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Abstract

When using a hydrological model to estimate the amount of available
resources, the accuracy of the estimates depends on the calibration
of the model. That is, one needs to find appropriate values for the
model parameters. Calibration of hydrological models requires the ex-
ploration of a significant search space, rendering traditional gradient
descent techniques sub-optimal. The Bayesian learning automaton has
emerged as a simple and computationally efficient addition to current,
largely evolutionary, calibration techniques. Although particularly well
suited for learning in stochastic environments, the automaton struggles
with navigating huge action spaces.

To alleviate this limitation, we introduce a hierarchically structured
variant of the Bayesian learning automaton, applying it to the field of
model calibration and function optimization. Several variants of the
automaton is implemented and empirically tested, as well as compared
to competing calibration techniques from the literature.

The new hierarchically structured automaton shows great promise, im-
proving on action space handling compared to earlier, non-hierarchical
structures. Indeed, the computational complexity now grows logarith-
mically rather than linearly with the size of the action space. Our
experiments show that this approach is a viable alternative to compet-
ing calibration techniques.
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Chapter 1

Introduction

The world is a complex system and human beings have been trying to
understand how it works for quite some time. While trying to solve
such tasks, researchers and scientists create models to represent a part
of the system they are looking into. Good models represent a close
guess of an infinitely complex process, and often one needs to adjust
(calibrate) some of the quantities (parameters) which make up a model.

It is not always a trivial task to determine what solution is the “best”
among a multitude of candidates. “The terminology “best” solution
implies that there is more than one solution, and the solutions are not
of equal value.” [1] This is usually because the solution space is very
large and/or is generated by very complex models or functions. Novel
approaches to narrowing down the list of candidates are always appre-
ciated, as it increases the accuracy and performance of the solution
finding process.

1.1 Background

Our problem area is the area of model parameter calibration and rein-
forcement learning, in this thesis related to optimization methods for
calibration of hydrological models. Such models are used for estima-
tions of the water balance in a modelled catchment area [2]. The model
used for calibration in this thesis, the HBV model [3] [4], is used by
hydrologists to simulate how snow, rain, water, soil and evaporation
act together within an area. Such knowledge could be used to estimate
the amount of water available for hydroelectric power production, or
to estimate the time and size of floods in vulnerable areas.
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CHAPTER 1. INTRODUCTION

To provide useful information about the hydrological conditions in a
catchment area, the model needs to be carefully calibrated to that par-
ticular area. High precision model estimates may be achieved with
the use of automatic optimization techniques such as Bayesian learn-
ing automata, providing the model users with a clear picture of the
hydrological conditions in the modelled area. However, calibrating the
hydrological model is not a trivial task, as the model typically contains
more than twenty tunable parameters. These parameters often repre-
sent conceptual rather than measurable entities, and must therefore be
estimated indirectly through measurements of the system (model) re-
sponse [2]. As such, calibrating the model constitutes exploration of a
significant search space, with each parameter constituting a dimension
of complexity.

Bayesian learning automata are known for rapidly and accurately con-
verging towards the optimal action [5], and are shown to outperform
established contenders [6]. This, combined with a low computational
complexity, makes them a good candidate for model calibration.

The challenges with using Bayesian learning automata [6] for calibra-
tion of high-dimensional models, is connected to the fact that the size of
the action space representing the search space grows exponentially with
the number of dimensions: As the parameter space of each dimension
is divided into a discrete number of actions, the total amount of actions
will be “actions to the power of dimensions” (ad). Current implementa-
tions of Bayesian learning automata need to explore every action, both
when selecting which action to perform and when updating probability
distributions with feedback from the examined environment.

To make the Bayesian learning automaton able to explore larger action
spaces, we investigate methods for hierarchically structuring the action
space. This approach is explored in an attempt to reduce the number
of actions needed to be explored before a selection can be made, as
well as reducing the number of actions that needs to be updated with
feedback from the environment.

1.2 Thesis Definition

The purpose of this thesis is to investigate how the Kalman Filter
Bayesian Learning Automata (KF-BLA) can be organized hierarchi-
cally in order to deal with huge action spaces, typically experienced
when optimizing high-dimensional functions. Ideally, by pursuing a
hierarchical organization of the action space, the resulting KF-BLA
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CHAPTER 1. INTRODUCTION

based learning algorithm should scale logarithmically with the number
of actions available rather than linearly. With respect to applications,
the thesis will focus on calibration of the OHBV hydrological model,
a particularly complex real-life optimization problem involving a high-
dimensional parameter search space. A prototype will be developed
to empirically evaluate the computational efficiency, variance and ac-
curacy of the proposed learning algorithm. The algorithm will also be
compared to competing calibration methods described in the literature.
These include the SCE-UA method and the genetic algorithm.

1.3 Related Work

Research into calibration of conceptual hydrological models, amongst
them the HBV model, has lead to a number of different calibration
methods [7] [8] [9]. Many of these techniques rely on evolutionary com-
puting concepts, mixed with directed search and/or random sampling,
to evolve model parameters.

The SCE-UA algorithm [7] was introduced for calibration of model
parameters for hydrological models. In the paper, it is shown how ef-
fective and efficient this technique is when applied to different theoret-
ical problems of varying complexity. SCE-UA uses complex evolution
and simplex directed search to evolve the model parameters or vari-
ables, depending on the optimization problem, into globally optimal
solutions. The SCE-UA is used in several articles focusing on calibra-
tion of models. In [10] the NWSRFS-SMA model, in [11] the MIKE
11/NAM model, and in [12] the SAC-SMA and SNOW-17 models are
calibrated with the SCE-UA algorithm.

Duan et. al.’s research [7] provides a foundation for other optimiza-
tion techniques, which try to enhance the original algorithm. Vrugt
et. al. [8] proposes extensions, which adds Markov Chain Monte Carlo
(MCMC) sampling, giving name to the new algorithm SCEM-UA [8].
They also propose a way to handle multiple objective functions. Multi-
objective SCEM-UA (MOSCEM-UA) [13] solves problems where hy-
drological models output many different outputs for each simulation,
but still using the same parameter set. It tries to balance the total
model efficiency with regards to all objective functions.

A number of articles describe use of the genetic algorithm for calibra-
tion of hydrological models. The SWAT-model is calibrated in [14], the
Xinanjiang-model in [15], and in [16] the genetic algorithm is compared
to the SCE-UA when calibrating the CRR-model.

3



CHAPTER 1. INTRODUCTION

Bayesian learning automata have been applied for solving stationary
two-armed Bernoulli bandit problems [5]. As stated in the article,
learning automata are able to learn the optimal action when interact-
ing with unknown stochastic environments, and they combine rapid
and accurate convergence with low computational complexity. The ar-
ticle shows that the Bayesian learning automaton is among the top
performers in its field.

The research on Bayesian learning automata is expanded upon in [6],
which introduces methods for tracking changes in the environment.
That is, situations where the reward probabilities are changing with
time. Indeed, the article shows that this scheme outperforms estab-
lished top performers, both for stationary and non-stationary bandit
problems. The algorithm proposed by Granmo and Berg forms the ba-
sis for development of a hierarchically structured BLA, and this thesis
investigates how the scheme performs in a high-dimensional calibration
setting.

1.4 Contributions

A new optimization method, “Hierarchically structured Kalman Filter
Bayesian Learning Automata” (HKF-BLA), is proposed and compared
to other optimization methods. These other optimization methods in-
clude model optimization by the continuous genetic algorithm with
random sampling, and shuffled complex evolution, combining evolu-
tionary concepts with traditional gradient descent based optimization
techniques.

Our work extends the field of reinforcement learning with a new learn-
ing automaton. We provide a review of its components and algorithms,
which constitute the proposed solution. The main advantage with this
scheme is the improved navigation of the action space, both when se-
lecting which action to perform on the environment, and when dis-
tributing feedback from the environment throughout the action space.
The new navigation methods scale logarithmically instead of linearly
with the size of the action space, and thus it enables exploration of
much larger action spaces than previous solutions. The HKF-BLA is
general and may be applied to other fields (it doesn’t rely on domain
knowledge), although in this case it is tested on a specific model.

We show how the new method compares to other methods of calibrating
hydrological models. The different methods are compared with respect
to how well they optimize the HBV model, using a data set supplied by
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CHAPTER 1. INTRODUCTION

Agder Energy spanning about nine years of hydrological observations.
This data set contains measurements of precipitation, temperate and
runoff from a catchment area. The HBV model itself is treated as a
“black box,” and isn’t analyzed in detail. It serves only as a practical
application area for the optimization algorithms. This model is exciting
because it constitutes a significant search space for the algorithms to
explore.

Results of the model optimization process and key findings are pre-
sented. We present experiments, results and observations relating to
the model optimization process and provide a discussion of advan-
tages, disadvantages and other properties of the HKF-BLA itself and
the HKF-BLA compared with other optimization algorithms. These
experiments give more insight into the performance and accuracy of
Bayesian learning automata as optimization algorithms.

Finally, we propose further research based on the findings in this thesis,
for example other real life applications or empirical evaluations. One
such example could be on-line automatic model calibration, or other
similar complex optimization problems.

1.5 Assumptions and limitations

Regarding development of the solution, we assume that all prior re-
search on learning automata is correct and valid, including the as yet
unpublished algorithm 3.3 in section 3.1.4. We also assume that the
HBV model is representative of models used for modelling hydrological
processes, meaning that we assume the solution will work on similar
models. The implementation of the HBV model that the solution is
used on, is treated as a “black box,” and is not analysed or improved
upon in any way.

As regards the experiment setup and results, we assume that the data
set from our test catchment contains accurate measurements, and that
the catchment is neither extremely hard nor extremely easy to calibrate
compared to other catchments. Thus we assume that the results we get
from calibrating the model to this catchment is similar to the results
we would get from calibrating other catchments.

The implementation of the SCE-UA algorithm is provided by its au-
thor, and is used as is. We implemented the GA ourselves using pub-
lic libraries. Both algorithms are used for comparison purposes only,
meaning that their concepts are explained without providing deeper
analysis of their behaviour.

5



CHAPTER 1. INTRODUCTION

Finally, we do not perform a qualitative analysis of the parameter sets
produced by the model, as this falls more under the field of hydrology
than the field of optimization and reinforcement learning. Furthermore,
we assume that the calibrated model parameters are static over the time
span of the catchment data set.

1.6 Report Outline

In the following chapter we give an introduction to model calibration,
along with a presentation of how to use optimization algorithms for
calibration of hydrological models. To highlight the problem area, we
provide a brief overview of the HBV model (section 2.1). Finally, in
section 2.2, we introduce several commonly used objective functions
(methods for comparing observed and estimated data).

