3.2 Solvers combined with Learning Automata

Previous work in the field of SAT solvers and machine learning have shown that mixing
(stochastic) local search SAT algorithms with Learning Automata has given promising
results. The goal is to let a SAT solver learn and decide what steps are the best ones to
achive better performance than without learning. The machine learning technique that has
been used by Granmo and Bouhmala was a Tsetlin automaton. Granmo and Bouhmala’s
work on fusing Learning Automata (LA) with both Random Walk [22] and GSATRW [22],
giving LARW and LA-GSATRW respectively, had a higher success rate and better performance
than their non-LA counterparts on selected problems from the SATLIB benchmarks in [23].

3.3 Solvers combined with multilevel techniques

Bouhmala proposed the multilevel memetic algorithm MLVLMA in [8] for solving large SAT
Bounded Model Checking problem instances. His research shows how a memetic algorithm3

can utilize the multilevel paradigm. The multilevel paradigm is a method for splitting large

3Memetic algorithm: An extension of a genetic algorithm with a local search strategy [24].

11

CHAPTER 3. SOLVERS FOR MAXSAT

and difficult problems into smaller problems. These problems are expectedly less complex
and therefore easier to solve. The results show that combining a memetic algorithm with
the multilevel paradigm can improve the quality of the solution up to 77% in some cases.

In [25] the multilevel paradigm is combined with the stochastic local search algorithm
GSAT. Conclusions drawn from the results indicate that the multilevel paradigm speeds up
GSAT and improves its convergence.

3.4 Other prominent MAXSAT solvers

Solvers that distinguished themselves in the Max-SAT Evaluation 20064 are MAXSATZ [27]
and MAX-DPLL [28]. The former was the best unweighted MAXSAT solver, and the latter
was pointed out as the best solver for weighted MAXSAT. MAX-DPLL was also announced
as the second best unweighted solver [29,30].

Other algorithms related to our work that are based on SLS for solving MAXSAT are
SAPS [31] and DLS-MC [32]. Both of these algorithms use a technique called Dynamic
Local Search (DLS). DLS is used to avoid getting stuck in local minima. This is done by
dynamically altering the evaluation function of solutions at run time. Further, DLS allows
the search space to be dynamically changed and modified, thus the solver is guided to
avoid local minima.

4The MAXSAT Evaluation [26] is an affiliated event of International Conferences on Theory and
Applications of Satisfiability Testing where the performance of MAXSAT solvers is evaluated.

12

Chapter 4

Experimental Design

In this chapter we give general information on how the experiments and benchmarking of
algorithms have been performed. We present the problem suite in section 4.1. Information
about the setup of the experiments is given in section 4.2, and in section 4.3 we report notes
on the algorithms’ implementation, and system specifications for our test environment.

4.1 Problem suite

In our experiments and benchmarks we use a selection of the same problems as used in
the MAXSAT Evaluations. All the problems follow the DIMACS CNF file format [33]. We
are focusing on industrial problems, and all of these are available at MAXSAT Evaluation
websites found at http://www.maxsat.udl.cat/. Our problem suite is a mixture of the
problems used in MAXSAT Evaluation 2008, 2009, 2010 and 2011.

4.2 Experiment setup

All the algorithms run 10 times on the same problem instance due the random nature in
stochastic local search algorithms. We calculate the mean results from these 10 times to
get an overview of how the algorithms perform in general. These mean results are used as
a basis for all the graphs and numbers in tables occurring in this thesis. In addition, all the
algorithms have an execution duration of x seconds, or y flips. When presenting figures,
graphs and tables we use the notation |.| for size (e.g. |clauses| = 4), and # for "number
of" (e.g. #Unsatisfied clauses equals "number of Unsatisfied clauses"). We also use graphs
in logarithmic and arithmetic scale to visualize data and results. For some results we also
give sample variance and sample standard deviation.

4.3 Implementation and machine specifications

All algorithms have been implemented by using the C++ programming language, and run
on a machine with the following specifications:

• Central processing unit (CPU): 2x Intel Xeon Six Core E5645 2.4 GHz with 12 MB Cache
• Memory (RAM): 24 GB DDR
• Operating system (OS): Ubuntu 11.10 - 64 Bit

13

Chapter 5

WalkSAT

In chapter 3 we introduced methods for solving the MAXSAT problem. We especially focused on
the branch called stochastic local search algorithms. In this chapter we take a closer look at the
algorithm called WalkSAT.

Introduction to the WalkSAT family is given in section 5.1, while in section 5.2 we introduce
WalkSAT/SKC which is our focus in this thesis. In section 5.3 we point out the implementation
of this algorithm, and in section 5.4 we present results from noise evaluation.

5.1 The WalkSAT family

The WalkSAT family, often referred to as an architecture, is a collective term for successful stochastic
local search algorithms for solving propositional logic problems. There exists a great amount of
WalkSAT variants such as WalkSAT/SKC, Novelty, Novelty+, Adaptive Novelty+, R-novelty and
Walk-SAT/Tabu [6]. Nonetheless, all the variants have the same basis for variable selection and is
done in two stages: In stage one a currently unsatisfied clause is picked at random.

Algorithm 2 WalkSAT architecture
1: {Input: CNF formula G}
2: {Output: Satisfied assignment for G, or ’no solution exists’}
3: for i← 0 to MAX_TRIES do
4: T ← random_assignment()
5: for j ← 0 to MAX_FLIPS do
6: if T is satisfied then
7: return T
8: end if
9: /* stage 1*/

10: Ck ← random_unsatisfied_clause()
11: /* stage 2*/
12: variable← random_variable(Ck)
13: flip(variable)
14: end for
15: end for

In stage two a variable that occurs in the unsatisfied clause is chosen at random. A generic outline
of the WalkSAT architecture is given in algorithm 2. The main difference between all variants is
how the variable is selected, as we will see in the next section. Due to this two-stage process, we
observe that WalkSAT has 2-way randomness built in. In addition, these algorithms incorporate

14

CHAPTER 5. WALKSAT

randomized behaviour, such that during the execution they will perform a random move according
to a given probability on how to select a variable. This probability is the so-called noise parameter.
As with any other stochastic local search algorithms, the noise parameter is also one of the key
elements that influences the performance for all WalkSAT variants.

5.2 WalkSAT/SKC

The WalkSAT/SKC [4] algorithm was introduced by Selman, Kautz, and Cohen in 1994. It was the
first algorithm belonging to the WalkSAT architecture, and is the algorithm of interest in our thesis.
For simplicity, we will for the rest of this paper refer to WalkSAT/SKC as WalkSAT.

As stated earlier, SLS algorithms and variants of WalkSAT mainly differ in the variable selection.
WalkSAT contains three moves for variable selection: (1) a side move/best move, (2) a greedy move,
and (3) a random move. The pseudo code for WalkSAT is given in algorithm 3.

Algorithm 3 WalkSAT
1: {Input: CNF formula G}
2: {Output: Satisfied assignment for G, or ’no solution exists’}
3: Initialization: pnoise ∈ [0, 1]
4: for i← 0 to MAX_TRIES do
5: T ← random_assignment
6: for j ← 0 to MAX_FLIPS do
7: if T is satisfied then
8: return T
9: end if

10: Ck ← random_unsatisfied_clause()
11: /* best move/side move */
12: if ∃ variable v ∈ Ck with break-count = 0 then
13: variable← v
14: else
15: if random(0, 1) < pnoise then
16: /* random move*/
17: variable← random_variable(Ck)
18: else
19: /* greedy move*/
20: variable← random_lowest_breakcount_variable(Ck)
21: end if
22: end if
23: flip(variable)
24: end for
25: end for

The scoring function for WalkSAT is the break-count, and is defined as the number of clauses
that currently are satisfied but will become unsatisfied after a variable is flipped, see definition 5.
Consequently, each variable has its own break-count.

Definition 5 Break-count: The number of clauses that are currently satisfied but will become
broken (unsatisfied) after a variable is flipped [6].

WalkSAT starts with an initialization phase that generates a random truth assignment for all vari-
ables in a given problem. Then an unsatisfied clause is picked at random. At line 12 in algorithm
3 the side move is chosen if there exists a variable or multiple variables with break-count = 0.

15

CHAPTER 5. WALKSAT

In the case of multiple variables, one variable is chosen at random at line 13. The side move is
said to be a side move because it does not improve or worsen the quality of the solution, but the
variable assignment is different. Therefore, it can also be seen as a best move, because no clauses
will break if the selected variable is flipped. This move is crucial for the performance, and it also
helps WalkSAT to get out of local minima. At line 14, if the break-count 6= 0, then the variable will
be chosen either by the random move, or by the greedy move.

The random move at line 16 randomly picks a variable in the chosen unsatisfied clause. This move
is also referred to as the walk move. It might not be a beneficial move, but it helps to get a better
coverage of the search space. The probability for making the random move is denoted as p. This
is the so-called noise parameter, where p ∈ [0.0, 1.0], and 1.0 is equal to 100%. In other words,
the noise parameter also controls the greediness (greedy move) of WalkSAT. There is no standard
value for the p parameter, as it varies and depends on the problem type and size. Therefore, the
optimal noise value is not easily obtained without extensive empirical tuning1 [35]. However, for
Random 3-SAT problems, a type of problem where each clause has exactly 3 literals, p is often set
to ≈ 0.55 [36].

With the probability 1 − p the greedy move is taken. The greedy move selects a variable by
computing the score (break-count) for each variable within the unsatisfied clause by using the
scoring function. The variable with the lowest score is chosen, or if there are multiple variables
with the same lowest score then one is chosen at random.

The remaining part of the algorithm follows the WalkSAT architecture; the solver will continue
flipping variables at line 23 chosen by the side, random or greedy move until the problem is satis-
fied, or until MAX_FLIPS has been reached. If no solution has been found during MAX_FLIPS
then the algorithm restarts with a new random truth assignment. When it has iterated through
MAX_TRIES the algorithm stops executing.

It is implied that WalkSAT can be used to solve MAXSAT problems. The only modification needed
is that the algorithm keeps record of the best number of satisfied clauses, or equally, the lowest
number of unsatisfied clauses. This does not change the behavior and workings of WalkSAT, but
the output of the algorithm will be the lowest number of unsatisfied clauses instead of a satisfying
assignment.

5.3 WalkSAT implementation

Our implementation of WalkSAT is based on algorithm 3. This is the version that was introduced by
Selman, Cohen and Kautz in [4]. A version of WalkSAT with source code by Henry Kautz is available
at http://www.cs.rochester.edu/u/kautz/walksat/. We have verified that our implementation of
WalkSAT behaves correctly and produces the same results. This has been done by running the
same problems with the same amount of flips, and then compared the results. The results show
that our implementation is valid, however, it is not optimized and cannot compete in terms of
speed.

1In [34] an algorithm called Auto-WalkSAT is proposed that automatically tunes the noise parameter.

16

CHAPTER 5. WALKSAT

5.4 Experiment - WalkSAT noise evaluation

In this section we perform noise evaluation of WalkSAT. We examine the importance of the noise
parameter in respect to industrial problem instances. The goal is to find the optimal value for the
noise parameter. By optimal noise we mean the noise that gives the least number of unsatisfied
clauses when the algorithm has finished executing. The noise value discovered will be used to run
WalkSAT on other industrial problem instances throughout the thesis.

In the experiment we run WalkSAT with the noise-set p = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0],
and MAX_FLIPS is set to 300 000 000. We use problem instances listed in table 5.1.

Problem instance #Variables #Clauses

rsdecoder2.dimacs.filtered.cnf 415 480 1 632 526
mem_ctrl-debug.dimacs.cn.cnf 381 721 505 547
s38584-bug-onevec-gate-0.dimacs.seq.filtered.cnf 314 272 819 830
SM_RX_TOP.dimacs.filtered.cnf 235 456 934 091
divider-problem.dimacs_11.filtered.cnf 215 964 709 377
fpu8-problem.dimacs_24.filtered.cnf 160 232 548 848
i2c_master1.dimacs.filtered.cnf 82 429 285 987
wb1.dimacs.filtered.cnf 49 525 140 091
dividers6_hack.dimacs.filtered.cnf 35 376 132 699

Table 5.1: Problem instances used in the experiments, 9 in total. Listed with number of variables and
clauses.

5.4.1 Results

Figure 5.1 shows a noise graph for the problem fpu8-problem.dimacs_24.filtered.cnf. We observe
that a bigger noise value increases the number of unsatisfied clauses.

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 0 10 20 30 40 50 60 70 80 90 100

#U
ns

at
is

fie
d

C
la

us
es

Noise (%)

Figure 5.1: Problem instance fpu8-problem.dimacs_24.filtered.cnf, |variables| =160 232, |clauses| = 548
848. Vertical axis gives the number of unsatisfied clauses, horizontal axis represents the noise
p.

17

CHAPTER 5. WALKSAT

The figure below shows WalkSAT solving wb1.dimacs.filtered.cnf. We observe that p = 10% is a
good value for the noise parameter.

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50 60 70 80 90 100

#U
ns

at
is

fie
d

C
la

us
es

Noise (%)

Figure 5.2: Problem instance wb1.dimacs.filtered.cnf, |variables| = 49 525, |clauses| = 140 091. Vertical
axis gives the number of unsatisfied clauses, horizontal axis represents the noise p.

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 10 20 30 40 50 60 70 80 90 100

#U
ns

at
is

fie
d

C
la

us
es

Noise (%)

Figure 5.3: Problem instance 38584-bug-onevec-gate-0.dimacs.seq.filtered.cnf, |variables| = 314 272,
|clauses| = 819 830. Vertical axis gives the number of unsatisfied clauses, horizontal axis rep-
resents the noise p.

We see that the number of unsatisfied clauses in figures 5.2 and 5.3 is very high at 0% noise, and
the same for 100%. The optimal noise seems to be 10% for these two as well. Remaining results are
given in table 5.2 below, with optimal noise and number of unsatisfied clauses for each problem.

