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Abstract

Forecasting of electricity consumption is considered as one of the most significant aspect of
effective management of power systems. On a long term basis, it allows decision makers of a
power supplying company to decide when to build new power plants, transmission and distri-
bution networks. On a short term basis, it can be used to allocate resources in a power grid to
supply the demand continuously.

Forecasting is basically divided into three categories : short-term, medium-term, and long-
term. Short-term refers to an hour to a week forecast, while medium-term refers to a week to
a year, and predictions that run more than a year refers to long-term.

In this thesis, we forecast electricity consumption on a short-term basis for a particular
region in Norway using a relatively novel approach: Gaussian process. We design the best
feature vector suitable for forecasting electricity consumption using various factors such as
previous consumptions, temperature, days of the week and hour of the day. Moreover, feature
space is scaled and reduced using reduction and normalization methods, and different target
variables are analysed to obtain better accuracy.

Furthermore, GP is compared with two traditional forecasting techniques : Multiple Back-
Propagation Neural Networks (MBPNN), and Multiple Linear Regression (MLR). Finally we
show that GP is as better as MBPNN and far better than MLR using empirical results.
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Chapter 1

Introduction

In this chapter we direct the reader to the basic introduction of the thesis. In section 1.1,
we outline the basic background and motivation of the thesis. We define the thesis definition
in section 1.2 and present the basic research questions need to be solved in section 1.3. The
remaining three sections: section 1.5, 1.6 and 1.7 detail the contributions supplemented to the
research community; the target audience of the thesis; and the outline of the thesis respectively.

1.1 Background and Motivation

Electricity has become a basic need for the mankind today. It is used to carry out a range
of day to day work, such as operating domestic and industrial equipments, lighting, heating,
air-conditioning, cooking, washing and many other tasks. We can visualize this fact of how it

Figure 1.1: Earth at night. [Source : NASA].

1



CHAPTER 1. INTRODUCTION

Figure 1.2: Electricity consumption by user group in Norway, 1990-2007 [1].

has become a basic need for mankind, by just looking at the earth at night in Figure 1.1, which
illustrates the electricity required to light the earth at night.

This is true for the Norwegian community also, as we can see from Figure 1.2, which illus-
trates the electricity consumption among different user groups in Norway from 1990 to 2007.
The figure indicates an increase in consumption for many user groups over the years. Therefore
it is clear that electricity has become an important commodity for the people.

Forecasting of electricity consumption is necessary to manage the power system effectively
and thereby fulfil this increasing demand. On a long-term basis, power companies would require
the power consumption forecast in the next 10 or 20 years to plan their future activities prop-
erly, such as building adequate power plants and improve their transmission and distribution
networks to meet the necessary demand. On a short-term basis, forecasting is required to per-
form daily operations such as unit commitment, energy transfer scheduling and load dispatch
of a utility company [3]. Therefore, accurate prediction of electricity consumption is crucial
for both, performing daily operations and making future power plans for a power supplying
company.

Electricity forecasting can be done mainly in three ways, as short-term, medium-term and
long-term. Short-term forecasting refers to an hour to a week prediction, while medium-term
considers the range between a week and a year, and predictions that run more than a year are
considered as long-term forecasts [4].

In the literature, we can observe various independent variables (predictors), that influence
the consumption, have been used for forecasting under these three schemes, especially for short-
term and long-term. In long-term forecasting, the most frequently used predictors are the
Gross Domestic Product (GDP) [5–8] and the population [5, 6, 8]. In addition, factors such as
capital [5], per capita consumption [6], number of consumers [6], peak electricity demand [6] and
electricity price [8] have also been used for long-term forecasting. For short-term forecasting,
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CHAPTER 1. INTRODUCTION

temperature [9–11] and humidity [9,11] have been widely used and wind-force [10], dampness [10],
chilled water consumption [9] and gas fuel consumption [9] have also been used for forecasting.

The most common approaches of electricity consumption forecasting includes, statistical
techniques (multiple linear regression), artificial neural networks (ANN) , Genetic algorithms
(GA) , grey methods (GM) and time series analysis. Here, we briefly outline some of those
selected attempts as follows. A statistical technique - multiple regression analysis using least
squares method has been used by Imitiaz et al. [6] to forecast annual electricity consumption for
Malaysia. Fung and Tummala [8] have used ANN models to forecast annual consumption and
compared the results with multiple linear regression models. Dedy et al [9] have also used ANN
to forecast daily electricity consumption by optimizing its model using Taguchi [12] method.
RBF neural networks combined with Genetic algorithms have been used by Zeng et al. [10] for
short-term forecasting. Grey methods [13] have been applied to forecast electricity consumption
in [5]. A time series analysis based on auto regressive model done by Wang Baosen et al. [7]
has been carried out for long-term electricity consumption forecasting.

In this thesis our approach is to forecast short term electricity consumption on an hourly
basis which extends up to predicting the behaviour of the next 24 hours, using a relatively novel
approach : Gaussian Process (GP) .

GP possess several attributes that make it a potential model to solve supervised learning
problems which emerged over the last decade. The main reason for this is its non-parametric,
kernel based nature, which provides more flexibility in solving inferring problems. GP is more
a data-oriented approach which is capable of learning functions from the data itself. Moreover,
it can be used for non-linear regression problems which makes it more suitable for forecasting
electricity which is non linear in nature.

Gaussian process has been used before in a range of fields especially for estimating purposes.
Here we concentrate on several of these researches. Gaussian processes has been used by Luo
and Qian [14] to estimate the colour values in Poly Ethylene Terephthalate (PET) . Vathsangam
et al. [15] have used GPs to estimate walking speed of a human using on-body accelerometers
and gyroscopes. As Pasolli et al. propose in [16], it has been also used for estimating chlorophyll
concentration in subsurface waters by sensing data remotely. According to Bazi and Melgani
[17], semi-supervised GPs has been used for the estimation of biophysical parameters from
remote sensing data. Zhang and Yeung [18] have suggested, Multi-Task Warped Gaussian
Process (MTWGP) , which is a variant of GP, for personalized age estimation of people.

GP has been used for short-term electricity forecasting on two occasions in the literature.
Firstly, by Mori and Ohmi [11], and secondly by Alamaniotis et al. [4]. In the first, GP has
been used to forecast daily consumption and hierarchical Bayesian model has been used to
evaluate the hyperparameters of the covariance function. Moreover, they have compared GP
with conventional methods such as MLP , RBFN and SVR . In the second, several kernel
functions have been built and the predictors have been evaluated using Genetic algorithm.

In our approach, we use GP on its original context but more focusing on the data itself by
modifying both feature vector and target variable. We use techniques such as reduction and
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normalization to modify the feature vector and test for different target variables that gives better
results. Moreover, we compare GP with two traditional techniques: multiple linear regression
(MLR) and multiple back-propagation neural networks (MBPNN) , which have not been used
in [11]. More focus will be given to seasonal changes in consumption, as there is a tie between
weather and consumption in a country like Norway. Therefore, it is interesting to see how GP
cope with these variations as it has been found in [19] that, traditional techniques such as linear
regression and NN are not much sensitive to variations in the local structure of the input space
and hence we can examine the ability of GP in estimating varying electricity consumption.
However as stated clearly by Imitiaz et.al [6], forecasts are never going to be perfect and the
validity of the general rule ’The forecast is always wrong ’ has to be assumed.

1.2 Thesis Definition

The thesis definition can be formulated as follows:

This thesis proposes Gaussian Processes (GP) as a novel approach for short term forecasting
of electricity consumption. It includes designing the optimum feature vector by concerning
various factors affecting the electricity consumption. This should consist of a data filtering
strategy and data scaling technique. In addition, it is required to use a corresponding kernel
function for achieving best predictions. The core of the thesis is the design of a technique for
exploring trends of electricity consumption through cyclic patterns and hence normalize the data
in such a way that accurate predictions could be obtained. Moreover, it is expected to compare
the forecast results of GP with the traditional forecasting techniques.

1.3 Research Questions

Throughout this thesis, we will answer to the research questions outlined below.

What are the cyclic patterns that we can observe in electricity consumption and
what are the influential factors causing these cycles?

Electricity consumption will be different from hour to hour, day to day, month to month, season
to season and year to year. But they can have repeating cyclic patterns. For this purpose, we
consider a dataset, provided by Eidsiva Energy1 which contains electricity consumption data
for 3 years. Using this dataset, we have to find out the patterns of electricity consumption and
the factors that influence these patterns.

1http://www.eidsivaenergi.no/
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What is the best feature vector possible for forecasting electricity consumption
under GPs?

As we know, electricity consumption may depend on many factors as mentioned in section 1.1.
In our approach we focus mainly on the weather factors(temperature, wind, cloud cover), season
of the year (summer, autumn, spring, winter), days of the week, hours of the day and previous
electricity consumption values. The most influencing factors could be identified once we answer
the first research question about cyclic patterns, and studying more about the dataset. Hence
we could identify a feature vector(s) that is more suitable to obtain better prediction results.

What type of target variables we can use for better prediction accuracy?

It is obvious that the electricity consumption is the default target variable. However, we need to
explore another target variable(s) which is(are) capable of providing better results. This would
require a thorough emphasis on the dataset.

What are the strategies used to improve the predictions?

We need to test different techniques, and features to find out the best possible combinations of
the input feature space that produce the accurate results. This might include scaling, normal-
izing and reducing methods.

How good the predictions of GP compared with the traditional techniques?

It is necessary to compare the results of GP with the traditional techniques used to forecast
electricity consumption. Here, we propose two traditional techniques : multiple linear regression
and multiple back-propagation neural networks.

1.4 Research Approach

The main starting point for this thesis is the dataset obtained from Eidsiva Energy as mentioned
above. This dataset consists hourly electricity consumption measured in three successive years
2008, 2009 and 2010. In addition to the electricity consumption, temperature, cloud cover, wind
speed are also stated in this dataset.

Through extensive studies on the dataset, we answer the research questions outlined above
one by one using GP. Dataset will be utilized under different categories based on their attributes
and features.

GP testing is done using the pyXGPR [35] python code library developed by Marion Neu-
mann et al. This tool is based on the GP theories explained by Rasmussen and Williams [26].
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1.5 Contributions

In this thesis, we introduce Gaussian process as a novel approach for short-term electricity
forecasting on a seasonal basis, for a region where electricity consumption is related with the
weather condition. The best feature vectors for forecasting electricity consumption on seasonal
basis are found using the weather factors, previous electricity consumptions, days of the week,
and hour of the day.

In addition to the input feature space, this thesis tests for different target variable analysis,
to obtain better results.

Moreover, we evaluate the results of GP when reduction and normalization methods are
applied to the feature space, in terms of electricity forecasting.

Finally, GP is compared with two traditional techniques : multiple linear regression and
multiple back-propagation neural networks, which have not been compared in [11]. This will
allow us to examine how good GP process compared with the other techniques.

1.6 Target Audience

This thesis can be referred by anyone who is interested in the machine learning field. Specially
for those who have interest in the emerging technique of Gaussian processes.

Those who are in electric utility companies might be very much interested in forecasting
electricity consumption. Therefore, this thesis work will be beneficial for them who are seeking
improvements in their electricity supplying process.

In general, anyone who is working with the computer science, electrical engineering and
statistics can use this thesis as a reference. However the readers are assumed to have the
background knowledge on statistics theory and machine learning.

1.7 Thesis Outline

Mainly, the thesis is organized into eight chapters as follows. Chapter 1 covers the basic in-
troductory part of the thesis, the background and motivation ,the research questions that we
should solve, the thesis definition, contributions to the knowledge and the target audience.

Chapter 2 illustrates how the electricity generation, transmission and distribution process
works, the consumption patterns of the consumers and the previous approaches of forecasting.

Chapter 3 covers the basic theoretical background of GP and GP regression, with a short
introduction to the random variable theories.

Chapter 4 is devoted to explore the proposed traditional forecasting techniques used for
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electricity forecasting: linear regression and artificial neural networks.

Chapter 5 is concerned with the proposed solution on how to forecast electricity consumption
using Gaussian processes. Chapter 6 outlines the empirical results obtained from different tests
including GP and traditional methods. Chapter 7 analyses the results obtained and compare
GP with the traditional techniques. Finally, Chapter 8 concludes the findings by exploring the
whole thesis work.
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Chapter 2

Electricity Consumption and
Forecasting

In chapter 1, we gave a brief introduction about the background of electricity consumption
forecasting, with the traditional forecasting techniques and the need of Gaussian process. How-
ever, first we should understand the basics of an actual power system and how it processes in
the practical situation and how forecasting is going to do any good for the improvement of the
system. In section 2.1, we discuss some of the theoretical features of a typical power system
and how it fits with our case. Then we move on to the consumption of electricity, produced by
the system based on our dataset and the different features of consumption in section 2.2. In the
last section we discuss the importance of forecasting and give some details about the previous
approaches in forecasting.

2.1 Electricity Supplying Process

There is a complex process associated in delivering electricity safely and reliably to house-
holds and industries. This process involves three basic stages : generation, transmission and
distribution. Figure 2.1 illustrates these three stages in a typical electric power system.

The root of power generation is the power plant, which includes turbines and generators.
There are different types of power plants based on the source of energy, such as hydro power,
thermal, wind, solar and so on. The main source of electricity in Norway is the hydro-power
and it constitutes 99 % of the overall production [20].

8



CHAPTER 2. ELECTRICITY CONSUMPTION AND FORECASTING

Figure 2.1: A typical power system with generation, transmission and distribution phases. [Source:
http://science.howstuffworks.com/environmental/energy/power.htm].

In the next stage, three-phase power generated by this power plant is transmitted to a long
distance through high voltage transmission lines as shown in the figure. Before transmitting, the
voltage of the generated power, is increased (step-up) by the transformers in the transmission
substation.

These transmission lines are then connected to power substations where the high voltage
power is stepped down to a level that can be distributed across a certain region. This step is
the last stage of the power system which is also known as the distribution stage. From the
distribution transformer, the distribution bus lines carries electricity to the households and
industries.

In short-term electricity forecasting, the main focus goes to the distribution stage. This is
because, the controlling process could be only carried out on this stage by allocating proper
resources on a short-term basis.

2.2 Electricity Consumption

In Norway, the authorities who distribute electricity from the final stage of the process are keen
to provide better and continuous supply to their consumers all the time. In this process, they
have to control and monitor the distribution of electricity through their grids according to the
demand from the consumers.

Eidsiva Energy records the power consumption in the region on an hourly basis. In addition
to the power consumption, the forecast temperature, actual temperature, wind speed and cloud
cover are also measured with the consumption. These measurements which we found in the
dataset are the basis for the forecasting carried out in this thesis.
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Figure 2.2 depicts the electricity consumption for the three years: 2008, 2009 and 2010 in
the considered dataset.

0 5000 10 000 15 000 20 000 25 000
100

200

300

400

500

600

cumulative hours

po
w

er
co

ns
um

pt
io

n
HM

W
h�h

L

Figure 2.2: Electricity consumption for 2008, 2009 and 2010. The vertical dashed lines separate the three
years consecutively, and the x axis shows the cumulative hours starting from January 1st 2008.

According to the figure we can see that, there is a clear pattern in the consumption through-
out a year. Winter (rare ends of each graph) and summer (middle section of each graph) seasons
could be clearly visible in the figure with identical consumptions. The average power consump-
tion in 2008 is 319.344 MWh/h and for 2009 it is 300.442 MWh/h and 304.407 MWh/h for
2010. Therefore it seems to be in the range of early 300. Moreover, we can see from figure that
the power normally ranges from 100 to 600.

The weather factors seem to be playing a big role in these consumptions, due to the sea-
sonal variations in the graph. Temperature is the most influential factor in terms of seasonal
changes. Therefore, we specially focus on the forecast temperature as it is the most influential
environmental factor that affects the electricity consumption [21].