Chapter 3 contains background information regarding optimization al-
gorithms, with section 3.1 focusing on concepts related to reinforcement
learning. These concepts lay the foundation for the solution in chap-
ter 4. Algorithms used for comparison purposes are also introduced in
chapter 3. The information presented in section 3.2 and 3.3 relates to
the genetic algorithm (GA) and shuffled complex evolution (SCE-UA)
respectively, and readers familiar with these concepts may skip those
sections without loss of continuity.

In chapter 4 we present the components and algorithms constituting
the HKF-BLA. First, in section 4.1 we explain how we hierarchically
structured the action space of the learning automaton. Then, in section
4.2 we proceed with explaining the algorithm for action selection and
in section 4.3 the algorithms for distributing rewards throughout the
action space.

Several versions of the HKF-BLA are compared in chapter 5, followed
by comparisons of the HKF-BLA with competing optimization algo-
rithms. The different algorithms are compared with two different ob-
jective functions, the standard deviation (rmse), and the Lindström
coefficient. The results are discussed in chapter 6, followed by con-
clusions in chapter 7. An example of a python implementation of the
HKF-BLA can be found in appendix A.
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Chapter 2

Model calibration

Just like the control knobs on your stereo, which allows you to adjust
settings like volume, balance, bass, and treble, a rainfall-runoff (RR)
model is usually equipped with adjustable parameters. These param-
eters tune the model to a specific problem area and thus avoids the
trouble of having to write a unique model for every problem encoun-
tered. The goal of the modeller is now to adjust the model parameters,
such that the model matches the underlying conditions. This pro-
cess of modifying parameters and verifying the results against observed
records, is called model calibration.

The need for this calibration procedure comes from the fact that RR
models are conceptual (not necessarily corresponding to physical real-
ity), and therefore most of the RR model’s parameters are not directly
measurable. [2] Instead, the parameters have to be estimated. Addi-
tionally, the structure of the RR model is usually specified for a general
catchment area rather than a concrete one. As such, it is possible to
adapt the RR model to different catchment areas instead of writing a
new model for each one.

An important observation is that the measured input and response
values of the real world system may or may not differ from it’s true
input and response. Errors, inaccuracies or noise in the measurements
would make the model produce a simulated response different from the
actual response of the system. This problem is of interest for hydrolo-
gists, but in the context of this thesis, all measurements are assumed
to be correct.

Traditionally, RR models have been manually calibrated. That is, an
experienced hydrologist tunes the model parameters while observing
how the calculated response of the model fits the measurements from
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CHAPTER 2. MODEL CALIBRATION

the specific area. As RR models typically have one or two dozen inter-
dependent parameters, this is an extremely time consuming process. A
desire to model more catchment areas faster has lead to the develop-
ment of automatic calibration procedures.

A strategy for an automatic calibration process is outlined in figure
2.1. To start the calibration process, some prior information is used to
initialize the parameters required by the model. This prior information
could be the educated guess of a hydrologist, or a set of randomly gener-
ated numbers (although in both cases constrained by each parameter’s
range).

Figure 2.1: Strategy for model calibration

Assessing the fitness of the selected parameter set is done by running
the measured input data through the model, resulting in the genera-
tion of a simulated response of the real world system being modelled.
This simulated response is then compared to the measured response
by means of an objective function, which output a score or similar fit-
ness result for use by the optimization algorithm. The model used in
this thesis, along with it’s parameters, is presented in the next section,
while different objective functions are discussed in section 2.2.

Finally, the parameter set is adjusted according to the strategy of the
optimization algorithm, and the process starts over. The loop could
continue for a fixed number of iterations, or be programmed to termi-
nate upon stagnation. The different optimization algorithms used in
the thesis are discussed in detail in chapter 3.

8



CHAPTER 2. MODEL CALIBRATION

2.1 The model and its parameters

The rainfall-runoff model used in this thesis is the HBV model, de-
veloped by the Swedish Meteorological and Hydrological Institute. It
consists of conceptual numerical descriptions of the hydrological pro-
cesses in the modelled catchment area. The general water balance
in the catchment is summarized in equation 2.1[17], with parameter
names in table 2.1.

P − E −Q =
d

dt
(SP + SM + UZ + LZ + lakes) (2.1)

Parameter Name

P Precipitation
E Evapotranspiration
Q Runoff
SP Snow pack
SM Soil moisture
UZ Upper groundwater zone
LZ Lower groundwater zone
lakes Lake volume

Table 2.1: Water Balance Parameters

From the catchment area daily measurements of precipitation, air tem-
perature and evapotranspiration (optional; estimates may be calculated
from temperature) is input to the model. The air temperature is used
for calculations of snow accumulation and melt, and may be omitted
in snow free areas (if not used to calculate potential evaporation).

The model is composed of several subroutines, such as meteorological
interpolation, snow accumulation and melt, evapotranspiration, soil
moisture accounting, runoff generation and routing routines between
sub-basins and lakes. The structure of the model is presented schemat-
ically in figure 2.2[17], showing the most important elements of the
model.
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CHAPTER 2. MODEL CALIBRATION

Figure 2.2: HBV-model, with routines for snow(top), soil(middle) and re-
sponse(bottom)

The snow accumulation and melt routine is designed to model the water
holding capacity of snow and ice, which, based on temperature, delays
runoff. This routine may use a hard threshold temperature TT, or an
interval based threshold TTI, where precipitation inside the interval is

10
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assumed to be a mix of rain and snow. Different area types, such as
open areas, forests and glaziers have different accumulation and melt
functions.

The soil routine accounting models the water holding capacity of the
soil in the catchment area. This routine is the main part controlling
runoff generation, and is based on three parameters, BETA, LP and
FC, shown in the middle of figure 2.2. BETA controls the increase in
soil moisture from rainfall and snow melt, LP is the limit for potential
evapotranspiration (water reentering the atmosphere) and FC is the
maximum soil moisture storage in the model.

The response or runoff function transforms excess water from soil mois-
ture and wet areas like lakes and rivers into runoff. The function is split
into an upper non-linear zone(UZ) and a lower linear zone(LZ). These
are the sources of the quick and slow runoff components Q0 and Q1 in
the bottom of figure 2.2. The total runoff Q calculated by the model
is the value compared to the measured runoff from the catchment in
order to determine the fitness of the parameter values.

2.2 Objective functions

The objective function is a central component to model calibration,
as it is the means of comparing measured catchment response values
with those simulated by the RR model. Since the simulated response
values depends on the current model parameters, the objective function
becomes a way of quantifying the fitness of the parameter set. This
information is in turn used by the optimization algorithm to modify
the parameters so that the model computes more accurate values.

Standard deviation

One way of comparing two data sets, is by calculating their standard
deviation, or root mean square error (2.2). In this function the squared
difference at each data point is accumulated, then divided by the num-
ber of data points. This result is called the mean square error (MSE),
and its root the RMSE. Taking the root also returns the unit of mea-
surement back to the original. A perfect fit between the two data sets
is indicated by an RMSE of zero (the two data sets are identical at
all points), while an increasing RMSE value indicates an increasing
distance between the two sets.

11
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RMSE =

√∑n
i=1 (xobs,i − xsim,i)2

n
(2.2)

Correlation

Correlation describes the dependence, or synchronicity, between two
data sets 2.3. This function is slightly more complicated than the
standard deviation. First, the product of each data set’s deviation
from its mean value is accumulated. Next, this value is divided by
the root of the product of each data set’s variance (the accumulated
squared deviation from its mean value). A perfect correlation between
two data sets will yield a score of 1. An opposite linear dependence
is indicated by a score of -1, while an absence of any dependence is
denoted by a score of 0.

CORR =

∑n
i=1 (xobs,i − x̄obs)(xsim,i − x̄sim)√∑n

i=1 (xobs,i − x̄obs)2
∑n

i=1 (xsim,i − x̄sim)2
(2.3)

The Nash-Sutcliffe coefficient

The Nash-Sutcliffe coefficient 2.4 can be explained as one minus the
division of the mean squared error by the variance of the observations
[18]. Thus two identical data sets will have a score of 1, while increas-
ingly different data sets will have scores approaching −∞.

R2 = 1− MSE

V ar(xobs)
= 1−

∑n
i=1 (xobs,i − xsim,i)2∑n
i=1 (xobs,i − x̄obs)2

(2.4)

The Lindström coefficient

The Lindström coefficient 2.6 is an expansion of the Nash-Sutcliffe
coefficient. Here the accumulated difference between predictions and
observations are divided by the sum of the observations (2.5), before
being weighted and subtracted from the Nash-Sutcliffe coefficient. See
[9].

DV =

∑n
i=1 (xsim,i − xobs,i)∑n

i=1 xobs,i
(2.5)

R2
V = R2 − w|DV | (2.6)
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Chapter 3

Optimization algorithms

Optimization is the process of making a solution better. Original con-
cepts and ideas, both real life applications and theoretical problem
solving, are improved by optimization methods developed in mathe-
matics. It is widely known that the computer is well suited for intense
computation, which has lead to many computer algorithms that solve
different kinds of optimization problems.

A hydrological model is an example of a real life application, where
calibration of this model is subject to optimization. In this thesis,
the HBV [3] [4] model will be used as the hydrological model subject
to calibration by the optimization algorithm. Calibrating the HBV
model, with its 24 adjustable parameters, requires the exploration of
a significant search space, which puts significant strain on the selected
optimization method.

Different algorithms, GA [16] and SCE-UA [7] have been applied or
introduced to solve the optimization problem of model calibration.
These algorithms use traditional mathematical optimization techniques
or an evolutionary process to perform the calibration. In some cases a
method uses a combination of techniques, as we’ll see in later sections.

3.1 Reinforcement Learning Algorithms

Most are familiar with the concept of learning by interaction, because
it’s inherent in human nature. Children and adults interact with an en-
vironment and interpret how their behaviour effects an outcome, cause
and effect. Most of the time, there is not even a teacher or supervisor
to guide the subject. Therefore, based on the outcome or a series of
outcomes, the individual is able to gain knowledge about how action
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CHAPTER 3. OPTIMIZATION ALGORITHMS

maps to outcome. Reinforcement learning algorithms encapsulates this
concept of natural learning, describing components and how they in-
teract, and transforms them into a computational approach to be used
by computers and mathematicians.

3.1.1 Reinforcement Learning

Learning is an interactive and iterative process, in which the subject
uncover how different actions result in specific rewards. Rewards in a
philosophical sense may be discussed in length, but when considering
computers it is confined to a numerical value. This numerical value
represents how good a reward is, relative to other rewards. The main
objective of reinforcement learning is to maximize these rewards over
the entire learning period. This may seem intuitive, but we also know
from real life experience that predicting the future, without substantial
evidence and observations, is hard. To complicate things even further,
the environment may be stochastic and actions may affect long-term
reward, or even cause delayed reward. And all of this is done without
any form of supervised instructions.