18

CHAPTER 5. WALKSAT

Problem instance %Noise #Mean unsatisfied clauses

rsdecoder2.dimacs.filtered.cnf 10 675
i2c_master1.dimacs.filtered.cnf 10 316
SM_RX_TOP.dimacs.filtered.cnf 30 2 630
s38584-bug-onevec-gate-0.dimacs.seq.filtered.cnf 10 1 816
divider-problem.dimacs_11.filtered.cnf 10 5 952
wb1.dimacs.filtered.cnf 10 407
fpu8-problem.dimacs_24.filtered.cnf 10 3 576
dividers6_hack.dimacs.filtered.cnf 10 419
mem_ctrl-debug.dimacs.cnf.cnf 10 158

Table 5.2: Industrial problem instances with the optimal noise for WalkSAT.

The results suggest that WalkSAT prefers 10% noise on most of the industrial problems shown
in table 5.2. The results also indicate that WalkSAT needs a rather fair amount of greedy moves
compared to random moves when solving industrial MAXSAT problems. Based on this we conclude
that p = 10% is the optimal noise for these problems.

19

Chapter 6

Combining WalkSAT with
Multilevel Techniques

In this chapter we extend WalkSAT with multilevel techniques. We start with an introduction of
the multilevel paradigm in section 6.1. How this paradigm can be applied in a MAXSAT context is
given in section 6.2. In section 6.3 we present our solution where we extend WalkSAT with multilevel
techniques. Section 6.4 ends this chapter with benchmarking and corresponding results.

6.1 Introduction to multilevel techniques

We give an informal introduction to the multilevel paradigm by the following everyday example:
Imagine you have bought a new house and you are in the process of moving your belongings from
your old apartment to your new house. There are several ways to do this. It is possible to think
of this as an optimization problem, where the goal is to avoid unnecessary back-and-forth trips
between your old and new home. Let us say we have a large amount of objects in different shapes
and sizes that we want to move. Obviously, moving these objects one-by-one would not be very
efficient. If we had chosen this method, we would have spent a lot of time and trips. However, if
we packed several objects into one box, we would be able to move more objects at the same time.
Basically what we do is to gather, or cluster, several objects into one object, see figure 6.1. We
have gone from one big problem, many single objects, to a smaller problem where the single objects
can be seen as one object. Our problem now consists of one box that encapsulates several objects.
Hopefully, it now becomes more efficient and easier to move your belongings to your new house.

multilevel techniques

1 object5 objects

Figure 6.1: Clustering single objects. Single objects can be seen as one object when clustered.

With the example above in mind, there exists several problems where multilevel techniques can and
have been applied. Multilevel techniques have been utilized in Graph Coloring [37] and on the well-
known combinatorial optimization problem called The Travelling Salesman Problem (TSP) [38,39].
In the next section we explain how the multilevel paradigm can be applied to solve MAXSAT
problems.

20

CHAPTER 6. COMBINING WALKSAT WITH MULTILEVEL TECHNIQUES

6.2 Multilevel techniques in a MAXSAT context

In chapter 3 we briefly reviewed Bouhmala’s work on solving the SAT problem with multilevel
techniques. We will now go into more details, and explain multilevel techniques in a SAT context.
Due to the similarities between SAT and MAXSAT, we assume the reader acknowledges that this
technique is applicable to MAXSAT in an identical way.

The multilevel algorithm, or paradigm, consists of 4 steps or phases: (1) reduction, (2) initial
solution, (3) projection, and (4) refinement. The idea is that the SAT problem can be split up into
smaller problems, i.e. multiple levels starting from the start state (level 0) to a given maximum
reduced state (level N). Each level is simpler than the previous level. An illustration of the reduction
phase is given in figure 6.2.

X3X6

X5X1

X4 X7

X9

X8

X2X10 X11

X12

X13

X14X15

X16

X17

X18

X20

Level 0

X19

Level 1

X3X6

X5X1

X4 X7

X9

X8

X2X10 X11

X12

X13

X14X15

X16

X17

X18

X20

X19

X3X6

X5X1

X4 X7

X9

X8

X2X10 X11

X12

X13

X14X15

X16

X17

X18

X20

X19

X3X6

X5X1

X4 X7

X9

X8

X2X10 X11

X12

X13

X14X15

X16

X17

X18

X20

X19

Level 2
Level 3

c1 c2

c3

c1

c2

c3

c4

c5

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

Figure 6.2: Clustering and reduction of variables. |Variables| = 20, |variables per cluster| = 2, |levels| = 3
(not counting level 0). X denotes a variable, and c denotes a cluster.

The first step, or the reduction process, combines two variables at random1 from level 0 (also called
the top level in multilevel terminology) into a cluster, and continues doing the same operation
until there are no more variables to combine. All the clusters that have been made, are said to be
contained in level 1. This means one such reduction step, takes us from level X to level X+1. Be
aware that below level 0, instead of combining variables, the process would combine clusters since
there are no more variables. Note that if there is only one variable or cluster left after all the other
variables or clusters have been combined, then this variable or cluster is copied to the next level.
An example of this can be seen in figure 6.2; cluster c5 in level 2 is copied to level 3 as cluster c3.

In algorithm 4 below (an algorithm from [8] and slightly modified) we can see that reduction
continues until the desired amount of levels has been created. In multilevel terminology we call
the final level either the lowest level, bottom level or level N. As is evident from the illustration
in figure 6.2 we see that level N corresponds to level 3. We also see that there are 20 variables in
level 0, and in level 1 two and two of these variables are clustered together. Then at level 2, we
have clusters of two and two clusters from level 1. Finally in level 3 we have clusters of two and
two clusters from level 2.

1Note that due to illustrational purposes, figure 6.2 contains clusters with variables combined in an
orderly fashion.

21

CHAPTER 6. COMBINING WALKSAT WITH MULTILEVEL TECHNIQUES

When we have finished reducing the problem according to some level limit (e.g. maximum of 3
levels) then we are left with level N. We now choose to assign an initial solution to each of the
clusters in level N. In a SAT or MAXSAT context, this initial solution is a cluster assignment
of truth values. Looking at the illustration in figure 6.2 this corresponds to setting each clus-
ter in level 3 to either TRUE or FALSE. An example of such a cluster assignment would be
c1 = TRUE, c2 = TRUE, c3 = FALSE. Note that we can either think of a cluster as a single vari-
able, or as a collection of variables. If we think of the clusters as collections of variables, we say that
if a cluster is assigned a truth value then all subclusters and hence all subvariables are assigned
that same truth value.

Algorithm 4 The multilevel paradigm
1: {Input: SAT problem P0}
2: {Output: Solution Sfinal(P0)}
3: Initialization: level← 0
4: while MAX_LEVELS not reached do
5: Plevel+1 ← Reduce(Plevel)
6: level← level + 1
7: end while
8: {Initial solution computed at the most reduced level}
9: S(Plevel)← Initialsolution(Plevel)

10: while level > 0 do
11: Sstart(Plevel−1)← Project(Sfinal(Plevel))
12: Sfinal(Plevel−1)← Refine(Sstart(Plevel−1))
13: level← level − 1
14: end while

After we have assigned an initial truth value to all the clusters at level N, we see that in algo-
rithm 4 we continue with the projection phase. Projection is the opposite of reduction, meaning
it extracts the clusters or variables that are compressed into clusters. The projection process
hence takes us from level X to level X-1. A side effect of this is that at each projection phase
we keep the variable or cluster assignment from the previous level. This is evident if we think
of each cluster as a collection of subclusters and subvariables. Continuing with our example in
figure 6.2 from earlier, projection would mean that if level = 3 then we would go from level 3
to level 2. Keep in mind that the solution, or cluster assignment, from earlier would be passed
on to level 2. Thus, at level 2 we would have the same cluster assignment as earlier. In level 3
we had the solution: c1 = TRUE, c2 = TRUE, c3 = FALSE, and since each cluster would be un-
packed from level 3 to level 2 the solution for level 2 would now become c1 = TRUE, c2 = TRUE,
c3 = TRUE, c4 = TRUE, c5 = FALSE.

Finally, we refine the solution at each level. This means going through a process where we change
the cluster assignment so as to try to achieve a better solution. A better solution in a SAT context
would correspond to minimizing the amount of unsatisfied clauses in a given SAT problem instance.
Later in this chapter we will use WalkSAT as this refinement step.

Algorithm 4 repeats until it has projected and refined all the levels, and is back at level 0. The ben-
efits of multilevel lies within the fact that the problem is packed together into multiple hierarchies.
For SAT problems this means that a larger area of the entire variable assignment is evaluated.
Thus, we believe that when a good solution is found at level N, this solution is a good starting
point for the next level, and so on.

22

CHAPTER 6. COMBINING WALKSAT WITH MULTILEVEL TECHNIQUES

6.3 Multilevel WalkSAT

In the preceding section we set forth the four phases of the multilevel paradigm: (1) reduction,
(2) initial solution, (3) projection and (4) refinement. As hinted near the end of the previous
section, the combination of WalkSAT and multilevel techniques is accomplished by letting WalkSAT
be the refinement algorithm in step 4. The general operation for multilevel WalkSAT is given in
algorithm 5, and at line 12 we see that WalkSAT acts as the refinement algorithm.

Algorithm 5 Multilevel WalkSAT
1: {Input: SAT problem P0}
2: {Output: Solution Sfinal(P0)}
3: Initialization: level← 0
4: while MAX_LEVELS not reached do
5: Plevel+1 ← Reduce(Plevel)
6: level← level + 1
7: end while
8: {Initial solution computed at the most reduced level}
9: S(Plevel)← Initialsolution(Plevel)

10: while level > 0 do
11: Sstart(Plevel−1)← Project(Sfinal(Plevel))
12: Sfinal(Plevel−1)←WalkSAT (Sstart(Plevel−1))
13: level← level − 1
14: end while

In order to let WalkSAT work in a multilevel environment, some modifications are needed. We are
primarily dealing with another way of flipping variables, namely through clusters. Therefore, we
have experimented with two different ways of combining the multilevel paradigm and WalkSAT
resulting in mlv-wsat1.0 and mlv-wsat2.0. These two algorithms will be introduced in section
6.3.2. We have also experimented with having a dynamic noise parameter (described in more detail
in section 6.3.1), as opposed to a static noise parameter like in WalkSAT, giving mlv-wsat1.1 and
mlv-wsat2.1.

Algorithm Greedy move
flip method

Random
move flip
method

Best move
flip method Noise method

mlv-wsat1.0 Cluster Cluster Cluster Static
mlv-wsat1.1 Cluster Cluster Cluster Dynamic
mlv-wsat2.0 Single Cluster Single Static
mlv-wsat2.1 Single Cluster Single Dynamic

Table 6.1: Multilevel WalkSAT variants and their differences.

After the reduction phase has been completed we give all the clusters at level N a random initial
value of either FALSE or TRUE. Then we calculate an initial solution. In our implementation the
calculation of the initial solution is the same as the refinement step, meaning we also run multilevel
WalkSAT to find our initial solution at level N.

To ensure that each level has a chance of finding a better solution than the previous level, because
of the stochastic nature of WalkSAT, we let each level run at least X cluster flips in each refinement
phase, see definition 6. One single cluster flip of cluster c1 on level 3 in figure 6.2 would correspond
to 8 variable flips. Consequently, c3 on level 3 would correspond to 4 variable flips. The value of
X consists of the amount of clusters in the current level multiplied by a given value, the so-called

23

CHAPTER 6. COMBINING WALKSAT WITH MULTILEVEL TECHNIQUES

multilevel-multiplier, see definition 7. Looking at figure 6.2 we see that for level 3, the value of
X would be 3 clusters × 10 = 30, where 10 is the multilevel-multiplier. If WalkSAT finds a better
solution before X cluster flips, the current level is allowed to run X cluster flips more, and so
on. Therefore, the projection process only starts if the current level has completed at least X
cluster flips without improving the solution. This is common for level N, level N-1, ..., and level
1. However, for level 0 there are no longer any clusters, only variables (see figure 6.2). Since there
are only variables left, multilevel WalkSAT turns into regular WalkSAT. When the algorithm has
reached level 0, there are no more levels to project to so the X cluster flips are no longer considered.
Due to this, WalkSAT can execute until it is aborted, either due to hitting a target solution (e.g.
30 unsatisfied clauses left), a time, or a flip limit.

Definition 6 Cluster flip: A cluster flip is flipping all the variables in a given cluster. One
cluster flip counts as N flips, where N is the amount of variables (not clusters) in that given
cluster.

Definition 7 Multilevel-multiplier: A constant that is multiplied by the amount of clusters
and/or variables in given cluster.

6.3.1 Dynamic noise

In addition to having a static noise parameter for two of our multilevel WalkSAT algorithms, we
also experimented with having a dynamic noise, i.e. a noise parameter that changes at runtime.
This has been done because the performance of WalkSAT heavily depends on the noise parameter,
as seen in the WalkSAT noise evaluation, section 5.4. The levels might also prefer an individual
noise value.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

11 noise values

No improvement Return to start

X cluster flips

Improved solution

EndStart

Figure 6.3: Dynamic noise procedure: 11 different noise values. Starts at 0%, ends at 100%, increments by
10%. The arrows specifies the possible transitions.

Figure 6.3 above illustrates the dynamic noise procedure. In this example we have 11 different
noise values, due to increments of 10% from 0% up to and including 100%. These noise values are
applied directly to multilevel WalkSAT just as if they were static noises. The duration each noise
value is given is controlled by the value of X cluster flips as can be seen in the figure. Each noise
value is given an equal share of the cluster flips. In this example and in our implementation the
share each noise value is given is X cluster flips divided by 11.

Assuming we are at a level below 0, the dynamic noise procedure works as follows: First, we start
by allocating a share SX of X cluster flips to each noise value as described. Multilevel WalkSAT
then runs with noise 0% for SX flips. If the current solution does not improve during this time, then
we advance to the next noise 10% (by following the solid black arrows). However, if the solution
improves we go back to the start (by following the dotted arrows). Naturally, the procedure repeats
all over again.

When multilevel WalkSAT reaches X cluster flips, due to no solution improvement, we go the
next level. At the start of the next level, X is given a new value, and hence the dynamic noise
procedure restarts as seen in figure 6.3. However, at level 0, there are no clusters, so the share
SX each noise is given is the number of variables divided by 11. Consequently, the dynamic noise
procedure works like before.