2.3 Electricity Consumption Forecasting

Forecasting of electricity consumption enables power utility companies to distribute electricity
effectively. Electricity cannot be stored once it is generated. Therefore, it is very important to
know how much electricity should be bought and distributed through the grid to the households
and industries. Knowing the future consumption allows to manage this process in an effective
way.

Therefore most power supplying companies and researchers have studied about different
techniques to accurately forecast electricity consumption over the past few decades. Therefore
we conclude this chapter by explaining how previous researches have been carried out regarding
electricity consumption forecasting.
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The research conducted by Imitiaz et al. [6] have used statistical analysis, which is basi-
cally linear regression, to evaluate and forecast long term electricity consumption demand for
Malaysia. They have used factors such as population, per capita electricity consumption, number
of consumers, peak electricity demand and GDP as the independent variables that affects the
consumption. They have used training data of 10 years (from 1993-2003) to forecast for 7 years
ahead (2004-2013).

As shown in [7], time series analysis based on autoregressive models has been used as another
technique to predict power consumption. Time series analysis is a very popular technique for
prediction. However it assumes that the past trends remain same for the future in estimating
future values. The time series in this research has been based on the autoregressive model which
express the value of a certain variable as a linear function of its previous values. They have
used data from 1998 - 2005 as training, and 2006 - 2010 as test data. In our method also, we
will adopt some of this technique in determining the feature vector as described in chapter 5.

From the range of methods used, grey methods [13] have also been a major consideration
in terms of power prediction. Two models in grey methods: GM(1,1) and GM(0,N) have been
used to forecast power consumption in a research done by Fang et.al [5].

In addition to these approaches, one of the most widely used techniques to predict power
consumption is the neural networks as suggested in [8, 22, 23]. The research done by Fung and
Tummala [8] compares the techniques, multiple linear regression and artificial neural network
models, and concludes that ANN forecasts are at least as good as those generated by the multiple
linear regression model. For ANN, they have used delta rule learning and error propagation
methods to train the network. Different training and test datasets have been used in the span
from 1970 - 1992.

Moreover, these two methods have also been used by Dhulst et al. [22] to predict the electric
load consumed at a substation in Belgian electricity grid. In addition to that Quing et al. [23]
suggests genetic algorithm and RBF neural network can be used to forecast power consumption,
in which, GA optimizes the parameters of RBF neural network.

If we consider using of Gaussian processes in electricity consumption forecasting, we can find
mainly two researches. The first one done by Alamaniotis and Ikonomopoulos [4], in which they
apply genetic algorithm to determine the contribution from each independent predictor variable
in order to compute a Pareto optimal solution. In this, they have used a set of kernels(will be
defined in the next chapter) in the model. The kernel used in this technique are Neural Net,
Matérn, and Rational Quadratic. The second, conducted by Mori and Ohmi [11] used Gaussian
processes for daily power forecasting and a comparison has been done with MLP, RBFN and
SVR.
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Chapter 3

Gaussian Process and Regression

In this chapter we move on to the theoretical aspects of the main research area in this thesis -
Gaussian Processes. Before explaining that, we point to give a basic understanding about the
basics of random variables and Gaussian probability distribution. In section 3.3, we explain
about GP and in the following sections detail how the regression process is done using GP.

3.1 Random Variables

The concept of random variable can be explained by means of an experiment specified by the
space S. A random variable (RV) is a number X(s) assigned to every outcome sεS of that
particular experiment [24]. In fact, the random variable X is a function whose domain is s and
the range is the real numbers R. It could be mathematically expressed as:

X : S → R (3.1)

When we discuss about the distribution of a particular random variable, we consider two
functions: Cumulative distribution function (CDF) and probability density function (PDF) .
Therefore it is worth to know about these two functions before getting into the Gaussian prob-
ability distribution.

3.1.1 Cumulative Distribution Function

For any real number x from −∞ to +∞, the cumulative distribution function of a random
variable X is given by:

FX(x) = P{X ≤ x} (3.2)
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It is the probability that the value of the particular random variable X is less than or equal
to the considered value x. This scenario is visually illustrated in the diagram shown in Figure
3.1.

Figure 3.1: Illustration of Cumulative Distribution Function.

At −∞ the CDF takes its minimum value (i.e zero) and at +∞ it gets its maximum value(i.e
one).

We categorize random variables into two based on the CDF. If the distribution function of a
random variable is continuous, the random variable is said to be continuous, and if it is discrete
(i.e staircase type) the random variable is said to be discrete [24].

If we consider more than one random variable (i.e multivariate random variables) the dis-
tribution function is called as joint cumulative distribution function. For two random variable
X and Y, the joint distribution function is given as:

FXY (x, y) = P{X ≤ x, Y ≤ y} (3.3)

3.1.2 Probability Density Function

The next important function is the probability density function which is the derivative of the
CDF and can be given as:

fX(x) =
dFX(x)

dx
(3.4)

So as for CDF the density function can also be categorized into two types as continuous and
discrete. For multivariate case, the joint probability density is given as:

fXY (x, y) =
∂2FXY (x, y)

∂x∂y
(3.5)

See Papolis [24] for more information about the theories of random variables, CDF and
PDF.
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3.2 Gaussian Probability Distribution

Gaussian distribution is also termed as Normal distribution. Typically, a Gaussian (or Normal)
random variable X is denoted as X ∼ N(µ, σ2) where µ is the mean and σ is the standard
deviation. The PDF of a Gaussian distribution is given by the equation:

fX(x) =
1√
2πσ

e−(x−µ)
2/2σ2

(3.6)

The curve of the PDF against x takes a bell shape as shown in Figure 3.2. The bell shape
curve is distributed symmetrically about the mean µ and the curve tends towards the x axis
when the variance σ2 is increased indicating more deviation from the mean. In a Gaussian
distribution the total area under the curve always sums up to one.
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Figure 3.2: Gaussian Probability Distribution.

The concept of Gaussian distribution is extended to use in developing statistical models
such as Gaussian processes as we will discuss in the next section.

3.3 Gaussian Process

With the basic introduction given in the preceding sections about random variables, this section
outlines the theoretical aspects of Gaussian processes, which is the main area of focus in this
thesis. GP has its basic foundations from statistics and machine learning, and it is considered
as a general and rich framework which is related to a variety of other models such as Spline
models, Support Vector Machines (SVM) , Least-Square methods, Relevance Vector Machines
and Weiner filters [25].

Although GP has been in the use for a long time, it has not been extensively used in
forecasting when compared with the other competitive techniques such as ANN or time series
analysis. However, over the last decade it has become popular in the field of machine learning
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[25].

Gaussian process is a generalization of the Gaussian probability distribution we discussed in
section 3.2. Whereas a typical Gaussian distribution concerns about a single random variable,
a Gaussian process is associated with a collection of random variables that produces a pool
of functions relevant for prediction. In other words, Gaussian process is a distribution over
functions. The definition of Gaussian process is as follows [26]:

Definition 1. A Gaussian Process is a collection of random variables, any finite number of
which have a joint Gaussian distribution.

In general, the definition means that the joint PDF of the selected finite number of random
variables is normally distributed. The notation of Gaussian process is given as:

f(x) ∼ GP(m(x), k(x,x′)) (3.7)

where m(x) is the mean function and k(x,x′) is the covariance function. Instead of the
mean and variance of the Gaussian distribution, Gaussian process is fully described by its mean
function and covariance function.

3.3.1 Mean Function

The mean function m(x) is calculated as the expected value of f(x) as shown in equation 3.8.

m(x) = E[f(x)] (3.8)

In most of the prediction scenarios, the mean function is assumed to be zero, in which
the average value of the functions at each x in the prior Gaussian becomes zero. However,
Rasmussen and Williams [26] states that it is not always necessary to have a Gaussian with a
zero mean function. But in our case, we assume it to be zero for simplicity. More information
about the non zero mean functions could be found in [26].

3.3.2 Covariance Function

With the assumption of a zero mean function, the whole focus shifts on to the covariance
function k(x,x′), which is also known as the kernel function of the Gaussian process. Because
of the existence of a kernel function, Gaussian process gets the name kernel machines. This
kernel based non-parametric nature of GP makes it a more flexible model than the parametric
models [27].

The covariance between the two random variables f(x) and f(x′) is calculated as shown in
equation 3.9.

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (3.9)
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when m(x) = m(x′) = 0, then the covariance function is given as:

k(x,x′) = E[(f(x))(f(x′))] (3.10)

Note that, the covariance is measured between the function values f(x) and f(x′) although
the notation is given as k(x,x′). Whereas the variance is measured for a single random variable,
the covariance is a measure between two jointly distributed random variables. It evaluates how
closely the two random variables are related. In other words, it finds the correlation between
the two variables.

In GP learning, covariance function is the most significant function. The accuracy of the
predictions mainly depends on the kernel that we choose. Asheri et al. [25] mention that GP
can be made equivalent to the well known models such as large-scale neural networks, spline
models and support vector machines by employing a suitable kernel function. Therefore, an
appropriate function needs to be selected to approximate the kernel function.

This selected function should have certain characteristics as specified by Rasmussen and
Williams [26]. Mainly, the selected function should be positive semi-definite and symmetric (i.e
k(x, x′) = k(x′, x)).

In addition to these characteristics, most importantly, the function should be suitable for
the particular application, such that we can obtain a smooth GP for the application.

There are some common kernel functions that have been used mostly in applications, such as
linear, γ-exponential, rational quadratic, Matérn, piecewise polynomial and squared exponential
[25].

3.4 Regression Analysis

In supervised learning, we infer a function from the labelled training examples (training data).
Each of these training example is a pair consisting of an input object (typically a vector) and
an output value (scalar value).

Depending on the type of the output values, the problem of inferring falls into two categories:
regression and classification. When the output is continuous, the problem becomes regression
and when it is discrete (output is a class label of the input) the problem is a classification
problem. In this thesis, we focus on the problem of regression rather than classification.

Suppose we have a sample dataset with 5 inputs and their observed output values y, as
shown in Table 3.1. The problem in regression is to predict the output value y for the new
input value x=6 as shown in Figure 3.3. Each observation has a noise value as illustrated by
the error bars. Similarly we should estimate the error bars (the confidence interval) for the
predicted value in regression analysis.
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Table 3.1: Sample dataset for regression.

x 1 2 3 4 5 6

y 2.0 3.0 4.25 5.5 5.75 ?

Figure 3.3: A set of sample training data points with one test data point whose target value is unknown.

Inputs can be of single dimension or multiple dimensions. In general, it is a vector and the
output is a single scalar value.

As mentioned above, statistical inference can be performed by learning a function from the
sample training dataset with different input-output patterns. However the accuracy of inference
is solely based on the method we choose for the underlying function that maps the input to the
correct outputs.

3.5 Gaussian Process Regression

In this section we look at how Gaussian process can be used to perform regression. Before
seeing any data, first we have to assume the underlying function (Gaussian prior) and select
a proper covariance function. However, this selection of a proper kernel should be done in
accordance with the characteristics of the data considered. Then Gaussian process specified by
the respective kernel function will produce a distribution of random functions.

After the training data points are introduced , it selects the best matching functions from
the distribution that pass through or pass closely to the given data points. In this way it finds
the best possible set of functions from the Gaussian prior. For better forecasting accuracy, GP
requires adequate number of training samples.
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However, the selection of the best functions solely depend on the choice of kernel function
and its parameters. Although GP is a non parametric model, the kernel function is associated
with some parameters such as signal variance and length-scale parameter. These parameters
should be set properly for better learning experience.

Suppose we are given a training dataset D = {(xi, yi)|i = 1, 2, ..., n} with noisy observations,
and we need to predict the target value y∗ for the new input value x∗. The problem is to
learn a function from the dataset, which involves an assumed Gaussian prior of functions. In
fact, the observations and the underlying function f values are not the same due to the noisy
measurements of the observations. Therefore the targets can be represented as:

y = f(x) + ε, (3.11)

with the assumption of a Gaussian noise model represented by ε ∼ N(0, σ2n). The underlying
function f is approximated by a Gaussian process with zero mean function and a covariance
function. The most commonly used covariance function is the Squared Exponential covariance
function. Using this function we can express equation 3.7 as,

f(x) ∼ GP(0, k(x,x′)) (3.12)

k(x, x′) = σ2f exp[
(x− x′)2

2l2
] (3.13)

According to equation 3.11, the actual observations (i.e y) can be specified by adding the
noise model to the underlying function defined by equation 3.12. Then the covariance function
related to the target values y, denoted as cov(x, x′), can be given by:

cov(x, x′) = k(x, x′) + σ2nδ(x, x
′) (3.14)

where δ(x, x′) is the Kronecker delta function which is equal to 1 iff x = x′ and 0 otherwise.

Using the kernel function, the correlation between each and every training data point can
be measured. The matrix generated with each of these covariance value as elements is known
as the Covariance matrix and denoted by K.

K =


cov(x1, x1) cov(x1, x2) · · · cov(x1, xn)
cov(x2, x1) cov(x2, x2) · · · cov(x2, xn)

...
...

. . .
...

cov(xn, x1) cov(xn, x2) · · · cov(xn, xn)

 (3.15)

The corresponding covariance matrix between the training data points and the test data
points is given by K∗:
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K∗ =
[
cov(x∗, x1) cov(x∗, x2) · · · cov(x∗, xn)

]
(3.16)

K∗∗ specifies the covariance matrix between the test data points itself.

K∗∗ = cov(x∗, x∗) (3.17)

The joint distribution of the observations y and the predictions y∗, has been found as a
multivariate Gaussian distribution [28]:

[
y
y∗

]
∼ N

(
0,

[
K KT

∗
K∗ K∗∗

])
(3.18)

In fact, the actual prediction that we are interested in is given by the conditional distribution
of y∗ given y

y∗|y ∼ N(K∗K
−1y,K∗∗ −K∗K−1KT

∗ ) (3.19)

This particular distribution is known as the posterior Gaussian distribution. According to
Rasmussen and Williams [26], for any Gaussian posterior, the mean of the posterior distribution
is called as the Maximum a Posteriori (MAP) value, which is the best estimate for the variable
considered. In equation 3.19 the actual prediction y∗ is its mean, which is the MAP estimate:

ȳ∗ = K∗K
−1y (3.20)

The variance of the estimation is given by

var(y∗) = K∗∗ −K∗K−1KT
∗ (3.21)

The variance is used to calculate the 95% confidence interval of the prediction as±1.96
√
var(y∗),

which is approximately two times the standard deviation of the posterior distribution.

Now, let us apply these equations to the example shown in 3.3 and forecast the value of y
at x∗=6 using Gaussian process. Suppose σf=3.35, l=2.95 and σn=0.08. Using these value we
can calculate the covariance matrices K, K∗ and K∗∗ as follows:

K =


11.27 10.63 8.95 6.72 4.49
10.63 11.27 10.63 8.95 6.72
8.95 10.63 11.27 10.63 8.95
6.72 8.95 10.63 11.27 10.63
4.49 6.72 8.95 10.63 11.27

 (3.22)
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K∗ =
[

2.68 4.49 6.72 8.95 10.63
]

(3.23)

K∗∗ = 11.27 (3.24)

Applying these values to equations 3.20 and 3.21, we get the prediction of y at x∗=6 and
the variance of the prediction.

ȳ∗ = 5.06 (3.25)

var(y∗) = 0.14 (3.26)

Now we can visually illustrate the results, with the predicted value and the 95% confidence
interval as shown in Figure 3.4.

Figure 3.4: A set of sample training data points with the predicted target value of the test data point.

Equations 3.20 and 3.21 has a considerable computational issue because of the inverse op-
eration of K of size n2 [19]. Here n is the number of observations. Therefore, the complexity of
Gaussian process is O(n3). However it can be reduced to a complexity of O(nm2) by selecting an
active subset of columns of K. Here m is the rank of the matrix approximation [19]. Also cholesky
decomposition can be used to factorize K, to get a numerically stable approximation [19].
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3.5.1 Selection of Hyperparameters

The noise variance σ2n, and the parameters in the kernel function are taken as the free hyper-
parameters in Gaussian process. This is represented by the vector θ:

θ = {l, σ2f , σ2n} (3.27)

where l is the characteristic length scale, σ2f is the signal variance and σ2n is the noise variance.

