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Abstract

Cervical Cancer is one the most common cancers amongst women. Ev-
ery year almost 300 Norwegian women are diagnosed with cervical cancer.
It is the 5th most deadly cancer type amongst women in the world. Esti-
mates show that there are approximately 473,000 cases of cervical cancer
in 2008 and 253,500 deaths per year. As we can see from the statistics, cer-
vical cancer is a very severe and common type of cancer which costs many
human lives every year. Therefore any progression in prognostication of
this disease is very essential to treatment of its patients.

Our task in this project was to analyze contrast enhanced MR imaging
data from 78 patients. This data was recorded after a certain period of
time after the patients received radiotherapy. The data was collected
after a median time of 48 months for each patient. The outcome of the
treatment and propagation of the contrast medium in to the blood vessels
(in tumor region) was recorded.

The main focus of this project was to model spatial patterns in the
Cervix Cancer data set using hidden Markov models (HMM) in one of
the machine learning techniques can be used to predict the outcome of
radiotherapy treatment of the cervical cancer patients based on identi�ed
patterns with given data samples.

To �nd the unobserved (hidden) patterns, we have used hidden Markov
models on the dataset to �nd hidden patterns in the data. These models
show the distribution of the outcome of the treatment, grouped by the
similarities between properties of the contrast medium in the blood vessels.

Our research shows that hidden Markov models are not feasible for this
dataset. It was not possible to retrieve any information with high enough
accuracy to be able to predict outcome of radiotherapy treatment.
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1 Introduction

Cancer has become the second leading cause for the death in both men and
women in the world. In next few decades, this disease is expected to become
the leading reason for death. Therefore, it is necessary to �nd the ways to
predict the outcome of the treatment of the disease to save at least few more
lives from death [1]. There are many types of cancers existing in both men and
women. For example breast cancer, lung cancer, cervical cancer, etc. Our focus
will be the last one mentioned.

A patient can be diagnosed with cervical cancer by using a technique called
DESMRI � Dynamic Contrast Enhanced Magnetic Resonance Imaging. It is
a medical test used by physicians to diagnose and treat di�erent diseases. A
contrast medium is injected into the blood vessels and a magnetic �eld is then
used to produce detailed pictures of any internal body organs. These images
can be examined on a computer monitor. After the patient receives cervical
cancer treatment DESMRI is used again to check whether the cancerous area is
completely cured or there is some residual.

In this project we have post-treatment DESMRI data from 78 patients. Our
goal is to use this data to help predict the outcome of the treatment before
the patient is treated. The prediction can be then used to estimate whether a
patient will have any e�ects of the treatment or not.

After a patient is diagnosed with cervical cancer, the tumor data is collected
using DESMRI. The tumor area is divided in to thousands of voxels (a volume
entity with xyz-coordinates). The behavior of the contrast medium in each voxel
is recorded. This behavior is represented by three attributes: amplitude of the
contrast medium and its rate of �ow in and out of a voxel. The resulting data
is presented in a large continuous data table.

Due to amount and complexity of the data, it is nearly impossible for a
human analyst to analyze it manually. Data analysis can be done on existing
and newly appearing data. Therefore it is necessary to take automated computer
system's help to �nd the patterns in unstructured data [2], and give meaning to
these large sets of unstructured data and make it easier for us to understand it.

There are so many machine learning techniques are present to perform the
data analysis. For example arti�cial neural networks, genetic algorithms, fuzzy
sets, support vector machines, rough sets, wavelet �lters and statistical trans-
forms, Genetic Programming, Bayesian Networks and hidden Markov models,
etc.

In this thesis, we present how hidden Markov models are used to show the
interdependencies of the voxel with other coordinates in medical decision mak-
ing, in particular diagnosis, (prognostic) prediction and treatment selection. A
HMM model that is developed to assist clinicians in the diagnosis and selection
of Radiotherapy treatment for patients with cervical cancer and we will show
how the HMMs are tested using validation algorithm called Leave-One-Out-
Cross validation.
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Figure 1: Cervical cancer

1.1 Background and motivation

1.1.1 Cervical Cancer

Cervical cancer is a one type of cancers which is formed in tissues of the cervix
(the organ connecting the uterus and vagina). It is usually a slow-growing cancer
that is mostly caused by HPV infection (Human Papilloma Virus). [3]

It is the third most common cancer worldwide, and 80% of cases occur
in the developing world. It is the leading cause of death from cancer among
women in developing countries, where it causes about 190,000 deaths each year.
Rates of the disease were highest in Central America, sub-Saharan Africa, and
Melanesia (M Parkin, International Agency for Research on Cancer, personal
communication, July 2000).

When compared to other Nordic countries, Norway is bit better with the
decline in mortality rate despite organized screening programs were introduced
in Nordic countries in 1960-70s. Norway has not witnessed any improvement in
the prognosis of cervical cancer patients from mid 70s [4].

It is demonstrated by Epidemiological studies that human papilloma virus
test is the most essential independent risk factor for rising of both cervical dys-
plasia and invasive cancer. The relative risk is insigni�cant when it is associated
with traditional factors like sexual behavior. There are only some infected indi-
viduals who actually develop cervical cancer, despite researchers have identi�ed
HPV as the primary cause of cervical cancer. Other environmental and host fac-
tors can also in�uence the progression of HPV infection to high-grade squamous
intraepithelial lesions (HSIL) and cervical cancer.

Women at high risk are advised to have follow-up check-ups and treatments
to make sure that signi�cant subset of women are treated. It is essential to
identify the host determinants of viral persistence to understand the mecha-
nisms of tolerance, and it also can lead to the development of tests in high-risk
individuals. [5, 6, 7, 8, 9]
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Figure 2: Di�erent steps of a typical CAD system for

Unlike many cancers, cervical cancer can also be prevented. Primary preven-
tion of cervical cancer through preventing human papillomavirus (HPV) infec-
tion, a sexually transmitted agent that causes cervical cancer, will contribute to
reducing cancer mortality. Primary prevention of HPV infection is more chal-
lenging than prevention of most other sexually transmitted infections. HPV-
infected women generally are asymptomatic, HPV is transmitted easily, and no
therapies eliminate the underlying infection.

The development of a vaccine against HPV is under investigation, but vac-
cination as a means of primary prevention is years away. Secondary prevention
involves using relatively cheap screening and treatment technologies that can
detect dysplasia before it progresses to invasive cancer.

Detection of cancer is an important area of research in the community of
image processing and pattern recognition and early detection is the key to reduce
the death rate in cervical cancer. If the cancers are detected in primitive stage,
better treatment can be provided in time. It is however essential that the early
detection must be with accurate and reliable diagnosis.[10] For better e�ciency
and accuracy of diagnoses and treatment, the techniques in image processing
and pattern recognition are extensively used. These techniques can also be
used to the analysis and recognition of cancer, evaluation of treatment and the
prediction of the development of the cancer [1].

1.1.2 Pattern recognition

Detection of the presence of particular signal features is relied on the conven-
tional methods of monitoring and diagnosing the disease. In the past 10-15
years, Computer aided-diagnosis (CAD) approaches for automated diagnostic
systems have been developed in order to solve the problem of large number
of patients in intensive care units and continuous observation. These systems
function by transforming the qualitative diagnostic criteria into a qualitative
feature classi�cation problem.[11]

The above picture explains how the di�erent stages are followed by the design
of a classi�cation system. It is evident from the feedback arrows that these stages
are not independent, but they are interrelated. Based on the results, one may
go back to redesign the earlier stages so as to improve the overall performance
[11]

The classi�cation is de�ned as a basic task in data analysis. Pattern recogni-
tion is required in this analysis for the construction of a classi�er, i.e. a function
that assigns a class label to instances described by a set of attributes. The main
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problem in machine learning is the induction of classi�ers from data sets of
pre-classi�ed instances. [12]

Pattern recognition is "the act of taking in raw data and taking an action
based on the category of the pattern�

Pattern recognition is very central in data mining because data mining is
largely dependent on e�ective pattern recognition to extract meaningful infor-
mation from unstructured data. Pattern recognition techniques are very im-
portant in various �elds, including computer sciences, psychology, ethology,
cognitive science and medical science. In medical science it forms basis for
computer-aided diagnoses (CAD).

Pattern recognition is a vast �eld, where the goal is to �nd structures and
meaning in enormous amount of unstructured data. The main purpose of pat-
tern recognition in cancer diagnosis is to solve the pattern classi�cation dilemma
where a set of input features are used to determine if a patient has a particular
disorder .There are several algorithms and techniques exist. For example, super-
vised and unsupervised learning. In addition to using the existing algorithms
we will also try to improve and tweak them to better �t our needs. In this
process we are might �nd more e�cient ways to locate structures and patterns
in similar data sets as we will be working with.

There has been lot of research done on, how Pattern Recognition applications
are used on di�erent types of cancer diagnosis by analyzing the data and to
detect the outcome of the treatment on various types of cancers. [1].

1.1.3 Medical diagnosis

Despite the humans know that they can't analyze the di�erent situations of the
real world as isolated facts, they keep on trying to describe them in terms of
patterns of related facts. These relations become implicit as they indicate to the
same object. It is sometimes essential to explicitly connect these characteristics
for �nding a relation [13].

In order to understand and observe the power of perception of human beings,
we need to be adopted to carry out pattern processing activities.The subjectiv-
ity of the specialist is the central and signi�cant issue in medical diagnosis. In
speci�c pattern recognition activities, it is noted that experience of the profes-
sional is closely connected to the �nal diagnosis. It is witnessed that the result
is not depended on a systematized solution, but on the interpretation of the
patient's signal.