24

CHAPTER 6. COMBINING WALKSAT WITH MULTILEVEL TECHNIQUES

6.3.2 Variables and cluster flipping

In table 6.1 there are two different versions of multilevel WalkSAT, not counting the dynamic
noise versions since they do not affect the multilevel paradigm. Whereas WalkSAT picks a variable
from the randomly selected unsatisfied clause, both Multilevel WalkSAT variants pick a variable’s
corresponding cluster from the randomly selected unsatisfied clause. For the sake of simplicity, we
say that we pick a cluster from the randomly selected unsatisfied clause.

The first version, mlv-wsat1.0, has cluster flipping on the random move, the greedy move and on
the best move. All moves are essentially equivalent to the original WalkSAT’s moves as mentioned
in chapter 5, except for picking clusters instead of variables. To be able to pick the best cluster in
an unsatisfied clause, WalkSAT’s break-count needs to be altered to accomodate for choosing the
best cluster. Instead of looking at how many clauses a single variable breaks when flipped, we now
need to look at how many clauses are broken by a cluster when flipped, see definition 8.

Definition 8 Multilevel-break-count: The number of clauses that are currently satisfied but
will become broken (unsatisfied) after a cluster is flipped.

The second version, mlv-wsat2.0, has single variable flipping on the greedy move and best move,
and cluster flipping on the random move. When a single variable is selected, it means that only
this variable’s truth value is flipped (like in regular WalkSAT), even though it belongs to a cluster.
This version uses the regular break-count calculation from WalkSAT since the greedy move operates
on variables.

In summary, mlv-wsat1.0 is the true version of multilevel WalkSAT. By true version we refer to
the way the multilevel paradigm has been implemented in [8]. This version has cluster flipping on
the random, greedy and best move. mlv-wsat2.0 is a mix of WalkSAT and mlv-wsat1.0. The idea
of having just cluster flips on the random move of mlv-wsat2.0 was that the WalkSAT algorithm
already performs very well, and that it would help to improve it with parts of the multilevel
paradigm. It is also important to note that mlv-wsat1.0’s clusters always have a common truth
value among their variables, compared to mlv-wsat2.0 which might have differing truth values in
their clusters, due to the fact that single variables are chosen on the greedy and best move.

25

CHAPTER 6. COMBINING WALKSAT WITH MULTILEVEL TECHNIQUES

6.4 Experiment - benchmarking of multilevel WalkSAT

In the following experiment we evaluate the performance of the multilevel variants of WalkSAT
against WalkSAT. The number of levels is set to 4. Further, variables per clusters is set to 2, and
the multilevel-multiplier is set to 10. The noise parameter for both WalkSAT and its multilevel
variants is set to 10%. The time limit is set to 1800 seconds (30 minutes) per problem. Table 6.2
lists the problems that are used in the experiment.

Problem instance #Variables #Clauses

ac97_ctrl-debug.dimacs.cnf 1 058 921 168 471
spi-debug.dimacs.cnf 682 609 1 928 296
wb_4m8s3.dimacs.filtered.cnf 463 080 1 759 150
rsdecoder2.dimacs.filtered.cnf 415 480 1 632 526
wb-debug.dimacs.cnf 399 591 621 323
mem_ctrl-debug.dimacs.cnf 381 721 505 547
wb-problem.dimacs_45.filtered.cnf 309 491 806 440
rsdecoder1_blackbox_CSEEblock-problem.
dimacs_32.filtered.cnf

277 950 806 460

rsdecoder_fsm1.dimacs.filtered.cnf 238 290 238290
SM_RX_TOP.dimacs.filtered.cnf 235 456 934 091
divider-problem.dimacs_3.filtered.cnf 216 900 711 249
divider-problem.dimacs_11.filtered.cnf 215 964 709 377
c5_DD_s3_f1_e1_v1-bug-gate-
0.dimacs.seq. filtered.cnf

200 944 540 984

fpu8-problem.dimacs_24.filtered.cnf 160 232 548 848
fpu_fsm1-problem.dimacs_15.filtered.cnf 160 200 548 843
spi2.dimacs.filtered.cnf 124 260 515 813
dividers_multivec1.dimacs.filtered.cnf 106 128 397 650
i2c_master1.dimacs.filtered.cnf 82 429 285 987
dividers6_hack.dimacs.filtered.cnf 35 376 132 699

Table 6.2: Problem instances used in the experiment, 20 in total. Listed with number of variables and
clauses.

26

CHAPTER 6. COMBINING WALKSAT WITH MULTILEVEL TECHNIQUES

6.4.1 Results

Below we present six figures for WalkSAT and the four multilevel WalkSAT variants presented in
this chapter. Each figure shows the number of unsatisfied clauses over time for a specific problem
instance. Note that the horizontal axis, time, is given in logarithmic scale. After the figures, we
show a table with a selection of results. More results are available in appendix A.1.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 1 10 100 1000 10000

#U
ns

at
is

fie
d

cl
au

se
s

Time(s)

WalkSAT
mlv-wsat1.0
mlv-wsat1.1
mlv-wsat2.0
mlv-wsat2.1

Figure 6.4: Log plot: Problem instance divider-problem.dimacs_3.filtered.cnf, |variables| = 216 900,
|clauses| = 711 249. Vertical axis gives the number of unsatisfied clauses, horizontal axis gives
the time in seconds.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 1 10 100 1000 10000

#U
ns

at
is

fie
d

cl
au

se
s

Time(s)

WalkSAT
mlv-wsat1.0
mlv-wsat1.1
mlv-wsat2.0
mlv-wsat2.1

Figure 6.5: Log plot: Problem instance dividers_multivec1.dimacs.filtered.cnf, |variables| = 106 128,
|clauses| = 397 650. Vertical axis gives the number of unsatisfied clauses, horizontal axis gives
the time in seconds.

In figures 6.4 and 6.5 all the multilevel algorithms, except mlv-wsat2.1, have a high number of
unsatisfied clauses at the beginning, while WalkSAT and mlv-wsat2.1 have a low number. Note that

27

CHAPTER 6. COMBINING WALKSAT WITH MULTILEVEL TECHNIQUES

the multilevel variants start at level 4, and therefore will have less possible variable assignments
than WalkSAT. Hence these variants might have a higher number of unsatisfied clauses than WalkSAT
at the beginning.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1 10 100 1000 10000

#U
ns

at
is

fie
d

cl
au

se
s

Time(s)

WalkSAT
mlv-wsat1.0
mlv-wsat1.1
mlv-wsat2.0
mlv-wsat2.1

Figure 6.6: Log plot: Problem instance i2c_master1.dimacs.filtered.cnf, |variables| = 82 429, |clauses| =
285 987. Vertical axis gives the number of unsatisfied clauses, horizontal axis gives the time in
seconds.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 1 10 100 1000 10000

#U
ns

at
is

fie
d

cl
au

se
s

Time(s)

WalkSAT
mlv-wsat1.0
mlv-wsat1.1
mlv-wsat2.0
mlv-wsat2.1

Figure 6.7: Log plot: Problem instance rsdecoder1_blackbox_CSEEblock-problem.dimacs_32.
filtered.cnf, |variables| =277 950, |clauses| = 806 460. Vertical axis gives the number of unsat-
isfied clauses, horizontal axis gives the time in seconds.

We also observe two multilevel characteristics: breaks and early convergence. First, the breaks in
unsatisfied clauses. As an example, looking at figure 6.6 at time = [1, 60] we see that all multilevel
WalkSAT variants stabilize on a plateau and then drop to a new plateau and so on. These steep
drops are consequences of going from a lower level to a higher level. In figure 6.8 we have plotted
mlv-wsat1.1 with level markers that denote going from one level to the other. The first blue line

28

CHAPTER 6. COMBINING WALKSAT WITH MULTILEVEL TECHNIQUES

that appears at time = 10 shows mlv-wsat1.1 going from the bottom level, namely level 4, to
level 3. Experiments have shown that going from one level to another does not necessarily mean a
drop in unsatisfied clauses, however, at the higher levels a drop is almost certain, as can be seen
from the two last vertical lines. The last vertical line represents the transition from level 1 to level
0.

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 1 10 100 1000 10000

#U
ns

at
is

fie
d

cl
au

se
s

Time(s)

mlv-wsat1.1
Level markers

Figure 6.8: Log plot: Problem dividers_multivec1.dimacs.filtered.cnf, |variables| = 106 128, |clauses| =
397 650. Vertical axis gives the number of unsatisfied clauses, horizontal axis gives the time in
seconds. The vertical bars indicate level transitions.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 1 10 100 1000 10000

#U
ns

at
is

fie
d

cl
au

se
s

Time(s)

WalkSAT
mlv-wsat1.0
mlv-wsat1.1
mlv-wsat2.0
mlv-wsat2.1

Figure 6.9: Log plot: Problem instance spi2.dimacs.filtered.cnf, |variables| = 124 260, |clauses| = 515 813.
Vertical axis gives the number of unsatisfied clauses, horizontal axis gives the time in seconds.

Second, we see that WalkSAT tends to converge later than mlv-wsat1.0 and mlv-wsat1.1. This is
evident in all figures, and in figure 6.7 and 6.9 we see that convergence for mlv-wsat1.0 start at
time = 110 and time = 50 respectively.

29

CHAPTER 6. COMBINING WALKSAT WITH MULTILEVEL TECHNIQUES

Comparing mlv-wsat2.0 with static noise and mlv-wsat2.1 with dynamic noise, we notice that
mlv-wsat2.1 performs better in the beginning on the selected problems above. However, in the
end mlv-wsat2.0 seems to deliver better results.

From table 6.3 we see that mlv-wsat1.0 performs better than WalkSAT on all the selected problems,
in terms of unsatisfied clauses. It also seems more reliable than the other multilevel variants. We
also see that mlv-wsat2.0 seems to achieve the same result as WalkSAT.

On the problem named wb-debug.dimacs.cnf the dynamic noise variants, mlv-wsat1.1 and mlv-wsat2.1,
dominate. We believe this can either mean that the other variants should have been given another
static noise, or that this problem in particular benefits from a variable noise.

In summary, one out of the four multilevel WalkSAT variants performs better than WalkSAT on
all problems.

30

CHAPTER 6. COMBINING WALKSAT WITH MULTILEVEL TECHNIQUES

Problem instance Solver #Mean
unsatisfied

clauses

Standard
deviation

Variance

rsdecoder_fsm1.
dimacs.filtered.cnf

WalkSAT 271.20 18.76 351.96
mlv-wsat1.0 185.70 19.19 368.23
mlv-wsat1.1 405.30 83.22 6926.23
mlv-wsat2.0 267.50 7.17 51.39
mlv-wsat2.1 1428.20 172.45 29737.73

rsdecoder2.dimacs.
filtered.cnf

WalkSAT 671.80 14.22 202.18
mlv-wsat1.0 442.50 41.23 1699.61
mlv-wsat1.1 1002.50 211.72 44825.83
mlv-wsat2.0 667.50 17.92 321.17
mlv-wsat2.1 2904.00 83.19 6920.00

divider-problem.
dimacs_11.filtered.cnf

WalkSAT 5948.50 154.48 23864.72
mlv-wsat1.0 4616.30 900.43 810767.79
mlv-wsat1.1 5491.50 68.36 4672.50
mlv-wsat2.0 6004.00 129.66 16812.00
mlv-wsat2.1 6163.30 273.27 74679.12

dividers6_hack.
dimacs.filtered.cnf

WalkSAT 426.70 19.83 393.34
mlv-wsat1.0 412.50 22.65 513.17
mlv-wsat1.1 991.80 27.93 779.96
mlv-wsat2.0 432.40 13.89 192.93
mlv-wsat2.1 979.90 43.67 1906.77

fpu_fsm1-problem.
dimacs_15.filtered.cnf

WalkSAT 3690.70 54.52 2972.01
mlv-wsat1.0 3284.00 715.02 511256.00
mlv-wsat1.1 2706.60 113.24 12822.27
mlv-wsat2.0 3686.30 67.00 4489.34
mlv-wsat2.1 2949.80 69.61 4845.29

wb-debug.dimacs.cnf

WalkSAT 314.20 24.43 597.07
mlv-wsat1.0 264.10 13.40 179.66
mlv-wsat1.1 121.50 12.78 163.39
mlv-wsat2.0 322.00 23.47 550.89
mlv-wsat2.1 107.10 15.56 242.10

fpu8-problem.
dimacs_24.filtered.cnf

WalkSAT 3608.10 53.66 2879.21
mlv-wsat1.0 2822.90 629.11 395776.32
mlv-wsat1.1 2737.50 210.93 44493.17
mlv-wsat2.0 3560.40 70.42 4958.71
mlv-wsat2.1 2845.20 150.06 22518.40

i2c_master1.dim
acs.filtered.cnf

WalkSAT 306.00 14.48 209.56
mlv-wsat1.0 214.20 26.89 723.07
mlv-wsat1.1 557.50 114.32 13068.50
mlv-wsat2.0 309.80 15.30 234.18
mlv-wsat2.1 650.20 29.73 883.96

Table 6.3: Results from the experiment. Multilevel WalkSAT variants and WalkSAT.

31

Chapter 7

Combining WalkSAT with
Learning Automata

In this chapter we add learning capabilities to WalkSAT. More specifically, we extend WalkSAT with
a branch of machine learning called Learning Automata.

We first give a brief introduction to Learning Automata and reinforcement learning theory in
section 7.1 where essential concepts are given. Further, the employment of Learning Automata
in a MAXSAT context is put forward in section 7.2. In section 7.3 we present our solution for
combining WalkSAT with Learning Automata. We end this chapter with experiments and results
in section 7.4 and 7.5.

7.1 Learning Automata and reinforcement learning

Originally known as a Tsetlin automaton [40], but in later years as a Learning automaton (singular
form of Learning Automata) by Narendra and Thathachar in [41]. It is a branch of machine
learning that can be interpreted as a finite state automaton1. A Learning automaton is a type of
a reinforcement learning agent that is situated in an unknown environment [42].