In Gaussian Process Regression(GPR) , these three parameters are obtained by learning the
data. In general, it uses Bayesian model to infer these parameters. This method is known as
marginal likelihood maximization method. According to the Bayes rule, we can represent the
posterior probability of the parameters as follows:

p(θ|X, y) =
p(y|X, θ)p(θ)

p(y|X)
(3.28)

p(y|X, θ) is the marginal likelihood which is to be maximized, and p(θ) is the prior probability
of the parameters.

The marginal likelihood can be calculated by marginalizing the integral of the likelihood
and the Gaussian prior, over the latent function f.

p(y|X, θ) =

∫
p(y|f,X)p(f |X)df (3.29)

Both p(y|f,X) and p(f |X) follow Gaussian distributions. The log value of the marginal
likelihood gives the parameters which has been found as [26]:

L(θ) = log p(y|X, θ) = −1

2
yTK−1y − 1

2
log|K| − n

2
log2π (3.30)

The first term −1
2y

TK−1y represents the data-fit,which is the only term that contains the
observed target values. The second term is the complexity penalty and the last term is a
normalization constant.
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Chapter 4

Traditional Approaches of Electricity
Consumption Forecasting

In this thesis, results of Gaussian process are compared with the traditional techniques used for
electricity consumption forecasting. We have selected two such traditional techniques : Artificial
Neural Networks and Linear regression. The purpose of this chapter is to give the theoretical
foundations of both ANN and linear regression. Section 4.1 introduces the concepts of ANN
including its variants back-propagation and multiple back-propagation. Section 4.2 outlines the
basics of linear regression and multiple linear regression explaining how regression is performed
under different input variables.

4.1 Artificial Neural Networks

Artificial neural networks have been used for forecasting electricity consumption as we men-
tioned in chapter 1 and 2. In this section we go deeply into the theoretical aspects of ANN,
and back-propagation based ANN which we use to test our dataset, to compare the results with
Gaussian processes.

4.1.1 Introduction to ANN

The concept of ANN arises from the knowledge of the biological nervous systems [29]. The
nervous system is constructed by a number of structural constituents known as neurons, which
are connected to each other by links. This network of neurons connected through links, is
referred to as a neural network.

A neuron is defined by Patterson [29] as follows:

A neuron is a small cell that receives electrochemical stimuli from multiple sources
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Figure 4.1: A typical neuron in a biological nervous system.
[Source:http://www.mindcreators.com/NeuronBasics.htm]

and responds by generating electrical impulses that are transmitted to other neurons
of effector cells.

There are about 1010 to 1012 neurons in the human nervous system [29], which contains
trillions of interconnections between them that makes it a highly complex system. Basic com-
ponents of a typical neuron cell is illustrated in Figure 4.1.

The cell body is known as the Soma. A neuron cell has an input side and an output side.
The input side is the one which is named as dendrites in the figure. Dendrites are connecting
the outputs from the other neurons to this neuron through synapses. There are a number of
various synaptic connections to the neuron from which it can receive input signals. The outputs
are carried through the axon to other neurons (through dendrites) or directly to effector organs
such as muscles and glands.

Neurons can be categorized into three as input, output and intermediate neurons. In the
human body, input and output neurons constitute 10% of the neurons and the remaining 90%
store informations and other signal transformations [29].

These concepts of neurons and biological nervous system have led scientists to develop the
artificial neural networks.

4.1.2 Back-Propagation Neural Networks

Back Propagation Neural Network(BPNN) , one form of ANN, is a non parametric statistical
modelling technique, which is used in regression. It is considered by Smith [30] as the only form
of neural network which has produced a number of commercial applications. It is a feed-forward
network which has the ability to propagate prediction error, back to the network as a feedback
and improve its results.

In its simplest form, a BPNN basically composed of three layers of neurons(nodes) - input
layer, hidden layer and output layer. Figure 4.2 depicts a typical feed-forward network with
these three layers. It consist of 4 input nodes (representing four independent variables), 3
hidden nodes (which performs the basic calculations) and 2 output nodes(representing two
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Figure 4.2: A typical feed-forward network used for back-propagation

output variables).

Each layer in the BPNN is associated with a particular functionality. Similar to the biological
nervous system, the input nodes in the BPNN receives input values. But in this case, they
receive the values of the independent variables used in the training process. If there are n
number of variables in the feature vector, the network requires n input nodes in the input
layer to accommodate the corresponding variables. The output nodes represent the dependant
variables that needs to be estimated by the network. They output the estimated values of the
dependant variables. Hidden layer is the intermediate layer which does the basic inner workings
of the neural network, and also got its name hidden as it acts as a black box to the outside
environment.

Every node in each layer is connected to the next layer by links ,which is analogous to the
synaptic connections and dendrites in the biological nervous system. However, note that, there
is no process like back-propagation in actual human brain [30].

Now we should pay our attention as to how BPNN estimates the values of the output
variables given the training set of input-output pairs. Back-propagation involves two types of
passes: a forward pass, which is referred to as a mapping from inputs to outputs, and a backward
pass, which is referred to as the learning of the network.

In forward pass, a relationship, which is a mathematical equation, is generated (called the
mapping function) between the input nodes and the output nodes across different connections
in the network. Each connection between neurons has a certain strength which is termed as
the weight between the two neurons. These weights play an important role in BPNN as they
change their values in order to obtain better estimates.

The mapping function is built by using some standard functions. These functions used in the
neural networks is so flexible that it can be configured to be close to any target function [30]. It
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Figure 4.3: The logistic function which is one type of sigmoid functions.

achieves this flexibility from the weights of the equation. In general, this function is constructed
basically by the sigmoid functions.

A sigmoid function takes the S shape. It should be bounded (i.e has an upper limit and
a lower limit), monotonically increasing and differentiable. The most commonly used sigmoid
function used in neural networks is the logistic function [30] depicted in equation 4.1.

g(x) =
1

1 + e−x
(4.1)

Figure 4.3 illustrates the curve for the logistic function between the interval -4 and +4.

Now we must look at how the mapping function is constructed in a back-propagation neural
network. Suppose the network has two input nodes, two hidden nodes and one output node as
shown in Figure 4.4. x1 and x2 are the two input values. wij are the weights of each link from
the input neurons and the hidden neurons where i = 1, 2 and j = 1, 2 for Figure 4.4. These
weights are stored in the memory of hidden neurons. In addition to that, each hidden neuron
stores a bias values which are shown as b1 and b2 in the figure. u1 and u2 are calculated in the
hidden layer as a weighted sum of each input value as shown in equation 4.2 and 4.3.

u1 = b1 + x1w11 + x2w12 (4.2)

u2 = b2 + x1w21 + x2w22 (4.3)

Instead of outputting u1 and u2, the hidden neurons output the logistic values of them as the
inputs to the next layer. Therefore the two outputs y1 and y2 can be expressed as in equation
4.4 and 4.5 using 4.1.
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Figure 4.4: A BPNN with weights and bias values. Neurons are represented by circles and bias by
triangles.

y1 = g(u1)

= g(b1 + x1w11 + x2w12)

=
1

1 + e−(b1+x1w11+x2w12)
(4.4)

and

y2 =
1

1 + e−(b2+x1w21+x2w22)
(4.5)

Now y1 and y2 become the inputs to the output node o. The output node also perform a
similar calculation to generate the final output value z. Similar to the hidden nodes, the output
node also has a bias value b and weights for each connection link (i.e wo1 and wo2). The output
value z is given by

z = g(o)

=
1

1 + e−o
(4.6)

where o is the weighted sum of the outputs coming from the hidden layer

o = b+ y1wo1 + y2wo2 (4.7)

In general, for a BPNN with K output nodes and J hidden nodes the output of the network
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can be given as [30]:

zk = g(ok), k = 1, ...,K (4.8)

where,

ok = bk +

J∑
j=1

wjkyj (4.9)

In general, if we assume a multilayer network with n input nodes, J hidden nodes and one
output node. The equation 4.2 is generalized to

uj = bj +

n∑
i=1

xiwji, j = 1, ..., J (4.10)

and the generalized output from the hidden nodes can be calculated using the logistic func-
tion.

yj = g(uj) j = 1, ..., J

= g

(
bj +

n∑
i=1

xiwji

)
(4.11)

The final estimated output can be found by applying the weighted sum and subsequently
applying the activation function to it as follows.

o = b+
J∑
j=1

yjwoj (4.12)

and hence the final output z can be represented as a function of input x as follows,
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z = g(o)

= g

b+

J∑
j=1

yjwoj


= g

b+

J∑
j=1

[
g

(
bj +

n∑
i=1

xiwji

)
woj

] (4.13)

After the forward-pass is finished and the output is calculated, the backward-pass com-
mences. This is also known as the learning process. The learning here refers to adjusting the
weights we discussed above such that the mean squared error between the estimated and target
values gets smaller. The method used to achieve this is gradient descent. The adjustment to
the weights is done in the backward process by propagating the mean squared error from the
output side to the hidden nodes. Therefore this method gets the name back-propagation . The
training examples are feed to the network and possible output pattern is generated in forward
pass. Then the estimated output pattern is compared with the desired output pattern and the
difference is propagated in backward pass indicating the direction in which the correct adjust-
ments should be made. In this way the weights between the hidden layer and the output layer
are adjusted. This process is repeated a considerable number of iterations (known as epochs)
until the total average error of the outputs converges to a minimum value.

4.1.3 Multiple Back-Propagation

In this thesis, we use the MBP Software1 developed by Lopes and Ribeiro [2], to test for
neural networks. In [2] they describe about Multiple Back-Propagation (MBP), which is a
generalization of the BP algorithm.

Here, a Multiple Feed-Forward network is used, which is obtained by integrating two FF
networks : Main network and space network as shown in Figure 4.5.

The output of selective activation neurons in the main network is given by [2]:

ypk = mp
kFk(

N∑
j=1

wjky
p
j + θk), (4.14)

where ypk is the output of neuron k for pattern p, mp
k the importance of the neuron for the

output of the network, Fk the neuron activation function, θk the bias and wjk the weight of the
connection between neuron j and k. The main network can calculate its output only after the
space network outputs are calculated. In the learning pass, the weights of both the networks

1This software could be downloaded for free from http://dit.ipg.pt/MBP/Download.aspx
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Figure 4.5: A Multiple feed-forward network. Hidden and output neurons are represented by circles,
input neurons by squares, and bias by triangles [2].

should be adjusted. For more information about MBP networks see [2,31,32], and in Appendix
A we have included some screen shots of the tool used for forecasting using MBP network.

4.2 Linear Regression

Linear regression is a common regression technique used in most inferring problems. Unlike
neural networks, it lacks the ability to capture non-linear relationships between variables. How-
ever it is considered as one of the methods, which is easy to fit and highly scalable [19]. In
the following sections we will describe basic theoretical aspects of linear regression and multi-
ple linear regression and how we can use it to infer predictors using IBM SPSS ® Statistics
software.

4.2.1 Statistical Significance

Before moving into the prediction, lets consider about the significance value which is mostly
used in linear regression. It is also termed as significance or probability which is denoted by the
letter p. The likelihood that a particular outcome may occur by chance is given by the p value.

It can be used to identify whether two or more variables are correlated to each other signifi-
cantly. So we should always try to find a very smaller p value for valid results. Social scientists
have accepted that a p value less than 0.05 is statistically a significant correlation [33].
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Figure 4.6: Scatter plot of the sample dataset.

4.2.2 Linear Regression

Linear regression analysis is a way of testing hypothesis concerning the relationship between
two numerical variables and a way of estimating the specific nature of such relationships [34].
The relationship is expressed in the form of an equation or a model connecting the dependant
variable and one or more independent variables depending on the problem of interest. The
method of least squares is used most frequently in fitting a line in linear regression.

The simplest relationship between an independent variable x and a dependant variable y is
represented as

y = β0 + β1x+ ε (4.15)

where β0 is the intercept and β1 is the slope. The random error term is given by ε which
should be normally distributed with 0 mean and at each possible value of x, the variance of ε|xi
should be constant and it should be independent of the other errors [34]. Normally we examine
the residuals which are the differences between the observed values (y) and the estimated values
to approximate this error term.

These unknowns have to be found using the samples in the training dataset. Lets consider
the sample dataset found in Table 3.1 in chapter 3, which has an independent variable x and
dependant variable y as shown in Figure 4.6.

SPSS generates four tables in linear regression analysis. Table of variables in the regression
equation, a model summary, an ANOVA table, and a table of coefficients.
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Table 4.1: Variables table.

Model Variables Entered Variables Removed Method

1 x Enter

A variables table with only one independent variable is shown in Table 4.1. We can have
multiple linear regression models if we have multiple variables based on the variables in the
Entered and Removed columns. However in this case there is only one model due to the
availability of one independent variable.

Table 4.2: Model summary table.

Model R R Square Adjusted R Square Std. Error of the Estimate

1 .984 .969 .958 .32914

The model summary table shown in Table 4.2 illustrates the goodness of fit in regression.
Here, R is the correlation coefficient which ranges from -1 to +1 and R2 is the coefficient of
determination which is the squared of R. If R2 is equal to 1, then it is a perfect fit. The value
in the given table (i.e 0.969) is very close to one, meaning that the points in the dataset are
experiencing a very good linear relationship. The adjusted R square value is a more better value
than R square value which can be used for population estimates specially in multiple regression.

The third table is the ANOVA table. ANOVA is used to compare three or more means to
one another. For a single independent variable it is called one-way ANOVA [34].

Table 4.3: ANOVA table.

Model Sum of Squares df Mean Square F Sig.

1 Regression 10.000 1 10.000 92.308 .002
Residual .325 3 .108
Total 10.325 4

The Sig value is also known as the P-value and, if it is less than 0.05 we say the ANOVA
is significant( F value is significant) and it can be concluded that there is a regression in the
model. The F value in the table is known as the Levene statistic. In Table 4.3, the p value is
less than .05, and therefore we can conclude that the two variables are statistically significant.
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Figure 4.7: Fitted line for the sample dataset.

Table 4.4: Coefficients table.

Model
Unstandardised Coefficients Standardized Coefficients

t Sig.
B Std.Error Beta

1 (Constant) 1.100 .345 3.187 .050
x 1.000 .104 .984 9.608 .002

The last table is the table of coefficients. We know that β0 and β1 are the coefficients in
equation 4.15. The first value in column B (i.e 1.100) is the intercept β0 and the second value
1.000 is the slope β1. If we consider the t value and the significant value for the slope, the
significance value is less than 0.05 meaning that there is a statistically significant relationship
between x and y.

Using thes information we can interpret equation 4.15 as follows for the considered dataset.

y = 1.1 + x+ ε (4.16)

The fitted line for the above discussed dataset could be illustrated as shown in Figure 4.7.
Now we can estimate the output of the target variable when x=6, i.e y=7.1.

But now we should pay our attention to the error term (or disturbance) of the fitted line.
For this, we have to look at Table 4.2. The standard error of the estimate .329, is a measure of
the variability of the random error. This can be used to calculate the 95% confidence interval
by multiplying by two. This can be considered as the residual error term for the regression line.
Therefore our estimate for y should be as follows:

y = 7.1± 2× .329

32



CHAPTER 4. TRADITIONAL APPROACHES OF ELECTRICITY CONSUMPTION
FORECASTING

Figure 4.8: The normal P-P plot of regression, which is used for residual analysis.

Figure 4.9: Graph of standardized predicted value versus standardized residual value, which is used for
residual analysis.

y = 7.1± .658

To find out the validity of the first assumption of the residuals (i.e normality) we look at
the normal probability plot as shown in Figure 4.8.

The assumption of equal variances can be identified by the scattered plot of the standardized
residuals versus the standardized fitted values. [34]. This is illustrated in Figure 4.9.
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4.2.3 Multiple Linear Regression

In section 4.2.2, we discussed how one independent variable linearly related to a dependant
variable. Now we discuss how several independent variables affect a dependant variable.