In medical technology, medical diagnostic decision support systems are play-
ing a vital role and have become established components. The decision char-
acteristics of the diseases are used to diagnose future patients with the help of
the concept of the medical technology as an inductive engine. It is necessary
to utilize a number of CAD approaches for the improvement in the accuracy of
diagnosis. Several signi�cant approaches like ANNs and BNs are proposed for
cervical cancer diagnosis and prognostic risk evaluation [11].

It can be given as an example in case of balance disorders diagnosis. In this
diagnosis, the signal corresponding to the ocular movement of the patient has
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to be analyzed and this signal gives a pattern named nystagmus. The frequency
of this pattern decides the type of lesion with the help of di�erent tests. This
pattern is also relatively connected to the type of signal and it varies from
patient to patient [14].

In case of cell count, something similar patterns occur. In common perspec-
tive, every histological sample has special associated normal values and which
characterize the cell populations forming it. These values will permit the spe-
cialist to do a �rst classi�cation of the tissue under examination as normal or
pathological [13].

It is very important to use methods that de�ne proportion of cells with as
high objectivity as possible to get more accurate and diagnosis and prognosis.
Any such method that counts the similar cells should be able to distinguish
between normal and pathological samples [13].

It is important to not use tools that implement a speci�c algorithm, but
instead use a tool that can adapt according to the data of the problem. Hidden
Markov models are very useful for this type of analysis because they are capable
of �nding the pattern in the data with help of an expert, as well as generalizing
the information in the data, and showing us the complex relations in it.

1.1.4 Hidden Markov models

A hidden Markov model is a stochastic model that can be used to �nd hidden
statistical properties of the observed data. It creates an accurate model of the
source data and then can be used to simulate the source. Machine learning tech-
niques that implement HMM have been successfully applied problem of various
types. These include optical character recognition (OCR), speech recognition
and bioinformatics.

Bioinformatics is a vast �eld where machine learning techniques can be uti-
lized to analyze DNA sequences, proteins, genes and mutations, as well as medi-
cal image analysis [29]. In our thesis we will use various algorithmic and statisti-
cal methods to help us predict the outcome of radiotherapy treatment of cervical
cancer patients. Our main focus will be statistical model-based approach using
HMMs.

HMMs are gaining increased popularity among informatics researchers be-
cause of its e�ciency and accuracy. Many freely available software tools imple-
ment hidden Markov models.

Hidden Markov models can useful in many di�erent scenarios. For example
for decision problems where the timing of events is crucial or where the crucial
events may occur more than once. Using traditional decision trees for these types
of settings usually require over simpli�cation of the problem and unrealistic
assumptions. In HMMs a patient is always in one of the �nite number of states
(See Figure 3). These states are called Markov states. All event in Markov
models are represented by transitions from one state to another. [31]

We will explore how data from MRI (Magnetic Resonance Imaging) scans
can be used to predict the presence of cancer in a patient after a treatment by
using hidden Markov models. This results can also be helpful when deciding
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Figure 3: A simple hidden Markov model

whether a cancer patient should receive radiotherapy treatment or not. After
modeling the HMMs, we will train and test our models by using leave-one-out
cross-validation.

1.1.5 Leave-one-out cross validation

When evaluating statistical models cross-validation is usually used for testing
quality of the models. It is especially useful when we do not have extremely large
dataset because then we an uses all examples for both training and testing [32].
There are di�erent types of cross-validation techniques. Among them there are
k-fold cross-validation and leave-one-out cross-validation. When using K-fold
cross-validation the data is divided into k disjoint subsets of same size. For K
experiments K-1 folds are used for training and the rest for testing.

Leave-one-out cross-validation is the more extreme form of k-fold cross-
validation because we use all of the observations for both training and testing.
As the name suggest, for each experiment one example is left-out. The compu-
tational cost can be very high for large datasets but it can be the best option
for cross-validation if computational cost is not a big issue or the dataset is not
too large.

1.2 Thesis de�nition

We formulate the thesis de�nition in the following manner: �The purpose of this
thesis is to see how hidden Markov models can be used to model spatial patterns
in the cervical cancer data. To analyze the cervical cancer data, hidden Markov
models are modeled and tested. The main e�ort should be to model and test
the hidden Markov models on the dataset that is used in the prediction of the
outcome of the Radiotherapy treatment�.

1.3 Research questions

In our research we will answer the following questions:

� How hidden Markov models can be used to model spatial patterns in the
cervical cancer data?

The question is an overall problem statement, and covers the central research
element i.e., to model spatial patterns in the cervical cancer data. The question
also de�nes a method that should be applied to the problem. The method is
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the Hidden Markov Model (HMM) which is developed by Baum and Petrie [41],
Baum and Eagon [42], Petrie [43] and Baum [44]. The HMM is especially used
to �nd hidden statistical properties of the observed data. After modeling the
HMMs, we will train and test our models by using leave-one-out cross-validation.

� Can these models be used to predict outcome of radiotherapy treatment
with high enough accuracy?

After modeling the HMM on given cervical data, We will explore how data from
MRI (Magnetic Resonance Imaging) scans can be used to predict the presence of
cancer in a patient after a treatment. These results can also be helpful to decide
whether a cancer patient should receive radiotherapy treatment or not. we want
to predict the outcome in high enough accuracy so that it can be useable in real
life.

1.4 Literature Review

In our initial �nding, there has not been done any research in this particular
type of cervical cancer data using hidden Markov models. Therefore we will
only mention two research papers that are somewhat related to our thesis. We
have chosen two papers for this review.

�Hidden Markov models in Bioinformatics with Application to Gene Finding
in Human DNA�, [29] in this paper researchers used hidden Markov models to
�nd the genes in human DNA and examined how knowledge of the molecular
mechanism of gene transcription guides the design of gene �nding HMMs. Af-
ter modeling the HMMs, they trained and tested them by using Baum-Welch
Algorithm.

�Multistate Markov models for disease progression with classi�cation er-
ror�,[33] in this paper researcher tried to present general hidden Markov model
for simultaneously estimating transition rates and probabilities of stage misclas-
si�cation. To do the classi�cation and to estimate the transition rates, Research
used Baum-Welch Algorithm.

The above mentioned two papers are not directly relate to our problem, but
mostly utilized to know about hidden Markov models (HMMs). In these papers,
they have used HMMs to analyze their data. The same algorithm is applied in
this thesis as well.

�Data mining approach to cervical cancer patients' analysis using clustering
techniques� [2], this paper is somewhat similar to our project but they have
analyzed the data using K-means clustering technique and the data used is
based on patients' demographics.

We have documented all our references in the Bibliography.

1.5 Claim

We claim that hidden Markov models can be used to �nd the hidden patterns
and properties in the cervical cancer data in an e�cient way. By e�cient we
mean results that are fast to produce while at the same time being meaningful
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in this context. We also claim that these results can be helpful for medical
experts and professionals in assistance and prediction of radiation therapy for
women with cervical cancer.

1.6 Limitations and key Assumptions

1.6.1 Limitations

We have data from only 78 patients. Cancer is a very common disease. Therefore
data from only 78 persons might not be enough to conduct any research with
high accuracy.

Di�erent approaches to analyze the data can a�ect the results. We will not
be able to test all of these approaches due to time span of this thesis.

1.6.2 Key Assumptions

Our main assumption is that the dataset provided is representative for all pop-
ulation of cervical cancer patients. We are furthermore assuming that all the
data we have is recorded correctly. We will not be doing any error detection of
the values in the dataset except for removing the extreme values on both ends
of the scale.

1.7 Contribution to the knowledge

The results from this project will contribute with new knowledge in both com-
puter and medical sciences, especially the later one where little to no research
has been done for knowledge discovery in MR data from cervical cancer using
pattern recognition.

Our work can help in prognostication based on dynamic contrast enhanced
MR (DESMR) imaging. A positive result can also help in identi�cation of cer-
vical cancer patients with high risk of treatment failure, and treatment selection
and treatment planning of cervical cancer patients.

1.8 Target Audience

The target audience of this thesis is anyone that has interests within the machine
learing techniques and cervical cancer treatment. Particularly, people that are
interested in the usage of HMM in cervical cancer decision making. Medical
experts, HMM experts and other people interested in this �eld may �nd this
thesis interesting.

For the reader to fully understand the concepts and reasoning behind the
solution, some knowledge of machine learning and a good understanding of
common basic elements within the �eld of computer science is recommended.
In addition there are several elements of probability theory mentioned in the
sections explaining Bayesian networks. This means the reader should have some
fundamental knowledge of probability theory, since we not intend to give a
comprehensive introduction to probability theory in the thesis.
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1.9 Report outline

The rest of the thesis is organized as follows: In Chapter 2 gives brief overview of
what cervical cancer is, how Radiotherapy is done, what MRI is, what Pattern
recognition is. Chapter 2 and 3 are intended to supply background information
and also to be independent from each other. In Chapter 2 we also discussed
how much pattern recognition is useful in the medical diagnosis. Chapter 3 is
intended to present theoretical background of hidden Markov models (HMMs).
i.e., what HMMs are, how HMMs are used in Bioinformatics, main problems
involved in HMMs and solutions for them, how the parameters are estimated
using using Baum-Welch algorithm. Chapter 4 represents the previous research
in the �elds of cervical cancer and hidden Markov models individually. Chapter
5 gives su�cient background and details.. Chapter 6 In Chapter 7 we discuss
our main �ndings and some additional aspects of the HMMs. Chapter 8 is
intended to wrap up, provide a conclusion and suggest interesting aspects that
may be pursued in further research.
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2 Theoretical Background

In this chapter we will describe details about di�erent topics and techniques rel-
evant to our project. Starting with the terminology used in this report we will
give detailed information about cervical cancer, its risk factors, symptoms, treat-
ment and prognosis. We will continue with data mining, pattern recognition, its
uses, supervised and unsupervised learning along with various algorithms that
can be used for pattern recognition. Theoretical background of the machine
learning technique - hidden Markov models - we are using in our research is
gone through in depth in a separate chapter, Chapter 3.