Agent /Learning automaton

Environment

ActionFeedback

Figure 7.1: Interaction between an agent and its environment.

The agent’s goal is to maximize its gain (e.g. points in a game or winning as much as possible). This
goal is pursued by performing beneficial actions on the current environment. This is made possible
through feedback from the environment, see figure 7.1. The feedback (which may be stochastic)
consists of a reward value and the new state of the environment. To be able to adapt to the
environment the agent has an internal memory. The agent uses this memory together with the
feedback to decide the next actions. This can also be seen as a learning process. Reinforcement
learning agents are different in the way they see the environment, and how they decide what

1An automaton can be thought of as an abstract self-running machine.

32

CHAPTER 7. COMBINING WALKSAT WITH LEARNING AUTOMATA

actions are beneficial for their maximal gain. Depending on the complexity of the environment,
reinforcement learning agents have to go through several iterations to be able to maximize its gain.
This also applies to Learning Automata.

-(N-1) -1

Penalty Reward

Action boundary

-N (N-2) N-10

Action #1
Action #2

Figure 7.2: Learning automaton states, actions, rewards and penalties, and their effects.

In figure 7.2 we can see a Learning automaton that has two actions A = {a1, a2} and N states per
action. The states N can be seen as the agent’s internal memory. This is the only place the Learning
automaton learns to favor a specific action. If the state n ∈ N of the Learning automaton is on
the left of the action boundary it chooses a1, else it chooses action a2. The Learning automaton
is initialized to state −1 or 0 at random. From the very first action the Learning automaton
performs, the environment will give it the reward value specified according to the environment’s
current state and its next state. The reward value that is given by the environment takes the form of
either rewarding or punishing the Learning automaton. Looking at figure 7.2 we see that punishing
the automaton might cause a crossing of the action boundary. At this crossing, the automaton
changes its action. By rewarding the automaton the confidence that the action is beneficial is
strengthened. In essence, using such a two-action Learning automaton effectively dampens the
possibility of choosing a different action if the confidence is high and vice versa.

Learning Automata has been applied in a variety of fields and domains such as wireless networks
[43], vehicle path control [44] and routing algorithm for mobile networks [45]. We will in the next
section see how Learning Automata can be an asset for solving SAT and MAXSAT.

7.2 Learning Automata in a MAXSAT context

The following section describes the framework by Granmo and Bouhmala for merging Learning
Automata (LA) with SAT solvers in [7, 22]. We assume the reader understands that the following
section can also be applied to MAXSAT. One important thing to notice is that LA never solve a
SAT problem alone. LA are always combined with an algorithm or a method.

Learning Automata has been adopted to SAT in the following way: A SAT problem has a variable
set containing truth values e.g. V = {v1 = FALSE, v2 = TRUE,, vn−1 = FALSE, vn =
FALSE}. Instead of the latter, we now look at V as a set of variables, where each variable is
associated with a Learning automaton (La) such that V = {La1, La2, La3, ..., Lan} with actions
A = {TRUE, FALSE}. In a MAXSAT context the environment can be thought of as being the
MAXSAT problem, but is also influenced by the solver. The truth values are now specified by a
Learning automaton’s action at every variable, instead of the truth value itself. Every La ∈ V
is also set to an initial state of −1 or 0 at random as described in section 7.1. Each Learning
automaton’s state dictates the action the Learning automaton would choose, either TRUE or
FALSE. The maximal gain for each Learning automaton is to minimize the number of unsatisfied
clauses where its variable appears. In the bigger picture the maximal gain for the total system of
multiple Learning Automata is to minimize the number of unsatisfied clauses in the SAT problem.
Since there might be multiple Learning Automata sharing the same clauses, due to the fact that
variables occur in the same clauses, the Learning Automata will have to compete against each
other.

33

CHAPTER 7. COMBINING WALKSAT WITH LEARNING AUTOMATA

The SAT solver works like before it was combined with Learning Automata, but instead of flipping
each of the variables in V itself, it either rewards or penalizes every La ∈ V such that it is the La
that decides whether to flip or not. In turn, this ensures that each variable’s value is equivalent to
the La’s action. Where flipping means the negation of a truth variable in a SAT context, flipping
means going across the action boundary in a Learning Automata context. Thus, the reward and
penalty mechanisms in respect to MAXSAT has the following properties: If the La’s action, which
also corresponds to the variable’s truth value, contributes to the quality of the solution (i.e. less
unsatisfied clauses) then the La is rewarded, and vice versa.

In summary, each variable is governed by a Learning automaton that strengthens the confidence
of the variable’s truth value. Since the overall variable assignment for the entire SAT problem
depends on all LA, each La is indirectly coupled to each other.

34

CHAPTER 7. COMBINING WALKSAT WITH LEARNING AUTOMATA

7.3 Learning Automata WalkSAT

The combination of WalkSAT with Learning Automata follows the same scheme as normal WalkSAT,
but with some modifications. The first step is to initialize the LA and generate a random state
assignment to each Learning automaton. In turn, this state results in the variable’s truth value as
mentioned earlier. An outline of the algorithm is given in algorithm2 6.

Algorithm 6 Learning Automata WalkSAT
1: {Input: CNF formula G}
2: {Output: Satisfied assignment for G, or ’no solution exists’}
3: {Lavariable returns the Learning automaton associated with variable}
4: Initialization: pnoise ∈ [0, 1]
5: for i← 0 to MAX_TRIES do
6: /* The following also indirectly initializes the variable assignment */
7: T ← random_LA_state_assignment()
8: for j ← 0 to MAX_FLIPS do
9: if T is satisfied then

10: return T
11: end if
12: Ck ← random_unsatisfied_clause()
13: /* punish section */
14: /* best move/side move */
15: if ∃ variable v ∈ Ck with break-count = 0 then
16: variable← v
17: state_mirror(Lavariable)
18: else
19: if random(0, 1) < pnoise then
20: /* random move */
21: variable← random_variable(Ck)
22: punish(Lavariable)
23: else
24: /* greedy move */
25: variable← random_lowest_breakcount_variable(Ck)
26: if solver = la-wsat1.0 then
27: state_mirror(Lavariable)
28: else if solver = la-wsat1.1 then
29: punish(LAvariable)
30: end if
31: end if
32: end if
33: if Lavariable crossed action boundary then
34: flip(variable)
35: end if
36: /* reward section */
37: Cs ← random_satisfied_clause()
38: variable← random_variable(Cs)
39: reward(Lavariable)
40: end for
41: end for

2Like for the algorithm for WalkSAT, the algorithm for Learning Automata WalkSAT is also given in
its SAT form. To solve MAXSAT problems slight modifications are needed, see section 5.2.

35

CHAPTER 7. COMBINING WALKSAT WITH LEARNING AUTOMATA

We have experimented with two types of implementations of Learning Automata WalkSAT called
la-wsat1.0 and la-wsat1.1. These are given in table 7.1. Each algorithm has a best move, random
move and greedy move like regular WalkSAT. After each of the standard moves, a satisfied clause
Cs is selected at random. A random variable vs is picked from Cs and its corresponding LAvs

is
rewarded.

Algorithm Greedy move
operation

Random move
operation

Best move
operation

la-wsat1.0 Mirroring Punish Mirroring
la-wsat1.1 Punish Punish Mirroring

Table 7.1: Learning Automata WalkSAT variants and their differences.

Like WalkSAT, both versions of Learning Automata WalkSAT start by picking an unsatisfied clause
C at random. Further, K is defined as those variables in C with the lowest common break-count3.
If the break-count of K = 0, which accords to the best move of WalkSAT, then a variable v selected
at random from K is flipped and the corresponding Lav’s state is mirrored about the action
boundary according to figure 7.3 on the left side. Alternatively, Lav’s state could be punished or
rewarded as mentioned in the previous section. However, since the immediate flipping on the best
move is crucial for the performance of WalkSAT, we apply this state mirroring mechanism. Without
this operation, there would be no guarantee that the selected variable v would be flipped due to
the state transitions of the Learning automaton LAv. As seen in table 7.1 both algorithms have
mirroring on their best move. If there is no variable with break-count = 0 then either the random
move or greedy move is selected according to regular WalkSAT. Depending on the algorithm, either
punish or mirroring is selected. Punish and reward is performed as described in section 7.2.

-(N-1) -1

Action boundary

-N (N-2) N-10

Action #1: FALSE
Action #2: TRUE

State mirroring

-1

Penalty Reward

Action boundary

0

Action #1: FALSE Action #2: TRUE

Figure 7.3: Left: Learning automaton state mirroring mechanism. Right: Learning Automata WalkSAT
with one state per action.

Note that Learning Automata WalkSAT with 1 state per action is equivalent to WalkSAT, as can
be seen from figure 7.3 on the right side. This is because the action boundary would always be
crossed at any punish operation. The reward mechanism would not have any affect due to that the
La’s state transition will loop on the same state and not advance to another state when rewarded.

3Break-count as given in definition 5.

36

CHAPTER 7. COMBINING WALKSAT WITH LEARNING AUTOMATA

7.4 Experiment - Learning Automata state evaluation

In the following experiment we explore the number of states associated with the Learning au-
tomaton to see how this affects the performance. The importance of this experiment is to find
the optimal common number of states for the Learning Automata. The optimal number of states
is defined as the number of states that gives the least number of unsatisfied clauses in a given
problem when the algorithm has finished executing. The optimal number of states for la-wsat1.0
and la-wsat1.1 found in this experiment will be used in other experiments throughout this paper.

The number of states for la-wsat1.0 and la-wsat1.1 is the set Sstates = {2, 3, 4, 5, 10}. We run
all the algorithms with 10% noise, and all algorithms have an execution time of 1800 seconds. Table
7.2 lists the problems that are used in the experiment.

Problem instance #Variables #Clauses

rsdecoder2.dimacs.filtered.cnf 415 480 1 632 526
rsdecoder1_blackbox_CSEEblock-problem.
dimacs_32.filtered.cnf

277 950 806 460

SM_RX_TOP.dimacs.filtered.cnf 235 456 934 091
divider-problem.dimacs_3.filtered.cnf 216 900 711 249
fpu8-problem.dimacs_24.filtered.cnf 160 232 548 848
spi2.dimacs.filtered.cnf 124 260 515 813
dividers_multivec1.dimacs.filtered.cnf 106 128 397 650
i2c_master1.dimacs.filtered.cnf 82 429 285 987

Table 7.2: Problem instances used in the experiments, 8 in total. Listed with number of variables and
clauses.

37

CHAPTER 7. COMBINING WALKSAT WITH LEARNING AUTOMATA

7.4.1 Results

Figure 7.4 shows how the number of unsatisfied clauses increases when increasing number of states
for both la-wsat1.0 and la-wsat1.1.

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 2 3 4 5 6 7 8 9 10

#U
ns

at
is

fie
d

cl
au

se
s

#States

la-wsat1.0
la-wsat1.1

Figure 7.4: Problem instance divider-problem.dimacs_3.filtered.cnf. |variables| = 216 900, |clauses| = 711
249. Vertical axis gives the number of unsatisfied clauses, horizontal axis gives the number of
states per Learning automaton.

In the figure below we have a situation where la-wsat1.0 has the lowest number of unsatisfied
clauses when the number of states is equal to 3, while la-wsat1.1 has its optimal solution at 2
states.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2 3 4 5 6 7 8 9 10

#U
ns

at
is

fie
d

cl
au

se
s

#States

la-wsat1.0
la-wsat1.1

Figure 7.5: Problem instance fpu8-problem.dimacs_24.filtered.cnf. |variables| = 160 232, |clauses| = 548
848. Vertical axis gives the number of unsatisfied clauses, horizontal axis gives the number of
states per Learning automaton.

38

CHAPTER 7. COMBINING WALKSAT WITH LEARNING AUTOMATA

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 2 3 4 5 6 7 8 9 10

#U
ns

at
is

fie
d

cl
au

se
s

#States

la-wsat1.0
la-wsat1.1

Figure 7.6: Problem instance SM_RX_TOP.dimacs.filtered.cnf. |variables| = 235 456, |clauses| =934 091.
Vertical axis gives the number of unsatisfied clauses, horizontal axis gives the number of states
per Learning automaton.

In figure 7.6 we also observe that the optimal number of states for la-wsat1.0 is 3, and 2 states
for la-wsat1.1. The remaining results are given in the table below.

Problem instance Solver #Optimal
states

#Mean unsatisfied
clauses

spi2.dimacs.filtered.cnf la-wsat1.0 3 282
la-wsat1.1 2 208

rsdecoder2.dimacs.filtered.cnf
la-wsat1.0 2 1 376
la-wsat1.1 2 1 445

divider-problem.dimacs_3.filtered.cnf la-wsat1.0 2 2 582
la-wsat1.1 2 2 160

fpu8-problem.dimacs_24.filtered.cnf la-wsat1.0 3 536
la-wsat1.1 2 419

dividers_multivec1.dimacs.filtered.cnf
la-wsat1.0 3 339
la-wsat1.1 2 265

i2c_master1.dimacs.filtered.cnf
la-wsat1.0 3 108
la-wsat1.1 2 95

rsdecoder1_blackbox_CSEEblock-
problem.dimacs_32.filtered.cnf

la-wsat1.0 2 2252
la-wsat1.1 2 1879

SM_RX_TOP.dimacs.filtered.cnf
la-wsat1.0 3 559
la-wsat1.1 2 531

Table 7.3: Results from the experiment. Problem instances given with optimal number of states for both
Learning Automata WalkSAT variants.

The results presented in table 7.3 imply that the optimal number of states for la-wsat1.1 is 2.
For la-wsat1.0 the optimal number of states varies between 2 and 3. However, 5 out of the 8

39

CHAPTER 7. COMBINING WALKSAT WITH LEARNING AUTOMATA

problems, ≈ 62%, favor 3 states as optimal. Therefore we conclude that 3 is the optimal number
of states in general for la-wsat1.0, and that 2 is the optimal number of states for la-wsat1.1.