For example, suppose we have two independent variables and one dependant variable. Then
the regression equation is

y = β0 + β1x1 + β2x2 + ε (4.17)

If we look at Table 4.5, we can see the Pearson correlation coefficients for each variable. The
coefficient for x1 and y is -.165 and for x2 and y it is -.018. Both have a negative value meaning
that they have negative relationship with y. But x1 is more correlated with y and it influence
y more.

Table 4.5: Correlation for multiple variables.

y x1 x2

Pearson Correlation y 1.000 -.165 -.018
x1 -.165 1.000 -.048
x2 -.018 -.048 1.000

Sig. (1-tailed) y .003 .383
x1 .003 .213
x2 .383 .213

N y 279 279 279
x1 279 279 279
x2 279 279 279

Table 4.6: Coefficients for multiple variables.

Model
Unstandardised Coefficients Standardized Coefficients

t Sig.
B Std.Error Beta

1 (Constant) 23.195 8.227 2.819 .005
x1 -.057 .020 -.166 -2.802 .005
x2 -.106 .243 -.026 -.436 .663

We can generate the equation for the fitted line by referring to the B value in Table 4.6.

y = 23.195− .057x1 − .106x2 + ε (4.18)

However when referring to Table 4.6 the Significance value of x2 is greater than the P value
.05. Therefore we can conclude that x2 has no significant relationship to y. In such case, we can
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remove x2 from the model as it does not affect the dependent variable. But there is a certain
standard criteria for selecting and removing variables for a model.

Variable selection criteria

Although there are many predictor variables, all of them may not influence the behaviour of the
response variable. Therefore, there should be a way of picking up the most significant variables.
There are basically three methods for model selection: forward selection, backward selection
and stepwise selection.

In forward selection, first the best predictor with the highest correlation with the dependant
variable will be selected. In the next step, another variable is selected if it makes a significant
variability to the model. Likewise, variables are added if they influence the behaviour of the
dependant variable. This will end when there is no additional variables that significantly influ-
ence the behaviour. Normally the end condition will meet if the variable has a p value more
than 0.05.

In backward selection, first add all the variables in the experiment to the model and remove
one by one in each step until the stop condition is met. In general, if there are no more variable
with a p value greater than or equal to 1.0 the process terminates.

Stepwise method combines both forward and backward methods, by dropping and adding
variables at various steps. This is probably the most frequently used method of the three [33].
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Chapter 5

Short-term Forecasting of Electricity
Consumption using GP

In chapter 3, we discussed about the basic theoretical aspects of GP and GP regression. In this
chapter we will explore how GP can be used to forecast electricity consumption based on the
different factors influencing the consumption. We use pyXGPR [35] python code library to test
GP regression. Section 5.1 finds the annual, seasonal and weekly cyclic patterns of consumption.
With the idea of these cyclic patterns, section 5.2 designs the feature vector appropriate for
forecasting electricity consumption. In section 5.3, we analyse two target variables and propose
testing for them. Section 5.4 applies reduction and normalization to the feature space to improve
results of forecasting. Finally in section 5.5 we discuss about the kernel function used in our
work to test GP.

5.1 Cyclic Patterns of Consumption

As we mentioned in previous chapters, in this thesis, short term forecasting problem refers to;
forecasting the consumption of the next hour and the next 24 hours. Our dataset consists of
the power consumption data of three successive years: 2008, 2009 and 2010. In order to make
the problem simple, we use the time horizon depicted in Figure 5.1 to find out cyclic patterns.
We mainly focus on three stages in the hierarchy : annual, seasonal and weekly as described
below.

5.1.1 Hourly Consumption on Annual Basis

In the process of searching for cyclic patterns we start from the top of the time horizon: annual
consumption. We can observe how the hourly power consumption has behaved over the years
considering 2008, 2009 and 2010. Figure 5.2 illustrates the mean hourly power consumption in
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Figure 5.1: Time horizon hierarchy.

Figure 5.2: Mean hourly electricity consumption in 2008, 2009 and 2010.

all three years.

As can be seen from the figure, there is a certain pattern of mean power consumption.
Higher power consumption could be observed at day time than at night which is quite acceptable
because of the industrial power usage at day time. Hour 9 is the peak hour and hour 2 gives the
lowest consumption for all 3 years. Although 2008 has a higher consumption compared to the
other two, all of them displaying unique patterns in consumption. In 2008, the consumption
ranges from 260 to 360 MWh/h , 250 to 340 MWh/h in 2009, and 250 to 340 MWh/h in 2010.
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These unique patterns lead us to convincingly justify that the yearly behaviour of consumption
is almost identical.

5.1.2 Hourly Consumption on Seasonal Basis

Next, we look at the seasonal behaviour of the dataset to analyse for the four seasons: winter,
spring, summer and autumn. We consider the seasons according to the classification illustrated
in Table 5.1.

Table 5.1: Seasons and their durations.

Season Duration

Winter December-January-February
Spring March-April-May
Summer June-July-August
Autumn September-October-November

According to Figure 5.3, the four seasons have four different consumption patterns, where
winter experiences the highest demand and summer the lowest. Spring and autumn have some-
what closer consumptions, but the two patterns are different from each other.

This is a clear indication that the electricity consumption has a very close relationship with
the weather condition, especially for a country like Norway. During the winter season, we know
that a lot of electricity is consumed for lighting and heating. This might be one of the main
reasons why winter has much more consumption. This usage is completely turned upside down
when summer comes.

For year 2009, the four seasons showing an identical behaviour as shown in Figure 5.4.
In winter and summer it exhibits the same patterns like in 2008. However, there is a slight
difference in spring and autumn.

Figure 5.5 depicts the electricity consumption for 2010 based on the four seasons, where we
can observe a similar behaviour to 2009.

However, the overall patterns of all the three years are identical when we consider each
season separately. Therefore, we can conclude that the seasonal cyclic pattern as a very good
foundation for doing forecast.

5.1.3 Hourly Consumption on Weekly Basis

The weekly behaviour of power consumption can be considered as a decisive feature for pre-
diction. In general, the weekday values are different from week end values as a result of the
industrial power demand on weekdays.
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Figure 5.3: Mean hourly electricity consumption for different seasons in 2008.

Figure 5.4: Mean hourly electricity consumption for different seasons in 2009.

Now let us examine how the different days of the week behave in consuming electricity.
Figure 5.6 illustrates the mean power consumption on Mondays in year 2008, 2009 and 2010.

Figure 5.7 highlights the behaviour on Tuesdays which has a similar pattern like Monday,
with almost similar magnitudes.
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Figure 5.5: Mean hourly electricity consumption for different seasons in 2010.

(a) (b)

(c)

Figure 5.6: Mean hourly electricity consumption on Mondays in year (a) 2008 (b) 2009 and (c) 2010.
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(a) (b)

(c)

Figure 5.7: Mean hourly electricity consumption on Tuesdays in year (a) 2008 (b) 2009 and (c) 2010.

Wednesdays and Thursdays experience similar patterns like Mondays and Tuesdays. These
figures are not illustrated here for clarity and refer Appendix for the corresponding figures.

However, Friday has a slightly deviated pattern from previous weekdays in between hours 15
to 18. But it does not affect very much for the rest of the hours of the day. The corresponding
graph for Fridays is shown in Figure 5.8.
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(a) (b)

(c)

Figure 5.8: Mean hourly electricity consumption on Fridays in year (a) 2008 (b) 2009 and (c) 2010.

Figure 5.9 illustrates the difference of power consumption on Saturdays compared to week-
days. Much apparent variations could be observed on Saturdays, especially in the day time and
evening times.
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(a) (b)

(c)

Figure 5.9: Mean hourly electricity consumption on Saturdays in the year (a) 2008 (b) 2009 and (c)
2010.

Finally, the analysis of Sundays mean hourly consumption provides a graph with somewhat
different but still similar pattern like Saturdays. Despite some discrepancies, the two behaviours
could be taken as akin.
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(a) (b)

(c)

Figure 5.10: Mean hourly electricity consumption on Sundays in year (a) 2008 (b) 2009 and (c) 2010.

5.2 Feature Vector Design

From the preceding section, we identified the cyclic patterns associated with the electricity
consumption, especially on annual, seasonal and weekly basis. When designing the feature
vector we should take this into consideration. As we are focusing on short term forecasting on
hourly basis and do testing for one year, we can ignore the annual pattern. However we have to
deal with the other two in some way. Therefore we decide to divide test on the basis of seasonal
prediction, which means we have to perform testing for each of the seasons separately.

When we look into the dataset, among all the independent variables - temperature, wind
speed, cloud cover and yesterday power consumption, not all of them influence the consumption
in considerable magnitude. For daily power consumption, Milindanath and Waseem [21] has
found that yesterday power consumption, temperature and wind speed as the most powerful
features which can be used to infer future power consumption. In general, yesterday power con-
sumption has the highest influence whereas the other two have lower impact on the prediction.
Therefore, these features could be taken as the foundation for the selection of a proper feature
vector for the hourly prediction of power. In addition to that as we have found in section 5.1,
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different hours have different consumptions and different days especially weekends and week-
days have different consumptions. Therefore we need to include these two factors in the feature
vector of independent variables.

Therefore we outline the following factors as the inherent features of the feature vector.

� Temperature

� Previous hour consumption

� hour

� day

In addition to these main factors, we also extend the feature vector to facilitate historical
behaviour of temperature and power consumption to see how they affect to the future consump-
tion. Therefore we include power consumption before two hours , previous hour temperature and
temperature before two hours as additional features in the vector. Finally the feature vector is
composed of the factors as summarized in Table 5.2.

Table 5.2: Variables considered in the feature vector and their notations.

Feature variable Notation

previous hour consumption Pt−1

hour before last hour consumption Pt−2

current hour temperature Tt

previous hour temperature Tt−1

hour before last hour temperature Tt−2

current hour Ht

current day Dt

5.3 Target Variable Analysis

It is obvious that in this analysis, the target variable is the power consumption of the next hour
(Pt) and the next 24 hours (Pt, Pt+1, Pt+2, ..., Pt+23). But in order to perform the estimates, we
model a different a target variable using the dataset.

It is not always true that the power consumption of a particular hour remains the same
value in each year. There can be a significant deviation in the consumptions. This could be
observed referring to Figure 5.2.

As an alternative approach we can think that the difference between two consecutive hours
remains same as the patterns for the years remains almost same. For example in Figure 5.2, we
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measure the distances between successive hours from 0 to 23. Table 5.3 depicts the corresponding
distances, according to which all the three years have quite similar distances for all the hours.
However, the distances are different between different successive hours as it should normally be.

Table 5.3: Differences of mean power consumption (MWh/h) between successive hours of the 3 years

From-To (hour) 2008 2009 2010

0-1 -6.06 -5.84 -5.36
1-2 -2.07 -1.95 -1.60
2-3 0.12 -0.02 0.31
3-4 5.16 4.79 4.44
4-5 20.23 17.76 16.99
5-6 32.93 29.65 27.10
6-7 24.13 21.15 18.95
7-8 9.42 7.64 6.57
8-9 2.98 1.28 1.24
9-10 -1.98 -2.27 -2.48
10-11 -4.84 -4.60 -4.73
11-12 -5.14 -4.59 -4.97
12-13 -3.46 -3.08 -3.01
13-14 -2.74 -2.03 -1.61
14-15 -1.33 -0.20 -0.05
15-16 0.95 1.30 1.87
16-17 0.68 1.34 1.59
17-18 -0.19 0.66 1.14
18-19 -3.20 -0.85 -1.12
19-20 -6.12 -3.68 -3.60
20-21 -9.69 -8.59 -7.84
21-22 -16.28 -15.96 -14.38
22-23 -19.57 -18.90 -17.33
23-0 -13.92 -13.04 -12.09

Anyway this consistency can be used to model a new target variable, that is the power
difference between the current hour and previous hour (for 24 hour case: between the considered
hour and previous hour). Let us denote this as δPt for the current hour and previous hour. This
can be used as the new target variable and once the prediction is made, the actual prediction
could be obtained as shown in the following equation generalized for 24 hours prediction.

Pt+i = Pt−1 + δPt+i, i = 0, 1, ...23 (5.1)

5.4 Feature Space Reduction and Normalization

After the feature vector and the target variable is fixed, we need to do some fine tuning to the
dataset in order to see how these variations affect to the final prediction. In this section, we
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introduce two such techniques: reduction and normalization.

Kernel reduction is the technique we adopt here for space reduction. This is done by using
the GP kernel cov(x, x′) . Algorithm 1 shows how the reduction is done.

Algorithm 1 Feature space reduction using kernel function

V = Feature Vector of N data points
Calculate K∗ for V
Ks =Sort(K∗)
Select first M points from Ks

In section 5.2, we developed a model for feature vector consisting of different predictor
variables. But the values represented by these variables fall into different ranges. Therefore
there is an inconsistency in their ranges. A unit increment in one variable may not be same
as a unit increment in another variable. See Table 5.4 for the range of values in the predictor
variables for 2008.

Table 5.4: Range of values of different predictor variables in 2008.

Feature variable Range

previous hour consumption 112.785 MWh/h - 566.441 MWh/h
hour before last hour consumption 112.785 MWh/h - 566.441 MWh/h

current hour temperature -16.5 �- 30.6 �
previous hour temperature -16.5 �- 30.6 �

hour before last hour temperature -16.5 �- 30.6 �
current hour 0 - 23
current day 1 - 7

To bring these different scales to a standard scale, we use normalization. Normalization has
to be done for each variable based on their mean value (µ) and the standard deviation value
(σ) of the distribution. Equation 5.2 can be used for normalizing a particular variable which
has the value x.

Zx =
x− µ
σ

(5.2)

5.5 Kernel Function

The squared exponential covariance function (kernel function) used in [28] is used in this re-
search. The kernel function k(x, x′) is given by,
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k(x, x′) = σ2f exp[
(x− x)2

2l2
] + σ2nδ(x, x

′) (5.3)

where σ2f is the signal (noise free) variance, l is the length scale parameter, and δ(x, x′) is
the Kronecker delta function, which is equal to 1 iff x = x′ or 0 otherwise. The three parameters
σ2f , l, and σ2n are called hyperparameters (θ) which plays a very significant role in GP prediction.
Optimum values set to this, would result in better prediction. Optimum values for these will
be found using the maximum likelihood technique discussed in chapter 3

Using this kernel function, GP creates the covariance matrix K for all the points in the input
feature vector. This covariance matrix is used later in predicting the corresponding target values
given the input. This matrix is given by:

K =


k(x1, x1) k(x1, x2) · · · k(x1, xn)
k(x2, x1) k(x2, x2) · · · k(x2, xn)

...
...

. . .
...

k(xn, x1) k(xn, x2) · · · k(xn, xn)

 (5.4)

The maximum value an element in this matrix can obtain is σ2f + σ2n, when the two points
coincide each other. If the two points are far away (cannot see each other)from each other then
the value of the element reaches 0. In this way GP identifies the best pairs as the ones with the
highest element values. GP also needs to calculate the covariance matrices for the prediction
point with the other points and with itself. These two matrices are given in equation 5.5 and
5.6.

K∗ =
[
k(x∗, x1) k(x∗, x2) · · · k(x∗, xn)

]
(5.5)

K∗∗ = k(x∗, x∗) (5.6)
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Chapter 6

Experiments and Results

In this chapter we illustrate the empirical forecasting results obtained through Gaussian pro-
cesses and other traditional methods. Here, we denote the actual consumption value at time t as
At and the forecast value at the same instance as Ft. Based on this notation, error measurements
are calculated in the following forms:

Mean Squared Error (MSE)

MSE =
1

N

N∑
t=0

(At − Ft)2 (6.1)

Mean Absolute Error (MAE)

MAE =
1

N

N∑
t=0

|At − Ft| (6.2)

Mean Absolute Percentage Error (MAPE)

MAPE =
100

N

N∑
t=0

∣∣∣∣At − FtAt

∣∣∣∣ (6.3)

6.1 Gaussian Process

For Gaussian processes, we perform testing in two basic ways. First we predict the next hour
power consumption taking 169 hours in the future as test data, starting from hour 23 of February
05th, 2009. For this case we use the previous 800 data points (hours) for each hour as the
training dataset. Therefore we name it as dynamic dataset as the dataset always changing for
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Table 6.1: Fixed training and test datasets.