Since the agent doesn’t get information from a teacher or supervisor,
it has to gain experience about the environment by exploration. This
exploration helps the agent build an internal model of how actions
maps to response in the environment. But to maximize reward it has
to exploit its experience. Therefore the agent is caught in a dilemma.
Should it learn more and gain insight, or should it focus on what it
already knows. This dilemma is referred to as exploration vs exploita-
tion, and is a well known and well studied concept in reinforcement
learning. n-armed bandit problem is an iconic example and a specific
realization of the exploration vs exploitation dilemma.

Sutton and Barto defines a reinforcement learning algorithm as any
method which solves a reinforcement learning problem [19]. As a re-
sult, there exists a wide variety of methods which conforms to this
structure. They also identify four important sub-elements of reinforce-
ment learning:

Policy The mapping between perceived states and actions taken. De-
termines behavior. “Stimulus-response rules” or associations.

Reward function Maps a state-action pair to a number, indicating
the states immediate desirability value. The agent wants to max-
imize rewards in the long run. Reward and penalty may be com-
pared with pleasure and pain in a biological system.
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Value function Accumulated reward over the long run when starting
from a given state. Rewards are directly linked to the environ-
ment, while value is estimated. Efficient value estimation is a key
component in reinforcement learning algorithms.

Model of the environment The learning system produces a model
of how it believes the environment will respond. The model is
then used for planning how to proceed. This is the opposite of
what trial-and-error learners do.

In comparison to reinforcement learning algorithms, evolutionary search
methods such as, genetic algorithms, genetic programming, simulated
annealing and other function optimization methods have been used to
solve reinforcement learning problems, but these use reward as feedback
and doesn’t evaluate or consider a value function [19].

On the other hand, supervised learning rely on an expert guiding the
subject. This is not always possible because it relies on creating ex-
amples of good behavior, which might is difficult, complex or simply
impossible. For example, whenever the subject is supposed to learn
something about an uncharted territory. The only way to achieve this
is to explore or interact with the unknown environment. A stochas-
tic environment may also lead to some of the same difficulties when
considering supervised learning.

Agent-Environment

The Agent-Environment framework is an abstraction which help de-
fine reinforcement learning problems. Its objective is to describe the
necessary signals and how they interact. As in figure 3.1, the Agent
constitutes the learner. For the purpose of Agent-Environment frame-
work, the environment constitutes everything which is not the agent.
An instance of a reinforcement learning problem is called a task, which
also is a complete specification of an environment [19]. Environments
may be stationary or non-stationary (dynamic), meaning the reward
probability distribution might change with time.

The agent is able to interact with its environment, and this interaction
happens at discrete steps t = 0, 1, 2, 3, . . . , n. These steps may be
related to time or independent of time. At step t, the agent perceives
the state of the environment as st ∈ S, with S as a set of possible
states. The agent has to chose an action at from all available actions
for the state st, at ∈ A(st). Now, the agent is able to exert this action
on the environment, and in step t + 1 it receives a reward rt+1 ∈ < as
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Environment

st 7→ st+1

rt 7→ rt+1

Agent

Reward

rt+1

(st+1)

Ation

at

Figure 3.1: Agent and environment

a consequence. The policy at step t is denoted as πt(s, a), which is the
probability of selecting at = a if st = s. This framework abstracts the
reinforcement learning problem into three signals, passing between the
agent and its environment [19]:

The actions Choices made by the agent.

The states Basis on which the choices are made.

The rewards The agent’s goal.

To summarize, reinforcement learning defines automatic learning and
decision-making described as a computational approach, with empha-
sis on interaction with an environment and learning from this interac-
tion. This exposes the challenge between exploration and exploitation:
Should the agent gain new information about its environment or make
the most of its current information?

3.1.2 Bayesian Learning Automata

Before we look at the inner workings and motivation behind the Bayesian
learning automata family of reinforcement learning methods, we’ll give
a brief refresher on Bayes’ theorem, Bayesian inference and reasoning,
probability distributions and conjugate priors.

Equation 3.1 is the famous Bayes’ theorem, which simply put shows
the connection between the conditional probability A given B (poste-
rior probability) and the conditional probability of B given A (like-
lihood) and the probability of A (prior probability). In other words,
Bayes’ theorem shows the connection between how old beliefs should
be changed or updated in light of new evidence.
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P (A|B) =
P (B|A)P (A)

P (B)
(3.1)

“This simple equation underlies all modern AI systems for
probabilistic inference.”[20]

Sometimes there exists a relationship between the different probabili-
ties in Bayes’ theorem. When considering the probability distributions
for the prior and posterior in Bayes’ theorem, if they are in the same
family, then they are said to be conjugate distributions. The prior dis-
tribution is said to be a conjugate prior for the likelihood function. In
practice, this means that the integral in

p(θ|x) =
p(x|θ) p(θ)∫
p(x|θ) p(θ) dθ

(3.2)

will be of some known form, which is easier to deal with mathemat-
ically. In some cases, it reduces the calculations from very complex
formulas and difficult integrals, down to updating hyper-parameters1

of the conjugate probability distribution.

The Bayesian learning automaton is a reinforcement learning method,
which uses Bayesian reasoning to guide its belief about a system. The
automaton was introduced by Granmo in [5] and used it to solve dif-
ferent two-armed Bernoulli bandit (TABB) problems. As mentioned
in section 3.1.1, n-armed bandit problems from a good testbed for in-
vestigation of reinforcement learning methods. The method showed
several interesting properties such as being self-correcting and hav-
ing guaranteed convergence to pulling the optimal arm. In addition,
previous approaches that used Bayesian reasoning suffered from un-
bounded computation, which made them difficult and impractical to
use in practice. Granmo’s novel solution made the Bayesian reason-
ing computationally efficient, by leverage mathematical properties of
conjugate priors, such as the beta probability distribution.

Following in algorithm 3.1 is pseudo-code of the Bayesian Learning
Automaton, with the beta distribution

f(x;α, β) =
xα−1(1− x)β−1∫ 1

0
uα−1(1− u)β−1 du

, x ∈ [0, 1] (3.3)

1As is done in the Bayesian Learning Automata
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Algorithm 3.1 Bayesian Learning Automaton

Ensure: α1 = β1 = α2 = β2
1: loop
2: Draw a value x1 randomly from beta distribution f(x1, α1, β1) with

parameters α1, β1.
3: Draw a value x2 randomly from beta distribution f(x2, α2, β2) with

parameters α2, β2.
4: if x1 > x2 then
5: Arm i← Pull Arm 1.
6: else
7: Arm i← Pull Arm 2.
8: end if
9: Receive either Reward or Penalty as a result of pulling Arm i.

10: Increase αi with 1 upon Reward, and increase βi with 1 upon Penalty.
11: end loop

3.1.3 The Kalman Filter

A Kalman filter is simply an optimal recursive data processing algo-
rithm[21]. The reason filters such as the Kalman filter exists is because
some things are difficult to measure exactly. Therefore the quantities
have to be inferred by observation, which is often noisy and inaccurate.
As the definition described, Kalman filters have several nice features
when it comes to dealing with observations and estimation.

Optimal Incorporates all available information into a single measure,
even though the measurements may have different noise, errors or
uncertainties.

Recursive Doesn’t require all previous data to be stored and pro-
cessed when updating with new measures.

Data Processing Is usually implemented in software, running on a
processing unit, as opposed to electrical or mechanical filters.

Here is an example which explains the main concepts of the Kalman
filter and how they work together. Suppose you are out driving with
a friend and as the passenger, you fall asleep. After a while you wake
up at some unknown rest area and want to know the current location
of the car. You look around, look at the time t1 and guess the location
to be z1. As imaginable, this measure has quite high uncertainty σ2

z1
,

but it’s good enough for you at this instance. With these points, one is
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able to create a conditional probability function fx(t1)|z(t1)(x|z1) which
gives the probability of being at location x based on the measure z1.
The currently best estimate of position is x̂(t1) = z1.

You ask your friend, the driver, where he thinks the car is located. He
has access to a Global Positioning System (GPS) and gives the GPS
location z2 as his estimate. Since the location hasn’t changed, z2 is also
said to happen at t2 ≈ t1. This measure on the other hand has very
low uncertainty σ2

z2
(at least compared to the manual observation).

Now we combine the two estimates into a new and better estimate, a
Gaussian density with mean µ and the corresponding uncertainty σ2,
with the equations 3.4 and 3.5 respectively. Our new best estimate
given this density is x̂(t2) = µ.

µ =
σ2
z2

σ2
z1

+ σ2
z2

z1 +
σ2
z1

σ2
z1

+ σ2
z2

z2 (3.4)

1

σ2
=

1

σ2
z1

+
1

σ2
z2

(3.5)

As suggested, the new estimate will have less uncertainty and will also
incorporate all information available at that time. The next logical step
is to introduce how to add new measures from the following time step
to the old optimal estimate. One of the strengths of the Kalman filter
is its recursive feature, only requiring the previous optimal estimate as
starting point, yet allowing for new updates to be added.

Back to the traveling example. After the break, you head out towards
the trip destination. The cars position is estimated to change at ap-
proximately some average speed v, give or take some error σ2

n. Your
best guess is the speed limit of the road. The location probability den-
sity function estimated at the rest stop will flatten and stretch out as
time goes along. This is because for every time step, x will move on
average some distance v. As time passes, error accumulates and the
Gaussian density, used to predict location x, flattens. Just before the
car stops at time t3, the best estimate of your current location x at
time t−3 will be

x̂(t−3 ) = x̂(t2) + v[t3 − t2]
σ2
x(t
−
3 ) = σ2

x(t2) + σ2
n[t3 − t2]

(3.6)
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When the car stops, a measurement z3 of the actual location is taken.
z3 is combined with the prediction of x̂(t−3 ) into the actual best estimate
at the current time t3

x̂(t3) = x̂(t−3 ) +K(t3)[z3 − x̂(t−3 )]

σ2
x(t3) = σ2

x(t
−
3 )−K(t3)σ

2
x(t
−
3 )

(3.7)

with K(t3)

K(t3) = σ2
x(t
−
3 )/[σ2

x(t
−
3 ) + σ2

z3
] (3.8)

and again, we see that x̂(t3) = µ is the optimal estimate of our location
x at time t3.

For a more complete primer, excellent additional information about
Kalman filters, mathematical properties and engineering applications,
see [21].