2.1 Terminology

There are certain terms and subjects repeated in the report are not de�ned as
standard terminology. These terms and subjects will thoroughly be explained
below. This section is written to make it easy for the readers to understand the
medical terms which we have used in our report.

DESMRI � Dynamic Contrast Enhanced Magnetic Resonance Imaging is a
medical test used by physicians to diagnose and treat di�erent diseases. It uses
magnetic �eld to produce detailed pictures of any internal body organs. These
images can be examined on a computer monitor. In this project we have data
collected by using DESMR images from 78 patients.

Voxel � is a volume entity. It represents a 3-dimensional element on a regular
grid. It is characterized by x, y, z coordinates as well as other properties we want
to study. The values are Houns�eld units in CT-scans and give the opacity of
material to X-rays [7]. In our dataset each voxel is attributed by values related
to the behavior of contrast medium.

Residiv � represents residual of cervical cancer after radiotherapy treatment.
In this report, it is sometimes mentioned as outcome or class. It has two values,
`0' or `1' which can be represented as class. If a treatment is successful then it
means the patient data belongs to class `0' otherwise opposite [8].

Amplitude � total amount of contrast medium in a voxel [8].
Kel � transfer rate of the contrast medium out of the blood vessels [8].
Kep � transfer rate of the contrast medium in to the blood vessels [8].

2.2 Cancer: an Introduction [34]

Human body is made up of some hundreds and millions of living cells and they
orderly grow, divide and die in each and every stage of human life. In the early
stage of human life, it is evident that normal cells are divided faster and make
the person to grow. Once the person has become an adult, majority of human
cells are divided only for the replacement of worn-out or dying cells resulted by
injuries.

Cancer is generally caused with the irregular growth or out-of-control growth
of abnormal cells. Most of the cancers start as the the growth of abnormal cells
are not controlled or prevented.
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In human body, normal cells continue to grow gradually and at a certain
stage they are divided and soon died, whereas cancer cells continue to grow
and form new abnormal cells and invade other tissues. A cancer cell is made,
because the normal cell grows out of control and invade other tissues. It is
also because of damage of DNA of normal cell. In a normal cell, when DNA
is damaged, the cell can either repair the damage or die . This is not the case
in connection with a cancer cell. In cancer cells, the damaged DNA is neither
repaired nor dead, but gradually keep on making new cells that make the body
worse and dangerous. These cells are not at all useful for the growth of human
body. Every new cancer cell has the same damaged DNA as the �rst cancer cell
has.

DNA damage can be caused because of environmental e�ects or mistakes
that happen when the normal cell is reproduced. It is sometimes evident and
clearly found that this is caused by toxics and harmful habits like drinking
alcohol and smoking cigarettes. In general, cancer cells have the tendency to
penetrate to other parts of the body and where they start to grow and form
new cancer cells which ultimately lead to form tumors. Sometimes this process
happens in blood circulation as well, which will cause other organs to get these
cancer cells through the blood. It is not obvious in certain cancers like leukemia
that cancer cells cause the tumors. Cancer can spread to any part in the human
body, but it is always named where it began, but not where it is spread. If a
cancer is caused to the tissue of lungs and spread to the breast then it is named
as lung cancer but not as breast cancer. This process of penetration of cancer
cells from one organ to another is called metastasis.

Every cancer has its own characteristics and has to be treated in di�erent
way. Despite the cause is the same as cancer cells, they grow at di�erent levels
and should be treated di�erently. Treatment should be to aim at targetting the
particular type of cancer. No single treatment for all cancers. As stated earlier,
cancer cells cause the tumors, but all tumors are not cancerous and such tumors
are called benign tumors. Sometimes, benign tumors also give problems because
they grow very large in size by causing press and pressure to neighboring healthy
organs and tissues. Benign tumors are not able to invade other tissues and they
are not life threatening. As per the records from World Health Organization,
cancer is the main cause for 13% (7.4 millions) of all deaths worldwide in 2004.
This rate is expected to rise up to 12 million deaths in 2030 (35)

2.2.1 Cervical Cancer

Cervical cancer is a cancer type formed in tissues of the cervix (the organ con-
necting the uterus and vagina). It is usually a slow-growing cancer that is mostly
caused by HPV infection (Human Papilloma Virus).

2.2.1.1 Risk factors and causes of cervical cancer A risk factor is some-
thing that may increase the chances of developing a certain disease. Some
women with certain type of risk factors are more likely to get cervical cancer
than others.
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There are many di�erent risk factors that can increase the risk of developing
cervical cancer. These risk factors can act together and increase the risk of
getting cancer. Some of the major risk factors of cervical cancer are listed
below.

� HPV infection

� Lack of regular Pap tests

� Smoking

� Weakened immune system

� Having man sex partners

� Using birth control pills for a long time

� Having many children

Symptoms
As mentioned earlier, cervical cancer is a slow-growing cancer. Therefor

early stages of it may not cause any symptoms. As the tumor grows larger,
women may notice one or more of the following symptoms:

� Abnormal vaginal bleeding

- Between regular menstrual periods

- After sexual intercourse, douching or a pelvic exam

- After going through menopause

- Menstruation that last longer than before

� Increased vaginal discharge

- Pelvic pain

- Pain during sex [9]

Infections or other health problems may also cause these symptoms.

2.2.1.2 Staging Cervical cancer is staged by the International Federation
of Gynecology and Obstetrics (FIGO) staging system. It is based on clinical
examination, and not surgical �ndings. It is only allowed to do certain types
of diagnostic tests to determine a stage. These tests include palpation, inspec-
tion, colposcopy, endocervical curettage, hysteroscopy, cystoscopy, proctoscopy,
intravenous urography, and X-ray examination of the lungs and skeleton and
cervical conization [9].

The TNM staging system divides cervical cancer in 4 di�erent stages (I to
IV) with each stage having two sub stages (A and B).

Cervical cancer 5 Year Survival Rates by Stage [13, 14, 15]
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�Stage IA: This is micro-invasive or very early cervical cancer. The �ve-
year survival rate ranges from 96 to 99 percent. Treatment options for stage IA
include surgery.

Stage IB: In this stage, the cancer is visible without the use of a microscope.
Five-year survival rates for this stage of cervical cancer are 80 to 90 percent.
Common treatments include surgery, chemotherapy and radiation.

Stage II: In stage II, cancer has spread outside the uterus to adjacent tissue,
but has not reached the lower third of the vagina or all the way to the lateral
wall of the pelvis. Five-year survival is 65 to 69 percent. Common treatment
for stage II cervical cancer includes surgery, radiation and chemotherapy.

Stage III: Stage III cervical cancer indicates that the cancer has advanced
beyond the parameters for stage II or has caused changes in the kidney. Five-
year survival is 40 to 43 percent. Common treatments include chemotherapy
and radiation.

Stage IV: Stage IV is the last stage of cervical cancer. In this stage the
cancer has left the pelvis and a�ected more distant organs. The �ve-year survival
rate for this stage of cancer is 15 to 20 percent. Types of treatment include
chemotherapy and radiation�. [13, 14, 15]

2.2.1.3 Treatment Stage I is usually treated by hysterectomy. It involves
removal of the uterus. Part of the vagina and the lymph nodes are also removed.
Women who want to remain fertile can get local surgical procedure such as a
loop electrical excision procedure (LEEP) or cone biopsy.

Early stages (I and IIA less than 4 cm) are usually treated with radical
hysterectomy and removal of the lymph nodes or radiation therapy. Radiation
therapy is given as external beam radiotherapy to the pelvis and brachytherapy
(internal radiation). Patients treated with surgery who have high risk features
found on pathological examination are given radiation therapy with or without
chemotherapy in order to reduce the risk of relapse.

Larger early stage tumors (IB and IIA more than 4 cm) can be treated with
radiation therapy and cisplatin-based chemotherapy, hysterectomy or cisplatin
chemotherapy followed by hysterectomy.

Advanced stage tumors (IIB-IVA) are treated with radiation therapy and
cisplatin-based chemotherapy. [9]

2.2.1.4 Prognosis Prognosis of cervical cancer depends on the stage of the
cancer. Patients that get treatment on early stages of the cancer, have survival
5 year survival rate of 92 %. The overall 5-year survival rate for all �ve stages
is about 72%. [9]

According to the International Federation of Gynecology and Obstetrics, sur-
vival improves when radiotherapy is combined with cisplatin-based chemother-
apy. If the cancer spreads to other parts of the body, prognosis drops radically.
That is because treatment of local tumor is usually more e�ective than treat-
ments of the whole body with radiation or chemotherapy.
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Regular evaluation of the patient after treatment is vital. Early detection
of recurring cervical cancer can be successfully treated with surgery, radiation,
chemotherapy, or a combination of these. 35 % of patients of cervical cancer
have persistent or recurrent cancer after treatment.