40

CHAPTER 7. COMBINING WALKSAT WITH LEARNING AUTOMATA

7.5 Experiment - benchmarking of
Learning Automata WalkSAT

In this experiment we benchmark our proposed variants of WalkSAT combined with Learning Au-
tomata against WalkSAT. The noise parameter for all the algorithms is set to 10% and the time
limit is set to 1800 seconds. Number of states per Learning automaton is set to 3 for la-wsat1.0
and 2 for la-wsat1.1 (see experiment 7.4). We use the same problem suite, table 6.2, which was
used in the experiment in chapter 6.

7.5.1 Results

The following figures present results from benchmarking on WalkSAT, la-wsat1.0 and la-wsat1.1.
Note that all solvers have the same initialization procedure, meaning the differences in unsatisfied
clauses at time = 1 is strictly due to solver behavior.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 1 10 100 1000 10000

#U
ns

at
is

fie
d

cl
au

se
s

Time(s)

WalkSAT
la-wsat1.0
la-wsat1.1

Figure 7.7: Log plot: Problem instance divider-problem.dimacs_3.filtered.cnf |variables| = 216 900,
|clauses| = 711 249. Vertical axis gives the number of unsatisfied clauses, horizontal axis gives
the time in seconds.

Figure 7.7 and 7.8 reports that the Learning Automata WalkSAT algorithms outperforms WalkSAT.
We see that la-wsat1.0 and la-wsat1.1 always lie significantly beneath WalkSAT.

41

CHAPTER 7. COMBINING WALKSAT WITH LEARNING AUTOMATA

 0

 500

 1000

 1500

 2000

 2500

 1 10 100 1000 10000

#U
ns

at
is

fie
d

cl
au

se
s

Time(s)

WalkSAT
la-wsat1.0
la-wsat1.1

Figure 7.8: Log plot: Problem instance dividers6_hack.dimacs.filtered.cnf |variables| = 35 376, |clauses| =
132 699. Vertical axis gives the number of unsatisfied clauses, horizontal axis gives the time in
seconds.

In figure 7.9 we see that the Learning Automata WalkSAT algorithms compete with WalkSAT in
the timespan time = [10, 100]. After the timespan, both la-wsat1.0 and la-wsat1.1 quickly drop
to a lower final value than WalkSAT. We acknowledge that la-wsat1.1 for all problems graphed
above always gives better results than both WalkSAT and la-wsat1.0.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 1 10 100 1000 10000

#U
ns

at
is

fie
d

cl
au

se
s

Time(s)

WalkSAT
la-wsat1.0
la-wsat1.1

Figure 7.9: Log plot: Problem instance spi2.dimacs.filtered.cnf |variables| = 124 260, |clauses| = 515 813.
Vertical axis gives the number of unsatisfied clauses, horizontal axis gives the time in seconds.

Remaining results in table 7.4 show that both Learning Automata WalkSAT variants perform
better than WalkSAT on almost all problems. Further, la-wsat1.1 yields better results than
la-wsat1.0. For more results see appendix A.2.

42

CHAPTER 7. COMBINING WALKSAT WITH LEARNING AUTOMATA

Problem instance Solver #Mean
unsatisfied

clauses

Standard
deviation

Variance

spi2.dimacs.filtered.cnf
WalkSAT 919.20 39.67 1573.51
la-wsat1.0 276.80 35.10 1231.96
la-wsat1.1 191.70 22.69 514.68

wb_4m8s3.dimacs.
filtered.cnf

WalkSAT 2675.70 71.38 5094.68
la-wsat1.0 784.20 45.61 2080.40
la-wsat1.1 285.20 25.18 634.18

rsdecoder2.dimacs.
filtered.cnf

WalkSAT 669.80 16.63 276.62
la-wsat1.0 1746.80 235.36 55396.62
la-wsat1.1 1381.10 160.94 25900.10

i2c_master1.dimacs.
filtered.cnf

WalkSAT 317.20 11.69 136.62
la-wsat1.0 102.70 23.30 543.12
la-wsat1.1 95.40 9.55 91.16

SM_RX_TOP.dimacs.
filtered.cnf

WalkSAT 2900.60 113.65 12917.38
la-wsat1.0 556.70 47.12 2220.23
la-wsat1.1 550.50 35.32 1247.17

rsdecoder1_ blackbox_
CSEEblock-problem.
dimacs_32.filtered.cnf

WalkSAT 3479.10 275.96 76156.32
la-wsat1.0 2270.70 72.20 5212.90
la-wsat1.1 1868.60 90.78 8240.27

divider-problem.dimacs_
3.filtered.cnf

WalkSAT 6204.80 81.33 6613.96
la-wsat1.0 2832.50 114.72 13161.39
la-wsat1.1 2117.00 71.94 5175.33

spi-debug.dimacs.cnf
WalkSAT 1286.10 33.87 1147.43
la-wsat1.0 287.40 35.78 1280.04
la-wsat1.1 222.20 39.67 1573.51

divider-problem.dimacs_
11.filtered.cnf

WalkSAT 6030.20 124.94 15611.07
la-wsat1.0 2583.80 125.90 15851.07
la-wsat1.1 1918.20 63.80 4071.07

dividers6_hack.dimacs.
filtered.cnf

WalkSAT 423.20 25.42 645.96
la-wsat1.0 87.10 8.17 66.77
la-wsat1.1 73.60 6.79 46.04

dividers_multivec1.
dimacs.filtered.cnf

WalkSAT 2953.90 30.67 940.54
la-wsat1.0 340.60 26.33 693.16
la-wsat1.1 250.50 24.08 580.06

fpu_fsm1-problem.
dimacs_15.filtered.cnf

WalkSAT 3716.40 49.54 2454.49
la-wsat1.0 499.60 26.26 689.60
la-wsat1.1 422.70 44.16 1950.01

fpu8-problem.dimac
s_24.filtered.cnf

WalkSAT 3585.90 61.94 3836.99
la-wsat1.0 535.80 34.34 1179.29
la-wsat1.1 412.50 35.87 1286.72

Table 7.4: Results from experiment. Learning Automata WalkSAT variants and WalkSAT.

43

Chapter 8

Combining WalkSAT with
Multilevel Techniques and
Learning Automata

In the preceding chapters we proposed methods for combining WalkSAT with multilevel techniques
and Learning Automata, seperately. We now add both multilevel techniques and Learning Au-
tomata to WalkSAT at the same time.

The building blocks of multilevel Learning Automata WalkSAT are given in section 8.1. In sec-
tion 8.2 we perform benchmarking of the proposed algorithm together with a selection of the other
algorithms presented in this thesis.

8.1 Multilevel Learning Automata WalkSAT

The multilevel Learning Automata WalkSAT algorithm is completed by joining the best per-
forming multilevel WalkSAT variant and Learning Automata WalkSAT variant. More specif-
ically, the featured variants are mlv-wsat1.0 and la-wsat1.1. This results in the algorithm
mlv-la-wsat. The building blocks of mlv-la-wsat are listed in table 8.1, and the elements can be
recognized from chapter 6 and 7. The three different moves, greedy move, random move and best
move come from the structure of WalkSAT as presented in chapter 5.

Domain → Learning Automata Multilevel techniques
Proper-
ties
→

Greedy
move

operation

Random
move

operation

Best move
operation

Greedy
move
flip

method

Best
move
flip

method

Random
move flip
method

Values → Punish Punish Mirroring Cluster Cluster Cluster

Table 8.1: Multilevel Learning Automata WalkSAT building blocks.

Instead of having a Learning automaton per variable, we now have a Learning automaton per
cluster. For each level in the projection phase, every cluster is split into two smaller clusters. These
two clusters inherit/clone the Learning automaton state of the parent cluster. After the projection
from level 1 to level 0, each cluster is split to variables and inherits the Learning automaton state
and the algorithm corresponds to la-wsat1.1.

44

CHAPTER 8. COMBINING WALKSAT WITH MULTILEVEL TECHNIQUES AND
LEARNING AUTOMATA

8.2 Experiment - benchmarking of
multilevel Learning Automata WalkSAT

In this experiment we perform benchmarking of mlv-la-wsat together with WalkSAT, mlv-wsat1.0
and la-wsat1.1. The noise is set to 10% for all algorithms. mlv-wsat1.0 and mlv-la-wsat have 4
levels, 2 variables per cluster, and the multilevel-multiplier set to 10. la-wsat1.1 and mlv-la-wsat
have 2 states per action. The time limit is 1800 seconds, and we use the problems given in table
6.2.

8.2.1 Results

Below we show plots of WalkSAT, mlv-wsat1.0, mlv-la-wsat, la-wsat1.1 on selected problems
from Appendix A.3.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 1 10 100 1000 10000

#U
ns

at
is

fie
d

cl
au

se
s

Time(s)

WalkSAT
mlv-wsat1.0
mlv-la-wsat
la-wsat1.1

Figure 8.1: Log plot: Problem instance divider-problem.dimacs_3.filtered.cnf |variables| = 216 900,
|clauses| = 711 249. Vertical axis gives the number of unsatisfied clauses, horizontal axis gives
the time in seconds.

In figures 8.1 and 8.2 we observe the two multilevel variants follow the same trajectory, although
mlv-la-wsat has a significantly lower number of unsatisfied clauses during the entire search. This
also applies for WalkSAT and la-wsat1.1.

We see that the multilevel characteristics as mentioned in section 6.4 are also present when Learning
Automata is added to mlv-wsat1.0, because of the visible breaks and early convergence. This is
evident from figures 8.3 and 8.4. From the graphs we even see that mlv-la-wsat converges earlier
than mlv-wsat1.0.

45

CHAPTER 8. COMBINING WALKSAT WITH MULTILEVEL TECHNIQUES AND
LEARNING AUTOMATA

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 1 10 100 1000 10000

#U
ns

at
is

fie
d

cl
au

se
s

Time(s)

WalkSAT
mlv-wsat1.0
mlv-la-wsat
la-wsat1.1

Figure 8.2: Log plot: Problem instance fpu8-problem.dimacs_24.filtered.cnf |variables| = 160 232, |clauses|
= 548 848. Vertical axis gives the number of unsatisfied clauses, horizontal axis gives the time
in seconds.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 1 10 100 1000 10000

#U
ns

at
is

fie
d

cl
au

se
s

Time(s)

WalkSAT
mlv-wsat1.0
mlv-la-wsat
la-wsat1.1

Figure 8.3: Log plot: Problem instance dividers_multivec1.dimacs.filtered.cnf |variables| =106 128,
|clauses| = 397 650. Vertical axis gives the number of unsatisfied clauses, horizontal axis gives
the time in seconds.

46

CHAPTER 8. COMBINING WALKSAT WITH MULTILEVEL TECHNIQUES AND
LEARNING AUTOMATA

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 10 100 1000 10000

#U
ns

at
is

fie
d

cl
au

se
s

Time(s)

WalkSAT
mlv-wsat1.0
mlv-la-wsat
la-wsat1.1

Figure 8.4: Log plot: Problem instance i2c_master1.dimacs.filtered.cnf |variables| = 82 429, |clauses| =
285 987. Vertical axis gives the number of unsatisfied clauses, horizontal axis gives the time in
seconds.

In table 8.2 we observe that in almost all cases mlv-wsat1.0, mlv-la-wsat and la-wsat1.1
performs better than WalkSAT. Further, we see that la-wsat1.1 achieves better results than
mlv-wsat1.0. Finally, we acknowledge that mlv-la-wsat easily outperforms la-wsat1.1 on most
occasions.

47

CHAPTER 8. COMBINING WALKSAT WITH MULTILEVEL TECHNIQUES AND
LEARNING AUTOMATA

Problem instance Solver #Mean
unsatisfied

clauses

Standard
deviation

Variance

spi2.dimacs.filtered.cnf

WalkSAT 896.10 33.65 1132.10
mlv-wsat1.0 589.10 39.74 1578.99
mlv-la-wsat 147.40 7.24 52.49
la-wsat1.1 184.30 13.71 188.01

wb_4m8s3.dimacs.
filtered.cnf

WalkSAT 2665.90 77.37 5986.54
mlv-wsat1.0 2514.00 68.41 4680.22
mlv-la-wsat 178.20 17.87 319.51
la-wsat1.1 282.50 28.27 799.17

rsdecoder2.dimacs.
filtered.cnf

WalkSAT 666.20 13.85 191.96
mlv-wsat1.0 444.70 26.49 701.57
mlv-la-wsat 81.60 1.71 2.93
la-wsat1.1 1323.50 380.11 144484.72

i2c_master1.dimacs.
filtered.cnf

WalkSAT 313.60 15.51 240.71
mlv-wsat1.0 220.70 29.20 852.90
mlv-la-wsat 43.30 34.28 1174.90
la-wsat1.1 99.80 8.73 76.18

SM_RX_TOP.dimacs.
filtered.cnf

WalkSAT 2964.70 121.46 14752.01
mlv-wsat1.0 2589.40 95.81 9180.04
mlv-la-wsat 312.10 64.73 4189.88
la-wsat1.1 531.10 31.56 996.10

rsdecoder1_blackbox_
CSEEblock-problem.
dimacs_32.filtered.cnf

WalkSAT 3561.60 235.88 55637.16
mlv-wsat1.0 405.00 41.73 1741.78
mlv-la-wsat 39.70 7.50 56.23
la-wsat1.1 1832.00 66.54 4427.11

divider-problem.
dimacs_3.filtered.cnf

WalkSAT 6143.70 128.13 16417.34
mlv-wsat1.0 3999.60 98.01 9606.71
mlv-la-wsat 54.30 28.53 814.23
la-wsat1.1 2155.40 98.21 9644.71

spi-debug.dimacs.cnf

WalkSAT 1313.10 56.64 3208.54
mlv-wsat1.0 1266.90 38.68 1496.10
mlv-la-wsat 98.70 17.11 292.68
la-wsat1.1 222.80 35.70 1274.40

divider-problem.dimacs_
11.filtered.cnf

WalkSAT 6011.50 181.47 32932.72
mlv-wsat1.0 4758.90 1070.41 1145773.43
mlv-la-wsat 42.10 20.29 411.88
la-wsat1.1 1861.10 87.65 7682.54

dividers6_hack.
dimacs.filtered.cnf

WalkSAT 431.60 15.79 249.38
mlv-wsat1.0 407.30 33.52 1123.34
mlv-la-wsat 53.10 5.65 31.88
la-wsat1.1 73.40 5.74 32.93

Table 8.2: Results from experiment. Multilevel WalkSAT, Learning Automata WalkSAT, multilevel Learn-
ing Automata WalkSAT and WalkSAT.