3.1.4 Tracking reward in dynamic environments

The tracking capability of Kalman filters are well-known and powerful[21]
[20]. As a consequence, the Kalman filter and its tracking abilities pose
as a good candidate for working with dynamic (non-stationary) envi-
ronments. In these dynamic environments, the state of the reward
probabilities change over time. This causes a major problem for the
original BLAs intended for stationary environments with static reward
probabilities.

Kalman filters do probabilistic reasoning over time, which suggest an
iterative process. In section 3.1.3 it was introduced how different mea-
sures could be incorporated into a single optimal measure and how to
incorporate new measures over time, in a recursive way.

Algorithm 3.2 contains pseudo-code for the Kalman filter Bayesian
Learning Automaton. This algorithm was introduced by Granmo et
al. [6] to solve non-stationary bandit problems. The KF-MANB serves
as a foundation for our work and it is therefore repeated here. We’ll
walk through some of the important parts and show how it uses the
Kalman filters.

The algorithm requires starting conditions, such as number of bandit
arms q, observation noise σ2

ob and transition noise σ2
tr. All normal
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distributions belonging to the arms,

µ = {µ1, µ2, · · · , µq}
σ = {σ1, σ2, · · · , σq}

are initialized to standard values A for the former and B for the latter.
The algorithm continues as follows: for each iteration N , it starts by
drawing a random variable xj from the normal distribution correspond-
ing to Armj, denoted as N (µj[N ], σj[N ]). When all arms have been
pulled, the results are compared, and the index i of the maximum xj
is found. Now the actual Armi is pulled, which gives the reward r̃i.
The algorithm is logically partitioned into two distinct parts; a selec-
tion part and an update part. Steps 2-6 selects an action and pulls the
resulting Arm. Steps 7-15 updates the arm-distributions. The selected
arm Arm j = Arm i is updated with the Kalman filter equations

µj[N + 1] =
(σ2

j [N ] + σ2
tr) ∗ r̃i + σ2

ob ∗ µj[N ]

σ2
j [N ] + σ2

tr + σ2
ob

(3.9)

and

σ2
j [N + 1] =

(σ2
j [N ] + σ2

tr) ∗ σ2
ob

σ2
j [N ] + σ2

tr + σ2
ob

(3.10)

such that the reward from pulling Arm i is incorporated into the dis-
tribution. Here we can see how each (µj[N ], σj[N ]) tuple is updated
to (µj[N + 1], σj[N + 1]), using the reward r̃i as an observation in the
Kalman equations.

For all the arms that did not get pulled Arm j 6= Arm i, the algorithm
adds uncertainty σ2

tr to these arms, as seen in the formulas:

µj[N + 1] = µj[N ]

σ2
j [N + 1] = σ2

j [N ] + σ2
tr

(3.11)

This comes from the fact these arms have not been checked and since
their reward distribution is non-stationary the actual reward becomes
more uncertain over time. The added uncertainty adds incentive for
investigating the unexplored arms.

The derivation of the formulas in 3.9 and 3.10 comes from Kalman
filters, working with Gaussian distributions and the fact that Gaussian
is self conjugate when considering a Gaussian likelihood function. For
complete derivations and examples of the multivariate case, see the
chapter on “Probabilistic reasoning over time” in Artificial Intelligence
[20].
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Algorithm 3.2 KF-MANB

Require: Number of bandit arms q
Require: Observation noise σ2ob
Require: Transition noise σ2tr
Ensure: µ1[1] = µ2[1] = · · · = µq[1] = A
Ensure: σ1[1] = σ2[1] = · · · = σq[1] = B #Typically, A can be set to 0,

with B being sufficiently large.
1: for N = 0 to . . . do
2: for j = 0 to q do
3: draw xj randomly from the associated normal distribution

f(xj ;µj [N ], σj [N ]) with the parameters (µj [N ], σj [N ])
4: end for
5: pull the Arm i whose drawn value xi is the largest one:

i = arg max
j∈{1,...,q}

xj

6: receive a reward r̃i from pulling Arm i, and update parameters as
follows:

7: for j = 0 to q do
8: if Arm i then
9: µi[N + 1] =

(σ2
i [N ]+σ2

tr)∗r̃i+σ2
ob∗µi[N ]

σ2
i [N ]+σ2

tr+σ
2
ob

10: σ2i [N + 1] =
(σ2

i [N ]+σ2
tr)∗σ2

ob

σ2
i [N ]+σ2

tr+σ
2
ob

11: else
12: µj [N + 1] = µj [N ]
13: σ2j [N + 1] = σ2j [N ] + σ2tr
14: end if
15: end for
16: end for

Algorithm 3.3 is an extended version of the KF-MANB originally pro-
posed in [6], which introduces the concept of distributing the reward
between actions, much like a ripple effect. This algorithm is the result
of a cooperation project between the University of Agder and Agder
Energy taking place after the publication of [6], and it has not yet been
part of published work.

This version contains two differences from the original KF-MANB used
to solve multi-armed bandit problems. In step 8 a distance between
the selected Arm i and the currently updating Arm j is calculated.
This distance is multiplied with the dependence noise σ2

d and added
to the old observation noise σob, creating a new observation noise σob.
This represents the increase in uncertainty when moving away from the
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arm Arm i, the actual arm pulled. In steps 10-11 we see the familiar
equations 3.9 and 3.10. The second difference between the algorithms
is evident here. All arm-distributions are updated with the Kalman
equations, instead of just the distribution belonging to the selected
arm.

Algorithm 3.3 KF-MANB with reward spread

Require: Number of bandit arms q
Require: Observation noise σ2ob
Require: Transition noise σ2tr
Require: Dependence noise σ2d
Ensure: µ1[1] = µ2[1] = · · · = µq[1] = A
Ensure: σ1[1] = σ2[1] = · · · = σq[1] = B #Typically, A can be set to 0,

with B being sufficiently large.
1: for N = 0 to . . . do
2: for j = 0 to q do
3: draw xj randomly from the associated normal distribution

f(xj ;µj [N ], σj [N ]) with the parameters (µj [N ], σj [N ])
4: end for
5: pull the Arm i whose drawn value xi is the largest one:

i = arg max
j∈{1,...,q}

xj

6: receive a reward r̃i from pulling Arm i, and update parameters as
follows:

7: for j = 0 to q do
8: calculate distance between Arm j and Arm i as dist
9: σob ← σob + dist ∗ σd

10: µj [N + 1] =
(σ2

j [N ]+σ2
tr)∗r̃i+σ2

ob∗µj [N ]

σ2
j [N ]+σ2

tr+σ
2
ob

11: σ2j [N + 1] =
(σ2

j [N ]+σ2
tr)∗σ2

ob

σ2
j [N ]+σ2

tr+σ
2
ob

12: end for
13: end for
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3.2 Continuous Genetic Algorithm

“Practical Genetic Algorithms” [1] is used as a basis for implementing
the GA-based optimization method. It describes how the continuous
genetic algorithm can be applied to optimizations involving real num-
bers.

The main difference between the continuous and the classic binary ge-
netic algorithms lies in the contents of the chromosomes, also called
individuals. In the continuous genetic algorithm, the values constitut-
ing the search space are used directly. There is no coding to binary
values and decoding afterwards, and therefore it is no longer necessary
to consider how many bits are needed to accurately present a value.
However, although the values are said to be continuous, the precision of
the algorithm is still limited by the internal precision of the computer
system. Before any evolution may take place, the user has to define
the chromosome (genotype), which forms the layout of the population
and the basis for candidate solutions (individuals, phenotypes). It is
also critical to define a fitness function, which is used to evaluate the
candidate solutions according to the problem domain. In our case any
of the objective functions defined in section 2.2 may serve as fitness
functions.

Initialization

The initial population must be generated before any evolution can take
place. The population should be a representative sample of the entire
solution space, and is normally achieved by randomly generating indi-
viduals, within the bounds of the parameter ranges. It’s possible to
seed the population with individuals containing an educated guess of
the parameters.

Selection

The evolution is driven forward by selecting different candidate so-
lutions (individuals) for breeding and creating new, possibly better,
offspring. There exist different strategies for selecting which individu-
als are allowed to mate. The easiest strategy is to naively select the
fittest individuals, breed between them, and create a new generation.
Usually, a variation of this is used in practice. A stochastic element
is introduced, such that there exists a probability of choosing a lesser
fit individual from the mating pool. The reasoning behind this is to
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avoid premature convergence and to keep the population diversity high.
Roulette Wheel selection and Tournament selection are examples of
popular and well studied stochastic selection methods. As an example,
see this algorithm which describes Tournament selection.

• Choose k individuals from the population at random.

• From the pool of k individuals, select the fittest individual.

Variations of this algorithm may include a decreasing probability of se-
lection, based on pool rank, instead of just picking the fittest individual
from the tournament pool.

Reproduction

After a pool of parents is derived from the selection process, the next
step is to recombine individuals into a new generation of candidate so-
lutions. The reproduction operators (genetic operators) are crossovers
and mutations, which are methods inspired by biology. Crossovers aim
to produce children which inherit their parents’ traits and characteris-
tics. Mutations exist to provide genetic diversity, allowing the candi-
date solutions to explore the search space. Population diversity helps
the algorithm avoid local optima. Figure 3.2 shows how a single-point
crossover operator uses two parent genes and produces two child genes.
Here the stochastic element is the randomly selected crossover point.
Another approach, which is especially suited for continuous variables,
is the blend crossover. This crossover blends the parameters from the
parent genes one by one, as per formula 3.12. Here pnew is the new
parameter, β is a random number between zero and one, pm is the
parameter in the mother gene, and pf is the parameter in the father
gene.

pnew = βpm + (1− β)pf (3.12)

A simple mutation algorithm is described in the following example.

• Pick a point in the gene.

• Randomly modify with in the bounds (for binary representation,
this means flipping a bit).

When using a continuous chromosome, the mutated number is selected
within the range bounds of the parameter, at random.
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Figure 3.2: Example of a one-point crossover

Termination

The evolution repeats every generation, until some criteria is met.
These criteria may be based on anything measurable, both regarding
the population or individuals. It is also possible to combine different
termination criteria. Following are some examples:

• Fitness has reached a plateau (there is no more gain between
successive generations).

• There exists a solution that satisfies a predefined criterion.

• A fixed number of generations are exceeded.

• Solutions are checked manually.

• Some combination of the above.