2.2.2 DCEMRI (Dynamic Contrast Enhanced Magnetic Resonance
Imaging)

Magnetic Resonance is a procedure where the identi�cation and characterization
of the tumors is performed prior to the surgery. In this process, it is feasible
and easy to get the images of the high level of soft tissue contrast. With the
help of these images, the cancer can be identi�ed and treated in time. �Dynamic
Magnetic resonance imaging (MRI) is a diagnostic study that makes pictures of
organs of the body using magnetic �eld and radio frequency pulses that cannot
be felt. Dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI)
uses faster imaging and contrast material (a substance used to make speci�c
organs, blood vessels, or tumors easier to see) that is given by vein. DCE-
MRI gives extra information which is not available with the regular MRI. The
regular MRI only shows pictures of the tumor while the DCE-MRI also gives
information about the blood vessels of the tumor� [37, 61].

Figure 4: A Dynamic Contrast Enhanced MR (DESMR) image series showing
the contrast enhancement pattern (red) of a patient with cervix cancer at dif-
ferent instances after contrast injection. The white contour is the macroscopic
tumor.

2.2.3 Radiotherapy

Radiotherapy [62, 38, 39] is one of the procedures to treat the cancer where
a high speed ionizing radiation is used to hit the DNA of cancer cells. This
is also called radiation therapy. Damaged DNA of cancer cell is the target to
kill and prevent the cell from growing and dividing. A Radiation Oncologist
is a specialist in radiation treatment. There are two types of radiotherapy i.e
external radiation and internal radiation. External radiation is performed by
using a machine through which radiation comes, it is also a local treatment and
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it targets cancer cells only in the speci�ed area. In internal radiation procedure,
a small radioactive material is implanted into or near the tumor in order to kill
the cancer cells directly. There are also some patients who need to be treated
under both methods.

External radiation is generally performed on patients who do not need to be
admitted in hospital for many days. They visit the hospital when the radiation
therapy is actually needed. However, in internal radiation therapy, the patient
has to stay in the hospital for several days, because a radioactive implant is
�xed in the cancerous organ of the body. This implant can be temporary or
permanent. The level of radiation is quite high in this method.[38]

Radiation therapy can cause to many side e�ects depending on the dose of
radiation and organ of the body that is treated. Skin reactions, dizziness and
loss of appetite are common side e�ects. Sometimes it can also cause to the
reduction of white blood cells. [38]

In spite of few disadvantages, radiotherapy is considered as an e�ective treat-
ment for certain cancers like uterine cervical cancer. [38, 39]. �However, the
prognosis of advanced cervical cancer is not satisfactory, because the 5-year
survival rate after radiation therapy of patients with stage II, III, and IV is
reported to be about 70%, 50% and 30%, respectively�[39, 63, 64, 65]. After
radiation therapy, it has also been a challenging issue in the improvement of the
prognosis in patients with uterine cervical cancer. Based on some reports[63,
64, 65], there are also results and patterns of failures of radiation therapy for
advanced cervical cancer. [39]

2.3 Pattern Recognition

Pattern recognition is commonly categorized into two categories: supervised and
unsupervised learning. In supervised learning it is assumed that the provided
dataset has correctly labeled inputs and outputs. The learning algorithm then
tries to generalize the data as much as possible. On the other hand, unsupervised
learning algorithms assumes unlabeled data and try to �nd patterns that can
be used to predict the correct output. Recently, a combination of these two
techniques has also been explored. It is called semi-supervised learning and
uses a combination of labeled and unlabeled data.

Note that procedures that give same type of output in supervised and un-
supervised learning may have di�erent terms associated with the procedure.
For example when talking about grouping of data, the term used in supervised
learning is classi�cation while it is called clustering in unsupervised learning.

An example from input data for which an output is generated, is usually
known as an instance or a vector of features. These vectors de�ne descriptions
of all characteristics of an instance. It can for example be the coordinates in
a multidimensional plane along with other attributes attached to the instance.
These vectors can then be manipulated by using standard vector manipulations,
for example dot product or angle between two vectors. Vector features are
usually categorical, ordinal, integer-valued or real-valued. The �rst too are
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often grouped together. Many pattern recognition algorithms work only on
categorical data.

There are many algorithms for patterns recognition. Their implementation
depends of whether the learning is supervised or unsupervised. Some of the most
used classi�ers in supervised learning are Naive Bayes classi�er, decision trees
and k-nearest-neighbor. While k-means clustering and hierarchical clustering
is used in unsupervised learning. Several of pattern recognition algorithms use
statistical interference to �nd the best label for any given instance. Instead
of just �nding a single best label these algorithms can �nd N-best labels with
associated probabilities.

For complex dataset sometimes it is necessary to apply transformation tech-
niques to the raw feature vectors. These techniques include feature extraction
which tries to reduce dimensionality of the feature vector, and feature selection
which ignores irrelevant features.

2.3.1 Supervised and Unsupervised learning

The goal in supervised learning is to produce a classi�er from input data. This
is done by providing a set of inputs and outputs to build a model. While
in unsupervised learning the main goal is to an internal representation of the
statistical structure of the observations. In other words, one tries to determine
how to do a task correctly in supervised learning, and to learn how the data is
organized with unsupervised learning where the learner is input with unlabeled
examples. [12]

All the observations are supposed to be caused by hidden variables, in un-
supervised learning. That means that observations are at the end of a casual
chain. Usually the probability of unde�ned input values is left out. This model
is not needed as long as the input values are available. But it is not possible to
understand anything about the outputs if some of input values are missing. In
case of missing input values the inputs can also be modeled. Then they will be
considered as hidden variables.

Figure above shows the di�erence between the causal structure of supervised
(Figure 1a) and unsupervised (Figure 1b) learning. It is also possible to have a
combination of the two, where both input observations and latent variables are
supposed to have produced the output observations.

It is possible to learn larger and more complex models with unsupervised
learning than supervised learning, because the aim of supervised learning is to
�nd the relation between two sets of observations. The complexity of such an
algorithm increases exponentially and the sets are almost impossible to process.
Therefore it is almost impossible to learn from complex datasets with supervised
learning.

Contrary to supervised learning, the learning can proceed hierarchically into
more and more abstract levels of representation of the inputs. The complexity
increases only linearly when moving from one step in the hierarchy to the next.
Therefor it is much more feasible to use unsupervised learning for complex
datasets, where the connection between inputs and outputs is very complex.
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Figure 5: Di�erence between structure of supervised and unsupervised learning

This is illustrated in the �gure below. Hidden variables in the top levels of
abstraction are the causes for both sets and pass on the dependencies between
inputs and outputs. The model is built upwards from both sets of observations
so that in higher levels of abstraction the gap between inputs and outputs is
easier to bridge. [12]

2.3.2 Usage

It is a matter of fact that practicing medicine is laden with ambiguity and
confusion with many questions. Sometimes, physician are confused to take
the right and accurate decision while treating the patients like in diagnosis,
tests to perform, treatment to choose and etc. In spite of these uncertainties,
physicians keep on making their e�orts to get the excellent outcomes. Medical
practice is conventionally guided by the pragmatic experience and observation
like in anecdotes, case reports and clinical trials. With the help of health-
maintenance organizations and group of physicians, a new source of population
data is available. [40]

In the world of technology, computers are playing a signi�cant role in medical
and healthcare sector. Computer based medical tools give detailed and accurate
clinical information and necessary help to determine how the computer based
medical information should be used. It is not surprised to say sometimes that
physicians and expertise have to depend and contact the computer-based med-
ical programs to ascertain the proper advice in taking the right decisions in
medical processes. Of late, Expert systems in Arti�cial Intelligence are playing
a signi�cant role in helping and replacement of human task. These systems give
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Figure 6: shows how unsupervised learning can be used to remove the gap
between input and output observations

correct information and results where human experience and knowledge is not
reliable.[40]

�Although there are domains where tasks can be speci�ed by logic rules,
other domains are characterized by inherent uncertainty. Probability was not
taken into account, for some time, as a reasoning method for expert systems try-
ing to model uncertain domains, because the computational requirements were
considered too expensive. At the end of the 80s, Lauritzen and Spiegelhalter [14]
shown that these di�culties can be overcome by exploiting the modular char-
acter of the graphical models associated with the so-called probabilistic expert
systems�,[40] that in this work we call hidden Markov models.

Pattern recognition can be applied in several di�erent types of data. It is
the basis of computer-aided diagnosis (CAD) in medical sciences. CAD aids
physicians to in diagnosis and treatment of patients.