48

Chapter 9

Discussion

In this chapter we discuss results from all the experiments performed in this thesis. They will be
discussed in the following order. Chapter 6: Combining WalkSAT with Multilevel Techniques in
section 9.1, chapter 7: Combining WalkSAT with Learning Automata in section 9.2 and chapter 8:
Combining WalkSAT with Multilevel Techniques and Learning Automata in section 9.3. We sum
up important findings and observations in section 9.4, where we also link these to the research
questions we put forward in the introduction chapter.

9.1 Multilevel WalkSAT

We discuss multilevel WalkSAT according to four categories that we see important: multilevel-
multiplier, number of levels, single versus cluster and static versus dynamic noise. In general, we
acknowledge that mlv-wsat1.0 performs best of all the proposed multilevel algorithms presented
in chapter 6.

9.1.1 Wasting computational resources

Preliminary testing during the benchmark period of multilevel WalkSAT showed that we needed a
way to control how much time or amount of flips that was needed on each refinement phase, accord-
ing to the multilevel paradigm as described in 6.2. Without this control mechanism multilevel
WalkSAT would just continue to project to the next level either before finding a better solution, or
finding a good solution and then continuing on for minutes. Wasting minutes on careless flipping
would mean a worse end result due to a given max duration. We also observed that the closer
multilevel WalkSAT was to level 0, the more time was needed to achieve convergence for each
level. Naturally, this is because the amount of clusters in the higher levels is larger than in the
lower levels.

Due to the compressing of variables and clusters, the number of unsatisfied clauses minima is
possibly higher for level 1 than for level 0, level 2 than for level 1, and so on. Therefore, we
introduced the multilevel-multiplier as described in section 6.3. Ideally, this parameter would be
given its own evaluation, but due to time constraints and the thesis scope this was not included.
We chose to set multilevel-multiplier = 10, and it seemed to give good results. However, increasing
or decreasing this value might give better or worse performance.

49

CHAPTER 9. DISCUSSION

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 1 10 100 1000 10000

#U
ns

at
is

fie
d

cl
au

se
s

Time(s)

mlv-wsat1.1
Level markers

Figure 9.1: Log plot: Problem dividers_multivec1.dimacs.filtered.cnf, |variables| = 106 128, |clauses| =
397 650. Vertical axis gives the number of unsatisfied clauses, horizontal axis gives the time in
seconds. The vertical bars indicate level transitions.

As an example, we will revisit a graph from section 6.4. We believe that the plateaus in figure 9.1
would be extended by increasing the multilevel-multiplier, and vice versa. However, this might also
mean that multilevel WalkSAT could find a better solution.

Level %PVA #Variables/clusters

0 100 100
1 50 50
2 25 25
3 12.5 13
4 6.25 7
5 3.125 4
6 1.5625 2

Table 9.1: Multilevel consecutive reduction example. Contains levels, %PVA (percentage of possible vari-
able assignments) and total amount of variables in a hypothetical MAXSAT problem with 100
variables at level 0. Note that we have 2 variables per cluster.

9.1.2 Number of levels

Regarding the amount of multilevel reduction of MAXSAT problem instances, we decided that
4 levels was sufficient as shown in table 9.1. As seen in the table, 4 levels is equal to 6.25% of
the entire possible variable assignment of the problem. We see that at level 6 there are only two
clusters which means that for mlv-wsat1.0 and mlv-wsat1.1 it would only be possible to change
the truth value of two clusters. Of course, projecting from level 6 to level 5 will give 4 clusters,
which is a bit more, but wasting time at these levels due to the low of amount of %PV A seems
unnecessary. The situation is different for mlv-wsat2.0 and mlv-wsat2.1 due to the fact that they
allow single variables to be flipped, hence breaking the cluster truth value.

50

CHAPTER 9. DISCUSSION

9.1.3 Single versus cluster

In essence we introduced two different multilevel implementations of WalkSAT. The first one,
mlv-wsat1.0, operates only on clusters whereas the second one, mlv-wsat2.0, operates on both
variables and clusters. This means that mlv-wsat1.0 will always have clusters that have subclus-
ters and subvariables with the same truth value. Since mlv-wsat2.0 might flip a single variable
on a greedy move, as given in table 6.1, there might be a discrepancy between the truth values of
subclusters and subvariables in a cluster. We have reason to believe that the mlv-wsat1.0 performs
better due to the multilevel-breakcount, see definition 8, compared to the regular WalkSAT break-
count, see definition 5. The multilevel-breakcount covers an entire cluster, but regular breakcount
only covers a single variable. Further, looking at the experimental results we can confirm that
mlv-wsat1.0 outperforms mlv-wsat2.0. Therefore we believe that using the regular breakcount
in a multilevel context is unfortunate.

9.1.4 Static versus dynamic noise

Additionally, we also experimented with dynamic noise. We noticed that almost all moves leading
to a better solution happened at noise = 0%, the first noise value, even though the noise would go
through all noise values. Further, we observed that regular multilevel WalkSAT with static noise
would stagnate at noise = 0% pretty fast, so we believe that going through the noise values must
have changed the search space significantly. This could be verified by evaluating noise patterns.

9.2 Learning Automata WalkSAT

In section 7.4 we evaluated different number of states per action for each Learning automaton.
Findings show that la-wsat1.0 and la-wsat1.1 gave best results on 3 and 2 states respectively. We
know that Learning Automata eliminates some random moves for la-wsat1.0, and some random
moves and greedy moves for la-wsat1.1. These moves are skipped because at each variable there
is a Learning automaton that controls whether flipping should happen or not depending on the
current state of the Learning automaton. We believe that these eliminated moves, a side-effect of
learning, are part of the reason that la-wsat1.0 and la-wsat1.1 perform better than WalkSAT.

The further the distance from the action boundary, the more difficult it is to reach a state where it is
possible to flip. As an example, if the number of states was 100 per action per Learning automaton,
then the amount of punish needed would be at least 100 to be able to flip that variable, given that
the Learning automaton was at state 100 or -100. Therefore a lower distance is preferred, which
can be seen from the state evaluation in section 7.4.

In a way, Learning Automata could be seen as a bookkeeping method for classifying good and bad
variable candidates for flipping. The algorithms choose how they want to use this information. We
acknowledge that la-wsat1.1 is the best performing algorithm of the two proposed algorithms in
chapter 7.

9.3 Multilevel Learning Automata WalkSAT

We joined the best versions of Learning Automata WalkSAT and multilevel WalkSAT, namely
la-wsat1.1 and mlv-wsat1.0, together to form mlv-la-wsat. When these two were combined,
they got better results than when separated. We believe multilevel techniques accelerates Learning
Automata.

When Learning Automata are applied to the multilevel paradigm like in our research, there is a
Learning automaton per cluster for level 1 to N. For level 0, there are only variables, so at level
0 the algorithm is essentially the same as la-wsat1.1. However, level 0 has a start solution from
level 1.

51

CHAPTER 9. DISCUSSION

It was not surprising that Learning Automata also works on clusters, due to a common truth
value for all the variables. We believe that Learning Automata would not perform equally well on
mlv-wsat2.0 due to different truth values among cluster variables.

9.4 Summary

In this section we relate the results and observations to the research questions we formed in section
1.3. The questions are reproduced and answered based on findings conducted from the experiments
and results.

1. Learning Automata and multilevel techniques combined with other SAT solvers
have recently been used to solve SAT. What will be the outcome when WalkSAT
is extended with the aforementioned techniques for solving MAXSAT?
Our results have shown that WalkSAT combined with Learning Automata and multilevel
techniques can be successfully applied to solve MAXSAT.

2. Assuming we experiment with different combinations of WalkSAT with multilevel
techniques, and WalkSAT with Learning Automata. What is the optimal combi-
nation in both aspects?
During our research we tried different combinations of Learning Automata WalkSAT and
multilevel WalkSAT. Among these we found that la-wsat1.1 and mlv-wsat1.0 were the
optimal compositions. mlv-la-wsat is the product of combining the best two algorithms
from both Learning Automata WalkSAT and multilevel WalkSAT.

3. If WalkSAT extended with Learning Automata and multilevel techniques sepa-
rately yields good results, what will be the result of WalkSAT combined with both
techniques?
WalkSAT extended with Learning Automata and multilevel techniques separately produced
good results. The combination of these two techniques, resulting in mlv-la-wsat, gave even
better results. This shows that Learning Automata can be successfully applied to the mul-
tilevel paradigm on clusters.

4. Is there an optimal configuration of Learning Automata when coupled with
WalkSAT?
Findings in experiment 7.4 confirm that the number of states play an important role of the
performance of Learning Automata WalkSAT. Both variants preferred a rather low amount
of states. la-wsat1.0 and la-wsat1.1 preferred 3 and 2 states per action respectively. The
difference in state preference is due to a difference in algorithmic behavior.

52

Chapter 10

Conclusion of the Research

In this chapter we give the conclusion, and finally introduce possible future work.

10.1 Conclusion

The goal of this thesis was to extend the stochastic local search algorithm WalkSAT with multilevel
techniques and Learning Automata to see if this could enhance the performance of WalkSAT. We
have observed the effects of the employment of the two techniques when solving industrial MAXSAT
problem instances. This has been accomplished in 4 steps:

(1) We implemented WalkSAT, performed noise evaluation, and found the optimal noise value
when solving MAXSAT industrial problem instances.

(2) We combined WalkSAT with multilevel techniques and introduced four multilevel WalkSAT
variants.

(3) We combined WalkSAT with Learning Automata and introduced two Learning Automata
WalkSAT variants. We also performed Learning Automata state evaluation and found the
optimal number of states per action.

(4) We combined WalkSAT with both multilevel techniques and Learning Automata, by using
the best algorithms from (2) and (3) giving multilevel Learning Automata WalkSAT.

This work provides a comprehensive understanding of how multilevel techniques and Learning
Automata can be applied to WalkSAT. Extensive experiments and benchmarking on 20 industrial
MAXSAT problems from the MAXSAT Evaluation have been conducted. Results and observations
have led to the following conclusions:

For multilevel WalkSAT the results show that the most successful algorithm was mlv-wsat1.0.
On average it had 15% improvement over WalkSAT on our problem suite that consisted of 20
industrial MAXSAT problems. The results for the Learning Automata variants of WalkSAT show
that la-wsat1.1 was able to improve the quality of the solution compared to WalkSAT with up to
46%. For multilevel Learning Automata WalkSAT the results show that mlv-la-wsat achieved
an improvement of 83% over WalkSAT.

Further, we conclude that multilevel techniques and Learning Automata combined with WalkSAT
separately proves to be a better way of solving industrial MAXSAT problems than WalkSAT alone.
When both these techniques are combined together with WalkSAT this provides even better per-
formance as can be seen from the numbers above. Thus, we have presented a combination of the
work presented in [22] and [8], namely Learning Automata for SAT and multilevel techniques for
SAT, for applying Learning Automata in a multilevel paradigm for solving MAXSAT.

53

CHAPTER 10. CONCLUSION OF THE RESEARCH

10.2 Further work

Further research on combining both Learning Automata and multilevel techniques is interesting.
One idea is to combine mlv-wsat2.0, containing single and cluster flipping, with la-wsat1.1.
Combining clusters with different truth values and Learning Automata could for instance be done
by setting the Learning automaton’s current action (and thus also state) to the majority truth
value in the cluster. Choosing an appropriate mechanism for flipping, and how to reward each
Learning automaton would then be important. In general, there are a multitude of ways to reward
each Learning automaton, and this could also be researched further.

In our research we used a two-action Learning automaton. This automaton could be extended with
stochastic properties. For example, the states immediately next to the action boundary, namely
states -1 and 0, could be modeled such that a penalty was given a 90% success rate. This would
mean that if the Learning automaton was situated at state -1, and a penalty was given, then there
would be a 10% chance that it would not cross the action boundary like it normally would without
the stochastic properties.

54

Bibliography

[1] Joao Marques-Silva. Practical applications of boolean satisfiability. In Workshop on Discrete
Event Systems (WODES’08). IEEE Press, May 2008.

[2] Michel Vasquez and Jin-Kao Hao. A logic-constrained knapsack formulation and a tabu
algorithm for the daily photograph scheduling of an earth observation satellite. Comput.
Optim. Appl., 20:137–157, November 2001.

[3] Dawn M. Strickland, Earl Barnes, and Joel S. Sokol. Optimal protein structure alignment
using maximum cliques. Oper. Res., 53:389–402, May 2005.

[4] Bart Selman, Henry A. Kautz, and Bram Cohen. Noise strategies for improving local search.
In In Proceedings of the Eleventh National Conference on Artificial Intelligence (AAAI-94,
pages 337–343, 1994.

[5] Bart Selman, Hector Levesque, and David Mitchell. A new method for solving hard satisfia-
bility problems. In AAAI, pages 440–446, 1992.

[6] Holger Hoos and Thomas Sttzle. Stochastic Local Search: Foundations & Applications. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[7] Ole-Christoffer Granmo and Noureddine Bouhmala. Enhancing local-search based sat solvers
with learning capability. In Joaquim Filipe, Ana L. N. Fred, and Bernadette Sharp, editors,
ICAART (1), pages 515–521. INSTICC Press, 2010.

[8] Noureddine Bouhmala. A Multilevel Memetic Algorithm for Large SAT-Encoded Problems.

[9] A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of Satisfiability:
Volume 185 Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam, The
Netherlands, The Netherlands, 2009.

[10] R.P. Grimaldi. Discrete and combinatorial mathematics: an applied introduction. Pearson
Addison Wesley, 2004.

[11] Hui Xu, Rob A. Rutenbar, and Karem Sakallah. sub-sat: a formulation for relaxed boolean
satisfiability with applications in routing. In Proceedings of the 2002 international symposium
on Physical design, ISPD ’02, pages 182–187, New York, NY, USA, 2002. ACM.