Training dataset Test dataset

Winter 15.12.2008 Hour 00 - 17.01.2009 Hour 08 17.01.2009 Hour 10 - 24.01.2009 Hour 11
Spring 31.03.2098 Hour 00 - 03.05.2009 Hour 08 03.05.2009 Hour 10 - 10.05.2009 Hour 11
Summer 05.06.2009 Hour 00 - 08.07.2009 Hour 08 08.07.2009 Hour 10 - 15.07.2009 Hour 11
Autumn 15.09.2008 Hour 00 - 18.10.2009 Hour 08 18.10.2009 Hour 10 - 25.10.2009 Hour 11

each hour. The second method is using a fixed dataset based on the four seasons in the year:
winter, spring, summer and winter. The training and test datasets considered are shown in
Table 6.1. In the next section, we start with the first method to see how the predictor variables
behave in predicting δPt and Pt, for the next hour. Forecast results for the next 24 hours will
be given in section 6.1.7.

6.1.1 Dynamic Training Dataset - Original Data

First we will apply GP for the original dataset without any reduction or normalization. The
results shown in Table 6.2, corresponds to the experiment where δPt is used as the target
variable. The best prediction result is given by the signature Pt−1, Tt, Tt−1, Ht, Dt which has a
MAE of 2.472 and a standard deviation 2.052. For all the combinations, the MAE value lies
between 2 and 5, and eight combinations out of nine, have a MAPE of less than 1%, which is
a promising figure. The first 5 combinations have excellent results with a consistent percentage
error of approximately 0.5%.

Table 6.2: Results for the prediction of power difference for original dataset.

Signature MAE
(MWh/h)

MSE
(MWh/h)

σ
(MWh/h)

MAPE (%)

Pt−1, Tt, Tt−1, Ht, Dt 2.472 10.300 2.052 0.508
Pt−1, Tt, Ht, Dt 2.629 11.770 2.211 0.536
Pt−1, Tt−1, Tt−2, Ht, Dt 2.652 12.000 2.236 0.541
Pt−1, Tt−1, Ht, Dt 2.678 12.061 2.219 0.546
Pt−1, Tt, Tt−1, Tt−2, Ht, Dt 2.826 14.408 2.542 0.576
Pt−1, Pt−2, Ht, Dt 3.039 23.691 3.814 0.617
Pt−1, Pt−2, Tt−1, Tt−2, Ht, Dt 3.244 22.88 3.526 0.668
Pt−1, Pt−2, Tt, Tt−1, Tt−2, Ht, Dt 4.365 37.027 4.252 0.908
Pt−1, Pt−2, Tt, Tt−1, Ht, Dt 4.948 43.952 4.426 1.024

Figure 6.1, illustrates the results for the best combination. We can observe how closely the
actual and predicted are plotted. Slight deviations could be observed in the bends of the curve.
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Figure 6.1: Actual and predicted electricity consumptions of the combination Pt−1TtTt−1HtDt for the
original data set with δPt as the target variable.

The same experiment was done by just changing the target variable to actual power con-
sumption Pt rather than the difference. Table 6.3 depicts the results for this case.

Table 6.3: Results for the prediction of power consumption for original dataset.

Signature MAE
(MWh/h)

MSE
(MWh/h)

σ
(MWh/h)

MAPE
(%)

Pt−1, Tt, Tt−1, Tt−2, Ht, Dt 3.926 48.455 5.766 0.838
Pt−1, Pt−2, Ht, Dt 5.288 134.092 10.333 1.108
Pt−1, Tt−1, Ht, Dt 8.265 1777.712 41.468 1.637
Pt−1, Pt−2, Tt−1, Tt−2, Ht, Dt 9.653 1691.942 40.104 1.978
Pt−1, Tt, Tt−1, Ht, Dt 12.682 4009.561 62.223 2.711
δPt−1, δPt−1, Tt, Tt−1, Ht, Dt 18.277 1339.698 31.807 3.673
δPt−1, Tt, Tt−1, Ht, Dt 20.622 1656.488 35.194 4.206
Pt−1, Pt−2, Tt, Tt−1, Tt−2, Ht, Dt 21.310 4084.106 60.429 4.429
Pt−1, Tt−1, Tt−2, Ht, Dt 67.097 31974.840 166.245 13.324

The best prediction is given by the combination Pt−1, Tt, Tt−1, Tt−2, Ht, Dt, which has a
MAE of 3.926. But we can see even the best result is not good like the previous case, where we
can see the first seven results in Table 6.2 are better than the best result in this case. On the
other hand, the standard deviation is also very high when we compare with the previous test.
Therefore, we can see that there are predictions which are very far from the actual value when
we use Pt as the target variable. The best prediction combination for the power difference case
is not giving best results in this case (see the 5th record from the top). Also note that in this
test we have used power difference (δPt−1 and δPt−2) as input variables as a trial to see how
they behave. But the results are not that promising according to the table. The corresponding
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graph for the best prediction is illustrated in Figure 6.2. See how it deviates from the actual
curve when compared with Figure 6.1.
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Figure 6.2: Actual and predicted electricity consumptions of the combination Pt−1TtTt−1Tt−2HtDt for
the original data set with Pt as the target variable.

6.1.2 Dynamic Training Dataset - Kernel Reduced Data

Now we use the kernel reduction method discussed in the previous chapter, for the previous 800
training data and select the best 700 values, based on the best kernel values. The results for
the δPt prediction is given in Table 6.4.

Table 6.4: Results for the prediction of power difference for kernel reduced dataset.

Signature MAE
(MWh/h)

MSE
(MWh/h)

σ
(MWh/h)

MAPE
(%)

Pt−1, Tt, Tt−1, Ht, Dt 2.473 10.259 2.042 0.508
Pt−1, Tt, Ht, Dt 2.682 12.273 2.261 0.547
Pt−1, Tt−1, Ht, Dt 2.693 12.160 2.222 0.550
Pt−1, Tt−1, Tt−2, Ht, Dt 2.776 13.094 2.328 0.574
Pt−1, Ht, Dt 2.877 14.646 2.531 0.586
Pt−1, Tt, Tt−1, Tt−2, Ht, Dt 3.005 17.236 2.873 0.609
Pt−1, Pt−2, Tt−1, Ht, Dt 4.021 36.744 4.549 0.829
Pt−1, Pt−2, Tt−1, Tt−2, Ht, Dt 4.088 37.976 4.625 0.840
Pt−1, Pt−2, Tt, Tt−1, Tt−2, Ht, Dt 11.707 278.298 11.920 2.433
Pt−1, Pt−2, Ht, Dt 9.702 179.315 9.258 2.025

The results are very much identical with the results for the original data in Table 6.2 in
which, the best prediction is also Pt−1, Tt, Tt−1, Ht, Dt with the same MAE, but a slightly better
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standard deviation. However, if we consider the full table, we can see the reduction does not
produce very good results as we expected. As a whole, the results in Table 6.2 are slightly
better. The predicted and actual curve for the best combination is given in Figure 6.3, which
is much similar to Figure 6.1.
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Figure 6.3: Actual and predicted electricity consumptions of the combination Pt−1TtTt−1HtDt for the
kernel reduced data set with δPt as the target variable.

The results for the case where power consumption works as the target variable is depicted
in Table 6.5. Here we can see better results than the results in Table 6.3, although not better
than the power difference results. Here the best combination is Pt−1, Ht, Dt which has a MAE
value of 3.531.

Table 6.5: Results for the prediction of power consumption for kernel reduced dataset.

Signature MAE
(MWh/h)

MSE
(MWh/h)

σ
(MWh/h)

MAPE
(%)

Pt−1, Ht, Dt 3.531 37.500 5.018 0.725
Pt−1, Pt−2, Tt−1, Ht, Dt 5.312 49.272 4.602 1.111
Pt−1, Pt−2, Tt−1, Tt−2, Ht, Dt 14.737 2599.815 48.958 2.932
Pt−1, Tt−1, Tt−2, Ht, Dt 39.330 16307.520 121.857 8.276
Pt−1, Tt−1, Ht, Dt 83.375 36542.751 172.536 17.632
Pt−1, Tt, Ht, Dt 128.017 57335.46 202.959 27.455
Pt−1, Tt, Tt−1, Ht, Dt 179.582 82746.61 225.387 38.855

Figure 6.4 shows the comparison of the two curves: actual and predicted for the best con-
figuration for kernel reduction method, and power consumption as the target variable.
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Figure 6.4: Actual and predicted electricity consumptions of the combination Pt−1HtDt for the kernel
reduced data set with Pt as the target variable.

6.1.3 Dynamic Training Dataset - Normalized Data

In this section, we present the results for the tests carried out for the normalized data. The
normalization procedure was explained in chapter 5. Table 6.6 depicts the corresponding results
for the δPt predictions. According to the table, we can see that the first 5 results are very close
to each other for every metric value considered. The MAE value is below 2.7 for these cases. The
best combination is Pt−1, Tt, Tt−1, Ht, Dt, which is same as for the original data. The standard
deviation and the MAPE values are very consistent compared with the other tests.

Table 6.6: Results for the prediction of power difference for normalized dataset.

Signature MAE
(MWh/h)

MSE
(MWh/h)

σ
(MWh/h)

MAPE
(%)

Pt−1, Tt, Tt−1, Ht, Dt 2.621 11.775 2.221 0.534
Pt−1, Tt, Ht, Dt 2.622 11.779 2.221 0.534
Pt−1, Tt, Tt−1, Tt−2, Ht, Dt 2.623 11.788 2.222 0.534
Pt−1, Tt−1, Ht, Dt 2.635 11.933 2.240 0.537
Pt−1, Tt−1, Tt−2, Ht, Dt 2.636 11.934 2.240 0.537
Pt−1, Pt−2, Ht, Dt 5.892 69.062 5.878 1.201
Pt−1, Pt−2, Tt, Tt−1, Ht, Dt 6.891 83.701 6.036 1.428
Pt−1, Pt−2, Tt, Tt−1, Tt−2, Ht, Dt 6.909 84.087 6.047 1.433
Pt−1, Pt−2, Tt−1, Tt−2, Ht, Dt 6.942 84.670 6.057 1.440

Figure 6.5, depicts the behaviour of actual consumption and the predicted consumption for
the best signature. Most of the time the curves coincide each other except for some bends in
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Figure 6.5: Actual and predicted electricity consumptions of the combination Pt−1TtTt−1HtDt for the
normalized data set with δPt as the target variable.

the curve.

The prediction results for the target variable Pt is shown in Table 6.7. The best combination
is Pt−1, Pt−2, Tt, Tt−1, Tt−2, Ht, Dt with a MAE of 2.768 and MAPE of 0.578. We can see that
predictions for Pt are not as good as the predictions for δPt. However in the table we can see
Pt−2 influences more when the target variable is Pt.

Table 6.7: Results for the prediction of power consumption for normalized dataset.

Signature MAE
(MWh/h)

MSE
(MWh/h)

σ
(MWh/h)

MAPE
(%)

Pt−1, Pt−2, Tt, Tt−1, Tt−2, Ht, Dt 2.768 13.089 2.336 0.578
Pt−1, Pt−2, Ht, Dt 2.930 15.587 2.654 0.612
Pt−1, Pt−2, Tt−1, Tt−2, Ht, Dt 6.932 138.182 9.522 1.454
Pt−1, Tt−1, Tt−2, Ht, Dt 7.034 228.146 13.407 1.516
Pt−1, Tt−1, Ht, Dt 7.970 296.798 15.319 1.645
Pt−1, Tt, Tt−1, Ht, Dt 11.377 571.961 21.099 2.363
Pt−1, Tt, Ht, Dt 23.482 6847.766 79.587 4.541

The corresponding curves for the actual power consumption and predicted consumptions for
the best signature is shown in Figure 6.6.
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Figure 6.6: Actual and predicted electricity consumptions of the combination Pt−1Pt−2TtTt−1Tt−2HtDt

for the normalized data set with Pt as the target variable.

6.1.4 Fixed Training Dataset - Original Data

The second testing method with a fixed training and test dataset is a fast method than the
dynamic dataset. Mainly the dynamic dataset results are important to identify which factors
and combination have more effect on the final prediction. In section 6.1.1, 6.1.2 and 6.1.3 we
found out that δPt produces far better results as the target variable than the actual power
consumption as the target variable. Therefore in this section and the following two sections
we focus our study on the power difference to predict for seasonal variations including winter,
spring , summer and autumn.

First consider the results for the original dataset without any normalization and reduction.
The corresponding results are shown in Table 6.8. For the winter season, the best prediction is
given by Pt−1, Tt, Tt−1, Tt−2, Ht, Dt, which has MAE of 3.010. The best combination for spring is
Pt−1, Pt−2, Tt, Tt−1, Tt−2, Ht, Dt. It has a MAE of 2.991 which is a better result than winter. For
summer, 1.862 is the best MAE given by the combination Pt−1, Pt−2, Tt, Tt−1, Ht, Dt. Summer
result is the best of all four seasons as the autumn best value is 2.339 given by the combination
Pt−1, Pt−2, Tt−1, Tt, Ht, Dt. But if we take the total mean MAE of all the four seasons, we can
select it as the best combination.
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Table 6.8: Results for the prediction of power difference for original dataset on seasonal basis.

Signature
MAE (MWh/h)

Total Mean Error (MWh/h)
Winter Spring Summer Autumn

Pt−1, Pt−2, Ht, Dt 3.293 3.028 1.960 2.511 2.698
Pt−1, Tt, Tt−1, Tt−2, Ht, Dt 3.010 3.138 2.180 2.562 2.722
Pt−1, Tt−1, Tt−2, Ht, Dt 3.027 3.304 2.260 2.635 2.806
Pt−1, Tt, Ht, Dt 3.651 3.151 1.866 2.565 2.808
Pt−1, Pt−2, Tt, Tt−1, Ht, Dt 4.117 3.018 1.862 2.339 2.834
Pt−1, Tt−1, Ht, Dt 3.651 3.248 1.901 2.652 2.863
Pt−1, Pt−2, Tt−1, Tt−2, Ht, Dt 4.137 3.118 1.912 2.347 2.878
Pt−1, Tt, Tt−1, Ht, Dt 3.015 3.150 2.258 3.109 2.883
Pt−1, Pt−2, Tt, Tt−1, Tt−2, Ht, Dt 4.106 2.991 1.905 5.105 3.527

6.1.5 Fixed Training Dataset - Kernel Reduced Data

Next, consider the results for the reduced fixed training dataset using the kernel reduction
method. The results shown in Table 6.9 are not as good as the first case. The best prediction
for winter is given by Pt−1, Tt, Tt−1, Tt−2, Ht, Dt. But its MAE value is larger than 3.5. We
can observe that Pt−1, Pt−2, Tt, Tt−1, Tt−2, Ht, Dt as the best combination altogether because it
produces the best results for spring(3.539), summer(2.276) and autumn(2.526). Summer has
the best prediction of all.

Table 6.9: Results for the prediction of power difference for kernel reduced dataset on seasonal basis.