Other applications of pattern recognitions include text classi�cation (can be
used to detect spam in e-mails), speech recognition, handwriting recognition
and image recognition. Handwriting recognition can for example be used to au-
tomatically sort post based on the postal code written on the envelopes. Image
recognition can be used by security departments to �nd suspicious persons.
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3 Hidden Markov models

3.1 Introduction

�In 1940, HMMs were �rst studied but they could not be extensively applied
in application. The Theory of HMM was �rstly developed by Baum and Petrie
[41], Baum and Eagon [42], Petrie [43] and Baum [44]. Due to the remarkable
development in the �eld of computer science in the last 20 years, the utilization
area of HMMs has broadly increased. The application area of HMMs are esti-
mation of state space, the algorithms that would make the models usable and
carrying out methods which are based on similarity. In the last years, statistical
deduction studies were done by Leroux [45], Bickel and Ritov [46], Bickel, Ritov
and Ryden [47] and Fuh [48]�. [16]

In the �elds of Engineering, if the behavior of the real-world objects and
processes are distinguished by using models then it is a great interest of problem.
Observable outputs are generally produced by processes.[23]

Modelling a process provides several objectives: Let us consider an example,
if the theoretical background of a process is known then it is very easy to predict
the behavior of the process plus that allows us to know how to build a process
to get a desired output.[23]

There are two classes of models are available to characterize an objects be-
havior excellently: First one is, Deterministic models. In this type of model,the
output dignal has some known parameters that are deterministic (like being a
sine wave). This indicate that the randomness is not involved and it is always
possible to determine its current state by virtue of model's parameters and its
previous states. so it is obligatory only when the parameters are estimated to
distinguish the process (for example, the frequency of the sine wave). In Sta-
tistical models, a process is described in terms of its random variables, i.e., its
statistical properties. Let us consider an example, a process which is described
by the mean considered to be Gaussian. Hidden Markov Models (HMM) are
fall in this type of class.[23]

Hidden Markov Models theory has been widely used in many application like
science, engineering, and many other areas(speech recognition, optical character
recognition, machine translation, bioinformatics, computer vision, �nance and
economics, and in social science).

Before introducing Hidden Markov Models, Markov chains and markov pro-
cesses are explained to clear term confusion.

3.2 Markov chains and Markov processes

A Markov chain is a discrete-time process. When the state of the past and
the present is given, the future behavior of process will only depend on the
present, but not on the past states. Markov chains and Markov processes are
two vital groups of stochastic processes. Markov process can be considered as
the continuous-time version of a Markov chain. It means the future behavior of
the process can not be exactly forcasted or assumed. There are many queuing
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models which are also considered as markov processes. In this chapter, it is
aimed to center on the characteristics needed for the modelling and analysis of
queuing problems. [49]

3.2.1 Markov processes

A Markov process is a speci�c incidence of stochastic process. In this process,
each state is connected to a �nite set of states. Distribution of the probability
of a state is speci�cally based only on the last states, but not on all other
states.[30]. The outcome at any step is based only on the outcome of the earlier
step. The probabilities are generally constant. [50]

3.2.1.1 Discrete Time markov processes Let us assume that a system
which is in one of a set of N distinct states and it is listed by {1,2,...,N}. As
per the set of probabilities connected with the state, in a regular interval, with
discrete times the system goes through a change of state and which also indicates
the same state and a repetition. The time instants are denoted as t = 1, 2, ....
The actual state at time t is indicated as qt. Speci�cation of the prevalent state
at time t is required for a complete probabilistic description of the system and
also all prior states. [51]

The below equation represents the �rst order Markov chain, so the proba-
bilistic dependence can be restricted to only the previous state.

.

P (qt | qt−1 = i, qt−2 = k, ......., q1 = 1) = (qt | qt−2 = i) (1)

In addition, the processes which are at right-hand side of (1)are to be con-
sidered only if they are independent of time. The state-transition probabilities
aijare thus obtained.

aij = P (qt | qt−1 = i) , 1 ≤ i, j ≤ N (2)

The state-transition probabilities have the below properties, because the aij
follows the stochastic constraints.

aij ≥ 0, ∀ j, i (3)

and

N∑
j=1

aij = 1, ∀i (4)

Each state represents to an observable action, at every instant of time, since
the output of the process is the set of states. Therefore, this stochaastic process
is called an Observable Markov model.

Below is explained a simple three state Hidden Markov Model.
Let us consider that a day's weather is noticed as follows:
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� State 1: rain or snow
� State 2: cloudy
� State 3: sunny
It is emphasized that the weather on day t is indicated by any one of the

three states given. The matrix A of state-transition probabilities aij is:

Figure 7: Markov model of the weather

A = {aij} =

 0.4 0.3 0.3
0.2 0.6 0.2
0.1 0.1 0.8


The questions regarding the behavior of the weather patterns over time can

be solved by the above Markov model. For example, �What is the probability
that the weather for eight consecutive days is sun-sun-sun-rain-rain-sun-cloudy-
sun?�:

Observation sequence O can be represented as O = (3, 3, 3, 1, 1, 3, 2, 3)
and the probability distribution over the initial state πas

πi = P (q1 = i) , 1 ≤ i ≤ N (5)



3 HIDDEN MARKOV MODELS 27

Then we can directly determine P (O |Model), assuming we assign π =
(0, 0, 1):

P (O |Model) = P (3, 3, 3, 1, 1, 3, 2, 3 |Model)

= P (3)P (3 | 3)P (3 | 3)P (1 | 3)P (1 | 1)P (3 | 1)P (2 | 3)P (3 | 2)
= π3 · (a33)2 · a31 · a11 · a13 · a32 · a23 = 1.536 · 10−4

3.2.1.2 Limitations of Discrete time Markov processes If the output
is connected to the state, Markov models cannot model random, in this model
each state relates to a deterministically observable event. These models are very
limited for many problems of interest like speech recognition [51]

3.2.2 Markov chain

A Markov chain is a �rst-order Markov process. The probability distribution
of a state is depended only on the earlier state, but not on other states at a
given time. When the present state is given, it is not necessary to consider past
states, because in Markov process, the probability of the next state is depended
only on the present state. Transition probabilities are considered as a �nite set
of possible states and transitions among those states are controlled by a set of
conditional probabilities of the future state only when the present state is given.
As transition probabilities are not dependent on time, Markov chains are also
called as homogeneous and stationary.[30].

In order to give an example for a DNA sequence, the 'time' is considered as
the position along the sequence, The consecutive transitions from one state to
the next state, given an initial state, produce a time-evolution of the chain. It
is thus extensively governed by a sequence of states which prior states are taken
randomly.

3.3 De�nition of hidden Markov models

We have now established the fact that HMM is a very powerful statistical
method of �nding characteristics in the observed data. We also know enough
about Markov chains and processes to be able to de�ne hidden Markov models.
We can de�ne a hidden Markov model by �ve elements: [16]

1. The number of hidden states, N in the model. Individual states are de-
noted as S = {s1,s2,......, sN}, and the state at time t as qt.

2. The number of distinct observation symbols, M per state, the discrete
alphabet size. These symbols represents the physical output of the sys-
tem that we want to model. Individual symbols are denoted as V =
{v1, v2. . . .vM}. All observations are independent from the the previous
ones. They are only dependent on the system state at the time of obser-
vation. [52]
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3. The transition probability distribution matrix, A = {aij}. Dimension of
A is N ×N . For

aij = P [qt+1 = (Sj |qt = Si)], 1 ≤ i, j ≤ N (6)

aij also ful�lls the following two conditions:

aij ≥ 0, i, j = 1, 2, . . . .., N (7)

N∑
j=1

aij = 1, i = 1, 2, . . . .., N (8)

The state transition probabilities are independent of the observations and
do not change over time. [53]

4. The observation symbol probability distribution matrix of state j, B =
{bj(k)}where:

bj(k) = P [vkat t | qt = Sj ], 1 ≤ j ≤ N, 1 ≤ k ≤M (9)

Dimension of B is N ×M and it ful�lls the following two conditions.

bj(k) ≥ 0, 1 ≤ j ≤ N, 1 ≤ k ≤M (10)

M∑
k=1

bj(k) = 1, 1 ≤ j ≤ N (11)

5. The initial state distribution matrix, π = {πi} where:

πi = P [qi = Si], 1 ≤ i ≤ N (12)

A HMM is speci�ed by two model parameters (N and M ) and three probability
measures (A, B and π). For convenience, we use the notation λ = (A,B, π).

After de�ning a HMM using the �ve variables N, M, λ it can be used to
generate an observation sequence:

O = O1, O2, . . . . . . .., OT (13)

where each observation Ot , is one of the observation symbols from V and
T is the number of observations in the sequence [21].

HMMs are mostly de�ned by models having the state and measurements
inside discrete set and discrete time [54]. They can be classi�ed as continuous
or discrete [27].
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3.4 Basic problem and algorithms for HMMs

There are three main types of problems in the real-world application of HMMs,
related to the evaluation, decoding and learning of the models [30]. We will take
a deeper look into the most common algorithms used to solve these problems.

1. Evaluation problem: Probability of a given model generating a given se-
quence of observations is computed. The most common algorithms are:

� The forward algorithm: Probability of emission distribution is com-
puted starting at the beginning of the sequence.

� The backward algorithm: Probability of emission distribution is com-
puted starting at the end of the sequence.

2. Decoding problem: Find the most likely hidden states when a model and
a set of observations are given. The most common algorithms are:

� Viterbi algorithm: Find the sequence of internal states which has the
highest probability.

� Posterior decoding: For each position �nd the internal state with the
highest probability.

3. Learning problem: Find an optimal model when a set of observations is
given. The most common algorithms are:

� Viterbi training algorithm: Uses the Viterbi algorithm recursively to
�nd the optimal model.

� Baum-Welch algorithm: Uses posterior decoding algorithm recur-
sively to �nd the optimal model.

3.4.1 THE EVALUATION PROBLEM

The likelihood of a hidden Markov model is given by

P (E | λ) =
∑

P (E | S;λ) · P (S | λ) , (14)

where E is sequence of emissions and λ is a hidden Markov model.
Direct computation of the above sum for all the NL possible sequences S of

internal states has too high complexity. Therefore the forward and the backward
algorithms are used. The complexity of these algorithms is O(N2L).