[12] Josep Argelich, Chu Min Li, Felip Manyá, and Jordi Planes. The first and second max-sat
evaluations. JSAT, 4(2-4):251–278, 2008.

[13] Jun Gu. Efficient local search for very large-scale satisfiability problems. SIGART Bull.,
3:8–12, January 1992.

[14] Ian Gentles, Hans van Maaren, and Tory Walsh, editors. Sat2000: Highlights of Satisfiability
Research in the Year 2000. IOS Press, Amsterdam, The Netherlands, The Netherlands, 1st
edition, 2000.

[15] Holger H. Hoos and Thomas Stützle. Systematic vs. local search for sat. In Proceedings of the
23rd Annual German Conference on Artificial Intelligence: Advances in Artificial Intelligence,
KI ’99, pages 289–293, London, UK, UK, 1999. Springer-Verlag.

[16] Adnan Darwiche and Knot Pipatsrisawat. Complete algorithms. In Armin Biere, Marijn
Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability, volume 185 of
Frontiers in Artificial Intelligence and Applications, pages 99–130. IOS Press, 2009.

55

BIBLIOGRAPHY

[17] Martin Davis and Hilary Putnam. A Computing Procedure for Quantification Theory. J.
ACM, 7(3):201–215, July 1960.

[18] Joaäo P. Marques-silva and Karem A. Sakallah. Grasp: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers, 48:506–521, 1999.

[19] Hantao Zhang. Sato: An efficient prepositional prover. In William McCune, editor, Automated
DeductionŮCADE-14, volume 1249 of Lecture Notes in Computer Science, pages 272–275.
Springer Berlin / Heidelberg, 1997. 10.1007/3-540-63104-6-28.

[20] James M. Crawford and Larry D. Auton. Experimental results on the crossover point in
random 3sat. Artificial Intelligence, 81:31–57, 1996.

[21] Chu Min Li. Heuristics based on unit propagation for satisfiability problems. pages 366–371,
1997.

[22] Noureddine Bouhmala and Ole-Christoffer Granmo. Solving graph coloring problems using
learning automata. In Proceedings of the 8th European conference on Evolutionary compu-
tation in combinatorial optimization, EvoCOP’08, pages 277–288, Berlin, Heidelberg, 2008.
Springer-Verlag.

[23] Holger H. Hoos and Thomas Stützle. SATLIB: An Online Resource for Research on SAT,
2000.

[24] Pablo Moscato. A gentle introduction to memetic algorithms. In Handbook of Metaheuristics,
pages 105–144. Kluwer Academic Publishers, 2003.

[25] Noureddine Bouhmala and Xing Cai. A Multilevel Greedy Algorithm for the Satisfiability
Problem, chapter 3, pages 39–54. IN-TECH Education and Publishing, Vienna, 2008.

[26] Josep Argelich, Chu Min Li, Felip Manyá, and Jordi Planes. Analyzing the instances of the
maxsat evaluation. In Karem A. Sakallah and Laurent Simon, editors, SAT, volume 6695 of
Lecture Notes in Computer Science, pages 360–361. Springer, 2011.

[27] Chu M. Li, Universitè Picardie, Jules Verne, and Felip Manyà. New Inference Rules for Max-
SAT. In Journal of Artificial Intelligence Research, 2007.

[28] Javier Larrosa, Federico Heras, and Simon de Givry. A logical approach to efficient max-sat
solving. Artif. Intell., 172:204–233, February 2008.

[29] Josep Argelich, Chu Min Li, Felip Manyà, and Jordi Planes. The first and second max-sat
evaluations. JSAT, 4(2-4):251–278, 2008.

[30] Federico Heras, Javier Larrosa, and Albert Oliveras. MINIMAXSAT: An Efficient Weighted
Max-SAT Solver. Journal of Artificial Intelligence Research, 31:1–32, 2008.

[31] Dave A. D. Tompkins and Holger H. Hoos. Scaling and probabilistic smoothing: Dynamic
local search for unweighted max-sat. In Yang Xiang and Brahim Chaib-draa, editors, Cana-
dian Conference on AI, volume 2671 of Lecture Notes in Computer Science, pages 145–159.
Springer, 2003.

[32] Wayne Pullan and Holger H. Hoos. Dynamic local search for the maximum clique problem.
J. Artif. Int. Res., 25(1):159–185, February 2006.

[33] Satisfiability Suggested Format. Technical report, 1993.

[34] Donald J. Patterson and Henry Kautz. Auto-walksat: A self-tuning implementation of walksat.
In In Electronic Notes in Discrete Mathematics (ENDM, page 2001, 2001.

[35] David McAllester, Bart Selman, and Henry Kautz. Evidence for invariants in local search. In
Proceedings of the fourteenth national conference on artificial intelligence and ninth conference
on Innovative applications of artificial intelligence, AAAI’97/IAAI’97, pages 321–326. AAAI
Press, 1997.

[36] Holger H. Hoos. An adaptive noise mechanism for walksat. In Eighteenth national conference
on Artificial intelligence, pages 655–660, Menlo Park, CA, USA, 2002. American Association
for Artificial Intelligence.

56

BIBLIOGRAPHY

[37] C. Walshaw. A multilevel approach to the graph colouring problem. Technical Report
01/IM/69, School of Computing and Mathematical Science, Univeristy of Greenwich, Lon-
don, UK, May 2001.

[38] Chris Walshaw. A multilevel approach to the travelling salesman problem. Oper. Res.,
50(5):862–877, September 2002.

[39] Noureddine Bouhmala. Combining local search with the multilevel paradigm for the traveling
salesman problem. In Hybrid Metaheuristics’04, pages 51–58, 2004.

[40] K M. L. Tsetlin. Automaton Theory and Modeling of Biological Systems. Academic Press,
1973.

[41] M. A. L. Narendra, K. S. & Thathachar. Learning Automata: An Introduction,. Prentice
Hall., 1989.

[42] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (2nd Edition).
Prentice Hall, December 2002.

[43] P. Nicopolitidis, G. I. Papadimitriou, A. S. Pomportsis, P. Sarigiannidis, and M. S. Obai-
dat. Adaptive wireless networks using learning automata. IEEE Wireless Communications,
18(2):75–81, 2011.

[44] Cem Ünsal, Pushkin Kachroo, and John S. Bay. Multiple stochastic learning automata for
vehicle path control in an automated highway system. IEEE Transactions on Systems, Man,
and Cybernetics, Part A, 29(1):120–128, 1999.

[45] Javad Akbari Torkestani and Mohammad Reza Meybodi. Mobility-based multicast routing
algorithm for wireless mobile ad-hoc networks: A learning automata approach. Comput. Com-
mun., 33(6):721–735, April 2010.

57

Appendix A

Benchmarking Results

This appendix contains results from benchmarking of all the proposed algorithms presented in
chapter 6: Combining WalkSAT with Multilevel Techniques, chapter 7: Combining WalkSAT with
Learning Automata and chapter 8: Combining WalkSAT with Multilevel Techniques and Learning
Automata. The results are given in section A.1, A.2 and A.3 respectively.

58

APPENDIX A. BENCHMARKING RESULTS

A.1 WalkSAT combined with multilevel techniques

Problem instance Solver #Mean
unsatisfied

clauses

Standard
deviation

Variance

rsdecoder_fsm1.d
imacs.filtered.cnf

WalkSAT 271.20 18.76 351.96
mlv-wsat1.0 185.70 19.19 368.23
mlv-wsat1.1 405.30 83.22 6926.23
mlv-wsat2.0 267.50 7.17 51.39
mlv-wsat2.1 1428.20 172.45 29737.73

spi2.dimacs. filtered.cnf

WalkSAT 868.60 48.19 2321.82
mlv-wsat1.0 599.00 32.03 1025.78
mlv-wsat1.1 1184.00 45.99 2114.89
mlv-wsat2.0 861.70 65.97 4351.57
mlv-wsat2.1 1211.70 25.52 651.12

wb_4m8s3.dima
cs.filtered.cnf

WalkSAT 2671.00 46.20 2134.67
mlv-wsat1.0 2505.10 87.88 7723.66
mlv-wsat1.1 3391.60 70.93 5030.93
mlv-wsat2.0 2661.30 55.77 3110.68
mlv-wsat2.1 3398.00 93.25 8695.33

rsdecoder2.dima
cs.filtered.cnf

WalkSAT 671.80 14.22 202.18
mlv-wsat1.0 442.50 41.23 1699.61
mlv-wsat1.1 1002.50 211.72 44825.83
mlv-wsat2.0 667.50 17.92 321.17
mlv-wsat2.1 2904.00 83.19 6920.00

i2c_master1.dim
acs.filtered.cnf

WalkSAT 306.00 14.48 209.56
mlv-wsat1.0 214.20 26.89 723.07
mlv-wsat1.1 557.50 114.32 13068.50
mlv-wsat2.0 309.80 15.30 234.18
mlv-wsat2.1 650.20 29.73 883.96

SM_RX_TOP.dim
acs.filtered.cnf

WalkSAT 2914.70 149.36 22307.12
mlv-wsat1.0 2563.20 99.33 9865.51
mlv-wsat1.1 1620.40 48.75 2376.93
mlv-wsat2.0 2905.70 195.21 38106.46
mlv-wsat2.1 1647.40 57.40 3294.71

rsdecoder1_ blackbox_
CSEEblock-problem.
dimacs_32.filtered.cnf

WalkSAT 3445.10 381.77 145745.21
mlv-wsat1.0 422.40 28.85 832.49
mlv-wsat1.1 1161.70 56.78 3224.23
mlv-wsat2.0 3538.00 166.81 27824.22
mlv-wsat2.1 1174.30 59.96 3595.57

Table A.1: Results from benchmarking. Multilevel WalkSAT variants and WalkSAT.

59

APPENDIX A. BENCHMARKING RESULTS

Problem instance Solver #Mean
unsatisfied

clauses

Standard
deviation

Variance

divider-problem.dim
acs_3.filtered.cnf

WalkSAT 6195.00 127.43 16238.44
mlv-wsat1.0 4079.60 104.52 10924.93
mlv-wsat1.1 5828.00 328.07 107632.89
mlv-wsat2.0 6218.10 103.65 10743.43
mlv-wsat2.1 6149.30 429.15 184167.79

spi-debug. dimacs.cnf

WalkSAT 1312.20 37.59 1412.84
mlv-wsat1.0 1283.60 47.90 2294.04
mlv-wsat1.1 2346.90 325.56 105991.66
mlv-wsat2.0 1306.80 44.28 1960.40
mlv-wsat2.1 2563.30 323.38 104574.90

divider-problem.dim
acs_11.filtered.cnf

WalkSAT 5948.50 154.48 23864.72
mlv-wsat1.0 4616.30 900.43 810767.79
mlv-wsat1.1 5491.50 68.36 4672.50
mlv-wsat2.0 6004.00 129.66 16812.00
mlv-wsat2.1 6163.30 273.27 74679.12

dividers6_hack.d
imacs.filtered.cnf

WalkSAT 426.70 19.83 393.34
mlv-wsat1.0 412.50 22.65 513.17
mlv-wsat1.1 991.80 27.93 779.96
mlv-wsat2.0 432.40 13.89 192.93
mlv-wsat2.1 979.90 43.67 1906.77

mrisc-debug .dimacs.cnf

WalkSAT 3772.60 532.69 283756.93
mlv-wsat1.0 4905.70 887.27 787251.34
mlv-wsat1.1 4812.20 1019.20 1038775.29
mlv-wsat2.0 4157.00 494.79 244819.56
mlv-wsat2.1 3845.70 457.26 209083.34

mem_ctrl-deb
ug.dimacs.cnf

WalkSAT 152.80 9.68 93.73
mlv-wsat1.0 143.50 9.71 94.28
mlv-wsat1.1 195.80 21.88 478.84
mlv-wsat2.0 153.80 10.13 102.62
mlv-wsat2.1 216.20 26.25 689.29

dividers_multivec1.
dimacs.filtered.cnf

WalkSAT 2912.20 78.78 6205.51
mlv-wsat1.0 2464.90 56.23 3161.43
mlv-wsat1.1 3875.10 84.06 7065.43
mlv-wsat2.0 2943.00 62.73 3934.67
mlv-wsat2.1 4062.70 179.80 32328.01

Table A.2: Results from benchmarking. Multilevel WalkSAT variants and WalkSAT.

60

APPENDIX A. BENCHMARKING RESULTS

Problem instance Solver #Mean
unsatisfied

clauses

Standard
deviation

Variance

fpu_fsm1-problem.di
macs_15.filtered.cnf

WalkSAT 3690.70 54.52 2972.01
mlv-wsat1.0 3284.00 715.02 511256.00
mlv-wsat1.1 2706.60 113.24 12822.27
mlv-wsat2.0 3686.30 67.00 4489.34
mlv-wsat2.1 2949.80 69.61 4845.29

wb-debug. dimacs.cnf

WalkSAT 314.20 24.43 597.07
mlv-wsat1.0 264.10 13.40 179.66
mlv-wsat1.1 121.50 12.78 163.39
mlv-wsat2.0 322.00 23.47 550.89
mlv-wsat2.1 107.10 15.56 242.10

wb-problem.dimacs _
45.filtered.cnf

WalkSAT 135.80 45.56 2075.51
mlv-wsat1.0 159.70 28.84 831.57
mlv-wsat1.1 199.30 74.34 5526.68
mlv-wsat2.0 143.80 27.65 764.40
mlv-wsat2.1 217.20 54.42 2961.07

c5_DD_s3_f1_e1_v1-
bug-gate-0.dimacs.
seq.filtered.cnf

WalkSAT 8.00 0.00 0.00
mlv-wsat1.0 8.00 0.00 0.00
mlv-wsat1.1 8.00 0.00 0.00
mlv-wsat2.0 8.00 0.00 0.00
mlv-wsat2.1 8.00 0.00 0.00

ac97_ctrl-de
bug.dimacs.cnf

WalkSAT 32.60 3.34 11.16
mlv-wsat1.0 33.00 4.08 16.67
mlv-wsat1.1 47.20 4.98 24.84
mlv-wsat2.0 32.40 3.72 13.82
mlv-wsat2.1 48.10 4.15 17.21

fpu8-problem.dimac
s_24.filtered.cnf

WalkSAT 3608.10 53.66 2879.21
mlv-wsat1.0 2822.90 629.11 395776.32
mlv-wsat1.1 2737.50 210.93 44493.17
mlv-wsat2.0 3560.40 70.42 4958.71
mlv-wsat2.1 2845.20 150.06 22518.40

Table A.3: Results from benchmarking. Multilevel WalkSAT variants and WalkSAT.