Assembling the parts

The genetic algorithm starts by a definition of the variables constituting
the search space, which together form a chromosome, or individual.
Next, a cost or fitness function is needed, to be able to calculate the
relative value of each individual. The fitness value is the deciding factor
on whether an individual is better or worse. Other genetic algorithm
parameters also need to be set, such as the size of the population,
selection of mating schemes, crossovers, mutators etc. Now the initial
population can be generated.
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Figure 3.3: Overview of the Genetic Algorithm

An overview of the relationship between the different parts of the ge-
netic algorithm is provided in figure 3.3, an the process may be sum-
marized as follows: After creating the initial population, the fitness of
each individual is calculated, and this cost determines each individual’s
rank in the mating scheme. The mating scheme is often called the selec-
tion method or simply the selector. Those individuals selected to mate
are sent through the mating process, consisting of a crossover and a
mutator. The role of the crossover is to produce new individuals based
on the traits of their predecessors, while the mutator provides a small
chance of introducing new traits to the individuals. The population
with the new individuals are ranked again, and the weakest individuals
are deleted (killed off) to keep the population size constant. Finally,
there may be a convergence check; either to see if the algorithm has
reached its goal, or to see whether it has stagnated or is still improv-
ing. In some cases, the genetic algorithm is set to run a fixed number
of times, and then terminate.
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3.3 Shuffled Complex Evolution

The Shuffled Complex Evolution (SCE-UA) algorithm was developed
by Qingyun Duan as part of his doctorate study at the University of
Arizona. It uses a combination of different techniques, such as compet-
itive evolution and directed search, and is both efficient and effective
at finding global optimums. A brief explanation of its main concepts
and pseudo-code follows. For full explanation, see Duan’s paper on the
algorithm [7]. A Matlab implementation of the algorithm is located at
[22].

The main components of the algorithm is:

Complexing All candidate points are divided into p complexesA1, · · · , Ap
of size m, using the formula

Ak =
{
xkj , f

k
j |xkj = xk+p(j−1), f

k
j = fk+p(j−1), j = 1, · · · ,m

}
Evolution Within each complex, parent points are selected to create

a simplex and the downhill simplex method is applied to move
these points towards the optimal point.

Shuffling After the evolution of all complexes, all points from all com-
plexes are collected in a single container, and sorted in increasing
order. This ensures that the next time complexes are created,
they will not contain the same points as they did the last time,
thus avoiding a single complex converging on a local optimum.

In algorithm 3.4, pseudo-code and main structure of the SCE-UA is
presented. Step 4 contains the complexing part and the composition of
step 3 and 6 constitutes the shuffling. Step 5, which does the evolution
of each complex is detailed in a separate algorithm.

Algorithm 3.4 Shuffled Complex Evolution Method

Require: Dimensions n
Require: Complexes p, p ≥ 1
Require: Points in each complex m,m ≥ n+ 1
Ensure: Sample size s = pm
1: Sample s points from parameter space Ω and evaluate at each point
2: repeat
3: D ← order s by increasing function value
4: C ← partition D into p complexes of m points
5: Evolve each complex Ck, k = 1, · · · , p (CCE method)
6: D ← Gather all points from complexes
7: until Convergence criteria is met
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The CCE method, presented in algorithm 3.5, does the actual evolu-
tion of the points and it’s easy to see parallels with concepts presented
in section 3.2. All points in a complex are weighted with a triangular
probability distribution, to ensure that points with low value (better
score/fitness) have a greater chance of being selected as parents. The
algorithm selects q parents for the evolution process and these q par-
ents form the simplex used by the downhill simplex method by Nelder
and Mead [23]. Step 3 in the CCE method is essentially the down-
hill simplex method with a small difference. The expansion step is
replaced with a mutation step (inspired by genetic algorithms). This
means that if reflection and contraction fails, a new point is randomly
generated. This point is constrained by the bounds of the complex and
the parameter space Ω.

Algorithm 3.5 Competitive Complex Evolution Method

Require: Dimensions n
Require: Points in each complex m
Require: Reflection α and contraction β coefficients
Ensure: Parent size q, 2 ≤ q ≤ m
Ensure: α ≥ 1, β ≥ 1
1: Generate triangular probability distributions ρ
2: Select q parents according to ρ
3: Evolve the worst point by reflection, contraction or mutation
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Hierarchically structured
Kalman Filter Bayesian
Learning Automata

The KF-MANB (algorithm 3.3) introduced at the end of section 3.1.4
would ideally be able to calibrate a hydrological model (typically con-
sisting of about 20 or more tunable parameters). However, if each
parameter should have a resolution of n actions (or arms), the total
number of actions constituting the KF-MANB would, as explained in
section 1.1, be n to the power of dimensions (that is, n to the power of
the number of parameters subject to calibration). As the KF-MANB
needs to explore every action both when selecting which action to per-
form (see 3.3 line 2) and when distributing rewards throughout the
action space (see 3.3 line 7), it becomes clear that the number of ac-
tions quickly become to large for any practical purpose.

To alleviate this restriction, several KF-MANBs can be run in paral-
lel, each automaton taking care of 2-3 parameters while maintaining a
decent resolution. This is however not an optimal solution, as many
automata running in parallel will create a synchronization problem:
When the action space is split between several KF-MANBs, they are
no longer guaranteed to find the optimal arm/action [5]. Thus, to re-
duce the number of automata needed to cover the total action space,
and thereby reducing the synchronization problem, ways have to be
found to more efficiently navigate the action space of each automaton.
More efficient methods, both for selecting which actions to perform on
the model and for distributing rewards, would allow more parameters
(a larger action space) to be put into each automaton. To facilitate
improved methods for navigation of each automaton’s action space, we
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explored a hierarchically structured version of the KF-MANB, intro-
duced in the following section.

Some familiarity with binary trees is assumed, such as the concepts
of root nodes, leaf nodes, parent nodes, sibling nodes and child nodes.
Also, knowledge of basic navigation of binary trees is assumed. This
could for example be collecting all leaf nodes, or all parents of the
current collection, or navigate from leaf to root, or indeed from leaf to
parent to parent’s sibling, etc.

4.1 Hierarchical structure

To reduce the computational complexity of sampling all actions and
updating all actions, we devised a hierarchical layout of the action
space. Using a divide-and-conquer approach, we are able to sample
and update a path through the structure (action tree), instead of the
entire action space. It also enables easy distribution of reward to other
parts of the tree, limiting the need to update every specific node.

The structure is in essence a complete binary tree, with all nodes ex-
cept the leaf nodes having two child nodes. This means that the tree is
balanced, and has the same height for all leaf nodes. Tree height is the
number of nodes one has to go through starting from the root node un-
til reaching a leaf node. Each node contains a probability distribution
(µ,σ) which represent the expected reward received when doing that
action on the environment. The tree implementation may be done in
many different ways, e.g. linked-list type, array type or others. We’ll
use the array type referencing when talking about concrete nodes, be-
cause referencing by index is easier when explaining and has under-
standable mathematical properties. For example, a left child is always
an odd index, a right child always even, a parent always (index−1)/2,
etc.

Assuming a complete binary tree, with height 2, the total number of
nodes in the tree is 22+1 − 1. This comes from the generic formula
2h+1 − 1. The number of leaf nodes, nodes at the lowest level of the
tree, is 2h. The total number of leaf nodes constitutes the action space
when dealing with action based learning automata and the discrete
model parameter resolution when dealing with model calibration. As
such, the number of nodes at the leaf level also needs to be the number
of actions to the number of dimensions (ad), giving equation 4.1.
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2h = ad

h = d ∗ log2(a)
(4.1)

This equation is solved for h, showing that the number of actions per
dimension should be chosen such that h is an integer. If not, h must
be rounded upwards, to ensure the tree is at least large enough for the
required number of actions (the actual resolution will then be higher
than specified).

All nodes above the leaves are not action nodes in themselves, but
rather required paths that lead to an action. This is similar to a decision
tree used when illustrating or calculating conditional probabilities.

Since we are dealing with model calibration, it is necessary to look at
how the action space maps to parameters and dimensionality. Actions
are defined to be on the last level (leaf nodes). This is illustrated in
figure 4.1c, with the four nodes (index 3-6) representing action nodes.
The actions have to be mapped to the parameter space, such that each
action may be used as input to the model calibration routine. The
mapping may be done explicitly in the action selection routine, or in
the routine that actually writes parameter values and runs the model.
As shown by the figures in 4.1, for each level added, the parameter space
is divided in two. The example figures assume that the parameter space
is one-dimensional, thus showing a line being split into segments. The
action tree could also be interpreted as representing a plane, cube or
hyper-cube (depending on the number of parameters), and each level
in the tree would divide one parameter in two. In any case, the selected
action path is constructed of the “winning node” at each level and will
be explained in detail in the next section.

0

0 1

(a) Root node (one action)

0

1 2

0 1

(b) Two actions

0

1 2

3 4 5 6

0 1

(c) Four actions

Figure 4.1: Hierarchical structure
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4.2 Action selection routine

To illustrate the use of our hierarchical structure, let’s consider the
example shown in figure 4.1. At the top of this binary tree lives the
root node. This is the starting point for the action selection algorithm.
Following the root node is its children, a left and a right node. The
action selection routine is a recursive routine and may be defined as
in algorithm 4.1. The first step is to compare the contents of the
children of the current node. Two random variables {xl, xr} are drawn
from the corresponding probability distributions located in the left and
right node. Based on the size of xl or xr, a new parent node is selected
to be either the left or right node.

Algorithm 4.1 Action selection routine

Require: Parent = RootNode;
Ensure: L = LeftChildNode R = RightChildNode
1: while Parent has children do
2: draw xl from N (Lµ, Lσ)
3: draw xr from N (Rµ, Rσ)
4: if xl > xr then
5: Parent is now the left node
6: else
7: Parent is now the right node
8: end if
9: end while

The action selection routine loops until the current parent node doesn’t
have any children left. This happens when the current node is a leaf
node. At this point, the algorithm has selected an action node, which
may be used to interact with the environment. As can be seen from the
algorithm, at each decision point the estimated reward distributions are
sampled and the automaton follows the path of highest reward.

All these left or right choices represent a distinct path through the tree.
We denote C as a list of left or right choices, giving left the value 0 and
right the value 1. To determine which section of the line we’re at, we use
the following formula s = C1

1
2

+ C2
1
4

+ · · · + Cn
1
2h

, where Cn denotes
the element at position n in list C and h is the “resolution height”
of the action-to-dimension space. The upper bound of the section is
calculated by adding the section width 1

2h
to the lower bound. Thus,

if we selected action node 4 from 4.1c this equals C = [0, 1] and by our
section formula

[
s, s+ 1

2h

]
and corresponds to the section [0.25, 0.50].

In cases where the tree is used to represent more than one parameter,
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each level in the tree can only split one parameter in two. As such, a
decision must be made during implementation of the selection routine
regarding which levels in the tree belongs to what parameters. One
approach could be “interleaved,” where each parameter is split in two
before going on to the next level of resolution. Another would be “non-
interleaved,” in which the first h levels of the tree corresponds to the
first parameter, the next h levels to the second parameter, etc.