Signature
MAE (MWh/h)

Total Mean Error (MWh/h)
Winter Spring Summer Autumn

Pt−1, Pt−2, Tt, Tt−1, Tt−2, Ht, Dt 5.234 3.539 2.276 2.526 3.394
Pt−1, Pt−2, Ht, Dt 4.022 3.735 2.651 3.223 3.408
Pt−1, Tt, Ht, Dt 4.275 3.855 2.564 3.347 3.510
Pt−1, Tt, Tt−1, Ht, Dt 4.255 3.862 2.894 3.172 3.546
Pt−1, Tt, Tt−1, Tt−2, Ht, Dt 3.627 3.776 2.811 4.046 3.565
Pt−1, Tt−1, Ht, Dt 4.271 3.963 2.601 3.429 3.566
Pt−1, Tt−1, Tt−2, Ht, Dt 4.273 3.961 2.885 3.386 3.626
Pt−1, Pt−2, Tt, Tt−1, Ht, Dt 5.416 3.622 2.600 3.102 3.685
Pt−1, Pt−2, Tt−1, Tt−2, Ht, Dt 5.392 3.639 2.310 5.304 4.161

6.1.6 Fixed Training Dataset - Normalized Data

Finally we do the testing for the normalized data for the four seasons. Table 6.10 illustrates the
prediction results. The best combination is Pt−1, Pt−2, Tt, Tt−1, Tt−2, Ht, Dt which has 2.952 for
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winter, 2.999 for spring, 1.852 for summer, and 2.404 for autumn. However the best prediction
for winter (i.e 2.950) is given by Pt−1, Pt−2, Tt, Tt−1, Ht, Dt and for summer it is 1.848 given by
Pt−1, Tt, Tt−1, Tt−2, Ht, Dt.

Table 6.10: Results for the prediction of power difference for normalized dataset on seasonal basis.

Signature
MAE (MWh/h)

Total Mean Error (MWh/h)
Winter Spring Summer Autumn

Pt−1, Pt−2, Tt, Tt−1, Tt−2, Ht, Dt 2.952 2.999 1.852 2.404 2.552
Pt−1, Pt−2, Tt, Tt−1, Ht, Dt 2.950 3.017 1.862 2.451 2.570
Pt−1, Pt−2, Tt−1, Tt−2, Ht, Dt 2.996 3.052 1.893 2.347 2.572
Pt−1, Tt, Tt−1, Tt−2, Ht, Dt 3.010 3.138 1.848 2.505 2.625
Pt−1, Tt, Tt−1, Ht, Dt 3.015 3.150 1.866 2.562 2.648
Pt−1, Tt, Ht, Dt 3.044 3.151 1.866 2.565 2.656
Pt−1, Tt−1, Ht, Dt 3.031 3.248 1.900 2.652 2.708
Pt−1, Tt−1, Tt−2, Ht, Dt 3.027 3.304 1.893 2.635 2.715
Pt−1, Pt−2, Ht, Dt 3.449 3.028 1.960 2.511 2.737

6.1.7 Next 24 Hours Prediction

The best signatures found in preceding sections is used here to predict for the next 24 hours. For
the winter season the best combination was Pt−1, Pt−2, Tt, Tt−1, Ht, Dt, and Pt−1, Pt−2, Tt, Tt−1, Tt−2, Ht, Dt,
Pt−1, Tt, Tt−1, Tt−2, Ht, Dt and Pt−1, Pt−2, Tt−1, Tt−2, Ht, Dt were the best signatures for spring,
summer and autumn respectively. Table 6.11 illustrates the next 24 hour prediction for the
power difference prediction for the original data, in winter season.

From the table we can observe that the accuracy of the predictions reduces as we go away
from the current hour.

Table 6.11: Results for the prediction of power difference for next 24 hours in winter.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23

MAE 3.0 5.3 6.1 6.9 8.3 9.8 9.0 9.8 9.7 10.2 11.9 11.3 14.4 12.0 15.2 14.8 12.1 12.0 15.0 15.4 14.9 13.6 14.2 14.4

MAPE 0.7 1.3 1.5 1.7 2.0 2.4 2.2 2.4 2.4 2.5 2.9 2.8 3.5 3.1 3.7 3.6 3.2 3.2 3.8 3.9 3.8 3.4 3.6 3.6

The corresponding 24 hour prediction for the spring season is illustrated in Table 6.12. A
similar behaviour could be observed for this case also. Accuracy of winter is better than spring.
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Table 6.12: Results for the prediction of power difference for next 24 hours in spring.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23

MAE 3.0 5.8 7.8 12.1 13.5 12.7 14.9 16.1 17.4 18.1 18.6 18.4 20.4 22.9 26.7 21.1 19.4 20.6 20.8 21.4 18.6 17.8 17.3 16.8

MAPE 1.2 2.4 3.2 5.0 5.5 5.1 6.0 6.6 7.1 7.3 7.5 7.5 8.4 9.5 11.2 8.5 7.8 8.3 8.4 8.8 7.5 7.1 6.8 6.7

In the Summer, as illustrated in Table 6.13 we can see somewhat different behaviour, but
almost similar. When we go far from the current hour the accuracy reduces until about t17 and
then the accuracy starts to improve.

Table 6.13: Results for the prediction of power difference for next 24 hours in summer.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23

MAE 1.8 4.2 7.2 7.2 7.4 8.3 7.4 9.7 10.1 12.4 10.8 10.9 12.1 10.8 10.8 9.5 9.2 11.7 12.4 12.8 11.4 11.5 10.9 9.2

MAPE 1.2 2.5 4.1 4.2 4.3 4.9 4.3 6.1 6.5 8.0 7.0 7.1 7.7 6.6 6.2 5.9 5.7 6.5 6.9 6.8 6.2 6.3 5.9 5.0

The accuracy of the results of autumn is worse when considering the other three seasons.
The behaviour is very similar to winter and spring. The results are given in Table 6.14.

Table 6.14: Results for the prediction of power difference for next 24 hours in autumn.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23

MAE 2.3 5.2 7.6 9.3 12.0 29.3 29.0 27.4 26.4 27.2 30.6 31.3 18.8 31.5 32.0 33.0 37.3 36.3 20.4 21.2 21.6 20.5 20.4 19.3

MAPE 0.7 1.6 2.3 2.9 3.8 9.5 9.4 8.8 8.4 8.6 9.8 10.0 6.0 10.0 10.2 10.6 12.0 11.7 6.5 6.8 6.9 6.6 6.5 6.2

Figure 6.7 depicts the MAE and MAPE summaries of the 24 hour predictions, where we can
observe better accuracy for summer and worse and inconsistent pattern for winter in the first
graph. However the second graph gives very interesting result. Although winter is bad in terms
of absolute error, its error percentage is very good meaning it has a better prediction accuracy
compared to its actual power consumption values. But it is opposite for the summer season, as
its percentage error is higher compared to winter.
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(a) (b)

Figure 6.7: The (a) MAE and (b) MAPE curves for the next 24 hours predictions for the best com-
binations in the four seasons. Pt−1TtTt−1Tt−2HtDt for winter, Pt−1Pt−2TtTt−1Tt−2HtDt for spring,
Pt−1Pt−2TtTt−1HtDt for summer and Pt−1Pt−2TtTt−1HtDt for autumn.

6.2 Traditional Approaches

In this section we look at the results of the two traditional techniques of electricity forecasting :
MBPNN which is a variant of Artificial Neural Networks and MLR. We used the same datasets
used for the fixed dataset method in these two cases to predict power difference. But in these
cases we ignore the kernel reduction method as it is not related to these techniques. However
we focus on the normalization.

6.2.1 MBPNN - Original Data

We use the tool developed by Noel Lopes and Bernardete Ribeiro [2] for multiple back-propagation
to perform the tests on Neural networks. It is interesting to see how neural networks works as
it has been observed that a neural network model with a good fitting performance for the past
data may not give as good forecasting performance for the future [36].

Table 6.15 depicts the results obtained for the original data using the MBP network with
10 hidden layer neuron and 10000 epochs. According to the table, we can observe that the best
predictions given for the summer season like GP. For the winter, the best result is 2.678 which
is a better result than the GP value (3.010). But for the spring, GP has a better value (2.991)
than MBP which is 3.584 according to Table 6.15. The best prediction for summer is 1.820
which is slightly better than GP. For the autumn, the best prediction is 2.750.
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Table 6.15: Results for the prediction of power difference in MBPNN with 10 hidden layer neurons and
10000 epochs.

Signature
MAE (MWh/h)

Total Mean Error (MWh/h)
Winter Spring Summer Autumn

Pt−1, Pt−2, Tt−1, Tt−2, Ht, Dt 2.876 3.714 1.820 2.844 2.814
Pt−1, Pt−2, Tt, Tt−1, Ht, Dt 2.678 3.885 2.100 2.750 2.853
Pt−1, Pt−2, Tt, Tt−1, Tt−2, Ht, Dt 2.788 4.474 2.180 2.777 3.055
Pt−1, Pt−2, Ht, Dt 3.428 3.584 1.932 3.450 3.098
Pt−1, Tt, Tt−1, Ht, Dt 3.153 4.054 2.052 3.627 3.222
Pt−1, Tt, Ht, Dt 3.607 4.248 2.159 3.330 3.336
Pt−1, Tt−1, Ht, Dt 3.329 4.415 2.320 3.408 3.368
Pt−1, Tt−1, Tt−2, Ht, Dt 3.822 4.451 2.285 3.162 3.430
Pt−1, Tt, Tt−1, Tt−2, Ht, Dt 3.446 4.334 2.653 3.394 3.457

6.2.2 MBPNN - Normalized Data

When we consider normalized data, winter produces an improved result of 2.378. Other than
that all the others do not have a better prediction than for the original data.

Table 6.16: Results for the prediction of power difference in MBPNN with 10 hidden neurons and 10000
epochs.

Signature
MAE (MWh/h)

Total Mean Error (MWh/h)
Winter Spring Summer Autumn

Pt−1, Tt−1, Ht, Dt 2.378 4.696 2.195 3.958 3.307
Pt−1, Pt−2, Ht, Dt 3.631 3.804 2.089 3.818 3.336
Pt−1, Pt−2, Tt−1, Tt−2, Ht, Dt 3.946 4.057 2.982 4.077 3.766
Pt−1, Pt−2, Tt, Tt−1, Tt−2, Ht, Dt 4.037 4.443 2.765 3.906 3.788
Pt−1, Tt, Tt−1, Tt−2, Ht, Dt 5.098 5.260 2.455 3.606 4.105
Pt−1, Tt, Ht, Dt 5.171 4.942 2.288 4.203 4.151
Pt−1, Tt, Tt−1, Ht, Dt 4.592 4.832 2.447 5.105 4.244
Pt−1, Tt−1, Tt−2, Ht, Dt 4.360 4.903 5.381 3.870 4.628
Pt−1, Pt−2, Tt, Tt−1, Ht, Dt 4.168 4.848 2.139 8.280 4.859

6.2.3 Multiple Linear Regression

Linear regression is very popular method in regression as we mentioned in Chapter 4. We
perform multiple linear regression to predict the power difference for the original data using
SPSS1.

1http://www-01.ibm.com/software/analytics/spss/products/statistics/
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First, for the winter training dataset the multiple linear regression method was applied using
the forward selection method. Four models are obtained. According to Table 6.17 and Table
6.18, all the models are significant with their parameters. By considering Table 6.19 , it can
be seen that model 4 has higher R square value than others and lower standard deviation (i.e
standard error). Therefore it can be selected as the best model to describe the situation.

Table 6.17: Coefficients table for winter.

Model
Unstandardised Coefficients Standardized Coefficients

t Sig.
B Std.Error Beta

1 (Constant) 35.763 3.715 9.626 .000
Pt−2 -.082 .008 -.325 -9.693 .000

2 (Constant) 25.378 2.356 10.772 .000
Pt−2 -.799 .021 -3.157 -37.675 .000
Pt−1 .741 .021 2.927 34.923 .000

3 (Constant) 35.839 2.614 13.708 .000
Pt−2 -.811 .020 -3.203 -39.619 .000
Pt−1 .724 .021 2.860 35.272 .000
Tt−1 -.483 .060 -.198 -8.036 .000

4 (Constant) 31.747 3.000 10.583 .000
Pt−2 -.798 .021 -3.154 -38.236 .000
Pt−1 .726 .020 2.866 35.481 .000
Tt−1 -.402 .067 -.165 -6.032 .000
Ht -.148 .054 -.072 -2.748 .006

Table 6.18: ANOVA table for winter.

Model Sum of Squares df Mean Square F Sig.

1 Regression 17264.905 1 17264.905 93.951 .000
Residual 146644.945 798 183.766
Total 163909.851 799

2 Regression 105954.008 2 52977.004 728.532 .000
Residual 57955.843 797 72.717
Total 163909.851 799

3 Regression 110302.811 3 36767.004 545.955 .000
Residual 53607.040 796 67.346
Total 163909.851 799

4 Regression 110807.043 4 27701.761 414.722 .000
Residual 53102.807 795 66.796
Total 163909.851 799
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Table 6.19: Model summary table for winter.

Model R R Square Adjusted R Square Std. Error of the Estimate

1 .325 .105 .104 13.556017
2 .804 .646 .646 8.527455
3 .820 .673 .672 8.206432
4 .822 .676 .674 8.172881

Therefore the regression model can be given by the following equation,

δPt = 31.747 + (.726)Pt−1 − (.798)Pt−2 − (.402)Tt−1 − (.148)Ht (6.4)

After substituting this equation for the training dataset, the predictions could be obtained
as shown in Table 6.20.

Table 6.20: Results for the prediction of power consumption for winter using MLR.

Signature MAE (MWh/h) MSE (MWh/h) σ (MWh/h)

Pt−1, Pt−2, Tt−1, Ht 6.147 76.712 6.258

For the spring training dataset we can observe coefficient table and the ANOVA tables as
shown in Table 6.21 and .6.22.
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Table 6.21: Coefficients table for spring.

Model
Unstandardised Coefficients Standardized Coefficients

t Sig.
B Std.Error Beta

1 (Constant) 6.733 .787 8.557 .000
Ht -.602 .059 -.340 -10.228 .000

2 (Constant) 24.996 2.471 10.116 .000
Ht -.485 .059 -.274 -8.241 .000
Pt−2 -.072 .009 -.258 -7.766 .000

3 (Constant) 18.417 1.797 10.252 .000
Ht -.350 .043 -.198 -8.206 .000
Pt−2 -.691 .024 -2.490 -29.129 .000
Pt−1 -.639 .023 2.301 27.198 .000

4 (Constant) 20.973 1.994 10.516 .000
Ht -.290 .047 -.164 -6.140 .000
Pt−1 -.690 .024 -2.484 -29.186 .000
Pt−2 .629 .024 2.267 26.661 .000
Tt -.235 .081 -.077 -2.894 .004

5 (Constant) 24.771 2.339 10.590 .000
Ht -.275 .047 -.156 -5.833 .000
Pt−1 -.692 .024 -2.492 -29.419 .000
Pt−2 .624 .024 2.250 26.532 .000
Tt -.267 .082 -.088 -.2673 .001
Dt -.468 .153 -.074 -3.066 .002

6 (Constant) 22.287 2.624 8.492 .000
Ht -.332 .054 -.188 -6.095 .000
Pt−1 -.693 .023 -2.498 -29.532 .000
Pt−2 .635 .024 2.287 26.437 .000
Tt -.547 .158 -.180 -3.463 .001
Dt -.405 .155 -.064 -2.609 .009
Tt−2 .385 .186 .127 2.071 .039
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Table 6.22: ANOVA table for spring.

Model Sum of Squares df Mean Square F Sig.

1 Regression 13962.657 1 13962.657 104.608 .000
Residual 106513.918 798 133.476
Total 120476.575 799

2 Regression 21456.651 2 10728.325 86.351 .000
Residual 99019.924 797 124.241
Total 120476.575 799

3 Regression 69153.4461 3 23051.149 357.514 .000
Residual 51323.129 796 64.476
Total 120476.575 799

4 Regression 69688.446 4 17422.149 272.714 .000
Residual 51323.129 795 63.884
Total 120476.575 799

5 Regression 70282.760 5 14056.552 222.356 .000
Residual 50193.815 794 63.216
Total 120476.575 799

6 Regression 70552.760 6 11758.793 186.779 .000
Residual 49923.814 793 62.956
Total 120476.575 799

According to table 6.21, we can see that all the coefficient of the models are significant and
by considering table 6.22, it can be obtained that all the test are also significant. From figure
6.23 we can observe that R square values are higher and close from model 3 to 6. Although
the model 4 and 5 and 6 have higher R square value than 3, we try for ease of understanding
and interpretation to describe the process with as few variables as possible. Since the model 6
has 6 predictor variables and model 5 has 5 predictor variables and the model 4 has 4 predictor
variables , model 3 with 3 predictor variables can be taken as the suitable model to describe
the spring season.