61

APPENDIX A. BENCHMARKING RESULTS

A.2 WalkSAT combined with Learning Automata

Problem instance Solver #Mean
unsatisfied

clauses

Standard
deviation

Variance

spi2.dimacs. filtered.cnf
WalkSAT 919.20 39.67 1573.51
la-wsat1.0 276.80 35.10 1231.96
la-wsat1.1 191.70 22.69 514.68

wb_4m8s3.dima
cs.filtered.cnf

WalkSAT 2675.70 71.38 5094.68
la-wsat1.0 784.20 45.61 2080.40
la-wsat1.1 285.20 25.18 634.18

rsdecoder2.dima
cs.filtered.cnf

WalkSAT 669.80 16.63 276.62
la-wsat1.0 1746.80 235.36 55396.62
la-wsat1.1 1381.10 160.94 25900.10

i2c_master1.dim
acs.filtered.cnf

WalkSAT 317.20 11.69 136.62
la-wsat1.0 102.70 23.30 543.12
la-wsat1.1 95.40 9.55 91.16

SM_RX_TOP.dim
acs.filtered.cnf

WalkSAT 2900.60 113.65 12917.38
la-wsat1.0 556.70 47.12 2220.23
la-wsat1.1 550.50 35.32 1247.17

rsdecoder1_ blackbox_
CSEEblock-problem.
dimacs_32.filtered.cnf

WalkSAT 3479.10 275.96 76156.32
la-wsat1.0 2270.70 72.20 5212.90
la-wsat1.1 1868.60 90.78 8240.27

divider-problem.dim
acs_3.filtered.cnf

WalkSAT 6204.80 81.33 6613.96
la-wsat1.0 2832.50 114.72 13161.39
la-wsat1.1 2117.00 71.94 5175.33

spi-debug. dimacs.cnf
WalkSAT 1286.10 33.87 1147.43
la-wsat1.0 287.40 35.78 1280.04
la-wsat1.1 222.20 39.67 1573.51

divider-problem.dim
acs_11.filtered.cnf

WalkSAT 6030.20 124.94 15611.07
la-wsat1.0 2583.80 125.90 15851.07
la-wsat1.1 1918.20 63.80 4071.07

dividers6_hack.d
imacs.filtered.cnf

WalkSAT 423.20 25.42 645.96
la-wsat1.0 87.10 8.17 66.77
la-wsat1.1 73.60 6.79 46.04

mrisc-debug .dimacs.cnf
WalkSAT 4064.00 542.67 294490.00
la-wsat1.0 1636.00 515.76 266010.22
la-wsat1.1 997.70 111.18 12361.34

mem_ctrl-deb
ug.dimacs.cnf

WalkSAT 150.40 11.33 128.27
la-wsat1.0 28.80 5.18 26.84
la-wsat1.1 45.50 3.95 15.61

Table A.4: Results from benchmarking. Learning Automata WalkSAT variants and WalkSAT.

62

APPENDIX A. BENCHMARKING RESULTS

Problem instance Solver #Mean
unsatisfied

clauses

Standard
deviation

Variance

dividers_multivec1.
dimacs.filtered.cnf

WalkSAT 2953.90 30.67 940.54
la-wsat1.0 340.60 26.33 693.16
la-wsat1.1 250.50 24.08 580.06

ac97_ctrl-de
bug.dimacs.cnf

WalkSAT 33.50 3.27 10.72
la-wsat1.0 8.20 2.30 5.29
la-wsat1.1 7.50 0.85 0.72

fpu_fsm1-problem.di
macs_15.filtered.cnf

WalkSAT 3716.40 49.54 2454.49
la-wsat1.0 499.60 26.26 689.60
la-wsat1.1 422.70 44.16 1950.01

wb-debug. dimacs.cnf
WalkSAT 307.80 23.18 537.51
la-wsat1.0 237.40 14.08 198.27
la-wsat1.1 220.40 15.42 237.82

wb-problem.dimacs _
45.filtered.cnf

WalkSAT 143.30 24.71 610.68
la-wsat1.0 871.00 85.13 7247.33
la-wsat1.1 276.80 40.14 1610.84

rsdecoder_fsm1.d
imacs.filtered.cnf

WalkSAT 270.30 9.18 84.23
la-wsat1.0 568.00 139.26 19392.00
la-wsat1.1 438.30 96.76 9363.12

c5_DD_s3_f1_e1_v1-
bug-gate-0.
dimacs.seq.filtered.cnf

WalkSAT 8.00 0.00 0.00
la-wsat1.0 18.60 31.14 969.60
la-wsat1.1 8.00 0.00 0.00

fpu8-problem.dimac
s_24.filtered.cnf

WalkSAT 3585.90 61.94 3836.99
la-wsat1.0 535.80 34.34 1179.29
la-wsat1.1 412.50 35.87 1286.72

Table A.5: Results from benchmarking. Learning Automata WalkSAT variants and WalkSAT.

63

APPENDIX A. BENCHMARKING RESULTS

A.3 WalkSAT combined with multilevel techniques
and Learning Automata

Problem instance Solver #Mean
unsatisfied

clauses

Standard
deviation

Variance

spi2.dimacs. filtered.cnf

WalkSAT 896.10 33.65 1132.10
mlv-wsat1.0 589.10 39.74 1578.99
mlv-la-wsat 147.40 7.24 52.49
la-wsat1.1 184.30 13.71 188.01

wb_4m8s3.dima
cs.filtered.cnf

WalkSAT 2665.90 77.37 5986.54
mlv-wsat1.0 2514.00 68.41 4680.22
mlv-la-wsat 178.20 17.87 319.51
la-wsat1.1 282.50 28.27 799.17

rsdecoder2.dima
cs.filtered.cnf

WalkSAT 666.20 13.85 191.96
mlv-wsat1.0 444.70 26.49 701.57
mlv-la-wsat 81.60 1.71 2.93
la-wsat1.1 1323.50 380.11 144484.72

i2c_master1.dim
acs.filtered.cnf

WalkSAT 313.60 15.51 240.71
mlv-wsat1.0 220.70 29.20 852.90
mlv-la-wsat 43.30 34.28 1174.90
la-wsat1.1 99.80 8.73 76.18

SM_RX_TOP.dim
acs.filtered.cnf

WalkSAT 2964.70 121.46 14752.01
mlv-wsat1.0 2589.40 95.81 9180.04
mlv-la-wsat 312.10 64.73 4189.88
la-wsat1.1 531.10 31.56 996.10

rsdecoder1_blackbox
_CSEEblock-
problem.dimacs_
32.filtered.cnf

WalkSAT 3561.60 235.88 55637.16
mlv-wsat1.0 405.00 41.73 1741.78
mlv-la-wsat 39.70 7.50 56.23
la-wsat1.1 1832.00 66.54 4427.11

divider-problem.dim
acs_3.filtered.cnf

WalkSAT 6143.70 128.13 16417.34
mlv-wsat1.0 3999.60 98.01 9606.71
mlv-la-wsat 54.30 28.53 814.23
la-wsat1.1 2155.40 98.21 9644.71

spi-debug. dimacs.cnf

WalkSAT 1313.10 56.64 3208.54
mlv-wsat1.0 1266.90 38.68 1496.10
mlv-la-wsat 98.70 17.11 292.68
la-wsat1.1 222.80 35.70 1274.40

divider-problem.dim
acs_11.filtered.cnf

WalkSAT 6011.50 181.47 32932.72
mlv-wsat1.0 4758.90 1070.41 1145773.43
mlv-la-wsat 42.10 20.29 411.88
la-wsat1.1 1861.10 87.65 7682.54

Table A.6: Results from benchmarking. Multilevel WalkSAT, Learning Automata WalkSAT, multilevel
Learning Automata WalkSAT and WalkSAT.

64

APPENDIX A. BENCHMARKING RESULTS

Problem instance Solver #Mean
unsatisfied

clauses

Standard
deviation

Variance

dividers6_hack.d
imacs.filtered.cnf

WalkSAT 431.60 15.79 249.38
mlv-wsat1.0 407.30 33.52 1123.34
mlv-la-wsat 53.10 5.65 31.88
la-wsat1.1 73.40 5.74 32.93

mrisc-debug .dimacs.cnf

WalkSAT 3942.20 524.07 274653.07
mlv-wsat1.0 5159.80 912.30 832291.73
mlv-la-wsat 1248.60 341.20 116419.16
la-wsat1.1 979.10 115.18 13267.21

mem_ctrl-deb
ug.dimacs.cnf

WalkSAT 147.80 11.84 140.18
mlv-wsat1.0 146.00 8.06 64.89
mlv-la-wsat 6.70 2.54 6.46
la-wsat1.1 45.50 4.01 16.06

dividers_multivec1.
dimacs.filtered.cnf

WalkSAT 2949.90 33.22 1103.88
mlv-wsat1.0 2462.80 86.15 7421.73
mlv-la-wsat 225.80 22.89 523.73
la-wsat1.1 256.50 11.60 134.50

ac97_ctrl-de
bug.dimacs.cnf

WalkSAT 33.50 2.88 8.28
mlv-wsat1.0 32.50 3.89 15.17
mlv-la-wsat 7.40 0.97 0.93
la-wsat1.1 7.30 0.82 0.68

fpu_fsm1-problem.di
macs_15.filtered.cnf

WalkSAT 3684.40 72.25 5219.82
mlv-wsat1.0 2865.30 716.68 513633.12
mlv-la-wsat 323.70 106.23 11284.46
la-wsat1.1 376.40 38.48 1480.49

wb-debug. dimacs.cnf

WalkSAT 319.80 22.31 497.96
mlv-wsat1.0 250.20 14.45 208.84
mlv-la-wsat 116.70 11.18 124.90
la-wsat1.1 218.40 15.20 230.93

wb-problem.dimacs
_45.filtered.cnf

WalkSAT 147.00 29.27 856.89
mlv-wsat1.0 134.20 32.77 1073.96
mlv-la-wsat 52.50 9.85 96.94
la-wsat1.1 270.30 48.72 2374.01

c5_DD_s3_f1_e1_v1-
bug-gate-0.
dimacs.seq.filtered.cnf

WalkSAT 8.00 0.00 0.00
mlv-wsat1.0 8.00 0.00 0.00
mlv-la-wsat 8.00 0.00 0.00
la-wsat1.1 34.00 44.28 1960.89

Table A.7: Results from benchmarking. Multilevel WalkSAT, Learning Automata WalkSAT, multilevel
Learning Automata WalkSAT and WalkSAT.

65

APPENDIX A. BENCHMARKING RESULTS

Problem instance Solver #Mean
unsatisfied

clauses

Standard
deviation

Variance

fpu8-problem.dimac
s_24.filtered.cnf

WalkSAT 3613.80 44.66 1994.18
mlv-wsat1.0 3467.60 451.46 203814.93
mlv-la-wsat 279.80 100.34 10068.18
la-wsat1.1 424.30 32.27 1041.57

rsdecoder_fsm1.d
imacs.filtered.cnf

WalkSAT 268.70 11.59 134.23
mlv-wsat1.0 176.60 17.39 302.49
mlv-la-wsat 10.90 1.37 1.88
la-wsat1.1 443.50 192.86 37196.50

Table A.8: Results from benchmarking. Multilevel WalkSAT, Learning Automata WalkSAT, multilevel
Learning Automata WalkSAT and WalkSAT.

66

	List of Algorithms
	Introduction
	Importance of topic and motivation
	Thesis definition
	Research questions
	Research approach
	Contribution to knowledge
	Limitations and key assumptions
	Thesis outline

	The Maximum Satisfiability Problem
	Review of propositional logic
	Conjunctive normal form
	Transformation of propositional logic formulas to CNF

	The Propositional Satisfiability Problem
	The Maximum Satisfiability Problem

	Solvers for MAXSAT
	Algorithms for SAT and MAXSAT
	Stochastic local search algorithms
	Systematic search algorithms

	Solvers combined with Learning Automata
	Solvers combined with multilevel techniques
	Other prominent MAXSAT solvers

	Experimental Design
	Problem suite
	Experiment setup
	Implementation and machine specifications

	WalkSAT
	The WalkSAT family
	WalkSAT/SKC
	WalkSAT implementation
	Experiment - WalkSAT noise evaluation
	Results

	Combining WalkSAT with Multilevel Techniques
	Introduction to multilevel techniques
	Multilevel techniques in a MAXSAT context
	Multilevel WalkSAT
	Dynamic noise
	Variables and cluster flipping

	Experiment - benchmarking of multilevel WalkSAT
	Results

	Combining WalkSAT with Learning Automata
	Learning Automata and reinforcement learning
	Learning Automata in a MAXSAT context
	Learning Automata WalkSAT
	Experiment - Learning Automata state evaluation
	Results

	Experiment - benchmarking of Learning Automata WalkSAT
	Results

	Combining WalkSAT with Multilevel Techniques and Learning Automata
	Multilevel Learning Automata WalkSAT
	Experiment - benchmarking of multilevel Learning Automata WalkSAT
	Results

	Discussion
	Multilevel WalkSAT
	Wasting computational resources
	Number of levels
	Single versus cluster
	Static versus dynamic noise

	Learning Automata WalkSAT
	Multilevel Learning Automata WalkSAT
	Summary

	Conclusion of the Research
	Conclusion
	Further work

	Bibliography
	Benchmarking Results
	WalkSAT combined with multilevel techniques
	WalkSAT combined with Learning Automata
	WalkSAT combined with multilevel techniques and Learning Automata