3.4.1.1 The Forward Algorithm We de�ne auxiliary variables called
forward variables, ϕk where ϕk (u) = P (e1, . . . , ek; sk = u | λ) de�nes the prob-
ability of observing a partial sequence of emissions e1 . . . ek and a state sk = u
at time k. See Algorithm 1 for details.
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Algorithm 1 The forward algorithm

Initialization ϕ1 (u) = πubu (e1)

Recursion(for 1 ≤ k ≤ L) ϕk+1 (u) = bu (ek+1)
∑
v

ϕk (v) .av,u

Termination P (E | λ) =
∑
u

ϕL (u)

3.4.1.2 The Backward Algorithm We de�ne auxiliary variables called
backward variables,βk where βk (u) = P (ek+1, . . . , eL | sk = u;λ) de�nes the
probability of observing a partial sequence of emissions ek+1, . . . , eL and a state
sk = u at time k. See Algorithm 2 for details.

3.4.2 The Decoding Problem

In decoding problems we must �nd the most likely hidden states when a model
and a set of observations is given. Two di�erent algorithms are used for the two
most common problems of this type: Viterbi algorithm and posterior decoding.

3.4.2.1 Viterbi Algorithm The Viterbi algorithm can be used to solve
the decoding problem like the following:

Suppose a model λ and a sequence E of observed states are given. Find the
sequence S∗of internal states that maximizes the probability P (E,S | λ).

S∗ ≡ argmaxS(P (E,S | λ)) (15)

This can be achieved by following the steps in Algorithm 3.

3.4.2.2 Posterior Decoding Posterior decoding can be used to solve the
decoding problem like the following:

Suppose a model λ and a sequence E of observed states are given. For each
k in u, possible internal states, �nd the most probable internal state s∗k.
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Algorithm 2 The backward algorithm

Initialization βL (u) = 1

Recursion(for L > k ≥ 1) βk (u) =
∑
v

βk+1 (v) .av,u.bv (ek+1)

Termination: P (E | λ) =
∑
u

β1 (u) .πu.bu (e1)

Algorithm 3 Viterbi algorithm

Initialization

γ1 (u) = bu (e1) .πu

ψ1 (u) = 0

Recursion (for1 < k ≤ L) γk (u) = bu (ek) .maxv (γk−1 (v) .av,u)

ψk (u) = argmaxv (γk−1 (v) .av,u)

Termination

P ∗ = maxv (γL (v))

s∗L = argmaxv (γL (v))

Backtracking
(forL > k ≥ 1)

s∗k = ψk+1

(
s∗k+1

)
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The forward and backward algorithm are used to �nd forward, ϕ and back-
ward, β variables which are used to �nd the probability of each possible internal
state. s∗k is the internal state with highest probability, for each position of the
sequence.

P (sk = u | E) =
ϕk(u).βk(u)

P (E | λ)
, 1 < k ≤ L (16)

s∗k = argmaxu (ϕk(u).βk(u)) , 1 < k ≤ L (17)

3.4.3 THE LEARNING PROBLEM

We know the set of possible internal states, the set of possible external states,
and a number of sequences of emissions. We hypothesize that the emissions orig-
inate from the same underlying HMM, and more speci�cally that each sequence
of external states has been emitted from an associated sequence of internal states
following the laws of the model.

The learning problem is to �nd the model when we have the possible sets
of internal and external states and a number of emission sequences. In other
words we want to determine the transition and emission probabilities. Let:

Ej ≡
(
ejk, k = 1, . . . , Lj

)
, 1 ≤ j ≤ R be the given sequences of emissions,

and
Sj ≡

(
sjk, k = 1, . . . , Lj

)
, 1 ≤ j ≤ R the sequences of internal states.

After setting a stopping criteria and an initial guess for emission and tran-
sitions probabilities the probabilities and improved iteratively improved. The
algorithm terminates when the stopping criteria is met. Viterbi training algo-
rithm and Baum-Welch are most commonly used for learning problems.

3.4.3.1 Viterbi Training Algorithm When using Viterbi training al-
gorithm, Viterbi decoding algorithm is used to derive the most internal state
sequence with highest probability for each of the observations. Number of emis-
sions and transitions is estimated using these most probable sequences. Model
parameters can then be recalculate using these counts. See Algorithm 4 for
details.

3.4.3.2 Baum-Welch Algorithm In Baum-Welch algorithm the posterior
decoding algorithm is used to derive probability distribution of all the internal
states. Number of emissions and transitions is estimated using the probability
distributions. Model parameters can then be recalculate using these counts. See
Algorithm 5 for details.

3.5 Advantages and disadvantages of HMMs

As most machine learning techniques hidden Markov models possess certain
strengths and weaknesses. Even though HMMs can be very powerful it has
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Algorithm 4 Viterbi training algorithm

Initialization Initial guess A,B,
∏

Pseudocounts (the values
to be added to the
frequency counts)

Ã, B̃

Recursion

Calculate the most
probable internal state
sequence Sjusing the
Viterbi decoding

algorithm for each of the
sequences

Calculate the observed
frequency counts of
transitions and of

emissions. A�and B�

âu,v =
∑
j

∑
k

δ
(
u, sjk

)
.δ
(
v, sjk+1

)

b̂u (x) =
∑
j

∑
k

δ
(
u, sjk

)
.δ
(
x.ejk

)
where δis the usual Kronecker

delta.

Calculate the regularized
frequency counts

A = Â+ Ã

B = B̂ + B̃

Update the matrices A
and B

au,v =
au,v∑
w au,w

bu (x) =
b(x)∑
y bu(y)

Apply a similar updating
to
∏

Termination

Stop when the maximum
number of iterations is

reached or the
convergence is too slow
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Algorithm 5 Baum-Welch algorithm

Initialization Initial guess A,B,
∏

Pseudocounts (the values
to be added to the
frequency counts)

Ã, B̃

Recursion

calculate backward and
forward coe�cients using
forward and backward
algorithms for each

sequence

Calculate the observed
frequency counts of
transitions and of

emissions. A�and B�

âu,v =
∑
j

1

p (Ej | λ)
∑
k+1

ϕj
k (u) .au,v

b̂ (x) =
∑
j

1

p (Ej | λ)
∑
k−1

ϕj
k (u)

.βj
k (u) .δ

(
x.ejk

)
where δ is the usual Kronecker

delta

Calculate the regularized
frequency counts

A = Â+ Ã

B = B̂ + B̃

Update the matrices A
and B

au,v =
au,v∑
w a−

u,w

bu (x) =
b (x)∑
y bu (y)

Apply a similar updating
to
∏

Termination

Stop when the maximum
number of iterations is

reached or the
convergence is too slow
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some weaknesses which the designer should be aware of . In this section we will
highlight the main advantages and disadvantages of HMMs.

3.5.1 Advantages

We will present 4 of the main advantages of HMMs. These are statistical ground-
ing, modularity, incorporation of prior knowledge, and model transparency [58].
We will go through them brie�y one-by-one.

3.5.1.1 Statistical grounding By statistical grounding we mean that we
can use the stable and solid base of statistical mathematics to implement HMMs.
This allows a lot of freedom in implementation while still being in sensible
constraints of mathematics. Statistical analysis of individual steps of the process
can also be obtained. These analysis can help us �nd weakness of a certain step.

3.5.1.2 Modularity Multiple HMMs can be easily combined together. This
can be achieved by simply creating transitions from states of one HMM to
states of another HMM. The probability of the newly created states can be
set manually or a training set can be used to set them for the new model.
This property of HMMs can be used to split complex training data into easily
understandable models.

3.5.1.3 Incorporation of Prior Knowledge We can incorporate prior
knowledge when designing and testing a HMM. This can be achieved in various
ways: by adding previous knowledge into the HMM architecture, by using prior
knowledge to constrain the model, or by initializing the model with prior knowl-
edge before the training. These methods can be used alone or in combination
to get a more stable and accurate training of data.

3.5.1.4 Model Transparency It is very easy to present the trained data
visually using graphical representation. These graphs can be easily interpreted
by human experts who can extract valuable information from them.

3.5.2 Disadvantages

We will present 3 of the main disadvantages of HMMs. These are the Markov
Principle, speed and Over-�tting [58]. We will go through them brie�y one-by-
one.

3.5.2.1 The Markov Principle HMMs are �rst order Markov chains, which
means that a pattern given a time t is only dependent on the pattern at t-1.
That means that strict HMMs cannot get more precision in the model unless
more states are added.
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3.5.2.2 Speed HMM algorithms are very computational costly because they
have to go through all the paths in the model. They are slow to process especially
when the dataset is very large. By using e�ective and clever programming
techniques the time can be decreased to an acceptable level.

3.5.2.3 Over-�tting Over-�tting occurs when a model is trained a way that
avoids or limits generalization. This usually happens when the training data is
very small. This can be avoided by using hold-out validation.
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4 Related work

As mentioned in the �rst chapter there has not been done any research in this
particular type of cervical cancer data using hidden Markov models. We will
therefore divide previous research for cervical cancer and hidden Markov models
individually.

4.1 Cervical Cancer

There has been lot of machine learning techniques like ANN, Bayesian Networks
applied on cervical cancer. We will mention some of the most relevant among
those.

�Survival prediction using arti�cial neural networks in patients with uterine
cervical cancer treated by radiation therapy alone� [39]

Objective: In this paper, they evaluated the usefulness of arti�cial neutral
networks (ANN's) for the survival prediction in patients with uterine cervical
cancer treated by radiotherapy.