Table 6.23: Model summary table for spring.

Model R R Square Adjusted R Square Std. Error of the Estimate

1 .340 .116 .115 11.553185
2 .422 .178 .176 11.146336
3 .758 .574 .572 8.029713
4 .761 .578 .576 7.992762
5 .764 .583 .581 7.959874
6 .765 .586 .582 7.934458

The corresponding regression equation can be written as follows:

δPt = 18.417 + (.639)Pt−1 − (.691)Pt−2 − (.350)Ht (6.5)
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Table 6.24: Results for the prediction of power consumption for spring using MLR.

Signature MAE (MWh/h) MSE (MWh/h) σ (MWh/h)

Pt−1, Pt−2, Ht 5.934 71.512 6.042

The results for the testing is as shown in Table 6.24.

For the summer dataset the corresponding coefficient and ANOVA tables are depicted in
Table 6.25 and 6.26 respectively.

Table 6.25: Coefficients table for summer.

Model
Unstandardised Coefficients Standardized Coefficients

t Sig.
B Std.Error Beta

1 (Constant) 21.090 1.886 11.180 .000
Pt−2 -.111 .010 -.374 -11.376 .000

2 (Constant) 15.048 1.235 12.183 .000
Pt−2 -.794 .021 -2.671 -36.945 .000
Pt−1 .715 .021 2.404 33.249 .000

3 (Constant) 14.358 1.207 11.895 .000
Pt−2 -.768 .021 -2.585 -36.117 .000
Pt−1 .706 .021 2.376 33.686 .000
Ht -.226 .034 -.151 -6.687 .000

4 (Constant) 16.988 1.436 11.829 .000
Pt−2 -.767 .021 -2.580 -36.270 .000
Pt−1 .6990 .021 2.351 33.363 .000
Ht -.169 .038 -.112 -4.461 .000
Tt−2 -.145 .044 -.078 -3.330 .001

5 (Constant) 18.161 1.426 12.737 .000
Pt−2 -.728 .022 -2.449 -33.203 .000
Pt−1 -.649 .022 2.183 28.895 .000
Ht -.071 .041 -.048 -1.740 .082
Tt−2 -.864 .137 -.463 -6.326 .000
Tt .705 .127 .376 5.542 .000

6 (Constant) 21.542 1.650 13.058 .000
Pt−2 -.729 .022 -2.455 -33.589 .000
Pt−1 .641 .022 2.157 28.719 .000
Ht -.044 .041 -.030 -1.075 .283
Tt−2 -.921 .136 -.493 -6.766 .000
Tt -.749 .126 .400 5.924 .000
Dt .427 .108 -.084 -3.969 .000

7 (Constant) 22.211 1.528 14.534 .000
Pt−2 -.729 .022 -2.455 -33.581 .000
Pt−1 .637 .022 2.143 28.990 .000
Tt−2 -1.000 .114 -.536 -8.746 .000
Tt .808 .114 .431 7.094 .000
Dt -.446 .106 -.088 -4.205 .000

66



CHAPTER 6. EXPERIMENTS AND RESULTS

Table 6.26: ANOVA table for summer.

Model Sum of Squares df Mean Square F Sig.

1 Regression 12104.780 1 12104.780 129.414 .000
Residual 74641.427 798 93.536
Total 86746.207 799

2 Regression 55477.196 2 27738.598 707.015 .000
Residual 31269.011 797 39.233
Total 86746.207 799

3 Regression 57140.419 3 23051.149 357.514 .000
Residual 29605.788 796 64.476
Total 86746.207 799

4 Regression 57547.679 4 14386.920 391.718 .000
Residual 29198.528 795 36.728
Total 86746.207 799

5 Regression 58635.246 5 11727.049 331.233 .000
Residual 28110.961 794 35.404
Total 86746.207 799

6 Regression 59182.838 6 9863.806 283.782 .000
Residual 27563.369 793 34.758
Total 86746.207 799

7 Regression 59142.686 5 11828.537 340.241 .000
Residual 27603.521 794 34.765
Total 86746.207 799

According to table 6.25 we can see that all the parameters of the models are significant
except the models 5 and 6. By considering table 6.26 it can be obtained that all the tests are
also significant. Furthermore, we can obtain that R square values are close from model 2 to 7.
Although the model 7 has higher R square value we select the best one with as few variables
as possible. Since the model 7 has 5 predictor variables and model 4 has 4 predictor variables ,
model 4 can be taken as the suitable model to describe the summer season.

Table 6.27: Model summary table for summer.

Model R R Square Adjusted R Square Std. Error of the Estimate

1 .374 .140 .138 9.671382
2 .800 .640 .639 6.263656
3 .812 .659 .657 6.098623
4 .814 .663 .662 6.060339
5 .822 .676 .674 5.950146
6 .826 .682 .680 5.895621
7 .826 .682 .680 7.896197

The corresponding regression equation is as follows.
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δPt = 16.988 + (.691)Pt−1 − (.767)Pt−2 − (.145)Tt−2 − (.350)Ht (6.6)

The results for the testing is as shown in Table 6.28.

Table 6.28: Results for the prediction of power consumption in summer using MLR.

Signature MAE (MWh/h) MSE (MWh/h) σ (MWh/h)

Pt−1, Pt−2, Ht 3.350 19.581 2.900

For the autumn dataset the corresponding coefficient and ANOVA tables are depicted in
Table 6.29 and 6.30 respectively.

Table 6.29: Coefficients table for summer.

Model
Unstandardised Coefficients Standardized Coefficients

t Sig.
B Std.Error Beta

1 (Constant) 9.462 .883 10.711 .000
Ht -.817 .066 -.401 -12.359 .000

2 (Constant) 23.972 2.351 10.195 .000
Ht -.654 .069 -.321 -9.494 .000
Pt−2 -.061 .009 -.224 -6.631 .000

3 (Constant) 17.585 1.653 10.639 .000
Ht -.402 .049 -.197 -8.242 .000
Pt−2 .704 .023 -2.581 -30.582 .000
Pt−1 .656 .023 2.402 29.081 .000

4 (Constant) 25.121 2.082 12.065 .000
Ht -.295 .051 -.145 -5.758 .000
Pt−2 -.708 .023 -2.581 -30.582 .000
Pt−1 .637 .022 2.333 28.491 .000
Tt -.400 .069 -.149 -5.764 .000

5 (Constant) 18.255 2.344 7.786 .000
Ht -.472 .058 -.232 -8.084 .000
Pt−2 -.691 .022 -2.532 -30.980 .000
Pt−1 .647 .022 2.370 29.470 .000
Tt -1.303 .167 -.487 -7.814 .000
Tt−2 1.139 .192 .425 5.932 .000
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Table 6.30: ANOVA table for autumn.

Model Sum of Squares df Mean Square F Sig.

1 Regression 25700.814 1 25700.814 152.744 .000
Residual 134272.098 798 168.261
Total 159972.912 799

2 Regression 32721.742 2 16360.871 102.471 .000
Residual 127251.170 797 159.663
Total 159972.912 799

3 Regression 98273.988 3 32757.996 422.623 .000
Residual 61698.923 796 77.511
Total 159972.912 799

4 Regression 100748.704 4 25187.176 338.102 .000
Residual 59224.207 795 74.496
Total 159972.912 799

5 Regression 103261.645 5 20652.329 289.148 .000
Residual 56711.267 794 71.425
Total 159972.912 799

According to table 6.29 it can be seen that all the coefficient of the models are significant.
By considering table 6.30 we can obtain that all the test are significant too. From Figure 6.31
we can observe that R square values are higher and close from model 3 to 5. Although the model
4 and 5 have higher R square values than model 3 we select the model with as few variables as
possible. Since model 5 has 5 predictor variables and model 4 has 4 predictor variables , model
3 with 3 predictor variables can be taken as the suitable model to describe the autumn season.

Table 6.31: Model summary table for autumn

Model R R Square Adjusted R Square Std. Error of the Estimate

1 .401 .161 .160 12.971537
2 .452 .205 .203 12.635771
3 .784 .614 .613 8.804045
4 .794 .630 .628 8.631098
5 .803 .645 .643 8.451318

The corresponding regression equation is as follows.

δPt = 17.585 + (.656)Pt−1 − (.704)Pt−2 − (.402)Ht (6.7)

The results for the testing is as shown in Table 6.32.
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Table 6.32: Results for the prediction of power consumption in autumn using MLR.

Signature MAE (MWh/h) MSE (MWh/h) σ (MWh/h)

Pt−1, Pt−2, Ht 6.061 84.424 6.926
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Chapter 7

Discussion and Summary of Results

In this chapter, we will discuss about the results we found earlier and answer the research
questions outlined in chapter 1. Section 7.1 discusses the first research question about the
cyclic patterns of electricity consumption. Then, in section 7.2 and section 7.3, we answer
research questions 2, 3 and 4 and finally the results of GP will be compared with MBPNN and
MLR in section 7.4 to answer the last research question.

7.1 Cyclic Patterns

Electricity consumption of three successive years were evaluated to check for cyclic patterns in
chapter 5. We found out that the patterns could be mainly divided into three types as annual,
seasonal and monthly.

On annual context, all the three years showed a similar mean hourly electricity consumption
trend, although there were slight deviations in the exact values. Both 2009 and 2010 showed
similar cyclic patterns in terms of hourly electricity consumption.

On seasonal context, we considered the electricity consumption of the four seasons : winter,
spring, summer and autumn in the three years. We could see exactly the same cyclic pattern
of 2008 is repeated in 2009 and 2010 for all four seasons.

On weekly context, we considered weekdays and weekends in our analysis, where we could
observe that Mondays, Tuesdays, Wednesdays and Thursdays illustrated an identical pattern
while Fridays showed slightly deviated pattern. Saturdays and Sundays had almost similar
patterns too.
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Table 7.1: Best forecasting results of the six categories for the dynamic dataset.

No Method Signature Target variable MAE (MWh/h) MAPE(%)

1 Original Pt−1, Tt, Tt−1, Ht, Dt δPt 2.472 0.508
2 Original Pt−1, Ht, Dt Pt 3.926 0.838

3 Normalized Pt−1, Tt, Tt−1, Ht, Dt δPt 2.621 0.534
4 Normalized Pt−1, Pt−2, Tt, Tt−1, Tt−2, Ht, Dt Pt 2.768 0.578

5 Kernel Pt−1, Tt, Tt−1, Ht, Dt δPt 2.473 0.508
6 Kernel Pt−1, Ht, Dt Pt 3.531 0.752

Figure 7.1: Execution time for each best prediction in the six categories.

7.2 Dynamic Training Dataset

Testing for this dataset was done using three types of feature spaces : Original, Kernel Reduc-
tion and Normalized, for two target variables δPt and Pt. Altogether there were six different
combinations of testing for this dataset.

Table 7.1 illustrates the best forecasts of each of these six combinations for different feature
vectors. The first method which uses the original data as the feature space with the signature
Pt−1, Tt, Tt−1, Ht, Dt, and δPt as the target variable produces the best result, whereas method
2 which uses original dataset, but Pt−1, Ht, Dt as the signature and Pt as the target variable
gives the lowest MAE and MAPE values of all the best results.

The second best forecast is given by the kernel reduction method with signature Pt−1, Tt, Tt−1, Ht, Dt

and δPt as the target variable which has a MAE of 2.473 MWh/h and MAPE of 0.508%.

Furthermore, we can observe that δPt as the target variable which gives better results than
Pt as the target variable.

However, the effectiveness of these results could be evaluated by considering the execution
time of each result in Table 7.1, as indicated in Figure 7.1. Although method 5 has an MAE
of 2.473 MWh/h, it tends to be more time consuming as it has the highest execution time of
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Table 7.2: Top 10 forecasting results for dynamic dataset.

Method Signature Target variable MAE(MWh/h) MAPE(%)

Original Pt−1, Tt, Tt−1, Ht, Dt δPt 2.472 0.508
Kernel Pt−1, Tt, Tt−1, Ht, Dt δPt 2.473 0.508
Normalized Pt−1, Tt, Tt−1, Ht, Dt δPt 2.621 0.534
Normalized Pt−1, Tt, Ht, Dt δPt 2.622 0.534
Normalized Pt−1, Tt, Tt−1, Tt−2, Ht, Dt δPt 2.623 0.534
Original Pt−1, Tt, Ht, Dt δPt 2.629 0.508
Normalized Pt−1, Tt−1, Ht, Dt δPt 2.635 0.537
Normalized Pt−1, Tt−1, Tt−2, Ht, Dt δPt 2.636 0.537
Original Pt−1, Tt−1, Tt−2, Ht, Dt δPt 2.652 0.541
Original Pt−1, Tt−1, Ht, Dt δPt 2.678 0.546

Figure 7.2: Usage of the variables Pt−2, Tt, Tt−1 and Tt−2 for the best results with an MAE less than 3.0.

3966.4 seconds. The reason for this is that kernel reduction method trains the dataset twice;
one for the selection of the best kernel values and the other to generate the predictions. The
O(n3) complexity is doubled due to these two training processes. Therefore, we can consider
method 1 in Table 7.1 as the best combination of all six results, in terms of both forecasting
accuracy and execution time in dynamic datasets.

Moreover, we have list the top 10 forecasts generated for the dynamic dataset in Table
7.2. All the results in the table can be considered as good, because they all have a MAPE of
0.5%. Moreover, note that all of them have δPt as their target variable indicating how good the
prediction of power difference than the power consumption itself. In addition to that, 50% of
the results belong to the Normalized category, 40% to Original and 10% to Kernel reduction.

The contributions of the independent variables Pt−2, Tt, Tt−1 and Tt−2 for the best predic-
tions which have a MAE of less than 3.0 are visualized in Figure 7.2. Figure highlights Tt−1 as
the best factor which has been repeatedly used in 11 times out of 15 best predictions and Pt−2
as the worst factor which has been involved in only 2 times out of 15.
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Table 7.3: Top 10 forecasting results for winter.

Method Signature MAE (MWh/h)

Normalized Pt−1, Pt−2Tt, Tt−1, Ht, Dt 2.950
Normalized Pt−1, Pt−2, Tt, Tt−1, Tt−2, Ht, Dt 2.952
Normalized Pt−1, Pt−2, Tt, Tt−1, Ht, Dt 2.996
Normalized Pt−1, Tt, Tt−1, Tt−2, Ht, Dt 3.010
Original Pt−1, Tt, Tt−1, Tt−2, Ht, Dt 3.010
Normalized Pt−1, Tt, Tt−1, Ht, Dt 3.015
Original Pt−1, Tt, Tt−1, Ht, Dt 3.015
Normalized Pt−1, Tt−1, Tt−2, Ht, Dt 3.027
Original Pt−1, Tt−1, Tt−2, Ht, Dt 3.027
Normalized Pt−1, Tt−1, Ht, Dt 3.031

Figure 7.3: Usage of the variables Pt−2, Tt, Tt−1 and Tt−2 in the top 10 predictions of winter season.

7.3 Fixed Training Dataset

In this section, we analyse the results for the four seasons which was done using fixed training
and test datasets. Here, the six combinations in section 7.2 was reduced to three, as the tests
for the target variable Pt was removed from the tests due to its inaccuracy compared to δPt.
The results for each season are summarized in the following.