4.3 Action update routines

After an action has been selected, the action is executed on the envi-
ronment. In the case of model calibration, this reduces the action to a
parameter set and the model is run with the specified parameter set.
The model response is compared to the observed response with respect
to an objective function. A reward is generated, with high reward given
to an action (parameter set) which result in low error in the objective
function.

4.3.1 The join method

The action selection routine assumes that the probability distribution
contained in a node is a reflection of the probability distributions con-
tained in its children nodes. Thus, the action update routines have to
address this assumption when distributing rewards in the tree. All the
update routines utilize the join method to achieve this effect.

The join method starts by assuming that the distribution in the left
child (X) is more likely to provide a higher number than the distribu-
tion on the right (Y ). Therefore, X − Y should be greater than zero
(see 4.2).

X ∼ N (µl, σ
2
l ) > Y ∼ N (µr, σ

2
r)

X > Y

X − Y > 0

(4.2)

The µ and σ values for the distribution X − Y is then calculated as in
4.3, as based on [24], chapter 7.

µ = µl − µr
σ =

√
σ2
l + σ2

r

(4.3)
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Next, the new µ and σ values are used in the cumulative distribution
function, as shown in 4.4, to obtain the probability that distribution X
in fact delivers a higher number than distribution Y . The probability
that Y provides the larger number is then simply 1− Pr(x ≥ y).

Pr(x ≥ y) = F (0; µ, σ2) = Φ
(0− µ

σ

)
(4.4)

Finally, the new distribution Z, with its µnew and σnew, is calculated
as per 4.5.

Z = Px≥y ∗X + (1− Px≥y) ∗ Y
µnew = Px≥y ∗ µl + (1− Px≥y) ∗ µr
σnew =

√
(Px≥y ∗ σl)2 + ((1− Px≥y) ∗ σr)2

(4.5)

All these equations are compacted and summarized in algorithm 4.2.

Algorithm 4.2 Node join method

Require: Left = LeftNode, Right = RightNode
Ensure: µl, σl from Left
Ensure: µr, σr from Right
1: µt ← µl − µr
2: σt ←

√
σ2l + σ2r

3: t← (0− µt)/σt
4: Pr(x ≥ y) = Φ(t)
5: µn ← Px≥y ∗ µl + (1− Px≥y) ∗ µr
6: σn ←

√
(Px≥y ∗ σl)2 + ((1− Px≥y) ∗ σr)2

7: return µn, σn

4.3.2 Reward distribution schemes

Of the possible reward distribution schemes we’ve explored, we’ll first
look into the simplest of them, namely the Lazy action update rou-
tine. Then follows more and more involved routines, ending with the
Complete action update routine.

With the reward in hand, it’s time to update the hierarchy with the
new information. As expected, the first step is to use the Kalman filter
equations on the selected action and with the reward as the “obser-
vation”. In the pseudo-code, this step is called KalmanUpdate. The
concept of distance (introduced in the next reward distribution scheme)
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is not needed for this algorithm, as all updates are along the selected
action path (meaning distance is zero), or a sibling to a path node
(meaning distance is one). The next task is to propagate the reward
update throughout the affected action path, starting from the selected
node’s sibling node. After the sibling node has been updated, both
the selected node and the sibling node values are united with the join
method, the result being stored in their parent node. After the par-
ent node is updated, the selected node pointer is changed to point to
the parent node and the loop repeats until there are no more parents
available. This happens when the parent node reaches the root node of
the hierarchy. Pseudo-code for this algorithm is presented in algorithm
4.3.

Algorithm 4.3 “Lazy” action update routine

Require: Main = SelectedNode
Require: r̃ = Reward
Ensure: P = FindParent(Main)
Ensure: S = FindSibling(Main)
1: KalmanUpdate(Main, r̃, 0)
2: while Main has P do
3: S ← FindSibling(Main)
4: KalmanUpdate(S, r̃, 1)
5: P ← FindParent(Main)
6: Pµ, Pσ ← Join(Main, S)
7: Main← P
8: end while

The main point of the Lazy method is to only update affected nodes
along the selected path through the tree. The first extension of this
concept is to spread the reward information a little further, namely
to the nearest neighbours of the selected action node. The Nearest
Neighbours (NN) action update routine is presented in algorithm 4.4.
It requires specification of the neighbourhood distance k, which is a
number for how far the reward should be spread. This algorithm also
introduces the concept of distance. Distance is used to “rebate” the
reward, or to add uncertainty when updating neighbour nodes with
an actual reward. Since the neighbours didn’t actually execute their
action on the environment, one has to add some uncertainty to the
reward (observation).

The NN action update method starts out by locating the neighbours
within a certain neighbourhood (geometric range dependent on the
number of parameters represented by the tree). Once all the nodes
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which fall within this range have been identified, they are updated with
the KalmanUpdate method. The equations use the reward as observa-
tion and a Distance factor as the distance between the selected node
and the specific neighbour node. After all the neighbours1 are updated,
the algorithm continues in the same fashion as the Lazy method.

Algorithm 4.4 “Nearest Neighbours” action update routine

Require: Main = SelectedNode
Require: r̃ = Reward
Require: k = Neighbour distance
Ensure: P = FindParent(Main)
Ensure: S = FindSibling(Main)
1: NN ← LocateNeighbours(Main,k)
2: for all Node in NN do
3: D ← Distance(Main, Node)
4: KalmanUpdate(Node, r̃, D)
5: end for
6: while Main has P do
7: S ← FindSibling(Main)
8: KalmanUpdate(S, r̃)
9: P ← FindParent(Main)

10: Pµ, Pσ ← Join(Main, S)
11: Main← P
12: end while

The NN algorithm only propagates information upwards in the tree
along the selected action path, like the lazy algorithm. All the neigh-
bourhood nodes receiving reward updates are not subjected to this
process. The Nearest Neighbours Complete, or NN-C, algorithm 4.5 is
looking to mitigate this inaccuracy by applying the join method to all
affected nodes. This is achieved by locating the parents of the affected
nodes, and recursively joining them until reaching the root node of the
tree. The part of the algorithm distributing rewards to the neighbour-
hood nodes works as in the NN algorithm.

1The sibling node is not counted as a neighbour in this scheme. This is to avoid a
double Kalman reward update on the sibling, one in the neighbour update and on in the
join update.
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Algorithm 4.5 “Nearest Neighbours Complete” action update routine

Require: Main = SelectedNode
Require: r̃ = Reward
Require: k = Neighbour distance
1: NN ← LocateNeighbours(Main,k)
2: for all Node in NN do
3: D ← Distance(Main, Node)
4: KalmanUpdate(Node, r̃, D)
5: end for
6: P ← LocateParents(NN)
7: while P not empty do
8: for all Node in P do
9: Leftchild,Rightchild← LocateChildren(Node)

10: Nodeµ, Nodeσ ← Join(Leftchild, Rightchild)
11: end for
12: P ← LocateParents(P )
13: end while

The last reward distribution scheme is the Complete Algorithm 4.6,
which spreads reward to all the leaf nodes and joins all the parent
nodes recursively up to the root node in the tree. This scheme was
implemented to mimic the behaviour of the reward distribution in the
KF-MANB (algorithm 3.3), which updates all the actions in each iter-
ation.

Algorithm 4.6 “Complete” action update routine

Require: Main = SelectedNode
Require: r̃ = Reward
Require: Nodes = All leaf nodes
1: for all Node in Nodes do
2: D ← Distance(Main, Node)
3: KalmanUpdate(Node, r̃, Distance)
4: end for
5: P ← LocateParents(Nodes)
6: while P not empty do
7: for all Node in P do
8: Leftchild,Rightchild← LocateChildren(Node)
9: Nodeµ, Nodeσ ← Join(Leftchild, Rightchild)

10: end for
11: P ← LocateParents(P )
12: end while
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Chapter 5

Evaluation of algorithms

In this chapter the different Bayesian learning automata (BLA) are
compared to each other, and the most promising approach is com-
pared to other established optimization techniques. The first section
describes how the different algorithms were tested. It introduces the
model implementation used in the tests, along with the model param-
eters subject to calibration, as well as the catchment data set used
with the model. It also summarizes the parameter settings of the eval-
uated algorithms, which are not to be confused with the parameters
belonging to the model. The second section presents the results ob-
tained using the standard deviation, or root mean square error, as the
objective function with the BLA candidates. Similar results using the
Lindström coefficient as the objective function are presented in the
third section. In the last section the most promising BLA candidate is
compared to other optimization techniques, using both the Lindström
coefficient and the root mean square error as objective functions.

5.1 Test setup

The environment for testing of the different optimization algorithms
is set up according to the strategy for model calibration described in
chapter two. The model subject to calibration is in this case Agder
Energy’s implementation of the HBV model. As example of a real
world system, they supplied us with a data set of observations from
the Skjerka catchment.

The model parameters subject to calibration are listed in table B.1 i
appendix B. Although some parameters can be calculated based on the
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geography of the actual catchment, we decided to calibrate as many pa-
rameters as possible, as this thesis focuses on optimization algorithms,
and not on hydrology.

All the measurements in the data set are assumed to be correct, mean-
ing that differences between the modelled and measured response are
interpreted as inaccuracies or errors in the model. The data set contains
about nine years of hydrological observations, and includes daily mea-
surements of precipitation (mm), temperature (◦C) and runoff (m3/s).
The first two are used as input values by the model, while the last is
compared with the runoff response calculated by the model.

The comparison between calculated and measured runoff is handled
by the objective function. We tested the optimization algorithms with
two different objective functions: The standard deviation, or root mean
square error (rmse), and the Lindström coefficient, both introduced in
section 2.2. As the BLAs seemed to be sensitive to the ranges of the
objective functions, we employed natural logarithms to transform the
objective function values into scores ranging from zero to one. For
the rmse function, which ranges from ∞ to 0, we used e−rmse/50 as a
transformation function. The Lindström coefficient, ranging from −∞
to 1 was transformed with e(lindstrom−1). Additionally, the w in the
Lindström coefficient is set to 0.1, as recommended in [9].

The different optimization algorithms are summarized in table 5.1, and
they will henceforth be referred to by their abbreviations. Each algo-
rithm is tested 30 times, and due to limited amounts of processing
power, each run is limited to 10000 model executions.