Methods: They used data from 134 patients with uterine cervical cancer
treated by combined external and high dose-rate remote after loading Intracav-
itary radiotherapy between 19 78 and 1993. The ANNs were trained using the
data from 67 randomly selected patients. Using the trained ANN's they pre-
dicted the 5-year survival in the remaining 67 patients, and compared it with
the known 5-year survival. The performance of the ANNs was evaluated using
a receiver operating characteristic (ROC) curve curve and was compared using
the area under the ROC curve (Az).

Results: When fundamental factors, such as age, performance status, hemoglobin,
total protein, International Federation of Gynecology and Obstetrics (FIGO)
stage, and historical type were used as inputs in the ANNs. When the histori-
cal grading of radiation e�ect determined by periodic biopsy, the examination
was used in addition to the fundamental factors. When the cytological grading
of radiation e�ect by the periodic smear was used in addition to the funda-
mental factors, which was not signi�cantly di�erent from that when only the
fundamental factors were used.

Conclusion: ANNs allowed them to evaluate the importance of prognostic
factors, and make it possible to predict the survival of each patient. Using
ANNs, the combination of histological grading of radiation e�ect determined
by periodic biopsy examination, in addition to the fundamental factors, is the
most e�ective for prediction of survival in patients with uterine cervical cancer.

�Bayesian Model Combination and Its Application to Cervical detection� [10]

Objective: In this paper, Researchers proposed a method to combine sev-
eral models using a Bayesian approach. The method selects the most relevant
attributes from several models, and produces a Bayesian classi�er that has a
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high accuracy for cervical . They applied this method for the diagnosis of pre-
cursor lesions of cervical cancer.

Methods: They used 1055 sample data labeled by an expert. They used a
holdout testing procedure, with approx. 2/3 of the data for training and 1/3 for
testing (800 for training and 255 for testing). They developed a methodology to
combine several models using a Bayesian approach. The method selects the most
relevant attributes from several models, and produces a Bayesian classi�er that
has a high accuracy for cervical . Based on conditional information measures,
the method eliminates irrelevant variables, and joins or eliminates dependent
variables; until an optimal Bayesian classi�er is obtained.

Results: They evaluated a methodology in the classi�cation of di�erent
regions of colposcopy videos. Firstly, some image sequences were classi�ed with
the help of an expert. Secondly, based on the training cases, the time series were
obtained and described using the 3 models. Finally, the model combination
methodology was applied and a Bayesian classi�er was generated that combines
the 3 models. This combined classi�er was tested with other image sequences,
di�erent to the ones for training.

Conclusion: Researchers applied above mentioned method for the analy-
sis of colposcopy images for diagnosis of cervical cancer. For this they used
the parameters from three mathematical models that characterize the temporal
evolution of each pixel in the image. Each model has di�erent number of pa-
rameters, in total 11 attributes, all continuous. There are three classes. Their
method produces a very simple and e�cient classi�er with an accuracy of 95%.

4.2 Hidden Markov models

�Computer-Aided Prostate in Ultrasono-graphic-images� [59]

Objective: Prostate cancer is one of the most frequent cancers in men and
a major cause of mortality in developed countries. Detection of the prostate
carcinoma at an early stage is crucial for a successful treatment. In this paper,
a system for computer-aided, TRUS-based detection of prostate cancer was
presented

Methods: In this paper, Researchers used images from urology department
in Spain where a corpus of 4944 images was acquired from 1648 biopsy sessions (3
images per session) involving 301 patients (5 to 6 biopsies per patient). On these
images, they used K-NN and HMM classi�cation to predict the malignancy of
a region around a pixel in a TRUS image of a previously unknown patient. The
training process of HM models was carried out using the well-known instance
of the EM algorithm called backward-forward or Baum-Welch re-estimation.

Results: Based on classi�cation schemes, HMM performed slightly better
than k-NN when working with gray maps, however, no signi�cant di�erence is
found between both classi�ers when working with Spatial Gray Level Depen-
dence Matrices (SGLDM).

Conclusion: A system for computer-aided, transrectal ultrasonography-
based detection of prostate cancer had been presented. The aim of the system
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was to help an expert decide where to perform a biopsy. Two classi�ers based
on k-Nearest Neighbors and hidden Markov models are compared.

�Application of Hidden Markov models to Gene Prediction in DNA� [60]

Objective: Identi�cation or prediction of duplicate sequence from within
genomic regions has been a major rate limiting step in the search of genes. In
this paper, a HMM is developed to detect the gene structure.

Methods: In this paper, Researchers develop a hidden Markov model
(HMM) to represent the degeneracy features of splicing junction donor sites
in eucaryotic genes. The HMM system is fully trained using an expectation
maximization algorithm and the system performance is evaluated using the 10-
way crossvalidation method. Researchers used only the local information in
their research for the donor classi�cation.

Results: The modeled HMM system correctly classi�ed more than 95% of
the candidate sequences into the right categories. More than 91% of the true
donor sites and 97% of the false donor sites in the test data were classi�ed
correctly.

Conclusion: A hidden Markov model had been developed to detect the
structure of the genes. the aim of the the modeled HMM was to represent the
degeneracy features of splicing junction donor sites in eucaryotic genes. the
HMM system was completely trained by using an expectation maximization
algorithm and the performance was evaluated by using 10-way cross validation
method.

5 Solution

In this chapter we will present our solution and results. First, we will go through
the requirements of this project. Then we will move on to the implementation
where we talk about selection of technology for our data analysis, show the pre-
processing of the data and how we used the selected technology to process the
data. We will end this chapter with presenting our results.

The requirement of this project was to use Bayesian networks to analyze and
extract any useful patterns from the provided dataset. To train and classify the
data our main priority should be to use existing technology instead of reinventing
the wheel.

5.1 Implementation

We chose to use continuous hidden Markov models (HMM) which is a Markov
model with hidden states. It can be seen as the simplest form of Bayesian Net-
works. We tested several implementations of HMM in various programming
languages but found that those were not designed for over speci�c needs. Those
rejected implementations include UDMHMM (C++), Jahmm (Java), HMM
Toolbox (Matlab) and Mendel HMM Toolbox (Matlab).
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Finally, we decided to use General hidden Markov model library (GHMM)
which is a C library implementing basic and extended hidden Markov models.
Due to limitations of discrete HMMs only in GHMM we were not able to use
its graphical user interface. Therefore we used an additional Python-wrapper
library to modify and utilize GHMM for our purpose.

5.1.1 Dataset pre-processing

We were given post-treatment data of 78 patients where 46 where were cured
and 32 were not cured. Total number of examples was 868,810 and the ratio
between data from cured and not cured patients was 0.43 and 0.57. Table 1
shows the �rst few lines of the dataset. We removed the irrelevant columns and
information (see Section 7.1 for a discussion). This was accomplished through
a Python-script.

Table 1: Shows the �rst 20 lines from the original dataset.

 

# name: mm001,residiv:        0,stime:       66.7870 
#          x,          y,          z,   Amplitude,          kep,          kel 
         119         114           1      1.11368,      1.97132,     0.000000 
         120         114           1      1.34914,      1.87449,     0.000000 

         121         114           1      1.85973,      2.29584,     0.000000 
         122         114           1      2.02015,      2.10357,     0.000000 
         123         114           1      1.77714,      1.41152,     0.000000 
         124         114           1      1.52227,      1.22585,     0.000000 
         125         114           1      1.36091,      2.03624,     0.000000 
         126         114           1      1.64858,      2.07266,     0.000000 
         127         114           1      1.74830,      1.85514,     0.000000 
         128         114           1      1.67203,      1.66085,     0.000000 
         114         115           1      1.02867,      1.18023,     0.000000 
         115         115           1      1.08240,      1.17235,     0.000000 
         116         115           1      1.30867,      1.34240,     0.000000 
         117         115           1      1.44298,      1.70905,     0.000000 
         118         115           1      1.36391,      1.68453,     0.000000 
         119         115           1      1.15545,      1.53698,     0.000000 
         120         115           1      1.24364,      1.67675,     0.000000 
         121         115           1      1.70529,      1.94580,     0.000000 
         122         115           1      1.69368,      1.62077,     0.000000 
         123         115           1      1.66562,      1.38886,     0.000000 

Name and stime were removed. Kep and Kelwere also removed due to their
inaccuracy. This means that we are only considering the coordinates of a voxels
and the related amplitude of the contrast medium. The data is then grouped
into two subsets: one containing data from cured (residiv = 0) patients and the
other for non-cured (residiv = 1). The amplitude for all the voxels in each subset
is then collected by traversing the data in a zigzag fashion. It is visualized in
Figure 8 and represents tumor area for a patient. The 3 layers represents z-
coordinate while the x- and y-coordinates are represented by the grid on each
layer. The red arrows show alternating direction of the traversal. The direction
is changed for each row as well as for each layer. When one layer is processed
from top to bottom, the next is processed from bottom to top.
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Figure 8: Shows how the data is traversed row by row.

The resulting data are two arrays of arrays, one each of the two groups of
patients. Each of the sub-arrays represents one patient, and contains zigzagged
values of amplitude. These two arrays are then used for training and classi�ca-
tion of the data.

5.1.2 Training and classi�cation

We set number of hidden states, N between 2 and 10. For each N we used a
N × N transition matrix, A, and two transitions with probability of 0.5. One
transition to the state itself and the second one to the neighboring state.

A =


0.5 0.5 0 . . . 0
0 0.5 0.5 . . . 0
0 0 0.5 . . . 0
...

...
...

. . . 0
0.5 0 0 0 0.5

 (18)

The probability distribution, B is set to N × 2 matrix since we only have 2
possible observation.
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B =

 random(5) random(25)
random(5) random(25)

...
...