The top 10 forecasting results for winter season are illustrated in Table 7.3. We can observe
that Normalized method dominates the winter season in terms of forecasting. The best com-
bination is Pt−1, Pt−2Tt, Tt−1, Ht, Dt, which has 2.950 MWh/h as the MAE. Most importantly,
we cannot find the Kernel reduction method in the table indicating its inappropriateness of
forecasting the consumption in winter season. Therefore, we can identify that normalizing the
feature vector allows for better results in forecasting for the winter season.

Figure 7.3 illustrates the frequency of the four variables : Pt−2, Tt, Tt−1 and Tt−2, used in
the best forecasting combinations of winter. We can observe that Tt−1 is involved in all 10
predictions, and Tt is used in 7 occasions. This indicates that temperature of last hour and
forecast temperature of current hour affects the consumption of current hour very much.
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Table 7.4: Top 10 forecasting results for spring.

Method Signature MAE(MWh/h)

Original Pt−1, Pt−2, Tt, Tt−1, Tt−2, Ht, Dt 2.991
Normalized Pt−1, Pt−2, Tt, Tt−1, Tt−2, Ht, Dt 2.999
Normalized Pt−1, Pt−2, Tt, Tt−1, Ht, Dt 3.017
Original Pt−1, Pt−2, Tt, Tt−1, Ht, Dt 3.018
Normalized Pt−1, Pt−2, Ht, Dt 3.028
Original Pt−1, Pt−2, Ht, Dt 3.028
Normalized Pt−1, Pt−2, Tt−1, Tt−2, Ht, Dt 3.052
Original Pt−1, Pt−2, Tt−1, Tt−2, Ht, Dt 3.118
Normalized Pt−1, Tt, Tt−1, Tt−2, Ht, Dt 3.138
Original Pt−1, Tt, Tt−1, Tt−2, Ht, Dt 3.138

Figure 7.4: Usage of the variables Pt−2, Tt, Tt−1 and Tt−2 in the top 10 predictions of spring season.

For the spring season, both the Original and Normalized methods equally affect the fore-
casts. We can notice from Table 7.4, that there are pairs from both methods which give the
same results for the same combination of variables. However, a slightly better result is produced
by Original method for the combination Pt−1, Pt−2, Tt, Tt−1, Tt−2, Ht, Dt.

When we compare the results of winter and spring, we can conclude that the results of
winter is better than spring.

The variable contributions illustrated in Figure 7.4 indicate that both Tt−1 and Pt−2 are
equally important variables for spring predictions. This is the first time we have seen Pt−2
affecting significantly for forecasts.

Similar to the winter season, Normalized method dominates in summer, as we can see from
Table 7.5, where 80% of the top 10 results associated with the normalized method, and the best
combination is given by Pt−1, Tt, Tt−1, Tt−2, Ht, Dt, which has MAE of 1.848 MWh/h.

Results for summer are better than both winter and spring. All top 10 results in summer
have MAE of less than 2.0 MWh/h.
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Table 7.5: Top 10 forecasting results for summer.

Method Signature MAE(MWh/h)

Normalized Pt−1, Tt, Tt−1, Tt−2, Ht, Dt 1.848
Normalized Pt−1, Pt−2, Tt, Tt−1, Tt−2, Ht, Dt 1.852
Normalized Pt−1, Pt−2, Tt, Tt−1, Ht, Dt 1.862
Original Pt−1, Pt−2, Tt, Tt−1, Ht, Dt 1.862
Normalized Pt−1, Tt, Tt−1, Ht, Dt 1.866
Normalized Pt−1, Tt, Ht, Dt 1.866
Original Pt−1, Tt, Ht, Dt 1.866
Normalized Pt−1, Pt−2, Tt−1, Tt−2, Ht, Dt 1.893
Normalized Pt−1, Tt−1, Tt−2, Ht, Dt 1.893
Normalized Pt−1, Tt−1, Ht, Dt 1.900

Figure 7.5: Usage of the variables Pt−2, Tt, Tt−1 and Tt−2 in the top 10 predictions of summer season.

Similarly to the winter season, the effect of temperature can be seen for summer also.
According to Figure 7.5 Tt−1 and Tt have been used most frequently among the top 10 combi-
nations.

Table 7.6: Top 10 forecasting results for autumn.

Method Signature MAE(MWh/h)

Original Pt−1, Pt−2, Tt, Tt−1, Ht, Dt 2.339
Normalized Pt−1, Pt−2, Tt−1, Tt−2, Ht, Dt 2.347
Original Pt−1, Pt−2, Tt−1, Tt−2, Ht, Dt 2.347
Normalized Pt−1, Pt−2, Tt, Tt−1, Tt−2, Ht, Dt 2.404
Normalized Pt−1, Pt−2, Tt, Tt−1, Ht, Dt 2.451
Normalized Pt−1, Tt, Tt−1, Tt−2, Ht, Dt 2.505
Normalized Pt−1, Pt−2, Ht, Dt 2.511
Original Pt−1, Pt−2, Ht, Dt 2.511
Kernel Pt−1, Pt−2, Tt, Tt−1, Tt−2, Ht, Dt 2.526
Normalized Pt−1, Tt, Tt−1, Ht, Dt 2.562
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Figure 7.6: Usage of the variables Pt−2, Tt, Tt−1 and Tt−2 in the top 10 predictions of autumn season.

Figure 7.7: Usage of variables Pt−2Tt, Tt−1 and Tt−2 in top 10 predictions for all the seasons.

The top 10 forecasting results in autumn are depicted in Table 7.6. Autumn results are little
bit similar to spring results in terms of the method. Both Original and Normalized methods
involved in producing best results. The best combination is the same combination given for
winter : Pt−1, Pt−2, Tt, Tt−1, Ht, Dt. But in this case the method is Original.

If we consider the variable usage, it is quite similar to spring which has equal contributions
from Tt−1 and Pt−2. Therefore, we can see that previous hour temperature and electricity
consumption before two hours are affecting the electricity consumption for these two seasons.
The corresponding graph of the usage of variables in autumn is shown in Figure 7.6.

Figure 7.7 summarizes the usage of variables in all four seasons. We can see winter and
summer have almost similar variable usage, and on the other hand spring and autumn have
similar usage too. Tt−1 has been the dominant feature variable among the four variables for all
seasons.
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7.3.1 Next 24 Hours Prediction

For the next 24 hour predictions, lets summarize Table 6.11 to 6.14 in chapter 6, and Figure
6.7 is also repeated here for clarity of the explanation.

(a) (b)

Figure 7.8: The (a) MAE and (b) MAPE curves for the next 24 hours predictions for the best combi-
nations in the four seasons. Pt−1, Tt, Tt−1, Tt−2, Ht, Dt for winter, Pt−1, Pt−2, Tt, Tt−1, Tt−2, Ht, Dt for
spring, Pt−1, Pt−2, Tt, Tt−1, Ht, Dt for Summer and Pt−1, Pt−2, Tt, Tt−1, Ht, Dt for autumn.

For winter season, the MAPE does not exceed 4.0%, which means the 24 hours predictions
are excellent for winter for the best combination Pt−1, Pt−2Tt, Tt−1, Ht, Dt. The first 10 pre-
dictions are very good compared to the remaining 14 hours and there is an upward trend for
winter.

Although it seems that the results for summer is better than winter in Figure 7.8(a), the
graph of MAPE values given in Figure 7.8(b) indicate that winter is better than summer in
terms of next 24 hour predictions.

Both spring and autumn shows similar behaviours in forecasting the next 24 hour consump-
tion of electricity using their best signatures Pt−1, Pt−2, Tt, Tt−1, Tt−2, Ht, Dt and Pt−1, Pt−2, Tt, Tt−1, Ht, Dt

respectively.

7.4 Comparison between GP and Traditional Approaches

In this section, we will compare the results of GP for the four seasons with MBPNN and MLR
methods.

Table 7.7 illustrates the comparison of the results of the three methods for the winter season.
From the table, we can see that MBPNN (MAE of 2.378 MWh/h) produces better results than
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GP (MAE of 2.950 MWh/h). However the results of MLR is not even closer to the other two
methods.

Table 7.7: Comparison of the forecasting results for winter.

Signature MAE(MWh/h)

GP Pt−1, Pt−2, Tt, Tt−1, Ht, Dt 2.950
MBPNN Pt−1, Tt−1, Ht, Dt 2.378
MLR Pt−1, Pt−2, Tt−1, Ht 6.147

For spring, we can see our method of GP gives the best results of 2.991 MWh/h for MAE,
from Table 7.8. MBPNN gives a result of 3.584 MWh/h and we can see that MLR (3.350
MWh/h) is better than MBPNN in this case.

Table 7.8: Comparison of the forecasting results for spring.

Signature MAE(MWh/h)

GP Pt−1, Pt−2, Tt, Tt−1, Tt−2, Ht, Dt 2.991
MBPNN Pt−1, Pt−2, Ht, Dt 3.584
MLR Pt−1, Pt−2, Ht 3.350

In summer, we can observe MBPNN again gives the best result of 1.820 MWh/h, and GP
has a closer value of 1.848 MWh/h. This is illustrated in Table 7.9. The result of MLR is not
better than the other two methods.

Table 7.9: Comparison of the forecasting results for summer.

Signature MAE(MWh/h)

GP Pt−1, Tt, Tt−1, Tt−2, Ht, Dt 1.848
MBPNN Pt−1, Pt−2, Tt−1, Tt−2, Ht, Dt 1.820
MLR Pt−1, Pt−2, Ht 5.934

GP gives the best result for the forecast of autumn, which is 2.339 MWh/h and MBPNN
has 2.750 MWh/h. MLR is not giving good results for this case also.
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Table 7.10: Comparison of the forecasting results for autumn.

Signature MAE(MWh/h)

GP Pt−1, Pt−2, Tt, Tt−1, Ht, Dt 2.339
MBPNN Pt−1, Pt−2, Tt, Tt−1, Ht, Dt 2.750
MLR Pt−1, Pt−2, Ht 6.061

From the above comparison, we can see that while GP is producing best results for spring
and autumn , MBPNN have produced best forecasts for winter and summer. This indicates
that GP is as better approach as MBPNN in forecasting electricity consumption.
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Chapter 8

Conclusion and Further Work

8.1 Conclusion

In this thesis, we have examined how GP can be used to forecast electricity consumption on an
hourly basis, by employing different feature vectors, against two target variables, under three
different methods : original, normalized and kernel reduction. Based on the results in the
preceding chapters we come to the following conclusions.

When forecasting the next hour consumption and next 24 hour consumptions, we can see
that, previous hour temperature has a major effect on prediction, in addition to the previous
hour consumption. This is true for both dynamic and fixed training datasets. The effect is very
high for winter and summer seasons, indicating their relationship with the temperature.

Among other factors, consumption of the hour before last hour Pt−2, influences the con-
sumption differently on different seasons. The effect is very low for the dynamic dataset, but
high effect on spring and autumn predictions in the fixed dataset. However, it is not good for
winter and summer.

When considering the best feature vectors for predictions, we can come to the conclusion
illustrated in Table 8.1. In addition to the best feature vectors, we can come to another con-
clusion by examining these best forecasts. The target variable used in all these cases, is the
power difference δPt. Therefore we can conclude that δPt is better than using Pt as the target
variable in electricity consumption forecasting.

If we consider the three feature space modification techniques, normalizing the feature vari-
ables produce better results for winter and summer than both original and kernel reduction.
Original and normalizing methods equally contribute for best results in spring and autumn.
However majority of the best results are given by normalizing. Therefore we can conclude that
both methods are equally good in forecasting electricity consumption.

However we can conclude that kernel reduction method is not a suitable reduction method in
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Table 8.1: Best feature vectors.

Dataset/Season Feature vector

Dynamic dataset Pt−1, Tt, Tt−1, Ht, Dt

Winter Pt−1, Pt−2Tt, Tt−1, Ht, Dt

Spring Pt−1, Pt−2, Tt, Tt−1, Tt−2, Ht, Dt

Summer Pt−1, Tt, Tt−1, Tt−2, Ht, Dt

Autumn Pt−1, Pt−2, Tt, Tt−1, Ht, Dt

this context. Not only it produces bad forecasting results, but also using much of the computer
resources due to its increasing complexity.

For the best feature vectors in Table 8.1,the next 24 hour prediction is best in winter than
the other 3 seasons. Altogether GP produces sufficiently good results for the next 24 hour
predictions.

Finally if we consider the results between GP and the two traditional methods : MBPNN
and MLR, we can conclude that Gaussian processes is as better as Multiple Back-Propagation
Neural networks in terms of short-term electricity forecasting, and it is far better than Multiple
linear regression.

8.2 Further Work

In the later stages of the thesis, we could find some interesting results which could lead to future
extensions of this work.

Table 8.2: Effect of previous consumption differences in the feature vector of the original dataset.

Method Signature MAE(MWh/h)

Original δPt, Tt, Tt−1, Tt−2, Ht, Dt 2.501
Original δPt, δPt−1, Tt, Tt−1, Tt−2, Ht, Dt 2.186
Original δPt, δPt−1, δPt−2, Tt, Tt−1, Tt−2, Ht, Dt 2.143
Original δPt, δPt−1, δPt−2, δPt−3, Tt, Tt−1, Tt−2, Ht, Dt 2.121

Normalized δPt, Tt, Tt−1, Tt−2, Ht, Dt 2.540
Normalized δPt, δPt−1, Tt, Tt−1, Tt−2, Ht, Dt 2.194
Normalized δPt, δPt−1, δPt−2, Tt, Tt−1, Tt−2, Ht, Dt 2.090

If we use previous electricity consumption differences such as δPt, δPt−1, δPt−2 and so on, for
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the dynamic dataset, we could see improvements of the results in both original and normalized
datasets. Some of those results are given below in Table 8.2:

If you observe closely we can see a pattern, that the error is reducing once we increase the
number of power differences variables in the feature vector. This is an exciting feature which
could be extended more in the future extension of this work.

Moreover, it could be developed a new kernel function that best describes the actual elec-
tricity consumption.

In addition to that, more feature space reduction and scaling methods could be tested to
see how GP behaves in forecasting future electricity consumption.

Finally, we can compare GP with more traditional techniques such as genetic algorithms,
grey methods and time series analysis.
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Glossary and Abbreviation

δ(x, x′) Kronecker delta function

E Expectation

µ mean

σ Standard deviation

σ2f variance of the (noise free) signal

σ2n noise variance

θ vector of hyperparameters

f(x) Gaussian process latent function

k(x, x′) covariance function evaluated at x and x′

l characteristic length-scale

m(x) Gaussian process mean function

ANN Artificial Neural Network

ANOVA ANalysis Of VAriance

BPNN Back-Propagation Neural Network

CDF Cumulative Distribution Function

FF Feed Forward

GA Genetic Algorithm

GDP Gross Domestic Product

GM Grey Method

GPR Gaussian Process Regression
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GP Gaussian Process

ICT Information and Communication Technology

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MAP Maximum a Posteriori

MBPNN Multiple Back-Propagation Neural Network

MBP Multiple Back-Propagation

MLP Multi-Layer Perceptron

MLR Multiple Linear Regression

MSE Mean Squared Error

MTWGP Multi-Task Warped Gaussian Process

NASA National Aeronautics and Space Administration (USA)

PDF Probability Density Function

PET Poly Ethylene Terephthalate

RBFN Radial Basis Function Network

RBF Radial Basis Function

RV Random Variable

SVM Support Vector Machines

SVR Support Vector Regression
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Appendix A

Screen-shots of MBP Software

Figure A.1: The main screen of defining the neural network to be tested
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APPENDIX A. SCREEN-SHOTS OF MBP SOFTWARE

Figure A.2: Output of the training dataset

91



Appendix B

Graphs of Mean Hourly
Consumption

(a) (b)

(c)

Figure B.1: The mean hourly electricity consumption on Wednesdays in year (a) 2008 (b) 2009 and (c)
2010
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APPENDIX B. GRAPHS OF MEAN HOURLY CONSUMPTION

(a) (b)

(c)

Figure B.2: The mean hourly electricity consumption on Thursdays in year (a) 2008 (b) 2009 and (c)
2010

93