Table 5.1: Summary of algorithms and their abbreviations

Algorithm Abbreviation Reference

Continuous Genetic Algorithm GA Section 3.2
Shuffled Complex Evolution SCE-UA Section 3.3

KF-BLA family

Flat with Reward Distribution (RD) Flat Algorithm 3.3
Lazy RD Lazy Algorithm 4.3
Nearest neighbour RD NN Algorithm 4.4
Nn complete RD NN-C Algorithm 4.5
Complete RD Complete Algorithm 4.6

All the hierarchically structured BLAs are set up with four dimensions
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(meaning four parameters) and 16 actions per dimension except the
Complete version, which we had to limit to two dimensions, keeping
the resolution of 16 actions (else we wouldn’t have had the results in
time). The Flat BLA, being the product of an earlier project, was left
unaltered with two dimensions and 50 actions per dimension. The flat
and NN versions can be set up with as much as 8 dimensions per BLA,
but time did not allow testing of this setting.

All the above mentioned algorithms use the Kalman Filter, and we
decided to use the same parameter settings for all of them. As such,
the observation sigma, transition sigma and dependence sigma are set
to 0.1, 0.0001 and 0.25, respectively. Initial mu and sigma values per
action are set to 0 and 100. The NN and NN-C distributes rewards to
the nearest neighbours of the chosen action, and the range was set to
+-2 neighbours per dimension (giving a pool of 5dimensions actions to
update). All these values were set based on pre-experiment trials.

The GA was set up with a population size of 50, running for 200 gen-
erations, thus giving a total of 10000 model executions. A tournament
selector with a pool size of two drove the selection process, followed
by a blend crossover with crossover rate 90% and a uniform mutator
with mutation rate 2%. The SCE-UA was set up with two complexes,
and with a cutoff as close to 10000 model executions as possible. The
algorithm settings are summarized in table 5.2.

Table 5.2: Summary of algorithm parameters used for test setups

Algorithm Settings

Shuffled Complex Evolution Complexes: 2

Continuous Genetic Algorithm Blend crossover (90%)
Tournament selector (2 individuals)
Uniform mutator (2%)

KF-BLA family Observation sigma (σ2ob) 0.1
Transition sigma (σ2tr) 0.0001
Dependence sigma (σ2d) 0.25
Initial sigma 100
Initial mu 0
Actions 16 (50 with flat)
Dimensions 4 (2 with complete and flat)
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5.2 Standard deviation tests

Following is a presentation of the results from the tests using the root
mean square error (rmse) as objective function. Statistical data from
the these tests are found in table 5.3, and are visualized in figure 5.1.
A plot of the average development of the test runs is presented in figure
5.2.

In table 5.3, the results of the 30 test runs are summarized per algo-
rithm with values for maximum, minimum and average results, as well
as range (difference between maximum and minimum) and standard
deviation (calculated assuming the 30 runs are samples of a larger pop-
ulation). As can be seen in the table, the Lazy algorithm is clearly the
best in all these aspects, the NN algorithm taking second place. With
minimizing the result being the objective, the Complete version comes
in slightly ahead of the NN-C: The minimum and average results are
better, but maximum result, range and standard deviation are worse.
Last is the Flat version, with the worst performance in both minimum
and average results. However, it is better than both the Complete and
the NN-C versions with respect to range and standard deviation.

Table 5.3: Statistics on final score in rmse tests

Algorithm Minimum Maximum Range Average Std.Dev.

Lazy 12.17 13.67 1.50 12.97 1.06
NN 12.49 15.31 2.82 13.60 1.99
Complete 12.76 18.84 6.08 14.49 4.30
NN-C 12.79 17.40 4.61 15.33 3.26
Flat 15.26 18.64 3.38 16.95 2.39

The statistical data is visualized in figure 5.1. Each algorithm has two
columns, the range column showing minimum, maximum and average
results. The stddev column shows the average results plus and minus
the standard deviation. The most interesting observation seen in this
figure is that the average for the Complete algorithm is closer to the
minimum than the maximum, suggestion an uneven distribution of re-
sults in the range. The results for the other algorithms are more equally
distributed. Also of interest is that, despite it’s poor performance, the
Flat version is quite a lot more consistent than the Complete and NN-C
versions.
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Figure 5.1: Statistics visualization for rmse tests

Figure 5.2 contains plots of the average development of each algorithm
during the test runs. The plots show that for the first 1500-1600 iter-
ations, the Complete algorithm performs better than the other candi-
dates. However, it stagnates/converges pretty fast after that, and after
about 2500 iterations the order of the candidates are the same as in
the final results.
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Figure 5.2: Development of rmse per BLA

5.3 Lindström tests

Next up is a presentation of the results of the tests using the Lindström
coefficient as objective function. Statistical data from these tests are
located in table 5.4, and are visualized in figure 5.3. A plot of the
average development of the test runs is presented in figure 5.4.

In table 5.4, the results of the 30 test runs are summarized per algo-
rithm in the same way as for the rmse results in the previous subsection.
Thus the table contains values for maximum, minimum and average
results, as well as range (difference between maximum and minimum)
and standard deviation (calculated assuming the 30 runs are samples
of a larger population). The obvious difference is that now we’re after
maximizing the result instead of minimizing it. As was the case with
the rmse tests, the Lazy algorithm comes out on top in all categories,
the NN version coming in second. This time however, the NN-C comes
in ahead of the Complete algorithm, as it is better in both maximum
and average results. The Flat version comes in last again, and again it
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is better than the Complete and NN-C in terms of range and standard
deviation. Surprisingly, it also beats the Lazy and NN algorithm in
these respects.

Table 5.4: Statistics on final score in Lindström tests

Algorithm Maximum Minimum Range Average Std.Dev.

Lazy 0.8412 0.7926 0.0486 0.8191 0.0344
NN 0.8290 0.7754 0.0536 0.8073 0.0378
NN-C 0.8207 0.4944 0.3263 0.7486 0.2308
Complete 0.8089 0.5023 0.3066 0.7452 0.2168
Flat 0.7032 0.6938 0.0094 0.6985 0.0066

As with the rmse results, the data from table 5.4 is visualized in figure
5.3 with two columns per algorithm. The range column shows average,
minimum and maximum results, while the stddev column show aver-
age results plus and minus the standard deviation. This time both the
Complete and NN-C versions have averages lying closer to the maxi-
mum than the minimum result, suggesting that they are probably not
as unstable as it might seem. The other surprise here is how incredibly
stable the Flat version is, showing very small variations in the results.

Figure 5.3: Statistics visualization for Lindström tests
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Finally, in figure 5.4 the average development of each algorithm during
the test runs is plotted. With this objective function, the Lazy and NN
versions stay in the lead pretty much from start to end. The Complete
version again performs very well in the beginning, but is overtaken by
the NN-C around iteration 1100-1200. The Complete algorithm seems
to be catching up towards the end, but ends slightly behind the NN-C.
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Figure 5.4: Development of Lindström coefficient per BLA
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5.4 Comparison with other techniques

The last part of this evaluation contains comparisons of the HKF-BLA
approach to other calibration techniques. Specifically, the most promis-
ing BLA candidate, the Lazy algorithm, is compared to the continuous
genetic algorithm (GA) and the shuffled complex evolution (SCE-UA)
algorithm.

Standard deviation tests

Comparisons with the standard deviation as objective function is sum-
marized in table 5.5, and visualized in figure 5.5. A plot of the average
development in score is presented in figure 5.6.

Table 5.5 contains maximum, minimum and average scores from the 30
test runs, as well as values for range and standard deviation, calculated
as in the previous sections. As can be seen in the table, the SCE-UA
algorithm emerge as the best alternative in all categories. The GA
narrowly beats the Lazy algorithm, having a smaller minimum score
and a slightly smaller average. The Lazy however, seems to obtain more
focused results: The maximum score, as well as range and standard
deviation is better than with the GA.

Table 5.5: Comparison of final score in rmse tests

Algorithm Minimum Maximum Range Average Std.Dev.

SCE-UA 11.54 12.85 1.31 12.20 0.93
GA 12.00 13.89 1.89 12.95 1.34
Lazy 12.17 13.67 1.50 12.97 1.06

The visualization of the test data in figure 5.5 shows how close the GA
and the Lazy algorithm are in performance. As in the previous sections
we have two columns per algorithm. The range column contains av-
erage, maximum and minimum scores, while the stddev column shows
average scores plus and minus the standard deviation.
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Figure 5.5: Statistics visualization for rmse comparisons

Figure 5.6 shows the average development of each algorithm during
the tests runs. The SCE-UA takes the lead after about 1000 iterations.
The Lazy algorithm and the GA follow each other pretty much the
whole time, taking turns being in the lead.
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Figure 5.6: Comparison of rmse development

Lindström coefficient tests

Table 5.6 shows statistical data from the comparison tests using the
Lindström coefficient as objective function, the data being visualized
in figure 5.7. The average development of the score is plotted in figure
5.8.

Similar to the previous tests, table 5.6 contains values for maximum,
minimum and average scores from the 30 test runs. Range and standard
deviation are calculated as before. As was the case with the rmse tests,
the SCE-UA displays the best performance. This time, however, the
Lazy algorithm comes out ahead of the GA. The maximum and average
scores are better, while minimum, range and standard deviation are
slightly worse. This is exactly the opposite of the situation in the rmse
test.

The visualization of test data in figure 5.7 is similar to the visualiza-
tion of the standard deviation tests, with two columns per algorithm.
The range column shows average, maximum and minimum scores, and
the stddev column shows average score plus and minus the standard
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Table 5.6: Comparison of final score in Lindström tests

Algorithm Maximum Minimum Range Average Std.Dev.

SCE-UA 0.8561 0.8264 0.0297 0.8412 0.0210
Lazy 0.8412 0.7926 0.0486 0.8191 0.0344
GA 0.8363 0.7964 0.0399 0.8163 0.0282

deviation. Again the Lazy algorithm and the GA are very close in
performance, with the SCE-UA a little in front. This time the Lazy
algorithm produces both higher and lower results than the GA, while
the opposite was the case with the rmse tests.

Figure 5.7: Statistics visualization for Lindström comparisons

Figure 5.8 shows the average development of each algorithm over the
test runs, and similar to the rmse tests, the SCE-UA takes the lead
after about 1000 iterations. This time, however, the Lazy algorithm
stays in front of the GA during the entire development period, although
the GA seems to catch up towards the end.
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Figure 5.8: Comparison of Lindström development
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Chapter 6

Discussion

The results presented in the previous chapter show that on average, all
the hierarchically structured learning automata perform better than
the Flat algorithm (in terms of providing a best, or most accurate,
model estimate). The best HKF-BLA solution performs equally well
as the genetic algorithm, but comes short of the performance of the
SCE-UA algorithm.

Regarding the computational efficiency of the proposed solutions (mea-
sured as the number of model executions), our results show that the
Lazy algorithm follows the same rate of improvement as the genetic
algorithm and the SCE-UA. The NN algorithm shows about the same
rate of improvement as the Lazy, while the NN-C is notably worse.
The results for the Complete version are inconclusive. It improves fast
in the rmse tests, but fails to do so in the Lindström tests.