 (19)

while the initial probability is a 1×N matrix where N1j = 1/n

πi =
[

1/n 1/n · · ·
]

(20)

We create two model, M0 and M1 by using Gaussian distribution and λ (3
matrices mentioned above).

One random example is left-out from either of the two groups, Seq0 and Seq1
of the patients. Then, we use Baum-Welch algorithm and log-likelihood for each
group of patients to train and learn the two models. We �nd log-likelihood, L0

and L1 using both groups of data for each of the models. We then use a merged
sorted list of di�erences, D between them (L0 − L1for M0 and L1 − L0for M1)
to �nd minimum error rate, Emin and threshold, T. Note that while merging
the list we keep track of which model each element in D belongs to.

Initially, we set Emin = 1.0, T = 0 and assume that one group of patients is
always classi�ed correctly, E0 = 0 while the other always incorrectly, E1 = lseq1
(length of Seq1). Error is de�ned as:

E =
E0 + E1

lseq0 + lseq1

This calculation is repeated for all elements in D. Threshold is set to the
current element of D if E < Emin. E0 is increased by 1 if the the element
belongs to E0 while E1 is decreased by 1 if the the element belongs to E1.

After determining threshold we �nd log-likelihood of both models using the
ignored example, i as the test data. We denote this as L0i and L1i. We use
di�erence between them to determine whether the classi�cation is correct or
not.

The classi�cation is correct if L0i − L1i < T and the ignored example be-
longed to Seq0, or if L1i − L0i < T and the ignored example belonged to Seq1.

The above procedure is repeated 1000 times for 2 ≤ N ≤ 8. For each of the
1000 iteration we store values of Emin and the classi�cation, c (0 for correct
and 1 for incorrect classi�cation). These pairs are sorted by ascending order of
Emin. We calculate the accuracy of the top x percents of the classi�cations.

xε(1, 2, . . . 9, 10, 20, . . . 90, 100)

The accuracy of the classi�cation is de�ned as:

1

10x

x∑
n=0

n (21)
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The accuracy for each x is plotted in a diagram. These diagrams are used
to evaluate the results by comparing the guessed error rate, Eg. The results are
presented in the next subsection of this chapter.

Eg =
min {lseq0, lseg1}
lseq0 + lseq1

(22)
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6 Results

We analyzed data from 78 patients where 46 where were cured and 32 were not
cured after radiotherapy. This gives us Eg = 31/77 ≈ 0.406 or Eg = 32/77 ≈ 0.413
by using Equation 22.

On the next pages we present results produced after 1000 iterations of HMM
with leave-one-out cross-validation. The number of hidden states ranges be-
tween 2-8. Results for each state are prestsented in a diagram. Note, that the
diagrams are in logarithmic x-axis. (See Chapter 5.1.2for details about calula-
tions of the diagrams).

The accuracy of the iterations with least error rate was very low. It was even
lower than Eg most of the times. Table 2 shows 20 iterations with least error
rate for two hidden states. The accuracy of the prediction is only 0.15 which is
very low considering our initial estimates of HMMs accuracy.

Table 3 is used for plotting the accuracy of prediction in Figure 9. Similar
tables are used to plot diagrams for other states.

We can observe in Figure 9-15 that the accuracy of prediction is usually
increasing for when increasing number of iterations are included. But in those
cases the error rate is too high to consider those classi�cations.

An accuracy of 0.6 for the 10 % iterations would have been a good result.
But we never achieved that in our experiments.
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Table 2: The top 20 iterations and the corresponding prediction

 

  Error Rate    Prediction 
0.285714285714 1 
0.298701298701 0 
0.298701298701 0 
0.298701298701 0 

0.298701298701 0 
0.298701298701 0 
0.298701298701 0 
0.311688311688 0 
0.311688311688 0 
0.311688311688 0 
0.311688311688 0 
0.311688311688 0 
0.311688311688 0 
0.311688311688 1 
0.311688311688 0 
0.311688311688 1 
0.311688311688 0 

0.311688311688 0 
0.311688311688 0 
0.311688311688 0 
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Table 3: The results for 2 states.

 

Iterations Accuracy 
1 %  0,1000 
2 %  0,1500 
3 %  0,1667 
4 %  0,2000 

5 %  0,1800 
6 %  0,2167 
7 %  0,2143 
8 %  0,2250 
9 %  0,2778 
10 %  0,3100 
20 %  0,4300 
30 %  0,4600 
40 %  0,4675 
50 %  0,4520 

60 %  0,4267 
70 %  0,3986 
80 %  0,3888 
90 %  0,3989 

Figure 9: Results for 2 states
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Figure 10: Results for 3 states

Figure 11: Results for 4 states
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Figure 12: Results for 5 states

Figure 13: Results for 6 states
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Figure 14: Results for 7 states

Figure 15: Results for 8 states
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7 Discussion

Our aim for this project was to analyze a large set of post-treatment cervical
cancer data. The dataset had data from dynamic contrast enhanced MR imaging
along with the outcome of the treatment. We wanted to �nd any relations
between contrast medium data and the outcome of the treatment by applying
di�erent unsupervised learning algorithms. Our initial research showed that
hidden Markov model was the best suitable algorithm for this dataset.

7.1 Dataset

We were given post-treatment data of 78 patients where 46 where were cured
and 32 were not cured. Total number of examples was 868,810 and the ratio
between data from cured and not cured patients is 0.43 and 0.57. In other
words 57 % of the data is from 41 % of the not-cured patients. This means
that most of the non-cured patients had large tumor areas than the 46 cured
patients. In other words, patients with relatively large tumors are less likely to
get cured by radiotherapy.

Another problem we faced was the extreme values in the sample sets. The
training of data usually resulted in non-converging models when those values
were included. Luckily, examples with extreme values were only a fraction of
the whole dataset therefore the problem with non-converging models was easily
overcome by removing those examples.

We chose to only focus on one property of the voxel, Amplitude. Flow of
contrast medium in and out of the blood vessels, Kep and Kel were ignored. It
was because these variables were not recorded well enough or the values were
too similar and small for all the examples. A less erroneous recording would
have been used to a more accurate classi�cation.

7.2 Hidden Markov models

Our thorough evaluation of the HMM on the data set, using a wide range of
states, classi�cation thresholds, and learning runs, shows that the HMM is able
to �nd patterns that clearly discriminates between the two classes appearing
in the training set. However, when leave-one-out cross-validation is introduced,
this discriminative power disappears completely, leaving the HMM unable to
beat even a majority classi�er. This indicates that linear scanning of the voxels,
using HMM for learning and classi�cation, being a reasonable approach, clearly
is unsuccessful in practice on our data set.

The question we set out to answer by our research were:

� How hidden Markov models can be used to model spatial patterns in the
cervical cancer data?

We implemented hidden Markov models using Baum-Welch algorithm and leave-
one-out cross-validation. Considering the size of the dataset our implementation
is very e�cient for small number of hidden states.
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� Can these models be used to predict outcome of radiotherapy treatment
with high enough accuracy?

The simple answer to this question is unluckily �No�. Even though we did ex-
tensive initial research showed that HMM would be able to �nd hidden patterns
in our dataset but that was not the case when we used leave-one-out cross-
validation. An accuracy of 0.6 for the 10 % iterations would have been a good
result. But we never achieved that in our experiments.

Our initial claim of being able to �nd hidden patterns in the dataset is
therefore rendered useless but we can conclude that we need a more sophisticated
approach based on dynamic Bayesian networks to �nd hidden patterns, if any,
in the dataset.
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8 Conclusion

In this project our job was to analyze data from dynamic contrast enhanced
MR imaging data recorded from cervical cancer patients after receiving radio-
therapy treatment. We wanted to �nd any relations between the outcome of the
treatment and the behavior of the amplitude in the tumor area. And whether
we could use that relation to predict outcome of a patient before the treatment.

We used hidden Markov models to explore and analyze the dataset. Our
thorough evaluation of the HMM on the dataset using a wide range of states,
classi�cation thresholds, and learning runs, showed that the HMM is able to
�nd patterns that clearly discriminates between the two classes appearing in
the training set. However, when leave-one-out cross-validation is introduced,
this discriminative power disappears completely, leaving the HMM unable to
beat even a majority classi�er. This indicates that linear scanning of the voxels,
using HMM for learning and classi�cation, being a reasonable approach, clearly
is unsuccessful in practice on our data set.

Our approach of using linear traversing of the dataset and using HMM for
learning and classi�cation was not successful. As further work on this dataset we
would like to suggest a more sophisticated approach based on dynamic Bayesian
networks and taking more of the spatial relationships into account. This ap-
proach may reveal any potential hidden patterns in the dataset.
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Glossary of medical terms

� Human Papillomavirus (HPV) A group of small non-enveloped DNA
viruses infecting epithelia sexually transmitted.

� Cervical dysplasia: It is a condition in which the cells of the inner lining
of the cervix have precancerous changes.

� Invasive cervical cancer: cancer that has spread from the surface of
the cervix to tissue deeper in the cervix or to other parts of the body.

� Biopsy: Removal and pathologic examination of specimens in the form
of small pieces of tissue from the living body.

� Colposcopy The examination, therapy or surgery of the cervix and vagina
by means of a specially designed endoscope introduced vaginally.

� HPV DNA testing DNA probes speci�c for the identi�cation of human
papilloma virus.

� Papinicolaou smear (Pap smear) Collection of cell samples from the
vagina, cervix, and cervical canal and spread on a glass slide.
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