The pattern seems to repeat itself when looking into the variance of the
algorithms. The Lazy algorithm, and to a certain degree the NN algo-
rithm, are both about as stable as the genetic algorithm, the SCE-UA
showing a little less variance. The NN-C and the Complete algorithms
delivers notably less stable results than all the others.

Of course, these results are only valid with the settings used in the ex-
periment. A different model, or a different data set, or indeed different
algorithm parameter settings might yield different results. The Lazy
version of the HKF-BLA seems to be the most promising candidate
solution, but more experiments are needed to verify this.

In general, when considering the HKF-BLAs, it seems that the results
get worse the further the reward is distributed. This could be due
to unforeseen inaccuracies in reward distribution when the distance
between actions is large, or some kind of cascading effect that goes un-
noticed when keeping reward distribution at a minimum. To determine
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whether this might be the case, we could either perform a mathematical
analysis of the reward distribution routines, build a more sophisticated
test environment, or both.

Based on our experiences with the KF-BLA family, we believe that
several of their parameters are sensitive to properties of the explored
environment. For example, it seems to us that the observation sigma
needs to be set in relation to the value range of the objective function.
Also, it seems the transition sigma must be set decades lower than the
observation sigma, else the automata will explore randomly and never
converge.

Another consideration is that the KF-BLAs are designed to keep op-
timizing for an unlimited number of iterations. They could also have
been designed to optimize for a fixed number of iterations, set with
an iterations parameter. This could provide a different way to adjust
the explore/exploit balance, which is now controlled by the uncertainty
parameters.

All things considered, we succeeded in reducing the required number of
agents (down to 3-6 with the Lazy algorithm) as opposed to 8-12 with
the KF-MANB. To achieve this improvement, we reduced the number
of actions you need to sample before making a decision: In the KF-
MANB, all actions had to be sampled, while now only about log2 of
the action space needs to be sampled.

Regarding reward distribution, the Complete version has twice the cal-
culations compared to the KF-MANB (it has double the action space),
while the Lazy algorithm on the other hand has about 2∗ log2 of action
space calculations. Thus both the select and the update routines can
be said to scale logarithmically rather than linearly with the size of the
action space, which is what we were hoping to accomplish with this
project.
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Conclusion

Current agent implementations used for solving the multi-armed ban-
dit problem struggle with covering huge action spaces, typically ex-
perienced when optimizing high-dimensional functions (such as when
calibrating hydrological models). This is because the number of actions
grow exponentially rather than linearly per added dimension. Current
implementations therefore needs to be limited to 2-3 dimensions per
agent, meaning you need to coordinate many agents running in paral-
lel. This limitation is not really connected with the size of the action
space, but rather with the fact that the current implementation needs
to examine every action at every iteration both when selecting actions
and updating action probabilities.

We therefore focused on reducing the number of agents needed to cover
the total action space, in this case achieved by hierarchically structuring
each agent’s part of the action space. The number of actions needed to
be explored for action selection is now growing logarithmically with the
size of the tree, rather than linearly. Additionally, different methods
of spreading information throughout the structure was explored, from
total reward distribution as in the extended KF-MANB (Kalman filter
based multi-armed normal bandit algorithm, see section 3.1.4 and [6])
to very simplistic in only spreading reward along the selected action
path.

The hierarchically structured Kalman filter Bayesian learning automa-
ton, or HKF-BLA (see chapter 4), is capable of dealing with much
larger action spaces than the KF-MANB. This is not because the the
number of actions per agent is smaller (actually it’s twice the size), but
rather because of the way the structure is navigated, both when select-
ing actions and when updating/spreading rewards throughout the tree.
For example, the KF-MANB samples each action before selecting one
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to execute on the environment, while the HKF-BLA eliminates half the
tree at each sampling point, making action selection a lot faster.

For model calibration, HKF-BLA is a big step forward compared to the
KF-MANB, but it is not yet capable of outperforming the state of the
art, the SCE-UA type algorithms. Still, it is capable of dealing with
much larger action spaces than the current KF-MANB, and should
therefore be able to solve more complex problems.

Future work

Although we have made navigation of the action space much more
efficient, we have met a limit regarding the size of the action space itself.
It would therefore be interesting to explore methods for reducing the
size of the action space. This could for example be done by reducing
the number of actions per dimension and using the extended Kalman
filter to provide multiple tops per action cell.

It would also be interesting to combine the HKF-BLA with a directed
search algorithm (as is done in the SCE-UA with the downhill simplex
method), to find the optimum value in each area the HKF-BLA finds
to be promising. Another interesting idea from the SCE-UA would be
to introduce complexes to the HKF-BLA, to be able to both explore
and exploit at the same time.

Regarding the HKF-BLA itself, more empirical experiments are needed
to further clarify the relations between its different parameters. Of
particular interest would be to in more detail chart the relationship
between the µ, σobs and σtr.

Perhaps the most interesting attribute of the HKF-BLA, is its ability
to chart the action space. In contrast to the evolutionary approaches,
which only produces a best parameter set, the HKF-BLA stores es-
timates of the expected performance for each action cell in the tree
structure (which of course could be saved for future use). This infor-
mation could be used to locate regions of attraction that should be
explored further. Also, it should be much faster to produce new model
estimates when new sets of measurements from the modelled catchment
becomes available.
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Appendix A

Python implementation of
the Lazy algorithm

Example Python implementation of the Lazy algorithm. The tree is
implemented as arrays, one for µ and one for σ. Navigation is done by
indices.

The select routine uses the interleaved method to interprete the se-
lected path through the tree (see section 4.2). Normalized minimum
and maximum values for the chosen actions are calculated, and random
normalized parameter values are drawn uniformly from these. Param-
eter values are de-normalized when applied to the model.

The update routine works as defined for the Lazy algorithm in section
4.3, updating the selected path with the help of the join method and
the Kalman filter. For brevity reasons, implementation of the Kalman
filter is left out.

import random

import math

import array as a

import numpy as np

import _norm_cdf

class HKFBLA:

def __init__(self, height, dimensions, init_mu,

init_sigma, observation_sigma,

transition_sigma, dependence_sigma):

self.height = height

self.encoded_height = height*dimensions

self.dimensions = dimensions
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self.tree_size = 2**(self.encoded_height+1)-1

self.mu = a.array(’f’, [init_mu] * self.tree_size)

self.sigma = a.array(’f’,

[init_sigma] * self.tree_size)

self.observation_sigma = observation_sigma

self.transition_sigma = transition_sigma

self.dependence_sigma = dependence_sigma

self.selected_path = None

self.scaling_vector = np.array([2**-i for i in

xrange(1, self.height+1)])

self.index = 0

def select(self):

index = 0

path = []

left = 2 * index + 1

right = 2 * index + 2

while left < self.tree_size:

lv = random.gauss(self.mu[left],

self.sigma[left])

rv = random.gauss(self.mu[right],

self.sigma[right])

valg = 0

if lv < rv:

valg = 1

index = right

else:

valg = 0

index = left

path.append(valg)

left = 2 * index + 1

right = 2 * index + 2

self.index = index

temp = np.array(path)

self.selected_path = temp.reshape(

self.height, self.dimensions).T

min_vector = np.dot(

self.selected_path, self.scaling_vector)

max_vector = min_vector + 2**-self.height

random_list = [random.uniform(min, max) for

min, max in zip(min_vector, max_vector)]
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return random_list

def join_nodes(self, left, right):

testmu = self.mu[left] - self.mu[right]

testsigma = math.sqrt(

self.sigma[left]**2 + self.sigma[right]**2)

scaledz = - testmu / testsigma

pxsy = _norm_cdf.norm_cdf(scaledz, 0.0, 1.0)

new_mu = pxsy * self.mu[right] +

(1-pxsy) * self.mu[left]

new_sigma = math.sqrt((pxsy*self.sigma[right])**2

+ ((1-pxsy)*self.sigma[left])**2)

return (new_mu, new_sigma)

def update(self, reward):

i = self.index

self.kalman_filter(reward, i, 0.0)

parent = i

while parent > 0:

i = parent

sibling = i

if i % 2 == 0:

sibling -= 1

else:

sibling += 1

self.kalman_filter(reward, sibling, 1.0)

parent = (i - 1) / 2

self.mu[parent], self.sigma[parent] =

self.join_nodes(i, sibling)
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Appendix B

List of calibrated parameters

Parameter Range Unit

rain corr 0.3 – 3.0 -
snow corr 0.3 – 3.0 -
max liquid in snow 0.0 – 0.15 -
threshold rain snow -2.5 – 6.0 ◦C
degree day factor 0.5 – 10.0 mm/◦C/day
threshold melt -2.5 – 6.0 ◦C
threshold freeze -2.5 – 6.0 ◦C
refreeze efficiency 0.0 – 0.5 -
annual et 0.0 – 3000.0 mm/year
precip grad 0.9 – 1.4 mm/100m
delta temp grad 0.0 – 1.0 ◦C/100m
temp grad precip -1.0 – -0.01 ◦C/100m
field capacity 10.0 – 1000.0 mm
lp 0.3 – 1.0 -
beta 0.0 – 10.0 -
max infil soil 0.1 – 100.0 mm/hour
kuz2 0.000001 – 1.0 -
kuz1 0.000001 – 1.0 -
klz 0.000001 – 1.0 -
uz2 10.0 – 200.0 mm
uz1 10.0 – 200.0 mm
snow dist max 0.05 – 0.9 -
percolation 0.02 – 20.0 mm/day
lake fraction 0.0 – 1.0 -
sol mlt 0.0 – 50.0 mm/(day ∗W/m2)

Table B.1: Calibrated Parameters

63


	Abstract
	Preface
	Contents
	List of Figures
	List of Tables
	List of Algorithms

	Introduction
	Background
	Thesis Definition
	Related Work
	Contributions
	Assumptions and limitations
	Report Outline

	Model calibration
	The model and its parameters
	Objective functions

	Optimization algorithms
	Reinforcement Learning Algorithms
	Reinforcement Learning
	Bayesian Learning Automata
	The Kalman Filter
	Tracking reward in dynamic environments

	Continuous Genetic Algorithm
	Shuffled Complex Evolution

	Hierarchically structured KF-BLA
	Hierarchical structure
	Action selection routine
	Action update routines
	The join method
	Reward distribution schemes


	Evaluation of algorithms
	Test setup
	Standard deviation tests
	Lindström tests
	Comparison with other techniques

	Discussion
	Conclusion
	Bibliography
	Python implementation of the Lazy algorithm
	List of calibrated parameters

